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ABSTRACT

In this paper, we consider the problem of detecting object under occlusion. Most
object detectors formulate bounding box regression as a unimodal task (i.e., re-
gressing a single set of bounding box coordinates independently). However, we
observe that the bounding box borders of an occluded object can have multiple
plausible configurations. Also, the occluded bounding box borders have corre-
lations with visible ones. Motivated by these two observations, we propose a
deep multivariate mixture of Gaussians model for bounding box regression un-
der occlusion. The mixture components potentially learn different configurations
of an occluded part, and the covariances between variates help to learn the re-
lationship between the occluded parts and the visible ones. Quantitatively, our
model improves the AP of the baselines by 3.9% and 1.2% on CrowdHuman
and MS-COCO respectively with almost no computational or memory overhead.
Qualitatively, our model enjoys explainability since we can interpret the resulting
bounding boxes via the covariance matrices and the mixture components.

1 INTRODUCTION

(a) (b) (c) (d)

Figure 1: We observe that an occluded bounding box usually exhibits multiple modes in most de-
tection datasets, no matter whether the ground truth annotation is visible box or full box: (a) visible
bounding box annotation (b) full object bounding box labeled by different annotators (c) visible
bounding box annotated accurately (d) visible bounding box annotated inaccurately

Object detectors based on deep convolutional neural networks (CNNs) are the backbone of many
real-world applications like self-driving cars (Huval et al., 2015), robotics grasping (Calandra et al.,
2018) and video surveillance (Joshi & Thakore, 2012). Most object detectors learn to detect an
object in two folds (Ren et al., 2015): (1) categorization of the candidate bounding box (2) regress
each coordinate of the candidate box towards the ground truth one independently.

Currently, there are two styles of bounding box annotation among the large-scale object detection
datasets: (1) visible box that only contains visible parts (e.g., MS-COCO (Lin et al., 2014) and
PASCAL VOC (Everingham et al., 2010)) (2) full box that contains both visible and occluded parts
(e.g., CrowdHuman (Shao et al., 2018) and VehicleOcclusion (Wang et al., 2017)). For full box
annotation, regressing a single set of bounding box coordinates works well for fully visible objects,
since it is a unimodal problem. However, when an object is occluded, we observe that its occluded
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parts can have several plausible configurations (e.g., Figure 1 (b)), which is a multimodal problem.
Even for visible box annotation, an object sometimes still exhibits multiple modes due to inaccurate
labeling (e.g., Figure 1 (c) vs. (d)). We argue that an object detector robust to occlusion should learn
a multimodal distribution with the capability of proposing more than one plausible hypothesis for
the configuration of an occluded part.

Besides, we also observe that the bounding box coordinates have correlations by nature. Take Fig-
ure 1 (c) as an example, by knowing the position of the car’s roof, we can easily infer the location
of the left border even without looking at it. Therefore, an object detector robust to occlusion also
needs to be capable of inferring the correlations between the occluded bounding box borders and the
visible ones.

Motivated by these two observations, we propose a deep multivariate mixture of Gaussians model
for object detection under occlusion. Concretely, instead of regressing a single set of bounding box
coordinates, our model regresses several sets of coordinates, which are the means of the Gaussians.
Moreover, we learn a covariance matrix for the coordinates of each Gaussian mixture component.
These components are summed together as the prediction for the distribution of plausible bounding
box configurations. At inference time, we choose the expectation of our model’s distribution as the
final predicted bounding box.

To demonstrate the generalizability of our proposed model, we conduct experiments on four datasets:
CrowdHuman, MS-COCO, VehicleOcclusion, and PASCAL VOC 2007. Quantitatively, our model
improves the AP (Average Precision of the baselines by 3.9% and 1.2% on CrowdHuman and
MS-COCO respectively (Table 1 and Table 2). Qualitatively, our model enjoys explainability since
the resulting bounding boxes can be interpreted using the covariance matrices and the Gaussian
mixture components (Figure 5 and Figure 4). More importantly, our model is almost computation
and memory free, since predicting the mixture components only requires a fully-connected layer,
and we can discard the covariance matrices at inference time (Table 5).

2 RELATED WORK

Object Detection: Deep convolutional neural networks were first introduced to object detection
in R-CNN (Girshick et al., 2014) and Fast R-CNN (Girshick, 2015). Currently, there are mainly
two types of object detectors: one-stage object detectors and two-stage object detectors. One-stage
detectors like YOLO (Redmon et al., 2016), SSD (Liu et al., 2016) and RetinaNet (Lin et al., 2018)
are fast in general. Two-stage detectors (Ren et al., 2015; He et al., 2017; Zhu et al., 2018; Singh
et al., 2018) are accurate however sacrificing speed. In this paper, although we conduct experiments
based on the Faster R-CNN heads of Faster R-CNN and Mask R-CNN, our method is not limited to
two-stage detectors.

Object Detection Under Occlusion: Occlusion-aware R-CNN (Zhang et al., 2018b) proposes to
divide pedestrian detection into five parts and predict the visibility scores respectively, which are
integrated with the prior structure information of the human body into the network to handle oc-
clusion. Zhang et al. (2018a) proposes an attention network with self or external guidance. These
methods are specifically designed for pedestrian detection task. By contrast, our method is designed
for general object detection.

Deep Voting (Zhang et al., 2018c) proposes to utilize spatial information between visual cues and
semantic parts and also learn visual cues from the context outside an object. However, detecting
semantic parts needs manual labels, which our approach does not require. Besides, our approach
does not introduce additional computation during the inference (Table 5). Amodal instance seg-
mentation (Li & Malik, 2016) considers the task of predicting the region encompassing both visible
and occluded parts of an object. The authors propose to add synthetic occlusion to visible objects
and retain their original masks, then employ a CNN to learn on the generated composite images,
which resembles the VehicleOcclusion in our experiments. He et al. (2019) proposes bounding box
regression with uncertainty, which is a degradation case of our model (Gaussian).

Datasets for Detection under Occlusion: Currently, there are three categories of annotation for
an occluded object: (1) visible bounding box that contains the visible parts (2) full box that con-
tains both visible and occluded parts of an object annotated by human (3) full box by synthesiz-
ing occluders on a visible object. MS-COCO, PASCAL VOC, ImageNet (Deng et al., 2009) and
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Figure 2: Faster R-CNN head architecture for our approach: We extended the existing Faster R-CNN
head to predict the parameters of multivariate mixture of Gaussian µ, φ and Σ

Cityscapes (Cordts et al., 2016) fall into the first category. CrowdHuman and Semantic Amodal
Segmentation dataset (Zhu et al., 2017) require the annotators to label the invisible parts. Vehi-
cleOcclusion instead synthesizes the occluders for visible objects. We conduct experiments on MS-
COCO, PASCAL VOC 2007, CrowdHuman, and VehicleOcclusion, covering all these categories.

3 APPROACH

3.1 FORMULATION

We observe that when an object is partially occluded, the occluded bounding box border can usually
be inferred to some extent by other visible parts of the object (e.g., it is easy to infer the left border
of the car given the car roof position in Figure 1 (c)). Besides, the occluded bounding box exhibits
multiple modes. For example, the left arm of the teddy bear could have several possible configu-
rations in Figure 1 (b). Motivated by these two observations, we propose to estimate the bounding
box coordinates as a probability distribution during bounding box regression instead of a set of de-
terministic coordinates. Specifically, we propose to estimate a multivariate mixture of Gaussians
distribution with a deep network. Multivariate Gaussian helps the case where bounding box borders
have correlations, and a mixture of Gaussians helps the case where an occluded bounding box bor-
der exhibits multiple modes. Formally, we predict the distribution pθ(x|I) given the feature maps
I of a region of interest (RoI). The distribution is parameterized by θ, which is a neural network
(e.g., Faster R-CNN head, Figure 2). The distribution has K components N (µi,Σi). Each compo-
nent i has mean µi=1...K = [x1, y1, x2, y2]

T , which is the most probable bounding box coordinates
relative to the RoI, estimated by the component:

pθ(x|I) =
K∑
i=1

φiN (µi,Σi) where
K∑
i=1

φi = 1 and 0 ≤ φi ≤ 1

N (µi,Σi) = exp
(
− 1

2
(x− µi)

TΣ−1
i (x− µi)

)
/
√
(2π)4|Σi|

(1)

where each N (µi,Σi) is a multivariate Gaussian distribution. φi is a mixture weight scalar for
N (µi,Σi). |Σi| is the determinant of Σi. Σ is the covariance matrix, which is a symmetric
semi-positive definite matrix in general. To be able to compute the inverse Σ−1, we constrain the
covariance matrix to be a symmetric positive definite matrix. In this case, the precision matrix Σ−1

is also a symmetric positive definite matrix. During training, the model estimates the precision
matrix Σ−1 instead of the covariance matrix Σ, so that we do not need to compute the inverse every
time during training which we also find more stable in our experiments. To ensure the properties of
the precision matrix Σ−1, we parameterize it using the Cholesky decomposition:

Σ−1 = UTU

U =

exp(u11) u12 u13 u14
exp(u22) u23 u24

exp(u33) u34
exp(u44)


|Σ| = 1

|Σ−1|
=

1

|UTU |
=

1

|UT ||U |
=

1

|U |2
=

1

exp(
∑4
i=1 uii)

2

(2)
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where U is an upper triangular matrix with strictly positive diagonal entries, such that Cholesky
decomposition is guaranteed to be unique.

We parameterize the mixture weights φi using Softmax, so that they range from 0 to 1 and sum to 1:

φi = exp(zi)/

K∑
k=1

exp(zk) (3)

zi, uii and µi are outputs produced by a fully-connected layer on top of the final fully-connected
layer fc7 on the Faster R-CNN head. Take Faster R-CNN with RPN as an example, Figure 2 shows
the architecture of our model. Since we only modify a small part of the architecture, our approach
might also be applied to other object detectors than Faster R-CNN, like one-stage object detectors
YOLO and RetinaNet.

Learning: Our model parameterizes the distribution over bounding boxes using a neural network
which depends on RoI features. During training, we estimate the parameters θ with maximum
likelihood estimation on a given dataset {I`, µ∗

` |` = 1, 2, ..., N}, where µ∗
` represents the ground

truth coordinates for RoI feature maps I` and N is the number of observations:

θ̂ = argmax
θ

1

N

N∑
`

ln pθ(µ
∗
` |I`) (4)

In practice, N is the number of samples in a mini-batch. We use momentum stochastic gradient
descent (SGD) to minimize the localization loss Lloc and the classification loss Lcls:

L = Lcls + λLloc where Lloc = −
1

N

N∑
`

ln pθ(µ
∗
` |I`) (5)

Note that we use different parameters θ for different classes in practice. For simplicity, the formula-
tion above only considers the regression problem for a single class.

Inference: During testing, we use the expectation of our mixture module as prediction:

E [pθ(x|I)] =
1

K

K∑
i=1

φiµi (6)

Notice that the covariance matrix Σi is not involved in inference. In practice, we discard the neurons
that produce the covariance matrix to speed up inference. In our experiments (Table 5), our model
has almost the same inference latency and memory consumption as the baseline network.

3.2 DEGRADATION CASES

Multivariate Gaussian: When the number of mixture componentsK = 1, our model degrades into
a multivariate Gaussian model. And the localization loss can be rewritten as follow (for simplicity,
we only illustrate the loss for a single sample `):

L`loc =
(µ∗ − µ)TΣ−1(µ∗ − µ)

2
+

log|Σ|
2

+ 2 ln 2π

=
(µ∗ − µ)TUTU(µ∗ − µ)

2
−

4∑
i=1

uii + 2 ln 2π

(7)

where 2 ln 2π is a constant which can be ignored during training. Multivariate Gaussian model
is helpful under occlusion since the borders of a bounding box have correlations with each other
inherently. For example, by looking at the location of a car’s door, we can guess the location of its
roof even if it is occluded.
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method AP AP50 AP75 APS APM APL
baseline 36.7 68.3 35.2 23.4 37.2 40.4
soft-NMS (Bodla et al., 2017) 38.4 72.2 36.8 24.5 38.2 42.8
Gaussian 37.9 69.5 36.2 23.8 37.6 42.1
mixture of 8 Gaussian 39.0 71.0 37.6 25.2 39.0 43.0
multivariate Gaussian 39.6 71.6 38.4 25.6 39.5 43.8
multivariate mixture of 8 Gaussian 40.6 73.1 39.6 26.8 40.8 44.4

Table 1: Performance of our models on CrowdHuman on ResNet-50 FPN Faster R-CNN

method AP AP50 AP75 APS APM APL
baseline 38.6 59.8 42.1 22.2 41.5 50.8
Gaussian 39.0 58.5 42.0 21.8 41.8 51.4
mixture of 8 Gaussian 39.2 58.5 42.4 22.4 41.7 52.6
multivariate Gaussian 39.3 58.8 42.4 22.4 42.1 52.2
multivariate mixture of 8 Gaussian 39.8 58.9 42.9 22.5 42.2 53.0

Table 2: Performance of our models on MS-COCO on ResNet-50 FPN Mask R-CNN

Mixture of Gaussians: When the covariance matrix is constrained to be a diagonal matrix, our
model becomes a mixture of Gaussians model with independent variables:

L`loc = − ln

K∑
i=1

φi

4∑
j=1

exp
(
− (µ∗

ij − µij)2/2(Ui)
2
jj

)
√
2π(Ui)jj

(8)

where (Ui)jj is the jth diagonal element of the matrixUi. Multimodality is helpful under occlusion
because an occluded object usually has multiple modes.

Gaussian: When the number of mixture components K = 1 and the covariance is constrained to be
a diagonal matrix, it becomes a simple Gaussian model where different variables are independent:

L`loc =

4∑
j=1

(U)2jj
(µ∗

j − µj)2

2
− ln(U)jj +

ln 2π

2
(9)

We argue that this simple model helps detection in most cases. Here (U)jj behaves like a bal-
ancing term. When the bounding box regression is inaccurate (large (µ∗

j − µj)2/2), the variance
1/(U)2jj tends to be larger. Therefore smaller gradient will be provided to bounding box regression
(U)2jj(µ

∗
j − µj)2/2 in this case, which might help training the network (Table 1 and Table 2). If

bounding box regression is perfect,U tend to infinity (i.e., the variance should be close 0). However,
regression is not that accurate in practice, U will be punished for being too large.

Euclidean Loss: When all the diagonal elements (U)jj are one (ujj = 0), our model degenerates
to the standard euclidean loss:

L`loc =

4∑
j=1

(µ∗
j − µj)2

2
+

ln 2π

2
(10)

4 EXPERIMENTS

We initialize the weights of µi, zi and uii layers (Figure 2) using random Gaussian initialization
with standard deviations 0.0001 and biases 0, −1 and 0 respectively. So that at the start of training,
bounding box coordinate µi is at an unbiased position, Ui is an identity matrix and φi treats each
mixture component equally. Our model can be trained end-to-end. Unless specified, we follow
settings in Detectron (Girshick et al., 2018) and those original papers.

To demonstrate the generalizability of our method, we conduct experiments on four datasets:
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method mAP
baseline 60.4
Gaussian 61.9
mixture of 8 Gaussian 62.0
multivariate Gaussian 62.3
multivariate mixture of 8 Gaussian 62.4

Table 3: Self-comparison on VOC 2007 with
VGG-CNN-M-1024 Faster R-CNN

1 4 8 16
38.0

38.2

38.4

38.6

38.8

39.0
AP (-)

70.0

70.5

71.0
AP50 (--)

Figure 3: AP and AP50 when varying the
number of mixture components.

CrowdHuman (Shao et al., 2018) is a large, rich-annotated and highly diverse dataset for better
evaluation of detectors in crowd scenarios. Its training and validation sets contain a total of 470k
human instances, and around 22.6 persons every image under various kinds of occlusions. The
annotations for occluded bounding boxes are full boxes (Figure 1 (b)) instead of visible boxes (Fig-
ure 1 (a)). The experiments are in Table 1.

VehicleOcclusion is a synthetic dataset designed for object detection under occlusion (Wang et al.,
2017). Same as above, the annotations are full boxes. The occlusion annotations are more accurate
since the occluders (occluding objects) are randomly placed on the annotated visible object. It
contains six types of vehicles and occluded instances at various difficulty levels. Specifically, it
consists of four occlusion levels: No occlusion (0%), L1 (20% ∼ 40%), L2 (40% ∼ 60%), L3
(60% ∼ 80%). The percentages are computed by pixels. At level L1, L2 and L3, there are two,
three, and four occluders placed on the object, respectively (Table 4).

MS-COCO (Lin et al., 2014) is a large-scale object detection dataset containing 80 object cate-
gories, 330k images (> 200k labeled) and 1.5 million object instances. Compared with the two
datasets above, MS-COCO has fewer occlusion cases. For example, the IoU (intersection over
union) between overlapped human bounding boxes in MS-COCO are less than 0.7 (Shao et al.,
2018). We use train2017 for training and val2017 for testing (Table 2). Different from above,
the annotations are visible boxes.

PASCAL VOC 2007 has 9,963 images and 20 classes in total, containing 24,640 annotated
objects (Everingham et al.). Similar with MS-COCO, this dataset has less occlusion cases
than the first two datasets. We use voc_2007_train and voc_2007_val for training and
voc_2007_test for testing (Table 3). The annotations are visible boxes.

4.1 ABLATION STUDY

Number of Mixture Components: Shown in Figure 3, we test our mixture of Gaussians model
by varying the number of mixture components. The baseline is ResNet-50 FPN Faster R-CNN (He
et al., 2016; Lin et al., 2017) on CrowdHuman. As the number of components increases from 1, 4 to
8, we observe consistent performance improvement. The mixture of eight Gaussians model (Eq. 8)
outperforms Gaussian model (Eq. 9) by 1% AP. However, the performance goes down when there
are more than 16 components. This might be because the objects in the dataset might not have as
many as 16 modes when occluded. Besides, the more components we have, the higher the chance
of over-fitting. Unless specified, we use eight components for the mixture of Gaussians model.

Mixture of Gaussian vs. Multivariate Gaussian: Shown in Table 1 and 2, we compare the degra-
dation cases of our complete model (Eq. 1): Gaussian (Eq. 9), mixture of Gaussians (Eq. 8) and
multivariate Gaussian (Eq. 7) on CrowdHuman and MS-COCO. For CrowdHuman, we use ResNet-
50 FPN Faster R-CNN as the baseline. For MS-COCO, we use ResNet-50 FPN Mask R-CNN.

On CrowdHuman which has a lot of crowded scenes, our model greatly improves the baseline.
Gaussian improves the baseline by 1.2% AP. A mixture of eight Gaussians improves 2.3% AP, and
multivariate Gaussians improves 2.9% AP. The complete model improves the performance by 3.9%
AP. The improvements indicate all these assumptions are helpful under heavy occlusion. Gaussian
helps training the regression network by learning to decrease the gradients for high variance cases.
Multivariate Gaussian helps to learn the correlations between an occluded border and the visible
borders. Mixture of Gaussians helps to learn a multimodal model for the occluded cases which have
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no occ. L1 L2 L3
baseline 73.6 48.3 35.0 23.0

DeepVoting 72.0 53.7 42.6 31.6
DeepVoting+ 74.0 58.0 46.9 35.2

Ours 74.4 62.1 50.9 38.4

Table 4: Comparison with a state-of-the-art
occlusion-aware detector on VehicleOcclu-
sion. The metric is mAP. occ.: occlusion

method # params FPS
baseline 91M 11.1
Gaussian 91M 11.1
multivariate Gaussian 91M 11.1
mixture of 8 Gaussian 93M 10.2
multivariate mixture of 8 93M 10.2

Table 5: Model size and FPS comparison with
ResNet-50 FPN Mask R-CNN on a single GPU

(a) (b) (c) (d)

Figure 4: Mixture of Gaussians predictions. First row: baseline Faster R-CNN. Second row: mixture
of four Gaussians. Blue boxes are the mixture components. Green boxes are the final predictions.
(a) not occluded (b) left arm is occluded (c) both arms are occluded (d) heavily occluded.

multiple modes. Soft-NMS (Bodla et al., 2017) modifies classification scoring, while our approach
improves localization. Though it achieves comparable performance (1.7% AP improvement), it can
be applied together with our method. With soft-NMS, the AP of mixture of 8 Gaussian, multivariate
Gaussian and the complete model further improves 1.7%, 1.5% and 1.5% respectively.

On MS-COCO, the bounding box annotations are visible boxes instead of full boxes used in Crowd-
Human. Gaussian still works here which improves the baseline by 0.4% AP, since there are vari-
ances in the dataset caused by inaccurate annotation (e.g., Figure 1 (d)). Gaussian helps to reduce
the gradients for these ambiguous cases. A mixture of eight Gaussians improves 0.6% AP, and mul-
tivariate Gaussians improves 0.7% AP. The complete model improves the performance by 1.2%
AP. The improvements are noticeable, however less significant than on CrowdHuman. On the one
hand, there are fewer occluded instances in MS-COCO, multimodality and covariances might not as
helpful as in CrowdHuman. On the other hand, predicting full boxes require guessing the invisible
parts where multimodality and covariances are more useful.

We further conduct experiments on PASCAL VOC 2007, shown in Table 3. VGG-CNN-M-1024
Faster R-CNN (Simonyan & Zisserman, 2014) is the baseline. Similar to MS-COCO, the bounding
box annotations are visible boxes instead of full boxes used in CrowdHuman. We observe that Gaus-
sian improve the mAP (mean Average Precision) by 1.5%. The complete model improves the mAP
by 2.0%. Multimodality and multivariate Gaussian do not substantially improve the performance.
These observations coincide with the observations on MS-COCO.

Comparison with State-of-the-art: Shown in Table 4, we compare multivariate mixture of eight
Gaussians model to DeepVoting Zhang et al. (2018c) on VehicleOcclusion. Similar to CrowdHu-
man, the bounding box annotations are full boxes. The baseline is VGG-16 Faster R-CNN.
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(a) (b) (c) (d)

x1 y1 x2 y2
x1 0.009      0   0     0
y1 0 0.009 0 0
x2 0 0 0.001 0
y2 0 0 0 0.001

x1 y1 x2 y2
x1 0.070 -0.006 -0.01 0
y1 -0.006 0.045 0.093 0
x2 -0.01 0.093 1.503 0
y2 0 0 0 0

x1 y1 x2 y2
x1 1.080 -0.207 2.006 0.146
y1 -0.207 0.193 -0.474-0.038
x2 2.006 -0.474 5.434 0.380
y2 0.146 -0.038 0.380 0.119

x1 y1 x2 y2
x1 2.376 0.211 0.949 0.337
y1 0.211 1.734 -0.205 0.121
x2 0.949 -0.205 1.139 0.578
y2 0.337 0.121 0.578 1.324

Figure 5: Multivariate Gaussian predictions and corresponding covariances on CrowdHuman.

Our multivariate mixture of eight Gaussians model outperforms DeepVoting by a large margin at
different occlusion levels. Without occlusion, our model also helps to learn a better detector, coin-
ciding the experiments above. We argue that our model considers multiple modes of an object and
the correlations between each border of a bounding box, which helps detection under occlusion.

Model Size and Inference Speed: We measure the inference speed of our models using ResNet-50
FPN Mask R-CNN with a TITAN Xp, CUDA 10.1 and cuDNN 7.5.0 on MS-COCO val2017.
Shown in Table 5, Gaussian (Eq. 9) and multivariate Gaussian (Eq. 7) neither slow down the in-
ference nor increase the number of parameters, since we can discard the covariance Σ at inference
time (Section 3.1). The complete model, multivariate mixture of eight Gaussians (Eq. 1), only in-
creases 2M parameters and sacrifices 0.9 FPS on GPU. Our models outperform the baselines by
large margins (Table 1, 2 and 4), while requires almost no additional computation and memory.

Note that we measure the inference latency on MS-COCO where there are 80 classes, such that the
number of parameters for µ is 1024 × 80 × K (1024 is the number of output channels of fc7,
Figure 2). On CrowdHuman where there is only one class (human), the number of parameters for µ
is only 1024×K, which will consume even fewer computation and memory resources.

4.2 QUALITATIVE RESULTS

Figure 4 shows the visualization of our mixture of Gaussian prediction results on CrowdHuman.
When the object is not occluded, our model usually only exhibits a single mode. In Figure 4 (a),
the predictions of the mixture components for the athlete are almost the same. When the object is
occluded, the occluded bounding box border usually exhibits multiple modes. For example, the left
arm of the man can have several reasonable poses in Figure 4 (b).

Figure 5 shows the visualization of our multivariate Gaussian prediction results on CrowdHuman.
When the object is not occluded, like in Figure 5 (a), most terms in the covariance matrix are usually
almost zeros. When a border of the object is occluded, like in Figure 5 (b), the variance term for that
border tends to be very high. Sometimes our model learns the covariance between bounding box
borders. For example, in Figure 5 (c), x1 and x2 has a positive correlation, which suggests if the left
border moves right, the right border might also move right. When the object is heavily occluded,
most of its variance terms are usually very high, shown in Figure 5 (d).

5 CONCLUSION

We propose a multivariate mixture of Gaussians model for object detection under occlusion. Quan-
titatively, it demonstrates consistent improvements over the baselines among MS-COCO, PASCAL
VOC 2007, CrowdHuman, and VehicleOcclusion. Qualitatively, our model enjoys explainability as
the detection results can be diagnosed via the covariance matrices and the mixture components.
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