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ABSTRACT

Generative adversarial networks (GANs) train implicit generative models through
solving minimax problems. Such minimax problems are known as nonconvex-
nonconcave, for which the dynamics of first-order methods are not well understood.
In this paper, we consider GANs in the type of the integral probability metrics
(IPMs) with the generator represented by an overparametrized neural network.
When the discriminator is solved to approximate optimality in each iteration, we
prove that stochastic gradient descent on a regularized IPM objective converges
globally to a stationary point with a sublinear rate. Moreover, we prove that
when the width of the generator network is sufficiently large and the discriminator
function class has enough discriminative ability, the obtained stationary point
corresponds to a generator that yields a distribution that is close to the distribution
of the observed data in terms of the total variation. To the best of our knowledge,
we seem to first establish both the global convergence and global optimality of
training GANs when the generator is parametrized by a neural network.

1 INTRODUCTION

Generative adversarial network (GANs) learn generative models from unlabeled data (Goodfellow
et al., 2014). GANs aim to learn a generator, a transformation of a known distribution, which is close
to the unknown distribution of the real data. To measure the proximity between the generator and the
distribution of interest, another function, known as the discriminator, is learned to distinguish the
real data from the artificial samples created by the generator. Recently, GANs have demonstrated
tremendous empirical success in generating realistic data in various domains such as computer vision
(Radford et al., 2016; Goodfellow, 2016) and natural language processing (Rajeswar et al., 2017;
Wang et al., 2019).

Despite their wide popularity, theoretical justification of GANs is rather limited due to the following
two reasons. First, when both the generator and discriminator are represented by neural networks,
the optimization problem associated with GANs is nonconvex-nonconcave. Unlike convex-concave
minimax problems that have been well studied in existing literature (Korpelevich, 1976; Nemirovski,
2004; Nedić & Ozdaglar, 2009; Nemirovski & Yudin, 1978), the behavior of gradient descent-ascent
algorithm is much more complicated when the objective function is nonconvex-nonconcave – the
sequence of iterates might either diverge, converge to a locally minimax solution, or possess a limiting
cycle (Mescheder et al., 2018; Daskalakis & Panageas, 2018; Letcher et al., 2019; Zhu et al., 2019; Jin
et al., 2019). Although convergence guarantees have been established for a few variants of gradient
methods for training GANs (Heusel et al., 2017; Mescheder et al., 2017; Li et al., 2018), nearly all of
these results are local and based on assumptions that are not easily satisfied or verifiable for GANs
used in practice. Second, from a statistical perspective, the minimax formulation of GANs results in
a trade-off between generalization and discriminative ability (Arora et al., 2017; Zhang et al., 2018c).
In particular, when the discriminator function class F have perfect discriminative power, although it
can uniquely identify the true distribution, the generalization error cannot be controlled due to the
huge capacity of F . Whereas when F is not sufficiently discriminative, it can fail to differentiate a
generator distribution that is disparate from the underlying truth, which leads to the mode collapse
phenomenon observed in practice (Arora & Zhang, 2018; Srivastava et al., 2017).

In this work, we address these two challenges for GANs where the performance of the generator is
characterized by a integral probability metric (Müller, 1997) induced by the discriminator function
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class F . Specifically, an IPM-based GAN considers the the following optimization problem:

min
g∈G

max
f∈F

L(f, g) = E
[
f
(
g(Z)

)
− f(Y )

]
, (1.1)

where g and f are the generator and discriminator, respectively. Besides, the real data consist of
i.i.d. observations of the unknown random variable Y ∈ RD, Z ∈ Rd follows a fixed and known
distribution, and maxf∈F L(f, g) is the IPM between the distributions of g(Z) and Y . In particular,
when F is the family of 1-Lipschitz functions, the IPM induced by F is the Wasserstein distance
and the formulation in (1.1) recovers the well-known Wasserstein GAN (Arjovsky et al., 2017). The
IPM-based GANs offer a flexible framework that enables us to directly take the discriminative ability
of function class F into consideration and includes various variants of GANs as special cases (Li
et al., 2017; Mroueh et al., 2017; Unterthiner et al., 2017).

We provide a joint statistical and computational analysis for IPM-based GANs where the generator is
represented by an overparametrized neural network gθ where θ ∈ Θ is the network weights. That
is, the number of neurons in the generator network is extremely large and can even goes to infinity.
Under this setting, in terms of computation, we propose to learn the generator by minimizing a
regularized IPM, viewed as a function of θ, via stochastic gradient descent. Assuming having access
to an oracle which approximately solves the maximization problem of the discriminator in (1.1)
within some accuracy for any fixed generator, we prove that stochastic gradient descent converges
globally to an ε-stationary point within O(ε−2) iterations.

More importantly, through a statistical lens, we build a connection between the global optimality
of the obtained stationary point and the discriminative ability of the discriminator function class
F . In particular, we prove that, when F is a sufficiently rich function class and the width of the
generator network is large enough, the optimal discriminator f∗θ∗ ∈ F corresponding to any stationary
point θ∗ satisfies that ‖∇f∗θ∗‖2 diminishes to zero on the support of gθ∗(Z). In other words, when
F is sufficiently discriminative, the optimal discriminator converges to a constant function in the
overparametrization regime, which further implies that the distribution of gθ∗(Z) matches that of Y .

Our theoretical results are based on a careful combination of the geometry of (1.1) and the technique
of the neural tangent kernel (NTK) (Jacot et al., 2018). In specific, the NTK theory demonstrates
that any overparametrized neural network determines a kernel function induced by the random
initialization scheme, which governs the expressiveness of the neural network when its parameter is
within a neighborhood of the initialization. As we will show in the proof, such a kernel enables us
to link the updates in the parameter space to those in the function space. That is, as we update the
parameters of the generator via gradient descent, we equivalently tune the generator in the function
space. Moreover, when lifting the generator to the function space, the IPM has a unique minimizer
which is the unknown distribution of the real data. Thus, combining this fact and the NTK theory
enable us to characterize the global optimality of a stationary point.

Our Contributions. Our contributions are twofold. First, for IPM-based GANs where the generator
is represented as a overparameterized neural network, we prove that gradient descent converges
globally to a stationary point of the regularized IPM with a sublinear rate. Second, by relating the
optimality of any stationary point to the expressiveness of the generator network and the discriminative
ability of the discriminator function class F , we prove that any stationary point of the regularized
IPM yields a distribution that is close to the distribution of the observed real data in terms of total
variation. To the best of our knowledge, our results are the first provide global convergence and
optimality guarantees for training GANs via first-order methods.

Related Work. The vanilla GAN (Goodfellow et al., 2014) is known to suffer from issues such as
unstable training, vanishing gradient (Arjovsky & Bottou, 2017), and mode collapse (Arjovsky et al.,
2017; Arora & Zhang, 2018). Various modifications have been proposed to alleviate these problems
by improving the performance of the learned distribution or the stability of training dynamics. See,
e.g., Nowozin et al. (2016); Huang et al. (2017); Odena et al. (2017); Arjovsky et al. (2017); Gulrajani
et al. (2017); Karras et al. (2017); Berthelot et al. (2017); Li et al. (2017); Mroueh et al. (2017);
Unterthiner et al. (2017); Zhang et al. (2018a;b); Hsieh et al. (2019) and the references therein. Our
IPM-based GANs originates from the the Wasserstein GAN (Arjovsky et al., 2017) and also include
the models studied in Li et al. (2017); Mroueh et al. (2017); Unterthiner et al. (2017) as special
cases. It is shown in (Arjovsky et al., 2017) that IPM-based GANs is free of the vanishing gradient
problem and it is desirable to solve for the optimal discriminator for each iterate of the generator,
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which motivates our usage of an oracle that solves the inner maximization problem to approximate
optimality in each iteration of the stochastic gradient update.

Moreover, there is growing research interest in theoretical analysis of GANs. From a statistical
perspective, Jiang et al. (2019); Zhang et al. (2018c); Zhu et al. (2019) establish the generalization
errors of GANs, Liang (2018) study the statistical error of IPM-based GANs under the nonparametric
setup, and Zhang et al. (2018c); Arora et al. (2017); Bai et al. (2018) study the tradeoff between the
generalization error and discriminative power. In addition, there is a line of research on convergent
algorithms for solving the minimax optimization problem associated with GANs. For example,
Daskalakis et al. (2017); Feizi et al. (2017); Mescheder et al. (2017); Nagarajan & Kolter (2017);
Hsieh et al. (2019); Liang & Stokes (2019) propose convergent first-order methods that update
the generator and discriminator either simultaneously or alternatively. However, their convergence
guarantees either rely on local stability assumptions on the iterates, or require the objective function to
possess a convex-concave structure locally or globally. A more related line of work is on studying the
optimization problem of GAN only from the perspective of the generator, assuming the subproblem
of the discriminator can be solved approximately to the global optima. In particular, Li et al. (2018)
consider the problem of learning a one-dimensional Gaussian mixture or a two-dimensional Gaussian
distribution. They prove global convergence to optimality for gradient updates of the generator,
assuming the discriminator problem is solved to global maximum at each step. In addition, Hsieh
et al. (2019) utilize the two-timescale updating rule (Borkar, 1997) where the discriminator updates
much faster than the generator, which essentially is equivalent to solving the discriminator problem
completely for each iterate of the generator. Compared with our work, they require additional local
stability assumptions and their convergence guarantee is only asymptotic. A more related work is
Sanjabi et al. (2018), which propose to train Wasserstein GAN via regularized optimal transport.
Although they also consider gradient descent for a regularized IPM, their algorithm relies on the dual
formulation of the Wasserstein distance (Villani, 2008) and thus might not be applied to IPM-based
GANs in general. Furthermore, they only establish global convergence to a stationary point whereas
we also characterize the optimality of the obtained stationary point.

Furthermore, our work is also related to the recent literature on the training and generalization error
of training overparametrized neural networks via (stochastic) gradient descent. See, e.g., (Daniely,
2017; Lee et al., 2017; Chizat & Bach, 2018; Du et al., 2018a;b; Li & Liang, 2018; Allen-Zhu
et al., 2018b;a; Zou et al., 2018; Arora et al., 2019a;b; Lee et al., 2019) and the references therein.
Compared with these work, the dynamics of our gradient descent algorithm are more complicated
due to the minimax formulation in (1.1), which makes the convergence analysis more challenging.

Notation. We use ‖ · ‖2 to represent the `2-norm of a vector or the spectral norm of a matrix or
the L2-norm of a function. For a subset of D-dimensional Euclidean space S ⊆ RD, we use |S| to
represent its Lebesgue measure. We denote by Br(x) a ball neighborhood of a point x with radius r.

2 BACKGROUND

In this section, we present the background knowledge of generative adversarial networks and integral
probability metrics.

2.1 LEARNING IMPLICIT GENERATIVE MODELS

An implicit generative model uses a map gθ(Z) to generate data that are similar to the real data
Y ∼ Q. Here θ is the parameter of the map and Z is the random variable with a fixed and
known distribution PZ . The map gθ is usually referred as the generator and we denote the learned
distribution by Pθ. When gθ is a complicated function, the distribution of gθ(Z) is unattainable in
closed form even when PZ is a simple distribution such as uniform or Gaussian. However, it is
easier to generate samples {gθ(Zi)}ni=1 where {Zi}ni=1 are i.i.d. random variables draw from PZ .
Generative adversarial networks provide an algorithm framework that learns an implicit generative
model using samples. Specifically, a discriminator D is trained to distinguish the samples from the
model and real data. Therefore, to train a good generative model, it suffice to learn to confuse the
best possible discriminator, which leads to a minimax optimization problem

min
θ

max
D

E
[
c1

(
D
(
gθ(Z)

))
+ c2

(
D(Y )

)]
. (2.1)
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Here D(·) returns the discrimination results and c1, c2 are the corresponding loss functions with
regard to two types of data.

2.2 INTEGRAL PROBABILITY METRICS

The vanilla GAN (Goodfellow et al., 2014) proposes to let D return a probability of classifying
a data point to be obtained from Q or Pθ, and let c1(x) = log(x), c2(x) = log(1 − x). Then the
objective in (2.1) can be interpreted as the log likelihood of correct classification over all data points.
Furthermore, the solution to the inner maximization problem indeed provides the Jensen-Shannon
divergence between Pθ and Q. Similarly, other distances can also serve as optimization objectives of
GANs. For example, using the IPM induced by a function class F yields

min
θ∈Θ

IPMF (Pθ,Q) := sup
f∈F

∣∣EX∼Pθ [f(X)]− EY∼Q[f(Y )]
∣∣. (2.2)

Such formulation covers several distance definitions between probabilities. For example, the Wasser-
stein distance is obtained by (2.2) when F is all 1-Lipschitz continuous function on RD. Also, the
maximum mean discrepancy (MMD) corresponds to F being a unit ball in a reproducing kernel
Hilbert space, and the total variation (TV) distance corresponds to F being all indicator functions of
Borel measurable sets in RD.

3 STOCHASTIC GRADIENT DESCENT FOR GANS

In this section, we introduce the problem formulation and the optimization algorithm.

3.1 GENERATOR AS A TWO-LAYER NEURAL NETWORK

We parametrizethe generator using a two-layer neural network gθ : Rd → RD, which is given by

gθ(z) =
1√
m

m∑
r=1

σ([θ]>r z) · ar.

Such architecture has a hidden layer with m neurons where m is typically very large. Here σ(·) is an
activation function, which is assumed to be 1-Lipschitz and 1-smooth. Vectors {[θ]r}mr=1 ⊆ Rd are
the weights of the hidden layer, and vectors {ar}mr=1 ⊂ RD are the weights of the output layer. For all
neuron index r ∈ [m], we independently initialize the parameters [θ]r and ar by [θ]r ∼ N(0, Id/d)

and ar ∼ Unif({−1/
√
D, 1/

√
D}D). During training, we fix the output layer weights {ar}mr=1 as

their initial values and only update the values of {[θ]r}mr=1, which is denote by a long vector θ ∈ Rmd.
The iterates of θ during the algorithm are then denoted by {θt}t≥0. Our generative model is then
denoted by gθ(Z) and we let PZ be the uniform distribution over a compact set Z ⊆ Rd. We denote
by pz the costant probability density of PZ . Moreover, we focus on the case where both Pθ and Q
are continuous distributions in RD, which implies that the input dimension d of gθ is no less than D.
We denote their densities by pθ(·) and q(·), respectively.

In the following lemma, we show the neural network generator enjoys smoothness in its parameters.

Lemma 3.1. For any 1-Lipschitz and 1-smooth activation σ and input z ∈ Rd such that ‖z‖2 ≤ 1,
gθ(z) is 1-Lipschitz and (1/

√
m)-smooth in θ. In other words, we have ‖gθ(z)−gθ′(z)‖2 ≤ ‖θ−θ′‖2

and ‖∇θgθ(z)−∇θgθ′(z)‖F ≤ 1/
√
m · ‖θ − θ′‖2 for any θ, θ′ ∈ Rmd.

3.2 MINIMAX FORMULATION OF A REGULARIZED IPM

In the sequel, we focus on the following minimax formulation of a regularized IPM:

min
θ∈Θ

max
f∈F

L(θ, f) := EX∼Pθ [f(X)]− EY∼Q[f(Y )]− γ · ψ(f). (3.1)

Here we assume F is a convex and compact function class and satisfy 0 ∈ F , which enables us to
remove the absolute value operation in (2.2). Besides, for any f ∈ F , we further assume that f is
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ν1-Lipschitz continuous and f(0) = 0. Moreover, ψ(·) in (3.1) is a 1-strongly convex regularizer on
f such that, for any θ ∈ Θ and f1, f2 ∈ F , we have

L(θ, f1) ≤ L(θ, f2) + D(f1 − f2, f2)− γ/2 · ‖f2 − f1‖2, (3.2)

where D(·, f1) is a linear functional and D(f1 − f2, ·) is a continuous functional. The norm in (3.2)
may depend on the choices of the class F and the regularizer ψ. For example, when F ⊆ L2(RD),
we may use the L2-norm ‖f‖22 =

∫
RD |f(x)|2dx and let ψ(f) = ‖f‖22/2. It follows that

D(f1 − f2, f2) = 〈f1 − f2, pθ − q − γ · f2〉.

Moreover, we assume ψ(f) takes its minimum zero at f = 0.

Since F is convex and compact and ψ(·) is strongly convex, there is a unique optimal discriminator
for any generator θ, which is denoted by f∗θ = argmaxf∈F L(θ, f). Note that a Lipschitz continuous
function is almost surely differentiable. Since both Pθ and Q have probability densities, ∇f(X)
almost surely exists under Pθ and Q, which further implies that L(θ, f) is differentiable for any θ.
Then, by Danskin’s Theorem (Rockafellar, 1970), the regularized IPM Φ(θ) := maxf∈F L(θ, f) =
L(θ, f∗θ ) is differentiable and its gradient is given by

∇Φ(θ) = ∇θL(θ, f)|f=f∗θ
= EZ∼PZ

[
∇θ
(
f
(
gθ(Z)

))]∣∣∣
f=f∗θ

. (3.3)

In particular, when Pθ = Q, we have f∗θ = 0 and ∇Φ(θ) = 0.

3.3 GRADIENT ALGORITHM

The gradient in (3.3) can be further written as ∇Φ(θ) = EZ∼PZ
[
∇θgθ(Z)(∇f∗θ )

(
gθ(Z)

)]
where

∇θgθ(z) is the Jacobian matrix of gθ(z) with respect to θ.

According to Arjovsky et al. (2017), the discriminator problem is preferably to be exactly solved in
each iteration so that we obtain accurate gradient information to decrease IPM. Thanks to the recent
breakthroughs in deep learning, especially the optimization of overparametrized neural networks
(Arora et al., 2019a), it is shown that stochastic gradient descent can obtain an arbitrarily accurate
solution to problems that are strongly convex to the network outputs, which implies the global
optimality of the inner maximization problem in (3.1) is attainable. Therefore, for simplicity, we
assume having access to a maximization oracle which returns an approximately optimal discriminator
for any gθ up to an error εf > 0. This approach is also adopted in Sanjabi et al. (2018).

Assumption 3.2 (max-oracle). We assume that we have an oracle such that for any θ ∈ Θ, it returns
a discriminator foθ ∈ F satisfying L(θ, foθ ) ≥ L(θ, f∗θ )− εf .

With the max-oracle specified in Assumption 3.2, the stochastic gradient descent algorithm for
updating the generator parameter is given by

θt+1 ← θt − η ·
(
∇θL(θt, f)|f=foθt

+ ξt
)
, (3.4)

where η > 0 is the stepsize, foθt is provided by the max-oracle, and {ξt}Tt=0 are independent and
mean-zero noises. Here T is the maximum of the iteration numbers. The noise arises due to estimating
∇θL(θ, f) using a batch of samples from P0 with size n, that is,

∇̂θL(θ, f) =
1

n

n∑
i=1

∇θgθ(Zi)(∇f)
(
gθ(Zi)

)
.

Such an estimator is unbiased and we assume its variance is bounded by σ2/n for a constant σ > 0.
We assume the feasible set Θ is large enough such that any update in (3.4) satisfies θt+1 ∈ Θ for all
iteration t ≤ T , for example, letting Θ = Rmd.

4 MAIN RESULTS

In this section we present our main results on the provable convergence. We first prove that the
updates given in (3.4) converge to a stationary point of the regularized IPM.
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4.1 CONVERGENCE TO A STATIONARY POINT

For the simplicity of presentation, from now on we take ψ(f) = ‖f‖22/2 as the functional regularizer,
while our results can be extended to any strongly convex regularizer. Based on Lemma 3.1 which
shows that the generator gθ(z) is smooth in θ, we assume the density pθ satisfies the following
regularity conditions.

Assumption 4.1. We assume the following conditions hold.

1. The probability density pθ(·) is almost everywhere differentiable in θ and the L2-norm of the
gradient ‖∇θpθ‖2 is upper bounded by a constant P1 > 0. Also, there exists a constant F1 > 0
such that for any θ ∈ Θ, the optimal discriminator f∗θ is upper bounded as ‖f∗θ ‖2 ≤ F1/γ.

2. Moreover, pθ and∇θpθ are Lipschitz continuous. In specific, there exists constants ι1, ι2 > 0, such
that ‖pθ1 − pθ2‖2 ≤ ι1 · ‖θ1 − θ2‖ and ‖∇θpθ1 −∇θpθ2‖2 ≤ ι2 · ‖θ1 − θ2‖2 for any θ1, θ2 ∈ Θ.

Here ‖∇θpθ‖2 and ‖∇θpθ1 −∇θpθ2‖2 are defined respectively as

‖∇θpθ‖22 =

∫
RD
‖∇pθ(x)‖22 · dx, ‖∇θpθ1 −∇θpθ2‖22 =

∫
RD
‖∇θpθ1(x)−∇θpθ2(x)‖22 · dx.

The above assumption essentially implies that the optimal discriminator f∗θ is Lipschitz in θ and the
regularized IPM Φ(θ) is smooth in θ, which is shown in the following lemma.

Lemma 4.2. Under Assumption 4.1, the optimal discriminator f∗θ is (ι1/2γ)-Lipschitz continuous
and Φ(θ) is (ι2F1 + ι1P1)/γ-smooth, that is to say, for any θ1, θ2 ∈ Θ we have

‖f∗θ1 − f
∗
θ2‖2 ≤ (ι1/2γ) · ‖θ1 − θ2‖2, ‖∇Φ(θ1)−∇Φ(θ2)‖2 ≤ (ι2F1 + ι1P1)/γ · ‖θ1 − θ2‖2.

With the above conditions, we show that the gradient algorithm (3.4) converges to an ε-stationary point
of the regularized Φ(θ) in sublinear rate. By equation (3.3), the update approximately follows the
negative gradient direction. When the gradient of the regularized IPM is accurate, such convergence
result is standard in nonconvex optimization. For the case when the oracle has an error and updates
are stochastic, the convergence result is discussed in Lin et al. (2019), which is concluded in the
following Lemma 4.3. For notational simplicity, we denote by ι = (ι2F1 + ι1P1)/γ.

Lemma 4.3. Under Assumption 4.1, by performing the update (3.4) for T times and letting the step
size η satisfy η ≤ 1/4ι, we have that the average of the gradient ‖∇θΦ(θt)‖2 satisfies

1

T

T−1∑
t=0

E[‖∇θΦ(θt)‖22] ≤ (4/ηT ) · Φ(θ0) + 2ιησ2/n+ 6P 2
1 εf/γ,

where the expectation is taken on the noises {ξt}T−2
t=0 .

Lemma 4.3 shows that when the stepsize η is properly chosen as η ≤ 1/4ι, then with at most O(ε−2)
iterations, O(ε−2) batch size, and O(ε2) max-oracle error, we can obtain an ε-stationary point θ∗,
which is defined by ‖∇θΦ(θ∗)‖2 ≤ ε. In the following, we demonstrate that when the generator is
a wide neural network, the generative distribution Pθ∗ at such stationary point is indeed globally
optimal for approximating the real data distribution Q.

4.2 GLOBAL OPTIMALITY OF THE STATIONARY POINT

Although TV distance is a strong notion of distances in probability measures, as the discriminator
f is an indicator, no gradient information of TV(Pθ,Q) can we get from the optimal discriminator.
In this paper, we show that, under certain regularity conditions, Pθ can actually converge to Q in
the sense of TV distance when F has similar discriminative ability as all 1-Lipschitz functions (see
Assumption 4.5 for a concrete description). In the following, we denote by θ∗ an ε-stationary point
of Φ(θ) and denote by f∗ the optimal discriminator f∗θ∗ .

To establish the global optimality of θ∗, we discuss Pθ∗ and Q in a mild case when their densities are
upper and lower bounded on their supports, which is concluded in the following condition.
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Condition 4.4 . Distributions Pθ∗ and Q have continuous probability densities p∗(·) and q(·) in RD
with supports SP and SQ. Also, there exist constants p, p,R > 0 such that SP and SQ are both
bounded by R and p∗(·) and q(·) are both lower bounded by p and upper bounded by p.

In practice, maximization over the class of all 1-Lipschitz function is implemented through maximiza-
tion over parametrized functions. Therefore, as a more general case, we consider F to be a convex
class of functions that have similar discriminative ability as all 1-Lipschitz functions. We summaries
such discriminative ability in the following assumption on F , which also allows an error term.

Assumption 4.5 (Discriminative Ability). We assume there exist constants ε, β, εD > 0, such that
for any continuous function h(x), any set S ⊂ RD such that any neighborhood of a point in S
has a nonzero Lebesgue measure, and any f ∈ F , it holds that as long as supx∈S ‖∇f(x)‖2 ≤ ε,
there exists a discriminator f̃ ∈ F such that (1) f̃(x) = f(x) for all x ∈ S and (2) it holds that∫
S
|f̃(x)− f(x)|dx > 0 and∫

S

f̃(x)h(x)dx−
∫
S

f(x)h(x)dx ≥
(
β · sup

x∈S
|h(x)| − εD

)
·
∫
S

|f̃(x)− f(x)|dx.

It is easy to see such assumption holds when F is the class of all functions that are 1-Lipschitz on
RD and take value 0 at x = 0, which is concluded in the following lemma.

Lemma 4.6. Suppose F is the class of all functions that are 1-Lipschitz on RD and take value 0 at
x = 0, then F satisfies Assumption 4.5 with ε = 1/2, β = 1/2, and εD = 0.

When we take h(·) = p∗(·)− q(·) and S = SP , Assumption 4.5 states that as long as f ’s gradient
on SP is uniformly less then ε, the constraint f ∈ F is slack and we are able to find another
discriminator f̃ ∈ F that is only different on SP and increases the difference of expectations by a
volume proportional to supx∈SP |p∗(x)− q(x)| with an error up to εD.

To formally state our results, we define the following kernel function K : Z × Z → R,

K(z1, z2) := Ew∼N(0,Id/d)[σ
′(w>z1)σ′(w>z2)]. (4.1)

Such K(·, ·) is a positive definite kernel when the activation function σ(·) provides good nonlinearity,
which we conclude in the following lemma.

Lemma 4.7. For any function u ∈ L2(Z) and Z1, Z2 independently follows PZ , it holds that

E[K(Z1, Z2)u(Z1)u(Z2)] ≥ 0. (4.2)

Moreover, if {v(·) | v(z) = σ′(w>z), w ∈ RD} contains a complete basis of L2(Z), then the equality
in (4.2) holds if and only if u = 0.

With the kernel K(·, ·) defined in (4.1), there exists a reproducing kernel Hilbert space (RKHS)H
induced by this kernel, which represents a class of functions on Z . Such function class is a rich class
and is dense in the class of continuous functions. We denote the the RKHS-norm in H by ‖ · ‖H.
Now we are ready to establish the optimality of the obtained stationary point.

Theorem 4.8 (Main Theorem). For any ε-stationary point θ∗ and its optimal discriminator f∗, under
Condition 4.4 and Assumption 4.5, assuming ∂xjf

∗ ◦ gθ∗ ∈ H for all j ∈ [D], we have

‖Pθ∗ −Q‖TV ≤ (2γν1R+ εD)/β · |SP |+ p/p · ‖∇f∗ ◦ gθ∗‖H ·
√
D(ε2 + ε∗Kν

2
1)/ε4,

for probability at least 1− δ. Here ε∗K = [2 log(4D2/δ) + 4D log(2
√
m) + 32 + 8 · ‖θ∗ − θ0‖22]/m

and ‖∇f∗ ◦ gθ∗‖H is defined by ‖∇f∗ ◦ gθ∗‖2H =
∑D
i=1 ‖∂xif∗ ◦ gθ∗‖2H.

Here the first term is the bias incurred by the regularizer. The second term is the training error which
comes from two sources. The first source is ε, which is the optimization error when searching for a
stationary point and is controlled by the iteration number T , the batch size n, and the accuracy εf of
the max-oracle, as we have discussed in Lemma 4.3. The second source is εK , which is due to the
expressiveness power of the generator network and is controlled by the number of hidden neurons m.
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5 PROOF SKETCH

Convergence to a Constant Discriminator One key observation in our proof is that, under the
neural network parameterization of the generator gθ, when θ approaches a stationary point of Φ(θ),
the composition ∇f∗θ ◦ gθ converges to zero. Recalling the property of the kernel K(·, ·) in Lemma
4.7, it is natural to define the kernel norm

‖u‖2K := E[K(Z1, Z2)u(Z1)u(Z2)] =

∫
Z×Z

K(z1, z2) · u(z1)>u(z2) · p2
Z · dz1dz2.

The following lemma shows that when the hidden layer in the generator model is sufficiently wide,
for any discriminator f and generator gθ, the kernel norm of the composition ∇f ◦ gθ : Z → R can
be approximated by the L2-norm of the gradient of L(θ, f) with respect to the generator parameter θ.

Lemma 5.1. With probability at least 1− δ, for any f ∈ F and any θ ∈ Θ, it holds that∥∥∇f(gθ(·))∥∥2

K
/D ≤ ‖∇θL(θ, f)‖22 + εK(θ) · ν2

1 ,

where εK(θ) is defined by εK(θ) = (2 log(4D2/δ) + 4D log(2
√
m) + 32 + 8 · ‖θ − θ0‖22)/m.

We note that by the definition of εK(θ), it dacays to zero as m→∞ if ‖θ − θ0‖2 is upper bounded
by O(m1/4). Therefore, when we find a first-order stationary point with respect to a infinitely wide
neural network generator, Lemma 5.1 shows that the kernel norm ‖∇f∗ ◦ gθ∗‖K goes to zero as ε
and εK go to zero. That is to say, the optimal discriminator f∗ tends to be constant over all possible
value of gθ∗(Z), which is the support of Pθ∗ .

The next lemma shows that when ‖∇f∗ ◦ gθ∗‖H is upper bounded, then the convergence in the kernel
norm ‖∇f∗ ◦ gθ∗‖K → 0 can be extended to the convergence in the L2-norm ‖∇f∗ ◦ gθ∗‖2 → 0.

Lemma 5.2. If f∗ and gθ∗ corresponding to the ε-stationary point θ∗ satisfy ∂xjf
∗ ◦ gθ∗ ∈ H for all

j ∈ [D], then with probability at least 1− δ, it holds that

EPθ∗ [‖∇f∗(X)‖22] ≤ ‖∇f∗ ◦ gθ∗‖H ·
√
D(ε2 + ε∗Kν

2
1),

where theH-norm ‖∇f∗ ◦ gθ∗‖H and the error term ε∗K are defined in Theorem 4.8.

Convergence of the Distributions Lemma 5.2 shows that when the generator network is infinitely
wide and θ∗ is a stationary point of Φ(θ), ‖∇f∗(x)‖2 goes to zero for most x ∈ SP . Moreover, if
we have SQ ⊆ SP and SP is a connected set, then f∗(X) takes a constant value for any sample of
X = gθ∗(Z) and Y . The difference of expectations in (3.1) is naturally canceled to zero and we have
Φ(θ∗) = γ · ψ(f∗), which is globally optimal if ψ(f∗) is upper bounded and γ is small.

However, the condition SP ⊆ SQ is usually unavailable in practice since matching the supports of
distributions is just as difficult as matching the whole distributions in learning implicit generative
models. Therefore, the discriminator should also be sufficiently powerful, as shown in Assumption
4.5, so that we can still guarantee the convergence of distributions even we only have f∗(X) constant
on SP but not SQ. To briefly summarize the proof of Theorem 4.8, we lay out the key elements of
the proof in the following. Note that under Condition 4.4, for any θ ∈ Θ and f, f ′ ∈ F , it holds that

L(θ, f)− L(θ, f ′) =

∫
SP∪SQ

(
f(x)− f ′(x)

)(
p∗(x)− q(x)

)
dx− γ ·

(
ψ(f)− ψ(f ′)

)
.

Thus, if we can find f̃ satisfying the conditions defined in Assumption 4.5 and let f = f̃ , f ′ = f∗ in
(5.1), then by the optimality of f∗ we have(

β · sup
x∈SP

∣∣p∗(x)− q(x)
∣∣− εD) · ∫

SP

|f̃(x)− f∗(x)|dx ≤ γ ·
(
ψ(f̃)− ψ(f∗)

)
, (5.1)

which implies that supx∈SP |p∗(x)− q(x)| on SP is O(γ). Thus, we can further upper bounds TV as

TV(Pθ∗ ,Q) =
1

2

∫
SP∪SQ

(
p∗(x)− q(x)

)
dx ≤

∫
SP

(
p∗(x)− q(x)

)
dx ≤ |SP | sup

x∈SP

∣∣p∗(x)− q(x)
∣∣.

Then, to prove Theorem 4.8, it suffices to verify that supx∈SP ‖∇f
∗(x)‖2 ≤ ε. This is true upon we

drop a small subset of SP , since Lemma 5.2 already shows that EPθ∗ [‖∇f∗(X)‖22] is small and the
density p∗(·) of Pθ∗ is lower bounded on SP . See Appendix B.5 for a detailed proof.
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A PROOFS FOR SECTION 3

A.1 PROOF OF LEMMA 3.1

Proof. Lipschitz: We compute the gradient in [θ]r of the j-th component of gθ(z),

∇[θ]r

(
gθ(z)

)
j

=
1√
m
σ′([θ]>r z) · ar,j · z,

which yields ∥∥∇θ(gθ(z))j∥∥2

2
=

m∑
r=1

∥∥∇[θ]r

(
gθ(z)

)
j

∥∥2

2
≤

m∑
r=1

1

m
· 1

D
· ‖z‖22 =

1

D
.

Thus, each component of gθ(z) is (1/
√
D)-Lipschitz, and we have

‖gθ(z)− gθ′(z)‖22 =

D∑
j=1

∥∥(gθ(z))j − (gθ′(z))j∥∥2

2
≤

D∑
j=1

1

D
‖θ − θ′‖22 = ‖θ − θ′‖22,

for any θ, θ′ ∈ Rmd.

Smooth: When σ is smooth, we can compute the Hessian

∇2
[θ]r

(
gθ(z)

)
j

=
1√
m
σ′′([θ]>r z) · ar,j · zz>, ∇2

[θ]r,θs

(
gθ(z)

)
j

= 0 (r 6= s).

By the fact that σ is 1-smooth, it holds that |σ′′([θ]>r z)| ≤ 1. Combining with the fact |ar,j | = 1/
√
D

and ‖zz>‖2 ≤ 1, we have ‖∇2
[θ]r

(gθ(z))j‖2 ≤ 1/
√
mD. Then for any v ∈ RmD we have

∥∥∇2
θ

(
gθ(z)

)
j
v
∥∥2

2
=

m∑
r=1

∥∥∇2
[θ]r

(
gθ(z)

)
j
vr
∥∥2

2
≤

m∑
r=1

1

m
· 1

D
· 1 · ‖vr‖22 =

1

mD
‖v‖22.

By the definition ‖A‖2 = sup‖v‖2=1 ‖Av‖2 we obtain ‖∇2
θ(gθ(z))j‖2 ≤ 1/

√
mD, which implies

(gθ(z))j is (1/
√
mD)-smooth. Thus, we have

∥∥∇θgθ(z)−∇θgθ′(z)∥∥2

F
=

D∑
j=1

∥∥∇θ(gθ(z))j −∇θ(gθ′(z))j∥∥2

2

≤
D∑
j=1

1

mD
‖θ − θ′‖22 =

1

m
‖θ − θ′‖22,

for any θ, θ′ ∈ Rmd. Thus, we conclude the proof of this lemma.

B PROOFS FOR SECTION 4

B.1 PROOF OF LEMMA 4.2

Proof. We first prove that f∗θ is Lipschitz in function space with respect to the L2-nrom. For any
θ1, θ2 ∈ Θ, since (pθ − q − 2γ · f) is the functional gradient of L(θ, f) in f , by the optimality of
f∗θ1 and f∗θ2 we have

〈f − f∗θ1 , pθ1 − q − 2γ · f∗θ1〉 ≤ 0, 〈f − f∗θ2 , pθ2 − q − 2γ · f∗θ2〉 ≤ 0, (B.1)

for any f ∈ F . Leting f = f∗θ2 and f = f∗θ1 in (B.1) respectively and summing up yields

2γ · ‖f∗θ1 − f
∗
θ2‖

2
2 + 〈f∗θ1 − f

∗
θ2 , pθ2 − pθ1〉 ≤ 0. (B.2)

Rearranging terms in (B.2) and by Assumption 4.1 we have

‖f∗θ1 − f
∗
θ2‖

2
2 ≤ (1/2γ) · 〈f∗θ1 − f

∗
θ2 , pθ1 − pθ2〉 ≤ (ι1/2γ) · ‖f∗θ1 − f

∗
θ2‖2 · ‖θ1 − θ2‖2.
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Cancelling out ‖f∗θ1 − f
∗
θ2
‖2 on both sides we obtain that f∗θ is (ι1/2γ)-Lipschitz continuous. Next,

we prove that Φ(θ) = L(θ, f∗θ ) is smooth. Indeed, for any θ1, θ2 ∈ Θ we have

‖∇Φ(θ1)−∇Φ(θ2)‖2 = ‖∇θL(θ1, f
∗
θ1)−∇θL(θ2, f

∗
θ2)‖2 (B.3)

≤ ‖∇θL(θ1, f
∗
θ1)−∇θL(θ2, f

∗
θ1)‖2 + ‖∇θL(θ2, f

∗
θ1)−∇θL(θ2, f

∗
θ2)‖2.

Note that by Assumption 4.1 we have ∇θE[f(gθ(Z))] = ∇θ(〈f, pθ〉) = 〈f,∇pθ〉. Therefore, we
can upper bound the difference in (B.3) as

‖∇θL(θ1, f
∗
θ1)−∇θL(θ2, f

∗
θ1)‖2

= ‖〈f∗θ1 ,∇pθ1 −∇pθ2〉‖2 ≤ ‖f
∗
θ1‖2 · ‖∇pθ1 −∇pθ2‖2 ≤ ι2F1/γ · ‖θ1 − θ2‖2, (B.4)

where the last inequality is because Assumption 4.1. Also, we have

‖∇θL(θ2, f
∗
θ1)−∇θL(θ2, f

∗
θ2)‖2

= ‖〈f∗θ1 − f
∗
θ2 ,∇θpθ2〉‖2 ≤ ‖f

∗
θ1 − f

∗
θ2‖2 · ‖∇θpθ2‖2 ≤ ι1P1/2γ · ‖θ1 − θ2‖2. (B.5)

Plugging (B.4) and (B.5) into (B.3) we obtain

‖∇Φ(θ1)−∇Φ(θ2)‖2 ≤ (ι2F1/γ + ι1P1/2γ) · ‖θ1 − θ2‖2,

which implies Φ(θ) is (ι2F1/γ + ι1P1/2γ)-smooth. Thus, we conclude the proof.

B.2 PROOF OF LEMMA 4.3

Proof. We first prove that when εf is small, foθt is close to f∗θt . For any f ∈ F , since L(θ, f) ≤
L(θt, f

∗
θt

) for all f ∈ F , using the strong convexity (3.2) we have

L(θt, f)− L(θt, f
∗
θt) ≤ 〈f − f

∗
θt , pθt − q − γ · f

∗
θt〉 − γ/2 · ‖f − f

∗
θt‖

2
2, for all f ∈ F . (B.6)

By the optimality of f∗θt , we have 〈f − f∗θt , pθt − q − γ · f
∗
θt
〉 ≤ 0. Thus, we can rewrite (B.6) as

L(θt, f)− L(θt, f
∗
θt) ≤ −γ/2 · ‖f − f

∗
θt‖

2
2, for all f ∈ F . (B.7)

Recalling the definition of foθt we have

L(θt, f
∗
θt)− L(θt, f

o
θt) ≤ εf . (B.8)

Letting f = foθt in (B.7) and summing it up with (B.8) we obtain

γ/2 · ‖f∗θt − f
o
θt‖

2
2 ≤ εf . (B.9)

Now we characterize the objective’s change in each iteration. By Lemma 4.2, it holds that

Φ(θt+1) ≤ Φ(θt) +∇θΦ(θt)
>(θt+1 − θt) + ι/2 · ‖θt+1 − θt‖22. (B.10)

Since θt+1 = θt − η · (∇θL(θt, f
o
θt

) + ξt) and∇θΦ(θt) = ∇θL(θt, f
∗
θt

), we have

θt+1 − θt = −η ·
(
∇θΦ(θt) +∇θL(θt, f

o
θt)−∇θL(θt, f

∗
θt) + ξt

)
,

plugging which into (B.10) and taking conditional expectations, we obtain

η · ‖∇θΦ(θt)‖22
≤ Φ(θt)− Et[Φ(θt+1)] + η · ∇θΦ(θt)

>(∇θL(θt, f
∗
θt)−∇θL(θt, f

o
θt)
)

+ ιη2/2 ·
(
‖∇θΦ(θt) +∇θL(θt, f

o
θt)−∇θL(θt, f

∗
θt)‖

2
2 + Et[‖ξt‖22]

)
, (B.11)

where Et[·] represents the expectation conditional on {ξk}t−1
k=0. Using the Cauchy-Schwarz inequality

we have

η · ∇θΦ(θt)
>(∇θL(θt, f

∗
θt)−∇θL(θt, f

o
θt)
)

≤ η · ‖∇θΦ(θt)‖2 · ‖∇θL(θt, f
∗
θt)−∇θL(θt, f

o
θt)‖2

≤ η/2 · ‖∇θΦ(θt)‖22 + η/2 · ‖∇θL(θt, f
∗
θt)−∇θL(θt, f

o
θt)‖

2
2, (B.12)
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and also,

ιη2/2 · ‖∇θΦ(θt) +∇θL(θt, f
o
θt)−∇θL(θt, f

∗
θt)‖

2
2

≤ ιη2 · ‖∇θΦ(θt)‖22 + ιη2 · ‖∇θL(θt, f
∗
θt)−∇θL(θt, f

o
θt)‖

2
2. (B.13)

Plugging (B.12) and (B.13) into (B.11) we obtain

(η/2− ιη2) · ‖∇θΦ(θt)‖22 ≤ Φ(θt)− Et[Φ(θt+1)] + ιη2/2 · Et[‖ξt‖2]

+ (η/2 + ιη2) · ‖∇θL(θt, f
∗
θt)−∇θL(θt, f

o
θt)‖

2
2. (B.14)

By our assumption on the step size η ≤ 1/4ι, it holds that η/2− ιη2 ≥ η/4 and η/2 + ιη2 ≤ 3η/4.
Thus, rearranging terms in (B.14) yields,

‖∇θΦ(θt)‖22 ≤
Φ(θt)− Φ(θt+1)

η/4
+ 2ιη · Et[‖ξt‖2] + 3 · ‖∇θL(θt, f

∗
θt)−∇θL(θt, f

o
θt)‖

2
2.

(B.15)

Note that by (B.9) we have

‖∇θL(θt, f
∗
θt)−∇θL(θt, f

o
θt)‖

2
2 = ‖〈f∗θt − f

o
θt ,∇θpθt〉‖

2
2 ≤ P 2

1 · ‖f∗θt − f
o
θt‖

2
2 ≤ 2P 2

1 εf/γ,

plugging which into (B.15) and recalling Et[‖ξt‖22] = σ2/n we obtain

‖∇θΦ(θt)‖22 ≤ (4/η) ·
(
Φ(θt)− Et[Φ(θt+1)]

)
+ 2ιησ2/n+ 6P 2

1 εf/γ. (B.16)

Since 0 ∈ F , we know that Φ(θ) ≥ 0 for any θ ∈ Θ. Telescoping (B.16) for t = 0, . . . , T − 1 and
taking expectation on {ξt}T−2

t=0 we obtain

1

T

T−1∑
t=0

E[‖∇θΦ(θt)‖22] ≤ (4/ηT ) · Φ(θ0) + 2ιησ2/n+ 6P 2
1 εf/γ,

which concludes the proof.

B.3 PROOF OF LEMMA 4.7

Proof. For any function u ∈ L2(Z), we have∫
Z×Z

K(z1, z2)u(z1)u(z2)dz1dz2

=

∫
Z×Z

Ew∼N(0,Id/d)[σ
′(w>z1)σ′(w>z2)]u(z1)u(z2)dz1dz2

= Ew∼N(0,Id/d)

[∫
Z×Z

σ′(w>z1)σ′(w>z2)u(z1)u(z2)dz1dz2

]
= Ew∼N(0,Id/d)

[∫
Z
σ′(w>z1)u(z1)dz1

∫
Z
σ′(w>z2)u(z2)dz2

]
= Ew∼N(0,Id/d)

[(∫
Z
σ′(w>z)u(z)dz

)2]
≥ 0,

where the equality holds if and only if
∫
Z σ
′(w>z)u(z)dz = 0 for all w ∈ RD. Such condition can

be strengthen to ‖u‖2 = 0 if {vw ∈ L2(Z) | vw(z) = σ′(w>z), w ∈ RD} contains a complete basis
of L2(Z).

B.4 PROOF OF LEMMA 4.6

Proof. We denote h = supx∈S |h(x)| > 0. Without loss of generality, we assume h(x′) = h for
some x′ ∈ S. Since h(·) is continuous, we know there exists a subset S′ ⊂ S such that h(x) ≥ h/2
for any x ∈ S′ and |S′| > 0 and 0 /∈ S′. Thus, we can find r > 0 and x′′ ∈ S′ such thatBr(x′′) ⊂ S′.
Then, we define

v(x) = 1/2 · (r − ‖x− x′′‖2) · 1{x ∈ Br(x′′)}.

15



Under review as a conference paper at ICLR 2020

It is easy to see such v(·) is 1/2-Lipschitz on S and constantly zero for any x not in S. Thus, if
we have supx∈S ‖∇f(x)‖2 ≤ 1/2, by triangle inequality it holds that f + v · 1S is 1-Lipschitz.
Combined with the fact f(0) = v(0) = 0, it implies that f̃ := f + v · 1S belongs to F . At last, since
h(x) ≥ h/2 on the support of v(x) and v(x) ≥ 0, we have∫

S

v(x)h(x)dx ≥ h/2 ·
∫
S

|v(x)|dx,

which coincides with Assumption 4.5 if we let ε = 1/2, β = 1/2, and εD = 0.

B.5 PROOF OF THEOREM 4.8

Proof. Let S′1 = {x ∈ SP | ‖∇f(x)‖2 ≤ ε} and S2 = {x ∈ SP | ‖∇f(x)‖2 ∈ (ε, ν1]}. Moreover,
let

S1 = S′1/S
′′
1 , where S′′1 = {x ∈ S′1 | there exists r > 0 such that |Br(x) ∩ S′1| = 0}. (B.17)

It is easy to see that |S′′1 | = 0. Otherwise, suppose that |S′′1 | > 0, then there exists x0 ∈ S′′1 and r > 0
such that Br(x0) ⊂ S′′1 ⊂ S′1, which implies |Br′(x0) ∩ S′1| ≥ |Br′∧r(x0)| > 0 for all r′ > 0. This
contradicts to the fact that x0 ∈ S′′1 . Then, since f∗ is ν1-Lipschitz on SP , we have ‖∇f∗(x)‖2 ≤ ν1

almost everywhere on SP and SP = S1 ∪S2 except a set with zero measure. By Lemma 5.2 we have

‖∇f∗ ◦ gθ∗‖H ·
√
D(ε2 + ε∗Kν

2
1) = EPθ∗ [‖∇f∗(X)‖22] (B.18)

≥
∫
SP

p · ‖∇f∗(X)‖22 · dx ≥
∫
S2

pε2dx = pε2 · |S2|,

which provides an upper bound on |S2| as |S2| ≤ ‖∇f∗ ◦ gθ∗‖H ·
√
D(ε2 + ε∗Kν

2
1)/pε2. Therefore,

we only need to care about |p∗(x) − q(x)| on S1, where the gradient is upper bounded by ε. By
our definition of S1 in (B.17), Condition 4.4, and Assumption 4.5, letting h(·) = p∗(·) − q(·) and
S = S1, there exists function v∗(·) such that f† = f∗ + v∗ · 1S1 ∈ F and∫

S1

v∗(x)
(
p∗(x)− q(x)

)
dx ≥

(
β · sup

x∈S1

|p∗(x)− q(x)| − εD
)
·
∫
S1

|v∗(x)|dx. (B.19)

By the definition of f∗, we have

EX∼Pθ∗ ,Y∼Q[f∗(X)− f†(X)− f∗(Y ) + f†(Y )] ≥ γ ·
(
ψ(f∗)− ψ(f†)

)
. (B.20)

Note that f∗ ≡ f† on RD \ S1, which implies

EX∼Pθ∗ ,Y∼Q[f∗(X)− f†(X)− f∗(Y ) + f†(Y )] =

∫
S1

−v∗(x)
(
p∗(x)− q(x)

)
dx. (B.21)

Since f∗, f† ∈ F and f∗(0) = f†(0) = 0, we have max{|f∗(x)|, |f†(x)|} ≤ ν1R for all x ∈ SP .
Thus, by the definition of ψ we have

ψ(f†)− ψ(f∗) =

∫
S1

v∗(x)
(
f∗(x) + f†(x)

)
dx ≤ 2ν1R ·

∫
S1

|v∗(x)|dx. (B.22)

Thus, combining (B.19), (B.20), (B.21), and (B.22) we have

sup
x∈S1

|p∗(x)− q(x)| ≤ (2γν1R+ εD)/β. (B.23)

Thus, we have∫
SP

|p∗(x)− q(x)|dx =

∫
S1

|p∗(x)− q(x)|dx+

∫
S2

|p∗(x)− q(x)|dx (B.24)

≤
∫
S1

(2γν1R+ εD)/β · dx+ p · |S2|

≤ (2γν1R+ εD)/β · |SP |+ p/p · ‖∇f∗ ◦ gθ∗‖H ·
√
D(ε2 + ε∗Kν

2
1)/ε4,
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where the first inequality uses the upper bound in (B.23) and the second inequality is becasue
|pθ∗(x)− q(x)| ≤ p and the upper bound of |S2| in (B.18). The total variation distance between Pθ
and Q is then upper bounded as

‖Pθ∗ −Q‖TV = 1/2 ·
∫
SP∪SQ

|p∗(x)− q(x)|dx ≤
∫
SP

|p∗(x)− q(x)|dx. (B.25)

Here the first inequality is because∫
SP∪SQ

|p∗(x)− q(x)|dx

=

∫
SP

|p∗(x)− q(x)|dx+

∫
SQ\SP

q(x)dx

=

∫
SP

|p∗(x)− q(x)|dx+ 1−
∫
SP

q(x)dx

=

∫
SP

|p∗(x)− q(x)|dx+ 1−
∫
SP

(
p∗(x) + q(x)− p∗(x)

)
dx

≤
∫
SP

|p∗(x)− q(x)|dx+ 1−
∫
SP

(
p∗(x)− |q(x)− p∗(x)|

)
dx

=

∫
SP

|p∗(x)− q(x)|dx+ 1−
∫
SP

p∗(x)dx+

∫
SP

|q(x)− p∗(x)|dx

= 2

∫
SP∪SQ

|p∗(x)− q(x)|dx.

Combining (B.24) and (B.25) we finish the proof of Theorem 4.8.

C PROOFS FOR SECTION 5

C.1 PROOF OF LEMMA 5.1

Proof. Recall that the gradient of L(θ, f) takes the form

∇θL(θ, f) = ∇θE
[
f
(
gθ(Z)

)]
= E

[
∇θgθ(Z)∇f

(
gθ(Z)

)]
.

Therefore, for two independent Z1, Z2 ∼ P0, we can write

‖∇θL(θ, f)‖22 = E
[
∇θgθ(Z1)∇f

(
gθ(Z1)

)]>E[∇θgθ(Z2)∇f
(
gθ(Z2)

)]
= E

[
∇f
(
gθ(Z1)

)>(∇θgθ(Z1)>∇θgθ(Z2)
)
∇f
(
gθ(Z2)

)]
. (C.1)

Thus, to prove Lemma 5.1, it remains to connect ∇θgθ(z1)>∇θgθ(z2) with K(z1, z2). We have the
following lemma.

Lemma C.1. With probability at least 1 − δ over the initial parameter θ0 and {ar}mr=1, for any
z1, z2 ∈ Z and any θ ∈ Θ, it holds that∥∥K(z1, z2)/D · ID −∇θgθ(z1)>∇θgθ(z2)

∥∥
2

≤
√

2 log(4D2/δ) + 4D log(2
√
m) + 32 + 8 · ‖θ − θ0‖22

m
.

Proof. See Appendix D.1 for a detailed proof.

We denote the upper bound in Lemma C.1 by εK(θ). Then combining Lemma C.1 with (C.1) and
the fact that ‖∇f(gθ(Z))‖2 ≤ ν1 we have

‖∇θL(θ, f)‖22 = E
[
K(z1, z2)∇f

(
gθ(Z1)

)>∇f(gθ(Z2)
)]
/D

+ E
[
∇f
(
gθ(Z1)

)>(∇θgθ(Z1)>∇θgθ(Z2)−K(z1, z2)/D · ID
)
∇f
(
gθ(Z2)

)]
≥
∥∥∇f(gθ(·))∥∥2

K
/D − εK(θ) · ν2

1 .

Rearranging terms we finish the proof of Lemma 5.1.
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C.2 PROOF OF LEMMA 5.2

Proof. For a positive definite kernel K(·, ·) we have its eigenvalue decomposition

K(z1, z2) =

∞∑
i=1

λiφi(z1)φi(z2),

where {φi}∞i=1 is an orthonormal basis of L2(Z) under the inner product

〈φi, φj〉 = E[φi(Z)φj(Z)] =

∫
Z
φi(z)φj(z)pzdz.

Then for any f(·) =
∑∞
i=1 ai · φi(·), the operator K mapps it as

(K ◦ f)(z2) = E[K(Z1, z2)f(Z1)] =

∞∑
i=1

λi · ai · φi(z2).

Also, we know that {
√
λiφi}∞i=1 is the basis of the RKHSH induced by this kernel. Recall that this

construction provides the reproducing property

〈K(·, z1),K(·, z2)〉H =

〈 ∞∑
i=1

λi · φi(z1) · φi,
∞∑
i=1

λi · φi(z2) · φi
〉
H

=

∞∑
i=1

(√
λi · φi(z1)

)
·
(√

λi · φi(z2)
)

= K(z1, z2).

Thus for a vector function f(·) =
∑∞
i=1 αi ·

√
λiφi(·) where αi ∈ RD for all i, its K-norm is

‖f‖2K =

D∑
j

〈fj ,K ◦ fj〉 =

D∑
j=1

〈 ∞∑
i=1

αi,j ·
√
λi · φi,

∞∑
i=1

λi · αi,j ·
√
λi · φi

〉
=

∞∑
i=1

λ2
i · ‖αi‖2.

Also, theH-norm and L2-norm of f is given by

‖f‖2H =

∞∑
i=1

‖αi‖2, ‖f‖22 =

∞∑
i=1

〈 ∞∑
i=1

αi,j ·
√
λ · φi,

∞∑
i=1

·αi,j ·
√
λ · φi

〉
=

∞∑
i=1

λi · ‖αi‖2.

Thus, applying the Cauchy Schwarz inequality we obtain

‖f‖22 ≤ ‖f‖K · ‖f‖H. (C.2)

In our context, we let f = ∇f∗ ◦ gθ∗ and have

‖∇f∗ ◦ gθ∗‖22 = E
[∥∥∇f∗(gθ∗(Z)

)∥∥2

2

]
= EPθ∗ [‖∇f∗(X)‖22]. (C.3)

Then plugging (C.3) into (C.2) and using the upper bound of ‖∇f∗ ◦ gθ∗‖K in Lemma 5.1 we finish
the proof of Lemma 5.2.

D PROOFS FOR SUPPORTING LEMMAS

D.1 PROOF OF LEMMA C.1

Proof. The first part of the proof is simply using concentration. We note that for any z1, z2 ∈ Z and
any i, j ∈ [D](i 6= j), by the definition of gθ in Section 3.1, we have

∇θ[gθ0(z1)]>i ∇θ[gθ0(z2)]j =
1

m

m∑
r=1

ar,iar,j · σ′([θ0]>r z1)σ′([θ0]>r z2). (D.1)

Then it holds that

E
[
∇θ[gθ0(z1)]>i ∇θ[gθ0(z2)]i

]
= K(z1, z2)/D, E

[
∇θ[gθ0(z1)]>i ∇θ[gθ0(z2)]j

]
= 0, (D.2)
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where the expectation is taken on the initialization of θ0 and {ar}r=1m in gθ0(·). Since we need
concentration over all (z1, z2) ∈ Z × Z , we employ an ε-net on Z × Z . By the covering number
of a Euclidean ball (Vershynin, 2010) we know there exists an ε-net Zε of Z × Z with |Zε| ≤
(1 + 1/

√
2ε)2D. Note that for each term in the summation in (D.1), we have

ar,iar,j · σ′([θ0]>r z1)σ′([θ0]>r z2) ∈ [−1/D, 1/D].

Then, we apply Hoeffding’s inequality on all points (ẑ1, ẑ2) in Zε and obtain

∣∣∇θ[gθ0(ẑ1)]>i ∇θ[gθ0(ẑ2)]j − E
[
∇θ[gθ0(ẑ1)]>i ∇θ[gθ0(ẑ2)]j

]∣∣ ≤√ log(2D2|Zε|/δ)
2mD2

(D.3)

for all i, j ∈ [D], with probability at least 1− δ.

By the definition of an ε-net, for any z = (z1, z2) ∈ Z × Z , there exists ẑ = (ẑ1, ẑ2) ∈ Zε such that
‖z − ẑ‖2 ≤ ε. Thus, it holds that∥∥K(z1, z2)/D · ID −∇θgθ0(z1)>∇θgθ0(z2)

∥∥
2

≤
∥∥K(ẑ1, ẑ2)/D · ID −∇θgθ0(ẑ1)>∇θgθ0(ẑ2)

∥∥
2

+ ∆1 + ∆2, (D.4)

where ∆1 = ‖K(z1, z2)/D · ID − K(ẑ1, ẑ2)/D · ID‖2 and ∆2 = ‖∇θgθ0(z1)>∇θgθ0(z2) −
∇θgθ0(ẑ1)>∇θgθ0(ẑ2)‖2. By (D.2) and (D.3) we have∥∥K(ẑ1, ẑ2)/D · ID −∇θgθ0(ẑ1)>∇θgθ0(ẑ2)

∥∥
2

≤
∥∥K(ẑ1, ẑ2)/D · ID −∇θgθ0(ẑ1)>∇θgθ0(ẑ2)

∥∥
F ≤

√
log(2D2|Zε|/δ)

2m
. (D.5)

Also, note that K(z1, z2) is
√

2-Lipschitz since

‖∇K‖22 = ‖∇z1K‖22 + ‖∇z2K‖22
= ‖Ew[σ′′(w>z1)σ′(w>z2) · w]‖22 + ‖Ew[σ′(w>z1)σ′′(w>z2) · w]‖22 ≤ 2 · Ew[‖w‖22] = 2.

And similarly,∥∥∇z(∇θ[gθ0(z1)]>i ∇θ[gθ0(z2)]j
)∥∥2

2

=
∥∥∇z1(∇θ[gθ0(z1)]>i ∇θ[gθ0(z2)]j

)∥∥2

2
+
∥∥∇z2(∇θ[gθ0(z1)]>i ∇θ[gθ0(z2)]j

)∥∥2

2

=
∥∥ 1

m

m∑
r=1

ar,iar,j · σ′′([θ0]>r z1)σ′([θ0]>r z2) · [θ0]r
∥∥2

2

+
∥∥ 1

m

m∑
r=1

ar,iar,j · σ′([θ0]>r z1)σ′′([θ0]>r z2) · [θ0]r
∥∥2

2
≤ 2/D2 ·

( 1

m

m∑
r=1

‖[θ0]r‖2
)2

.

Note that E[‖[θ0]r‖22] = 1. By the Chernoff bound we obtain

1

m

m∑
r=1

‖[θ0]r‖2 ≤ 1 +
√

2/m · log(1/δ) (D.6)

with probability at least 1− δ. Without loss of generality we assume m is sufficiently large such that
the right-hand side of (D.6) is less than

√
2. Then ∇θ[gθ0(z1)]>i ∇θ[gθ0(z2)]j is 2/D-Lipschitz in

(z1, z2) for any i, j ∈ [D]. Thus, we have

∆1 ≤ ‖K(z1, z2)/D · ID −K(ẑ1, ẑ2)/D · ID‖F ≤
√

2/Dε ≤ 2ε, (D.7)

∆2 ≤ ‖∇θgθ0(z1)>∇θgθ0(z2)−∇θgθ0(ẑ1)>∇θgθ0(ẑ2)‖F ≤ 2ε. (D.8)

Letting ε = 1/
√

2m we have |Zε| ≤ (2/
√

2ε)2D = (2
√
m)2D, plugging which into (D.5) we obtain

∥∥K(ẑ1, ẑ2)/D · ID −∇θgθ0(ẑ1)>∇θgθ0(ẑ2)
∥∥

2
≤
√

log(2D2/δ) + 2D log(2
√
m)

2m
. (D.9)

19



Under review as a conference paper at ICLR 2020

Combining (D.4), (D.7), (D.8), and (D.9) we obtain

∥∥K(z1, z2)/D · ID −∇θgθ0(z1)>∇θgθ0(z2)
∥∥

2
≤
√

log(2D2/δ) + 2D log(2
√
m)

2m
+
√

8/m

≤
√

log(2D2/δ) + 2D log(2
√
m) + 16

m
(D.10)

with probability at least 1 − 2δ, where the last inequality uses the basic inequality
√
x +
√
y ≤√

2(x+ y) for any x, y ≥ 0. To simplify the notation, we rewrite δ ← 2δ and (D.10) is now

∥∥K(z1, z2)/D · ID −∇θgθ0(z1)>∇θgθ0(z2)
∥∥

2
≤
√

log(4D2/δ) + 2D log(2
√
m) + 16

m
(D.11)

with probability at least 1− δ.

In the sequel we characterize the change of ∇θgθ(z1)>∇θgθ(z2) over θ. By triangle inequality we
have

‖∇θgθ0(z1)>∇θgθ0(z2)−∇θgθ(z1)>∇θgθ(z2)‖2
≤
∥∥∇θgθ0(z1)>

(
∇θgθ0(z2)−∇θgθ(z2)

)∥∥
2

+
∥∥(∇θgθ0(z1)> −∇θgθ(z1)

)>∇θgθ(z2)
∥∥

2

≤ ‖∇θgθ0(z1)‖2 · ‖∇θgθ0(z2)−∇θgθ(z2)
∥∥

2
+ ‖∇θgθ0(z1)> −∇θgθ(z1)‖2 · ‖∇θgθ(z2)‖2

≤ 1 · 1/
√
m · ‖θ − θ0‖2 + 1 · 1/

√
m · ‖θ − θ0‖2 = 2/

√
m · ‖θ − θ0‖2, (D.12)

where the last inequality is from Lemma 3.1.

Combining (D.11) and (D.12), we finish the proof of Lemma C.1.
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