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ABSTRACT

Hypernetworks are meta neural networks that generate weights for a main neural
network in an end-to-end differentiable manner. Despite extensive applications
ranging from multi-task learning to Bayesian deep learning, the problem of op-
timizing hypernetworks has not been studied to date. We observe that classical
weight initialization methods like Glorot & Bengio (2010) and He et al. (2015),
when applied directly on a hypernet, fail to produce weights for the mainnet in
the correct scale. We develop principled techniques for weight initialization in
hypernets, and show that they lead to more stable mainnet weights, lower training
loss, and faster convergence.

1 INTRODUCTION

Meta-learning describes a broad family of techniques in machine learning that deals with the prob-
lem of learning to learn. An emerging branch of meta-learning involves the use of hypernetworks,
which are meta neural networks that generate the weights of a main neural network to solve a given
task in an end-to-end differentiable manner. Hypernetworks were originally introduced by Ha et al.
(2016) as a way to induce weight-sharing and achieve model compression by training the same meta
network to learn the weights belonging to different layers in the main network. Since then, hyper-
networks have found numerous applications including but not limited to: weight pruning (Liu et al.,
2019), neural architecture search (Brock et al., 2017; Zhang et al., 2018), Bayesian neural networks
(Krueger et al., 2017; Ukai et al., 2018; Pawlowski et al., 2017; Henning et al., 2018; Deutsch et al.,
2019), multi-task learning (Pan et al., 2018; Shen et al., 2017; Klocek et al., 2019; Serrà et al., 2019;
Meyerson & Miikkulainen, 2019), continual learning (von Oswald et al., 2019), generative models
(Suarez, 2017; Ratzlaff & Fuxin, 2019), ensemble learning (Kristiadi & Fischer, 2019), hyperpa-
rameter optimization (Lorraine & Duvenaud, 2018), and adversarial defense (Sun et al., 2017).

Despite the intensified study of applications of hypernetworks, the problem of optimizing them to
this day remains significantly understudied. Given the lack of principled approaches to training hy-
pernetworks, prior work in the area is mostly limited to ad-hoc approaches based on trial and error
(c.f. Section 3). For example, it is common to initialize the weights of a hypernetwork by sampling
a “small” random number. Nonetheless, these ad-hoc methods do lead to successful hypernetwork
training primarily due to the use of the Adam optimizer (Kingma & Ba, 2014), which has the desir-
able property of being invariant to the scale of the gradients. However, even Adam will not work if
the loss diverges (i.e. integer overflow) at initialization, which will happen in sufficiently big mod-
els. The normalization of badly scaled gradients also results in noisy training dynamics where the
loss function suffers from bigger fluctuations during training compared to vanilla stochastic gradient
descent (SGD). Wilson et al. (2017) showed that while adaptive optimizers like Adam may exhibit
lower training error, they fail to generalize as well to the test set as non-adaptive gradient methods.
Moreover, Adam incurs a computational overhead and requires 3X the amount of memory for the
gradients compared to vanilla SGD.

Small random number sampling is reminiscent of early neural network research (Rumelhart et al.,
1986) before the advent of classical weight initialization methods like Xavier init (Glorot & Bengio,
2010) and Kaiming init (He et al., 2015). Since then, a big lesson learned by the neural network
optimization community is that architecture specific initialization schemes are important to the ro-
bust training of deep networks, as shown recently in the case of residual networks (Zhang et al.,
2019). In fact, weight initialization for hypernetworks was recognized as an outstanding open prob-
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lem by prior work (Deutsch et al., 2019) that had questioned the suitability of classical initialization
methods for hypernetworks.

Our results We show that when classical methods are used to initialize the weights of hypernet-
works, they fail to produce mainnet weights in the correct scale, leading to exploding activations
and losses. This is because classical network weights transform one layer’s activations into another,
while hypernet weights have the added function of transforming the hypernet’s activations into the
mainnet’s weights. Our solution is to develop principled techniques for weight initialization in hy-
pernetworks based on variance analysis. The hypernet case poses unique challenges. For example,
in contrast to variance analysis for classical networks, the case for hypernetworks can be asymmetri-
cal between the forward and backward pass. The asymmetry arises when the gradient flow from the
mainnet into the hypernet is affected by the biases, whereas in general, this does not occur for gra-
dient flow in the mainnet. This underscores again why architecture specific initialization schemes
are essential. We show both theoretically and experimentally that our methods produce hypernet
weights in the correct scale. Proper initialization mitigates exploding activations and gradients or
the need to depend on Adam. Our experiments reveal that it leads to more stable mainnet weights,
lower training loss, and faster convergence.

Section 2 briefly covers the relevant technical preliminaries and Section 3 reviews problems with
the ad-hoc methods currently deployed by hypernetwork practitioners. We derive novel weight
initialization formulae for hypernetworks in Section 4, empirically evaluate our proposed methods
in Section 5, and finally conclude in Section 6.

2 PRELIMINARIES

Definition. A hypernetwork is a meta neural network H with its own parameters φ that generates
the weights of a main network θ from some embedding e in a differentiable manner: θ = Hφ(e).
Unlike a classical network, in a hypernetwork, the weights of the main network are not model param-
eters. Thus the gradients ∆θ have to be further backpropagated to the weights of the hypernetwork
∆φ, and then trained via gradient descent φt+1 = φt − λ∆φt.

This fundamental difference suggests that conventional knowledge about neural networks may not
apply directly to hypernetworks and radically new ways of thinking about weight initialization,
optimization dynamics and architecture design for hypernetworks are sorely needed.

2.1 RICCI CALCULUS

We propose the use of Ricci calculus, as opposed to the more commonly used matrix calculus, as a
suitable mathematical language for thinking about hypernetworks. Ricci calculus is useful because
it allows us to reason about the derivatives of higher-order tensors with notational ease. For readers
not familiar with the index-based notation of Ricci calculus, please refer to Laue et al. (2018) for a
good introduction to the topic written from a machine learning perspective.

For a general nth-order tensor T i1,...,in , we use dik to refer to the dimension of the index set that ik
is drawn from. We include explicit summations where the relevant expressions might be ambiguous,
and use Einstein summation convention otherwise. We use square brackets to denote different layers
for added clarity, so for example W [t] denotes the t-th weight layer.

2.2 XAVIER INITIALIZATION

Glorot & Bengio (2010) derived weight initialization formulae for a feedforward neural network by
conducting a variance analysis over activations and gradients. For a linear layer yi = W i

jx
j + bi,

suppose we make the following Xavier Assumptions at initialization: (1) The W i
j , xj , and bi are

all independent of each other. (2) ∀i, j : E[W i
j ] = 0. (3) ∀j : E[xj ] = 0. (4) ∀i : bi = 0.

Then, E[yi] = 0 and Var(yi) = djVar(W i
j )Var(xj). To keep the variance of the output and input

activations the same, i.e. Var(yi) = Var(xj), we have to sample W i
j from a distribution whose

variance is equal to the reciprocal of the fan-in: Var(W i
j ) = 1

dj
.
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If analogous assumptions hold for the backward pass, then to keep the variance of the output and
input gradients the same, we have to sample W i

j from a distribution whose variance is equal to the
reciprocal of the fan-out: Var(W i

j ) = 1
di

.

Thus, the forward pass and backward pass result in symmetrical formulae. Glorot & Bengio (2010)
proposed an initialization based on their harmonic mean: Var(W i

j ) = 2
dj+di

.

In general, a feedforward network is non-linear, so these assumptions are strictly invalid. But sym-
metric activation functions with unit derivative at 0 results in a roughly linear regime at initialization.

2.3 KAIMING INITIALIZATION

He et al. (2015) extended Glorot & Bengio (2010)’s analysis by looking at the case of ReLU activa-
tion functions, i.e. yi = W i

j ReLU(xj) + bi. We can write zj = ReLU(xj) to get

Var(yi) =
∑
j

E[(zj)2]Var(W i
j ) =

∑
j

1

2
E[(xj)2]Var(W i

j ) =
1

2
djVar(W i

j )Var(xj).

This results in an extra factor of 2 in the variance formula. W i
j have to be symmetric around 0 to

enforce Xavier Assumption 3 as the activations and gradients propagate through the layers. He et al.
(2015) argued that both the forward or backward version of the formula can be adopted, since the
activations or gradients will only be scaled by a depth-independent factor. For convolutional layers,
we have to further divide the variance by the size of the receptive field.

‘Xavier init’ and ‘Kaiming init’ are terms that are sometimes used interchangeably. Where there
might be confusion, we will refer to the forward version as fan-in init, the backward version as
fan-out init, and the harmonic mean version as harmonic init.

3 REVIEW OF CURRENT METHODS

In the seminal Ha et al. (2016) paper, the authors identified two distinct classes of hypernetworks:
dynamic (for recurrent networks) and static (for convolutional networks). They proposed Orthogonal
init (Saxe et al., 2013) for the dynamic class, but omitted discussion of initialization for the static
class. The static class has since proven to be the dominant variant, covering all kinds of non-recurrent
networks (not just convolutional), and thus will be the central object of our investigation.

Through an extensive literature and code review, we found that hypernet practitioners universally
depend on the Adam optimizer, which is invariant to and normalizes the scale of gradients, for
training and resort to one of four weight initialization methods:

M1 Xavier or Kaiming init (as found in Pawlowski et al. (2017); Serrà et al. (2019); von Oswald
et al. (2019); Balazevic et al. (2018)).

M2 Small random values (as found in Krueger et al. (2017); Lorraine & Duvenaud (2018)).
M3 Kaiming init, but with the output layer scaled by 1

10 (as found in Ukai et al. (2018)).
M4 Kaiming init, but with the hypernet embedding set to be a suitably scaled constant (as found

in Meyerson & Miikkulainen (2019)).

M1 uses classical neural network initialization methods to initialize hypernetworks. This fails to
produce weights for the main network in the correct scale. Consider the following illustrative exam-
ple of a one-layer linear hypernet generating a linear mainnet with T + 1 layers, given embeddings
sampled from a standard normal distribution and weights sampled entry-wise from a zero-mean
distribution. We leave the biases out for now.

x[t+ 1]it+1 = W [t]
it+1

it
x[t]it , W [t]

it+1

it
= H[t]

it+1

itkt
e[t]kt , 1 ≤ t ≤ T.

Var(x[T + 1]it+1) = Var(x[1]i1)

T∏
t=1

ditVar(W [t]
it+1

it
) = Var(x[1]i1)

T∏
t=1

ditdktVar(H[t]
it+1

itkt
).

(1)

In this case, if the variance of the weights in the hypernet Var(H[t]
it+1

itkt
) is equal to the reciprocal

of the fan-in dkt , then the variance of the activations Var(x[T + 1]it+1) =
∏T
t=1 dit explodes. If
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it is equal to the reciprocal of the fan-out dit+1
, then the activation variance Var(x[T + 1]it+1) =∏T

t=1
dkt

dit+1
is likely to vanish, since the size of the embedding vector is typically small relatively to

the width of the mainnet weight layer being generated.

Where the fan-in is of a different scale than the fan-out, the harmonic mean has a scale close to that
of the smaller number. Therefore, the fan-in, fan-out, and harmonic variants of Xavier and Kaiming
init will all result in activations and gradients that scale exponentially with the depth of the mainnet.

M2 and M3 introduce additional hyperparameters into the model, and the ad-hoc manner in which
they work is reminiscent of pre deep learning neural network research, before the introduction of
classical initialization methods like Xavier and Kaiming init. This ad-hoc manner is not only inele-
gant and consumes more compute, but will likely fail for deeper and more complex hypernetworks.

M4 proposes to set the embeddings e[t]kt to a suitable constant (d−1/2
it

in this case), such that both
W [t]

it+1

it
and H[t]

it+1

itkt
can seem to be initialized with the same variance as Kaiming init. This

ensures that the variance of the activations in the mainnet are preserved through the layers, but the
restrictions on the embeddings might not be desirable in many applications.

Luckily, the fix appears simple — set Var(H[t]
it+1

itkt
) = 1

ditdkt
. This results in the variance of the

generated weights in the mainnet Var(W [t]
it+1

it
) = 1

dit
resembling conventional neural networks

initialized with fan-in init. This suggests a general hypernet weight initialization strategy: initial-
ize the weights of the hypernet such that they approximate weights coming from classical neural
network initialization. We elaborate on and generalize this intuition in Section 4.

4 HYPERFAN INITIALIZATION

Most hypernetwork architectures use a linear output layer so that gradients can pass from the main-
net into the hypernet directly without any non-linearities. We make use of this fact in developing
methods called hyperfan-in init and hyperfan-out init for hypernetwork weight initialization based
on the principle of variance analysis.

4.1 HYPERFAN-IN

Proposition. Suppose a hypernetwork comprises a linear output layer. Then, the variance between
the input and output activations of a linear layer in the mainnet yi = W i

jx
j + bi can be preserved

using fan-in init in the hypernetwork with appropriately scaled output layers.

Case 1. The hypernet generates the weights but not the biases of the mainnet. The bias in the
mainnet is initialized to zero. We can write the weight generation in the form W i

j = Hi
jkh(e)k + βij

where h computes all but the last layer of the hypernet and (H,β) form the output layer. We
make the following Hyperfan Assumptions at initialization: (1) Xavier assumptions hold for all
the layers in the hypernet. (2) The Hi

jk, h(e)k, βij , x
j , and bi are all independent of each other. (3)

∀i, j, k : E[Hi
jk] = 0. (4) E[xj ] = 0. (5) ∀i : bi = 0.

Use fan-in init to initialize the weights for h. Then, Var(h(e)k) = Var(el). If we initialize H with
the formula Var(Hi

jk) = 1
djdkVar(el) and β with zeros, we arrive at Var(W i

j ) = 1
dj

, which is the
formula for fan-in init in the mainnet. The Hyperfan assumptions imply the Xavier assumptions
hold in the mainnet, thus preserving the input and output activations.

Var(yi) =
∑
j

Var(W i
j )Var(xj) =

∑
j

∑
k

Var(Hi
jk)Var(h(e)k)Var(xj)

=
∑
j

∑
k

1

djdkVar(el)
Var(el)Var(xj) = Var(xj).

(2)

Case 2. The hypernet generates both the weights and biases of the mainnet. We can write
the weight and bias generation in the form W i

j = Hi
jkh(e[1])k + βij and bi = Gilg(e[2])l + γi

respectively, where h and g compute all but the last layer of the hypernet, and (H,β) and (G, γ)
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form the output layers. We modify Hyperfan Assumption 2 so it includes Gil , g(e[2])l, and γi,
and further assume Var(xj) = 1, which holds at initialization with the common practice of data
standardization.

Use fan-in init to initialize the weights for h and g. Then, Var(h(e[1])k) = Var(e[1]m) and
Var(g(e[2])l) = Var(e[2]n). If we initialize H with the formula Var(Hi

jk) = 1
2djdkVar(e[1]m) , G

with the formula Var(Gil) = 1
2dlVar(e[2]n) , and β, γ with zeros, then the input and output activations

in the mainnet can be preserved.

Var(yi) =
∑
j

[
Var(W i

j )Var(xj)
]

+ Var(bi)

=
∑
j

[∑
k

Var(Hi
jk)Var(h(e[1])k)Var(xj)

]
+
∑
l

Var(Gil)Var(g(e[2])l)

=
∑
j

[∑
k

1

2djdkVar(e[1]m)
Var(e[1]m)Var(xj)

]
+
∑
l

1

2dlVar(e[2]n)
Var(e[2]n)

=
1

2
Var(xj) +

1

2
= Var(xj).

(3)

If we initializeGij to zeros, then its contribution to the variance will increase during training, causing
exploding activations in the mainnet. Hence, we prefer to introduce a factor of 1/2 to divide the
variance between the weight and bias generation, where the variance of each component is allowed to
either decrease or increase during training. This becomes a problem if the variance of the activations
in the mainnet deviates too far away from 1, but we found that it works well in practice.

4.2 HYPERFAN-OUT

A similar derivation can be done for the backward pass using analogous assumptions on gradients
flowing

in the mainnet:
∂L

∂x[t]it
=

∂L

∂x[t+ 1]it+1
W [t]

it+1

it
,

through mainnet weights:
∂L

∂W [t]
it+1

it

=
∂L

∂x[t+ 1]it+1
x[t]it ,

∂L

∂h[t](e)kt
=

∂L

∂W [t]
it+1

it

H[t]
it+1

itkt
,

and through mainnet biases:
∂L

∂b[t]it+1
=

∂L

∂x[t+ 1]it+1
,

∂L

∂g[t](e)lt
=

∂L

∂b[t]it+1
G[t]

it+1

lt
.

(4)

If we initialize the output layer H with the analogous hyperfan-out formula Var(H[t]
it+1

itkt
) =

1
dit+1

dktVar(ekt )
and the rest of the hypernet with fan-in init, then we can preserve input and out-

put gradients on the mainnet: Var( ∂L
∂x[t]it

) = Var( ∂L
∂x[t+1]it+1

). However, note that the gradients will

shrink when flowing from the mainnet to the hypernet: Var( ∂L
∂h[t](e)kt

) =
dit

dktVar(ekt )
Var( ∂L

∂W [t]
it+1
it

),

and scaled by a depth-independent factor due to the use of fan-in rather than fan-out init.

In the classical case, the forward version (fan-in init) and the backward version (fan-out init) are
symmetrical. This remains true for hypernets if they only generated the weights of the mainnet.
However, if they were to also generate the biases, then the symmetry no longer holds, since the
biases do not affect the gradient flow in the mainnet but they do so for the hypernet (c.f. Equation
4). Nevertheless, we can initialize G so that it helps hyperfan-out init preserve activation variance
on the forward pass as much as possible (keeping the assumption that Var(xj) = 1 as before):

Var(yi) =
∑
j

[
Var(W i

jx
j)
]

+ Var(bi)

= djdkVar(e[1]m)Var(H[hyperfan-out]ijk)Var(xj) + dlVar(e[2]n)Var(Gil)

= djdkVar(e[1]m)Var(H[hyperfan-in]ijk)Var(xj)

=⇒ Var(Gil) =
(1− dj

di
)

dlVar(e[2]n)
.

(5)
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We summarize the variance formulae for hyperfan-in and hyperfan-out init in Table 1. It is not
uncommon to re-use the same hypernet to generate different parts of the mainnet, as was originally
done in Ha et al. (2016). We discuss this case in more detail in Appendix Section A.

Table 1: Hyperfan-in and Hyperfan-out Variance Formulae for W i
j = Hi

jkh(e[1])k + βij . If yi =

ReLU(W i
jx
j+bi), then 1ReLU = 1, else if yi = W i

jx
j+bi, then 1ReLU = 0. If bi = Gilg(e[2])l+γi,

then 1HBias = 1, else if bi = 0, then 1HBias = 0. We initialize h and g with fan-in init, and
βij , γ

i = 0. For convolutional layers, we have to further divide Var(Hi
jk) by the size of the receptive

field. Uniform init: X ∼ U(−
√

3Var(X),
√

3Var(X)). Normal init: X ∼ N (0,Var(X)).

Initialization Variance Formula Initialization Variance Formula

Hyperfan-in Var(Hi
jk) = 21ReLU

21HBias djdkVar(e[1]m)
Hyperfan-out Var(Hi

jk) = 21ReLU

didkVar(e[1]m)

Hyperfan-in Var(Gil) = 21ReLU

2dlVar(e[2]n) Hyperfan-out Var(Gil) = max(
21ReLU (1−

dj
di

)

dlVar(e[2]n) , 0)

5 EXPERIMENTS

We evaluated our proposed methods on three experiments involving different use cases of hypernet-
works: feedforward networks, continual learning, and convolutional networks. In all cases, we opti-
mize with vanilla SGD and sample from the uniform distribution according to the variance formula
given by the initialization method. More experimental details can be found in Appendix Section B.

5.1 FEEDFORWARD NETWORKS ON MNIST

As an illustrative first experiment, we train a feedforward network with five hidden layers (500
hidden units), a hyperbolic tangent activation function, and a softmax output layer, on MNIST across
four different settings: (1) a classical network with Xavier init, (2) a hypernet with Xavier init that
generates the weights of the mainnet, (3) a hypernet with hyperfan-in init that generates the weights
of the mainnet, (4) and a hypernet with hyperfan-out init that generates the weights of the mainnet.

The use of hyperfan-in init on a hypernetwork reproduces mainnet weights similar to those that have
been trained from Xavier init on a classical network, while the use of Xavier init on a hypernetwork
causes exploding activations right at the beginning of training (see Figure 1). Observe in Figure 2
that when the hypernetwork is initialized in the proper scale, the magnitude of generated weights
stabilizes quickly. This in turn leads to a more stable training regime, as seen in Figure 3. More
visualizations of the activations and gradients of both the mainnet and hypernet can be viewed in
Appendix Section B.1. Qualitatively similar observations were made when we replaced the activa-
tion function with ReLU and Xavier with Kaiming init, with Kaiming init leading to even bigger
activations at initialization.

Suppose now the hypernet generates both the weights and biases of the mainnet instead of just the
weights. We found that this architectural change leads the hyperfan init methods to take more time
(but still less than Xavier init), to generate stable mainnet weights (c.f. Figure 24 in the Appendix).
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Figure 1: Mainnet Activations before the Start of Training on MNIST.
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Figure 2: Evolution of Hypernet Weight Outputs during Training on MNIST. Xavier init results
in unstable mainnet weights throughout training, while hyperfan-in and hyperfan-out init result in
mainnet weights that stabilize quickly.
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Figure 3: Loss and Test Accuracy Plots on MNIST.

5.2 CONTINUAL LEARNING

Continual learning solves the problem of learning tasks in sequence without forgetting prior tasks.
von Oswald et al. (2019) used a hypernetwork to learn embeddings for each task as a way to ef-
ficiently regularize the training process to prevent catastrophic forgetting. We compare different
initialization schemes on their hypernetwork implementation, which generates the weights and bi-
ases of a ReLU mainnet with two hidden layers to solve a sequence of three regression tasks.

In Figure 4, we plot the training loss averaged over 15 different runs, with the shaded area show-
ing the standard error. We observe that the hyperfan methods produce smaller training losses at
initialization and during training, eventually converging to a smaller loss for each task.
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Figure 4: Continual Learning Loss on a Sequence of Regression Tasks.
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5.3 CONVOLUTIONAL NETWORKS ON CIFAR-10

Ha et al. (2016) applied a hypernetwork on a convolutional network for image classification on
CIFAR-10. We note that our initialization methods do not handle residual connections and pooling
layers, which were in their chosen mainnet architecture and are important topics for future study.
Instead, we implemented their hypernetwork architecture on a mainnet with the All Convolutional
Net architecture (Springenberg et al., 2014) that is entirely composed of convolutional layers and
ReLU activation functions.

After searching through a dense grid of learning rates, we failed to enable the fan-in version of
Kaiming init to train even with very small learning rates. The fan-out version managed to begin
delayed training, starting from around epoch 270 (see Figure 5). By contrast, both hyperfan-in and
hyperfan-out init led to successful training immediately. This shows a good init can make it possible
to successfully train models that would have otherwise been unamenable to training on a bad init.
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Figure 5: Loss and Test Accuracy Plots on CIFAR-10.

6 CONCLUSION

In all our experiments, hyperfan-in and hyperfan-out both lead to successful hypernetwork training
with SGD. We did not find a good reason to prefer one over the other (similar to He et al. (2015)’s
observation in the classical case for fan-in and fan-out init).

For a long time, the promise of deep nets to learn rich representations of the world was left unfulfilled
due to the inability to train these models. The discovery of greedy layer-wise pre-training (Hinton
et al., 2006; Bengio et al., 2007) and later, Xavier and Kaiming init, as weight initialization strate-
gies to enable such training was a pivotal achievement that kickstarted the deep learning revolution.
This underscores the importance of model initialization as a fundamental step in learning complex
representations. In this work, we developed the first principled weight initialization methods for
hypernetworks, a rapidly growing branch of meta-learning. We hope our work will spur momen-
tum towards the development of principled techniques for building and training hypernetworks, and
eventually lead to significant progress in learning meta representations.
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APPENDIX

A RE-USING HYPERNET WEIGHTS

A.1 FOR MAINNET WEIGHTS OF THE SAME SIZE

For model compression or weight-sharing purposes, different parts of the mainnet might be gen-
erated by the same hypernet function. This will cause some assumptions of independence in our
analysis to be invalid. Consider the example of the same hypernet being used to generate multiple
different mainnet weight layers of the same size, i.e. H[t]

it+1

itk
= H[t+ 1]

it+2

it+1k
, dit+1

= dit+2
= dit .

Then, x[t+ 1]it+1 = H[t]
it+1

itkt
e[t]ktx[t]it 6⊥⊥W [t+ 1]

it+2

it+1
= H[t+ 1]

it+2

it+1k
e[t+ 1]kt+1 .

The relaxation of some of these independence assumptions does not always prove to be a big prob-
lem in practice, because the correlations introduced by repeated use of H can be minimized with
the use of flat distributions like the uniform distribution. It can even be helpful, since the re-use of
the same hypernet for different layers causes the gradient flowing through the hypernet output layer
to be the sum of the gradients from the weights of these layers: ∂L

∂h(e)k
=
∑
t

∂L

∂W [t]
it+1
it

H
it+1

itk
, thus

combating the shrinking effect.

A.2 FOR MAINNET WEIGHTS OF DIFFERENT SIZES

Similar reasoning applies if the same hypernet was used to generate differently sized subsets of
weights in the mainnet. However, we encourage avoiding this kind of hypernet architecture design
if not otherwise essential, since it will complicate the initialization formulae listed in Table 1.

Consider Ha et al. (2016)’s hypernetwork architecture. Their two-layer hypernet generated weight
chunks of size (K,n, n) for a main convolutional network where K = 16 was found to be the
highest common factor among the size of mainnet layers, and n2 = 9 was the size of the receptive
field. We simplify the presentation by writing i for it, j for jt, k for kt,m, and l for lt,m.

W [t]ij =

{
H
i(modK)
k α[t][j + b iK cdj ]

k + βi(modK) if i is divisible by K
δ
j(modK)
j(modK)

[
H
j(modK)
k α[t][i+ b jK cdi]

k + βj(modK)
]

if j is divisible by K

α[t][mt]
k = G[t][mt]

k
l e[t][mt]

l + γ[t][mt]
k

(6)

Because the output layer (H,β) in the hypernet was re-used to generate mainnet weight matrices of
different sizes (i.e. in general, it 6= it+1, jt 6= jt+1), G effectively becomes the output layer that we
want to be considering for hyperfan-in and hyperfan-out initialization.

Hence, to achieve fan-in in the mainnet Var(W [t]ij) = 1
dj

, we have to use fan-in init for H (i.e.

Var(Hi(modK)
k ) = 1

dk
6= 1

djdkVar(e[t][mt]l)
), and hyperfan-in init for G (i.e. Var(G[t][mt]

k
l ) =

1
djdlVar(e[t][mt]l)

).

Analogously, to achieve fan-out in the mainnet Var(W [t]ij) = 1
di

, we have to use fan-in init for H

(i.e. Var(Hi(modK)
k ) = 1

dk
6= 1

didkVar(e[t][mt]l)
), and hyperfan-in init for G (i.e. Var(G[t][mt]

k
l ) =

1
didlVar(e[t][mt]l)

).
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B MORE EXPERIMENTAL DETAILS

B.1 FEEDFORWARD NETWORKS ON MNIST

The networks were trained on MNIST for 30 epochs with batch size 10 using a learning rate of
0.0005 for the hypernets and 0.01 for the classical network. The hypernets had one linear layer with
embeddings of size 50 and different hidden layers in the mainnet were all generated by the same
hypernet output layer with a different embedding, which was randomly sampled from U(−

√
3,
√

3)
and fixed. We use the mean cross entropy loss for training, but the summed cross entropy loss for
testing.

We show activation and gradient plots for two cases: (i) the hypernet generates only the weights of
the mainnet, and (ii) the hypernet generates both the weights and biases of the mainnet. (i) covers
Figures 3, 1, 6, 7, 8, 9, 10, 11, 2, 12, 13, 14, and 15. (ii) covers Figures 16, 17, 18, 19, 20, 21, 22,
23, 24, 25, 26, 27, and 28.

The activations and gradients were plotted using a fixed held-out set of 300 examples drawn ran-
domly from the test set. In Figures 2, 6, 9, 14, 18, 21, 24, and 27, each measurement was taken
every 1000 training batches and the bars denote one standard deviation away from the mean.
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B.1.1 HYPERNET GENERATES ONLY THE MAINNET WEIGHTS
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Figure 6: Evolution of Mainnet Activations during Training on MNIST.
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Figure 7: Mainnet Activations at the End of Training on MNIST.
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Figure 8: Mainnet Gradients before the Start of Training on MNIST.
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Figure 9: Evolution of Mainnet Gradients during Training on MNIST.
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Figure 10: Mainnet Gradients at the End of Training on MNIST.
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Figure 11: Hypernet Weight Outputs before the Start of Training on MNIST.
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Figure 12: Hypernet Weight Outputs at the End of Training on MNIST.
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Figure 13: Hypernet Weight Gradients before the Start of Training on MNIST.
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Figure 14: Evolution of Hypernet Weight Gradients during Training on MNIST.
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Figure 15: Hypernet Weight Gradients at the End of Training on MNIST.
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B.1.2 HYPERNET GENERATES BOTH MAINNET WEIGHTS AND BIASES
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Figure 16: Loss and Test Accuracy Plots on MNIST.
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Figure 17: Mainnet Activations before the Start of Training on MNIST.

0 25 50 75 100 125 150 175

0.4

0.2

0.0

0.2

0.4

Xavier (Hyper)
layer one
layer two
layer three
layer four
layer five

0 25 50 75 100 125 150 175

0.6

0.4

0.2

0.0

0.2

0.4

0.6
Hyperfan-in

layer one
layer two
layer three
layer four
layer five

0 25 50 75 100 125 150 175
0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8
Hyperfan-out

layer one
layer two
layer three
layer four
layer five

Figure 18: Evolution of Mainnet Activations during Training on MNIST.
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Figure 19: Mainnet Activations at the End of Training on MNIST.
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Figure 20: Mainnet Gradients before the Start of Training on MNIST.
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Figure 21: Evolution of Mainnet Gradients during Training on MNIST.
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Figure 22: Mainnet Gradients at the End of Training on MNIST.
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Figure 23: Hypernet Weight Outputs before the Start of Training on MNIST.
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Figure 24: Evolution of Hypernet Weight Outputs during Training on MNIST.
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Figure 25: Hypernet Weight Outputs at the End of Training on MNIST.
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Figure 26: Hypernet Weight Gradients before the Start of Training on MNIST.
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Figure 27: Evolution of Hypernet Weight Gradients during Training on MNIST.
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Figure 28: Hypernet Weight Gradients at the End of Training on MNIST.
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B.1.3 REMARK ON THE COMBINATION OF FAN-IN AND FAN-OUT INIT

Glorot & Bengio (2010) proposed to use the harmonic mean of the two different initialization for-
mulae derived from the forward and backward pass. He et al. (2015) commented that either version
suffices for convergence, and that it does not really matter given that the difference between the two
will be a depth-independent factor.

We experimented with the harmonic, geometric, and arithmetic means of the two different formulae
in both the classical and the hypernet case. There was no indication of any significant benefit from
taking any of the three different means in both cases. Thus, we confirm and concur with He et al.
(2015)’s original observation that either the fan-in or the fan-out version suffices.

B.2 CONTINUAL LEARNING

The mainnet is a feedforward network with two hidden layers (10 hidden units) and the ReLU
activation function. The weights and biases of the mainnet are generated from a hypernet with two
hidden layers (10 hidden units) and trainable embeddings of size 2 sampled from U(−

√
3,
√

3). We
keep the same continual learning hyperparameter βoutput value of 0.005 and pick the best learning
rate for each initialization method from {10−2, 10−3, 10−4, 10−5}. Notably, Kaiming (fan-in) could
only be trained from learning rate 10−5, with losses diverging soon after initialization using the other
learning rates. Each task was trained for 6000 training iterations using batch size 32, with Figure 4
plotted from losses measured at every 100 iterations.

B.3 CONVOLUTIONAL NETWORKS ON CIFAR-10

The networks were trained on CIFAR-10 for 500 epochs starting with an initial learning rate of
0.0005 using batch size 100, and decaying with γ = 0.1 at epochs 350 and 450. The hypernet is
composed of two layers (50 hidden units) with separate embeddings and separate input layers but
shared output layers. The weight generation happens in blocks of (96, 3, 3) where K = 96 is the
highest common factor between the different sizes of the convolutional layers in the mainnet and n =
3 is the size of the convolutional filters (see Appendix Section A.2 for a more detailed explanation
on the hypernet architecture). The embeddings are size 50 and fixed after random sampling from
U(−
√

3,
√

3). We use the mean cross entropy loss for training, but the summed cross entropy loss
for testing.
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