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ABSTRACT

Challenges in natural sciences can often be phrased as optimization problems. Ma-
chine learning techniques have recently been applied to solve such problems. One
example in chemistry is the design of tailor-made organic materials and molecules,
which requires efficient methods to explore the chemical space. We present a ge-
netic algorithm (GA) that is enhanced with a neural network (DNN) based dis-
criminator model to improve the diversity of generated molecules and at the same
time steer the GA. We show that our algorithm outperforms other generative mod-
els in optimization tasks. We furthermore present a way to increase interpretability
of genetic algorithms, which helped us to derive design principles.

1 INTRODUCTION

The design of optimal structures under constraints is an important problem spanning multiple do-
mains in the physical sciences. Specifically, in chemistry, the design of tailor-made organic mate-
rials and molecules requires efficient methods to explore the chemical space. Purely experimental
approaches are often time consuming and expensive. Reliable computational tools can accelerate
and guide experimental efforts to find new materials faster.

We present a genetic algorithm (GA) for molecular design that is enhanced with two features:

1. A neural network based adaptive penalty. This promotes exploratory behaviour of the GA
and thus improve the diversity of generated molecules.

2. Exploiting the robustness of SELFIES (Krenn et al., 2019), we do not need to incorporate
any expert based mutation or cross-over rules.

Starting from only simple methane molecules, our algorithm outperforms other generative models in
optimization tasks for molecular design. By introducing machine learning (ML) techniques, the long
term behaviour is not subject to stagnation, thus solving a significant problem in genetic algorithms
(Paszkowicz, 2009).

No domain knowledge is required; thus, our approach is not limited to chemistry-specific questions
but can be applied to a wide range of optimization problems.

2 RELATED WORKS

Inverse design is the systematic development of structures with desired properties. In chemistry
(Sanchez-Lengeling & Aspuru-Guzik, 2018), the challenge of inverse design has been tackled as
an optimization problem, among others in the form of variational autoencoders (VAEs), generative
adversarial networks (GANs) and genetic algorithms.

Variational autoencoders and generative adversarial networks VAEs (Kingma & Welling, 2013)
are a widely used method for direct generation of molecular string or graph representations (Gómez-
Bombarelli et al., 2018). They encode discrete representations into a continuous (latent) space.
Molecules resembling a known structure can be found by searching around the region of the en-
coded point. Making using of the continuous latent representation, it is possible to search via gra-
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Figure 1: Overview of our hybrid structure, which augments genetic algorithms with ML based
neural networks.

dients or Bayesian Optimization (BO). However, the generation of semantically and syntactically
valid molecules is a challenging task. Thus, several follow up works to the VAE have been proposed
for inverse design in chemistry. Among them, CVAE (Gómez-Bombarelli et al., 2018), GVAE (Kus-
ner et al., 2017) and SD-VAE (Dai et al., 2018) work directly on string molecular representations.
Alternatively, JT-VAE (Jin et al., 2018a) works on molecular graphs. Unlike latent space property
optimization, GCPN (You et al., 2018) proposes a reinforcement learning (RL)-based method for
direct optimization on molecular graphs. ORGAN (Guimaraes et al., 2017) demonstrate training
string-based generative adversarial networks (GANs) (Goodfellow et al., 2014) via RL. Another
method based on adversarial training is VJTNN (Jin et al., 2018b).

In all the approaches mentioned above, generative models are trained to mimic the reference dataset
distributions, thus limiting the exploration ability of VAEs and GANs.

Genetic algorithms & related methods There exist several examples of GA based molecule opti-
mization algorithms in literature (OBoyle et al., 2011; Virshup et al., 2013; Rupakheti et al., 2015;
Jensen, 2019)). While some of these examples pre-define mutations on a SMILES level to ensure
validity of the molecules, other approaches use fragment-based assembly of molecules. GAs are
likely to get trapped in regions of local optima (Paszkowicz, 2009). Thus, for selection of the best
molecules, (Rupakheti et al., 2015; Jensen, 2019) report multiple restarts upon stagnation.

We include the aforementioned models as baselines for numerical comparison.

3 GA-D ARCHITECTURE

3.1 OVERVIEW

Our approach is illustrated in Figure 1. Our generator is a genetic algorithm with a population of
molecules m. In each generation, the fitness of all molecules is evaluated as a linear combination of
molecular properties J(m) and the discriminator score D(m):

F (m) = J(m) + β ·D(m) . (1)

Random mutations of high fitness (best performing) molecules replace inferior members, while best-
performing molecules continue to a subsequent generation. The probability of replacing a molecule
is evaluated using a smooth logistic function based on a ranking of fitness among the molecules
of a generation. At the end of each generation, a neural network based discriminator is trained
jointly on molecules generated by the GA and a reference dataset. The fitness evaluation accounts
for the discriminator predictions for each molecule. Therefore, the discriminator plays a role in the
selection of the subsequent population.
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3.2 MUTATION & CROSS-OVER RULES

Mutation of molecules to populate subsequent generations is an important element of the GA. A
low degree of mutation can lead to a slow exploration of the chemical space, causing stagnation
of the fitness function. Robustness of SELFIES allows us to do random mutations to molecular
strings while preserving their validity. Thus, our mutations only include 50% insertions or 50%
replacements of single SELFIES characters. To accelerate the exploration of the GA, we add one
domain-specific mutation rule – the direct addition of phenyl groups in approximately 4% of cases.
Character deletion is implicitly taken into account in SELFIES mutations, and we do not use cross-
over rules.

Figure 2: Reducing Fitness of o-terphenyl, initially possessing the largest fitness in generation 5
(Rank = 0). Due to decreasing discriminator predictions D(m), fitness decreases with an increased
probability of getting killed (Kill Prob.). The molecule is completely replaced in generation 16.
Rank denotes the position of the molecule in an increasing fitness list of generation molecules.

3.3 ROLE OF THE DISCRIMINATOR

The fundamental role of the discriminator is to increase molecular diversity by removing long-
surviving molecules. Consider the realistic scenario in which a GA has found a molecule close to
a local optimum, where all mutations are lowering the fitness. As a result, this molecule survives
for multiple generations while occupying a large fraction of the population. During such periods,
the GA has limited view of the chemical space as it repeatedly explores mutations of the same
high-fitness molecule.

A straightforward solution would be the addition of a linear penalty (Nanakorn & Meesomklin,
2001) in the fitness function that accounts for the number of successive generations a molecule
survives. However, this method assigns independent scores to similar-looking molecules, which
again results in less variety.

Our solution is the addition of an adaptive function (in our case a neural network based discrimina-
tor), thus resolving the problem of stagnation. Molecules with similar representation receive similar
classification scores. Furthermore, long-surviving molecules are trained longer and receive weaker
scores, resulting in decreasing fitness - reducing the chance of long periods of stagnation (illustrated
in Figure 2).

4 EXPERIMENTS

Comparing to the literature standard, we aim at maximizing the penalized logP objective J(m)
proposed by (Gómez-Bombarelli et al., 2018). For molecule m, the penalized logP function is
defined as

J(m) = logP(m)− SA(m)− RingPenalty(m) , (2)

where logP indicates the water-octanol partition coefficient, SA (Ertl & Schuffenhauer, 2009) rep-
resents the synthetic accessibility and prevents the formation of chemically unfeasible molecules,
and RingPenalty linearly penalizes the presence of rings of size larger than 6. Our reference data
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set consists of 250,000 commercially available molecules extracted from the ZINC database (Irwin
et al., 2012). All three quantities in the above equation are normalized based on this dataset.

Table 1: Comparison of our model with maximum penalized logP scores reported in literature.

Method Max. Penalized logP Underlying Model

GVAE (Kusner et al., 2017) 3 2.87± 0.06 VAE
SD-VAE (Dai et al., 2018) 3 3.50± 0.44 VAE

CVAE (Gómez-Bombarelli et al., 2018) 2 4.85± 0.17 VAE
ORGAN (Guimaraes et al., 2017) 3 3.52± 0.08 GAN

JT-VAE (Jin et al., 2018a) 3 4.90± 0.33 VAE
ChemTS (Yang et al., 2017) 5.6± 0.5 RNN

Random SELFIES 6.19± 0.63 Random Search
GB-GA (Jensen, 2019) 1 7.4± 0.9 GA

GCPN (You et al., 2018) 3 7.87± 0.07 Policy network + GAN

GA (here) 12.61± 0.81 GA
GA + D (here) 13.31± 0.63 GA + DNN

GA + D(t) (here) 4 20.72± 3.14 GA + DNN
1 averaged over 10 runs, saturation beyond 50 generations

2 two best molecules of a single run
3 average of three best molecules after performing Bayesian optimization on the latent representation of a

trained VAE
4 averaged over 5 runs with 1000 generations each

4.1 UNCONSTRAINED OPTIMIZATION AND COMPARISON WITH OTHER GENERATIVE MODELS

We define our fitness function according to Eq. 1 and 2 with β = 0 and 10. The algorithm is
run for 100 generations with a population size of 500. All generated molecules are constrained to
a canonical smile length of 81 characters (as in (Yang et al., 2017; Jensen, 2019)). We train the
discriminator (fully connected neural network with ReLU activation and sigmoid output layer, the
input is a vector of chemical and geometrical properties characterizing the molecules) at the end
of each generation for 10 epochs on 500 molecules proposed by the GA and 500 randomly drawn
molecules from the Zinc data set. We report maximum J(m) scores, averaged over 10 independent
runs. The highest J(m) achieved by our approach are 13.31 ± 0.63 (β = 10) and 12.61 ± 0.81
(β = 0), respectively, which is almost twice as high es the highest literature value of 7.87 ± 0.07
(See Table 1). Furthermore, we compare to 50,000 random valid SELFIES strings, which surprisingly
outperforms some existing generative models. The GA-D(t) results are explained in the next section.

4.2 LONG TERM EXPERIMENT WITH A TIME-DEPENDENT ADAPTIVE PENALTY

Figure 3: Maximum J(m) values found for 10 independent runs with no discriminator (β = 0) and
5 independent runs with the introduction of a time-dependent adaptive penalty. The full line is the
average of all runs, the shaded areas are the boundaries of all runs and the dashed lines denote the
average of all maximal J(m) values found at any generation.

In Figure 3, we show the results of runs where we use a time-dependent adaptive penalty. During
periods of saturation, the weight of the discriminator predictions is switched from 0 to 1000 until
stagnation is overcome. The genetic algorithm is hence forced to propose new families of molecules
to increase J(m). As it can be observed in Figure 3, even after steep decreases in max J(m), the
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scores recover and potentially reach values higher than in previous plateaus. We observe that this
approach significantly outperforms all previous methods in maximizing the objective J(m).

4.3 ANALYSIS OF MOLECULE CLASSES EXPLORED BY THE GA

Figure 4: Classes of molecules explored by the GA.

Figure 4 shows classes of molecules explored by the GA in a trajectory with 1000 generations and
a generation size of 500 (see trajectories in Figure 3). A k-means clustering analysis based in the
RDKit fingerprint bit-vectors with 20 clusters was used to automatically generate labels for the 50
best performing molecules (in terms of their properties J(m)) in each generation. We find that the
algorithm starts with a class of relatively small molecules (≈ 40 generations, see class 10), after
which the algorithm explores several different classes of large molecules with e.g. aromatic rings
and conjugates carbon chains (see class 15) and long linear sulfur chains (see class 1). Class 1
includes the molecules with the highest J(m) scores found in this work, exceeding values of 20.

The clustering analysis furthermore helps to analyze the large number of generated molecules. This
allows us to learn from the data and derive design rules to achieve high target properties. In case of
the penalized logP score, we find that representative examples (short distance to the cluster center) of
high performing classes contain aromatic rings, conjugated carbon chains and linear sulfur chains,
which can act as design rules for molecules with high penalized logP scores. Using these design rules
to construct molecules of the maximally allowed length consisting of only sulfur chains, conjugated
carbon chains and chains of benzene rings with sulfur bridges yields J(m) scores of 31.79, 8.58 and
10.02, respectively. The J(m) score reached by the linear sulfur chain outperforms the best scores
found by the GA and other generative models.

To visualize the explorative behaviour of the GA, we did a two-dimensional principal component
analysis (PCA) of the molecular fingerprint vectors of all molecules generated by the GA-D(t) in

Figure 5: Two-dimensional PCA of five time snapshots of the molecular space explored by the
GA-D(t).
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Table 2: Comparison on constrained improvement of penalized logP of specific molecules.

δ=0.4 δ=0.6
Improvement Success Improvement Success

JT-VAE (Jin et al., 2018a) 0.84± 1.45 83.6% 0.21± 0.71 46.4%
GCPN (You et al., 2018) 2.49± 1.30 100.0% 0.79± 0.63 100.0%

MMPA (Jin et al., 2018b) 3.29± 1.12 - 1.65± 1.44 -
VJTNN (Jin et al., 2018b) 3.55± 1.67 - 2.33± 1.17 -

GA (here) 5.93± 1.41 100.0% 3.44± 1.09 99.8%

the trajectory shown in Figure 4. Five snapshots of the trajectory are shown in Figure 5, colored
according to their chemical family. The property score J(m) of the trajectory is visualized in the
images. We find that the GA sequentially explores different parts of the 2D projection of the chemi-
cal space, finding different families of high performing molecules, while the discriminator prevents
the algorithm from searching in the same space repeatedly.

4.4 CONSTRAINED OPTIMIZATION

In the previous sections, we aimed to maximize the penalized logP objective. Here, we consider two
different tasks: firstly, generating molecules of specific chemical interest and secondly, modifying
existing molecules to increase penalized logP scores. We used β = 0 throughout Section 4.4.

4.4.1 GENERATING MOLECULES WITH SPECIFIC PROPERTIES

We run 250 instances of randomly selected sets of target properties (logP in the interval from -5 to
10, SA scores in the range from 1 to 5 and ring penalty for 0 to 3). The fitness function is modified
to minimize the summed squared difference between the actual and desired properties. We compute
the number of experiments that successfully proposed molecules with a squared difference less than
1.0. Each run is constrained to run for 100 generations with a maximum canonical SMILES length
of 81 characters. In 90.0% of the cases, our approach proposes the desired molecules.

4.4.2 IMPROVING PENALIZED LOGP SCORES OF SPECIFIC MOLECULES

In this experiment, we follow the experimental setup proposed by You et al. (2018). We optimize the
penalized logP score of 800 low-scoring molecules from the ZINC data set. Our genetic algorithm
is initiated with a molecule from the data set, and we run each experiment for 20 generations and
a population size of 500 without the discriminator. For each run, we report the molecule m that
increases the penalized logP the greatest, while possessing a similarity sim(m,m′) > δ with the
respective reference moleculesm′. We calculate molecular similarity based on Morgan Fingerprints
of radius 2. To ensure generation of molecules possessing a certain similarity, for molecule m we
modify the fitness to:

F (m) = J(m) + SimilarityPenalty(m) . (3)

Here, SimilarityPenalty(m) is 0 if sim(m,m′) > δ and −106 otherwise. In Table 2, we report the
average improvement for each molecule. Success is determined when the GA successfully improve
upon the penalized logP score, while not violating the similarity constraint. In Figure 6, we show
some of the improved structures.

4.5 MODIFICATION OF THE HYPERPARAMETER β

The definition of the fitness function used in this work (see Equation 1) has a free parameter (β),
that balances the relative importance of molecular target properties J(m) and discriminator score
D(m). Large values of β promote the generation of molecules that resemble the molecules from the
reference data set, while small values of β let the GA explore molecules outside of the distribution
of the reference data set. To systematically explore this behaviour, we varied the β parameter and
analyzed the resulting values of J(m), D(m) as well as their distributions. Figure 7 illustrates the
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Figure 6: Molecular modifications resulting in increased penalized logP scores under similarity con-
straint sim(m,m′) > 0.4, 0.6. We show the molecules that resulted in largest score improvement.

results of this test, where each curve is obtained from averaging five independent runs with equal
settings.

In Figure 7a, we show the average property score J(m) for 11 different values β and observe, as
expected, that low values of β on average lead to higher J(m) score while very high values of β
limit the algorithm to stay inside the reference data set distribution, which, per definition, has a mean
J(m) score of 0. Figure 7b illustrates the low average discriminator scores encountered after a few
generations in case of low values of β. The curves shown in Figure 7a and b suggest that β allows
us to interpolate between high and low J(m) and high and low resemblance with the reference data
set. However, as shown in Figure 7c, this is not the case. At values of β ≈ 20, there is a rather fast
transition from molecules with high values of J(m) of approximately 12-13 to a J(m) distribution
centered around 0 which is similar to the J(m) distribution of the reference data set. The same
abrupt change is visible in the distributions of the discriminator scores. Only at β ≈ 18, we find a
slightly wider distribution of intermediate J(m) values, which we assume is partially related to the
fact that the β = 18 curve shown in Figure 7a is not converged yet.

Figure 7d shows examples of molecules generated with β = 0 (upper panel) and β = 50 (lower
panel). While in the first case, the GA finds large molecules with many aromatic rings and long linear
chains, that do not resemble the molecules in the reference data set, the latter case shows molecules
with structures and properties resembling the reference data set. In this case, the distribution of
J(m) is comparable to that of the data set (with 0 mean and unit standard deviation), while the
discriminator encounters difficulty in correctly classification of the GA molecules, indicated by a
mean discriminator score varying around 0.5 across many generations.

5 CONCLUSIONS AND FUTURE WORK

We presented a hybrid GA and ML-based generative model and demonstrated its application in
molecular design. The model outperforms literature approaches in generating molecules with de-
sired properties. A detailed analysis of the data generated by the genetic algorithm allowed us to
interpret the model and learn rules for the design of high performing molecules. This human expert
design inspired from GA molecules outperformed all molecules created by generative models.
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Figure 7: Variation of the model parameter β that weights the discriminator score in the overall
fitness function. a) Average J(m) as a function of the generation. b) Average discriminator score as
a function of the generation. c) Distributions of J(m) and discriminator score D for multiple values
of β. d) Examples of molecules generated with β = 0 and β = 50.

For computationally more expensive property evaluations, we will extend our approach by the in-
troduction of an on-the-fly trained ML property evaluation method, which will open new ways of
solving the inverse design challenge in chemistry and materials sciences.

Our approach is independent of domain knowledge, thus applicable to design questions in other
scientific disciplines beyond chemistry. An important future generalization will show that the GA-D
is a general concept of a new generative model.
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