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ABSTRACT

When constructing random forests, it is of prime importance to ensure high ac-
curacy and low correlation of individual tree classifiers for good performance.
Nevertheless, it is typically difficult for existing random forest methods to strike
a good balance between these conflicting factors. In this work, we propose a
generalized convolutional forest networks to learn a feature space to maximize
the strength of individual tree classifiers while minimizing the respective correla-
tion. The feature space is iteratively constructed by a probabilistic triplet sampling
method based on the distribution obtained from the splits of the random forest.
The sampling process is designed to pull the data of the same label together for
higher strength and push away the data frequently falling to the same leaf nodes.
We perform extensive experiments on five image classification and two domain
generalization datasets with ResNet-50 and DenseNet-161 backbone networks.
Experimental results show that the proposed algorithm performs favorably against
state-of-the-art methods.

1 INTRODUCTION

Random forests have been applied to various problems ranging from object classification (Bosch et al.,
2007), object detection (Gall & Lempitsky, 2013), image segmentation (Schroff et al., 2008; Shotton
et al., 2008), pedestrian detection (Marin et al., 2013; Tang et al., 2012) to semantic hashing (Qiu
et al., 2018). In addition, random forests have been applied to the head pose (Fanelli et al., 2011),
landmark (Cootes et al., 2012) and age (Shen et al., 2018) estimation as a regressor and the sparse
feature matching problems (Lepetit & Fua, 2006; Ozuysal et al., 2010).

The main reason for the robust performance of random forests is the decision tree ensembles. While
each decision tree may make a biased prediction with mediocre performance, the aggregated random
forest performs significantly better and less biased if the decision trees are heterogeneous. The overall
accuracy of the trees can be considered as strength, and the heterogeneity of the trees can be measured
by correlation. In (Breiman, 2001), the upper bound of the generalization error of random forests
is expressed in terms of strength and correlation. High strength and low correlation are important
properties to minimize the generalization error of a random forest. However, these two conflicting
factors make it is difficult to improve strength and lower correlation simultaneously. If the individual
decision trees in a random forest are strengthened independently, it is likely for the trees to resemble
the strongest tree in the forest, and consequently the correlation of the forest becomes high. To reduce
correlation, the decision trees must be in different shapes, and the strength of individual trees would
not be as high as the best decision tree.

In this work, we introduce generalized learning for random forests with convolutional neural networks
to address these issues. The proposed method iteratively improves the generalized ability of random
forests for higher strength and lowers correlation by probabilistic triplet sampling. For a triplet of
an anchor, a positive, and a negative sample, the loss function is designed to pull the anchor and the
positive closer and to push the anchor and the negative apart. The positive is sampled among the
data with the same label with the anchor but in different leaf nodes of the decision trees, and the
negative is from the data in the same leaf nodes with the anchor. The former contributes to improving
the classification accuracy by positive sampling, whereas the latter discourages the algorithm from
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constructing similar decision trees by negative sampling. Note that both data points of the same label
and of different labels with respect to the anchor can be in the negative training sample set. To directly
improve the strength of the random forest only, we may design a method where negative examples are
sampled among the data in the same leaf nodes and with different labels from the anchors. However,
in practice, it suffers from early saturation and local minima. We describe the details of the proposed
learning algorithm and experimental results in the following sections.

The main contribution of the proposed work are summarized as follows:

• We propose a generalization algorithm of random forests with convolutional neural networks.
The proposed method minimizes the triplet loss function which 1) encourages to have same-
labeled data in different leaf nodes move close and 2) pushes away data points that frequently
fall in the same leaf nodes regardless of their class labels.

• We consider both strength and correlation of random forest simultaneously. These two
conflicting properties are handled by triple sampling. We demonstrate that the proposed
method increases strength while maintaining a correlation in the experiments.

• We show that the proposed algorithm performs well on domain generalization and image
recognition against the baseline random forest methods. Furthermore, we show the proposed
method performs favorably against state-of-the-art methods for the same tasks.

2 PRELIMINARIES

2.1 RANDOM FOREST

Since the introduction of random forests (Breiman, 2001), numerous methods have been developed
to increase the performance. We discuss recent and relevant methods for vision tasks in this section.

In (Gall & Lempitsky, 2013), the Hough transform is used to tally probabilistic voting of detection
hypotheses of parts from a random forest for object detection. Bosch et al. (2007) use local shape
and image appearance together to enhance the discriminative strength of the random forest. Visual
bag-of-words model and gradient feature are utilized for encoding the shape and local information.
In (Zhang & Suganthan, 2014), a method that uses linear discriminant analysis to increase the
strength of a decision split is proposed. However, in most cases, increasing the strength does
not maximize the performance of the random forest because the correlation also increases. The
conflicting factors of strength and correlation in designing decision trees have been studied in recent
methods (Rodriguez-Galiano et al., 2012) to analyze the performance of random forest. Yao et al.
(2011) propose to use SVM and image patches to enhance strength while maintaining the correlation
of random forest. In this method, the SVM is used as a split function of each node at a decision tree to
increase strength and use randomly selected image patches to decrease correlation. While this method
performs well on fine-grained classification, it is not clear how this approach can be generalized
to other tasks. In contrast, we propose a generalized learning algorithm of random forests that can
be applied to various tasks using deep neural networks while considering both strength and correlation.

2.2 GENERALIZED ERROR BOUND OF RANDOM FORESTS

Breiman (2001) shows that the generalized error PE∗ of a random forest is bounded by:

PE∗ ≤ ρ̄(1− s2)

s2
, (1)

where ρ̄ is the correlation and s is the strength of the random forest. The strength s is the expectation
of the margin function mr(·) with respect to a feature X and its label Y :

s = EX,Y[mr(X, Y ) ], and

fmr(X, Y ) = PΘ(h(X,Θ)=Y )−max
j 6=Y

PΘ(h(X,Θ)=j) ,

where h(·) is a classifier, and Θ is a random vector used to generate decision trees. In addition,
PTheta(·) is the probability described the parameter Θ for a classifier h. The strength represents the
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expected margin of probability that the random forest makes a correct classification than a wrong
classification.

To define the correlation, the raw margin function is used:

frmg(Θ,X, Y )=I (h(X,Θ)=Y)− I
(

h(X,Θ)=ĵ(X,Y)
)
,

where ĵ(X, Y ) = arg maxj 6=Y PΘ(h(X,Θ)= j), and I(·) is an indicator function. When ρ(Θ,Θ′)
is the correlation between rmg(Θ,X, Y ) and rmg(Θ′,X, Y ), the correlation of a random forest ρ̄ is
the mean value of the correlations over Θ. More details on the generalized error bound of random
forests can be found in (Breiman, 2001).

From Eq. 1, it is straightforward to see that high strength of random forest reduces the upper bound
of the generalization error if the correlation is suppressed (Breiman, 2001). However, these two
conditions cannot be simultaneously satisfied in practice.

2.3 TRIPLET LOSS

In general, the loss function of the triplet is defined as:∑
(a,p,n)∈S

max
(

0, ‖ f(a)− f(p)‖22 − ‖ f(a)− f(n)‖22 + b
)
,

where f(a), f(p) and f(n) are the feature vectors of the anchor, positive, and negative data for a
triplet (a, p, n) in the training set S, and b is a user-specified margin. The goal of the training process
is to find the best feature f∗ that minimizes the loss function. In optimization process, the feature
positions of the anchor and the positive sample are pulled closer and those of the anchor and the
negative sample are pushed away.

The triplet loss function has been used in numerous applications including face recognition (Parkhi
et al., 2015; Schroff et al., 2015), image retrieval (Zhao et al., 2015), person re-identification (Cheng
et al., 2016; Zhang et al., 2016), and metric learning (Norouzi et al., 2012; Wang et al., 2014), to
name a few. The triplet loss function uses both positive and negative samples at the same time,
thus achieves improved performance. In the existing methods, positive samples are the data of the
same labels with the anchor, and the negative samples are the data with different labels. For face
recognition, person identities are the labels, and for person re-identification, the tracklet determines
the positive and negative sample sets. Minimizing the triplet loss then gathers the same-labeled data
together and separates differently-labeled data apart on the learned feature space, so that a classifier
can easily partition the data.

Compared to the above approaches, our focus on how to sample the effective triplets to improve both
classification ability and heterogeneity of random forests. We show that in random forest training
simply clustering data according to the labels does not bear the best result. Since it increases both the
strength and correlation of the random forest, and we present the supportive experimental results.

2.4 DOMAIN GENERALIZATION

Generalizing models learned from one domain to another is an important topic in machine learning
and computer vision. Learning deeply connected neural networks with a large-scale dataset helps
improve the generalized ability such that CNN features trained on the ImageNet dataset are used as
the generic representation for various visual domains (Sharif Razavian et al., 2014). However, it is
still difficult to adapt a model to different domains when large domain gaps exist. In addition, it is
even more challenging if we do not have any data from the target domain, or if we have a mixture of
source and target domains data. Hence, numerous domain generalization methods have recently been
developed to tackle this problem. Several approaches have been developed including regularization
with meta-learning (Balaji et al., 2018), domain-invariant conditional learning (Li et al., 2018b),
adversarial back-propagation (Li et al., 2018a), and episodic training algorithm (Li et al., 2019).
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Figure 1: Overall framework of the proposed learning algorithm. Once the random forest is con-
structed with CNN features, we sample the triplets based on the probability mass function of the split
results. The networks are then updated via the loss function of sampled triplets.

Algorithm 1 Learning algorithm for generalized convolutional forest networks.
Input: Training Image I , Class label Y
Output: Generalized Neural Networks N∗

1: for i← 1 to maximum iterations do
2: F ′ ← Ni (I)

3: Construct decision trees from F
′

and Y
4: Construct P p and Pn from split results by the decision trees
5: S ← Sample triplets by P p and Pn

6: Ni+1 ← Update by minimizing triplet loss on S

3 PROPOSED ALGORITHM

In this section, we formulate the problem of improving strength and maintaining the correlation of
random forests and describe the generalized feature learning algorithm to address these two factors
simultaneously.

We first present a feature learning algorithm which only considers strengthened features of random
forests. The modified feature learning algorithm on CNNs is then introduced to achieve high strength
and low correlation at the same time for the proposed Generalized Convolutional Forest Network
(GCFN). The overall framework of the proposed GCFN method is shown in Fig. 1 and Algorithm 1.

3.1 STRENGTHENED LEARNING ALGORITHM OF RANDOM FORESTS

The classification result of an input x to a random forest is determined as:

c∗ = arg max
c

1

T

∑
t

P (c|λt(x)),

where c is the label, T is the number of decision trees, and λt(x) denotes the leaf node of a tree t into
which x falls. Here, P (c|·) is the conditional probability of x belonging to class c. In other words, λ
can be thought of as a mapping function from x to a probability distribution on the label space. To
maximize the strength of a decision tree, each leaf node should only contain data with a single label,
i.e., the distribution should have a single entry with probability one and others with zeros. Intuitively
if the data with same labels are converged together in the space, the leaf nodes are more likely to
contain single labeled data, and we can design a triplet loss to maximize the data clustering in the
learned space.

The networks are updated via the probabilistic triplet sampling. To construct a triplet sample set,
we randomly sample anchors {ai}, and for each anchor ai one positive sample pi and one negative
sample ni are randomly drawn according to the probability mass functions (PMFs) for positive and
negative pools of the anchor, i.e., pi ∼ P p(ai) and ni ∼ Pn(ai). The positive pool consists of the
data with the same label with an anchor a but in different nodes of the tree, and the negative pool
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Figure 2: Probability mass function for sampling triplets. Probability mass functions for positive and
negative samples (P p and Pn respectively) are constructed by sample distribution with the anchors
in leaf nodes. Squares and triangles represent training data in leaf nodes of the decision trees, and
the shapes represent their labels. For an anchor (black square), the positive pool contains the data in
different leaf nodes and with the same label (red and blue squares), and the negative pool contains
either the data in the same leaf node with the same or different labels. Probability mass functions are
the normalized histogram of the positive and negative pools.

contains the data in the same node but with different labels. Given the anchor a, the PMFs of the
positive and negative samples are defined by:

P p(x;a) ∝
∑
t

I
(
λt(x) 6= λt(a) ∧ y(x) = y(a)

)
,

and
Pn(x;a) ∝

∑
t

I
(
λt(x) = λt(a) ∧ y(x) 6= y(a)

)
,

where I(·) is an indicator function returning 1 if true and 0 otherwise, and y(x) returns the label of
x. Both PMFs need to be normalized to sum to one. The networks N are updated using the triplet
samples S by minimizing the loss function Eq. 2.

L =
∑

(a,p,n)∈S

‖N (a)−N (p)‖22 − ‖N (a)−N (n)‖22 . (2)

The proposed random forest on the strengthened feature space shows improved performance compared
to that of the canonical feature space, but the improvement saturates quickly and sometimes it fails to
converge. The reasons can be attributed to:

• the correlation of the random forest increases rapidly along with strength improvement, and
thus the gain in overall performance is limited, as well as
• the optimization process often falls into local minima.

The data points with the same labels are pulled together and naturally, individual decision trees
become stronger, but at the same time, the decision trees become similar. The growth of correlation is
apparent because if two same-labeled data is in one leaf node, they are likely to stay close and belong
to the same leaf nodes in the next iteration. In practice, the local minimum issue affects performance
more critically. The update process of learning strengthened feature is analogous to the steepest
descent algorithm in optimization, in the sense that both positive and negative samples concentrate
on the strengthening random forests.

3.2 GENERALIZED LEARNING ALGORITHM OF RANDOM FORESTS

To alleviate the above-discussed issues, we present a triplet sampling method. As the positive
sampling rule is effective in enhancing the strength, we design the negative sampling rule to deal with
the correlation and the local minima, as shown in Fig. 2. The PMF for negative sampling is defined
as:

Pn(x;a) ∝
∑
t

I
(
λt(x) = λt(a)

)
.
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The role of negative sampling is two-fold. First, it prevents the correlation of the random forest
growing quickly. If two data points belong to the same nodes of many decision trees (which causes
high correlation), they are likely to be sampled as the negative examples and pushed away from each
other. The probability of these data points belonging to the same nodes in the next iteration becomes
smaller, and the correlation of decision trees decreases.

Second, it helps prevent the update process stuck in local minima and contributes to achieving higher
strength and classification accuracy than strengthened feature learning algorithm. Since the negative
sampling diffuses the data, it operates in a way similar to the regularization term in optimization
for dealing with local minima issues. Hard negative examples can cause the learning process to fall
into a local minimum, and a recent method (Schroff et al., 2015) suggests to exclude the negative
data points too close to anchors from sampling. In this work, strengthened feature learning gives the
high probability for negative sampling to the hard negative examples since they will be in the same
nodes in most decision trees, but it is difficult to detach them from the anchors in the strengthened
feature space. In the proposed triplet sampling strategy, the weight of the hard negative examples
is spread out to other positive samples in the same nodes. Thus it learns generic feature space for
random forests without getting stuck in local minima. The proposed GCFN is designed to address
the above-discussed issues. In the following, we present the various experimental validations for the
proposed method.

4 EXPERIMENTAL RESULTS

In this section, we present experimental results of the proposed method for domain generalization
and visual recognition tasks. In comparison with random forest based on different spaces, the
GCFN method performs favorably in all classification tasks. We also present detailed discussions
on the strength and correlation of the trained random forests and the properties of the optimized
learned space. Finally, we show the performance comparison of proposed random forests with the
state-of-the-art method in such tasks.

4.1 EXPERIMENTAL SETTINGS

We validate the effectiveness of the proposed method for domain generalization and visual recognition
tasks. We conduct experiments on various visual recognition tasks using three domains, such as scene,
texture, and fine-grained images. Domain generalization experiments are carried out to demonstrate
the effectiveness of the generalization ability of the proposed method.

We use five datasets for the three visual recognition domains. The MIT-Indoor (Quattoni & Torralba,
2009), Scene-15 (Lazebnik et al., 2006; Oliva & Torralba, 2001), 4D-Light (Wang et al., 2016),
DTD (Cimpoi et al., 2014), and Stanford-Dog (Khosla et al., 2011) datasets are utilized for the
scene, texture, and fine-grained domains. We use the ResNet (He et al., 2016) and DenseNet (Huang
et al., 2017) as backbone networks for visual recognition tasks. We use the standard protocols
of training and test data split. In addition, we include two datasets for evaluation of the domain
generalization. The Office-Home (Venkateswara et al., 2017) with ResNet-18 and VLCS (Fang
et al., 2013) with AlexNet (Krizhevsky et al., 2012) methods are used for evaluation against the
state-of-the-art schemes. We use three source domains as training data and the other one target
domain as test data for Office-Home. For VLCS, the split of 70% source with 30% target data for all
domains is used in the experiments.

Each node of decision trees in a random forest has a split function to determine which child to follow.
The split function is usually defined as a threshold function on a feature dimension that maximizes
the entropy (Shotton et al., 2008), and in our experiments, we indicate such split function by the
‘F’. Recently split functions such as PCA, LDA (Zhang & Suganthan, 2014) or SVM (Yao et al.,
2011) are introduced for better performance. In this work, we use the SVM split function in our
implementation, and they are marked with the ‘S’. The balanced node split learning of (Balanced,
2020) is utilized for both ‘F’ and ‘S’ split functions. We use random n-dimensional subspaces
of the input vector for node-wise SVM training and n is set depending on the size of the training
data. Each input image is resized to 224 × 224 for the single-scale and 224 × 224, 288 × 288,
352× 352, 224× 224 and 512× 512 for the multi-scale setting for visual recognition tasks except
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the Stanford-Dog dataset. Similar to previous fine-grained recognition studies, we use 448 × 448
input images for the Stanford-Dog dataset in the experiments.

(a) MIT-Indoor (b) Scene-15 (c) 4D-Light

Figure 3: Performance evaluation of random forests constructed on canonical, strengthened and
generalized feature space. Random forest on strengthened feature space saturates quickly but on
generalized space improves stably. The strength of the random forests learned from the strengthened
space is similar to or higher than that of the one with the generalized space, but the correlation is
much lower. As a result, the random forest learned from the generalized space provides a much lower
upper bound of generalized error and higher accuracy of in all test cases.

Table 1: Comparison of random forests on canonical (can), strengthened (str) and generalized (gen)
space. We measure the classification accuracy with T = 1, 10, 50 for three datasets. In all datasets,
random forests on the generalized feature space perform well. The best result in each number of trees
is marked as bold. It is worth noticing that when the number of trees is 1, the random forest with the
strengthened space performs better. As the tree grows, the correlation of this random forest increases,
and the proposed method with the generalized space performs better.

Space MIT Indoor Scene-15 4D-Light

1 10 50 1 10 50 1 10 50

can 26.1 54.6 65.6 61.7 83.4 88.1 40.0 65.6 73.6
str 48.4 66.9 70.8 84.3 88.6 89.3 68.3 73.9 76.9
gen 46.0 69.3 74.0 80.1 90.2 91.6 66.9 78.3 79.7

4.2 EVALUATION WITH BASELINE FORESTS

We first compare the proposed feature learning algorithms for random forests in Fig. 3. In most cases,
random forest with the generalized features outperforms that of the strengthened features in strength,
correlation, PE∗, and classification accuracy. Although random forests on the strengthened feature
space outperform canonical random forests in classification accuracy, the performance reaches to a
plateau quickly. On the other hand, the performance of random forests with the generalized feature
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Table 2: Comparison of random forests on canonical (can), strengthened (str) and generalized (gen)
space. We measure the classification accuracy with T = 50 for five datasets. Random forests with
the generalized space achieve the best result in all settings.

Network Space MIT-Indoor 4D-Light Scene-15 DTD Stanford-Dog

F S F S F S F S F S

ResNet
can 65.6 72.5 88.1 91.7 73.6 79.7 65.1 70.9 85.1 86.2
str 70.8 71.7 89.3 90.2 76.9 78.3 70.3 71.4 83.4 84.1
gen 74.0 75.7 91.6 92.4 79.7 81.1 71.5 72.5 85.7 86.7

DenseNet
can 63.7 67.8 89.2 91.2 75.6 77.2 67.6 66.2 77.7 83.1
str 71.9 72.6 89.8 90.4 77.8 81.4 69.8 70.9 83.0 84.8
gen 74.6 77.2 91.7 92.0 79.2 81.1 70.7 72.2 85.4 86.8

space increases steadily in classification accuracy and strength, and the correlation is maintained at the
lower levels than that of strengthened feature space. Since the strengthened feature learning method
aims to improve the strength only, the strength grows rapidly at the beginning, but the correlation also
gets higher. After several iterations, this approach falls into local minima, but the generalized feature
learning method continuously reduces the upper bound of generalization error and reaches much
higher accuracy. It is worth noticing that the strength of the generalized feature space is often much
higher than that of strengthened feature space. This can be explained by that feature the learning
process with the strengthened feature space is easily caught in local minima, whereas the proposed
method can escape or avoid the local minima. More importantly, the correlation of the random forests
on generalized features stays similar to that of canonical feature space while its strength is much
higher. Hence the generalization error PE∗ of the proposed method is much smaller.

Table 1 and 2 summarize the results of canonical and proposed random forests on various deep
features, number of trees, split functions, and different classification datasets. In all cases, the
proposed random forest method on the generalized feature space performs significantly better than
the canonical random forest schemes. In addition, the experimental results show that the proposed
method is not designed for a specific task, but can be applied to numerous classification tasks. This
shows the generalization ability of the proposed method, along with the experimental results of
domain generalization in the next subsection.

4.3 EVALUATION WITH STATE-OF-THE-ART METHODS

We evaluate the performance of the GCFN method with previous state-of-the-art methods for domain
generalization and various visual recognition tasks. Here we train the GCFN method with the
generalized feature learning algorithm and the split function ‘S’. We use the depth value depending
on the number of training samples and sufficient iterations of the learning stage to maximize the
performance of the GCFN.

The domain generalization task is evaluated in Table 3 and 4. We compare GCFN with recent domain
generalization methods such as D-SAMs (D’Innocente & Caputo, 2018), DANN (Ganin et al., 2016),
MetaReg (Balaji et al., 2018), MMD-AAE (Li et al., 2018a) and Epi-FCR (Li et al., 2019). The
proposed GCFN algorithm performs favorably against state-of-the-art methods for both datasets. The
results show that the proposed GCFN algorithm learns the generic distribution to classify unseen
domain data.

The results of Table 5-9 also show the GCFN works well compared to state-of-the-art methods in
visual recognition tasks. We compare the classification accuracy with recent state-of-the-art results
from FV-CNN (Cimpoi et al., 2015), DeepTen (Zhang et al., 2017), DEP (Xue et al., 2018) and
DFT (Ryu et al., 2018) for MIT-Indoor, 4D-Light and DTD datasets in Table 5, 6 and 8. For these
experiments, the multiscale training scheme is applied to the ResNet-50 backbone networks. The
details on how to utilize the multiscale scheme and backbone networks are slightly different for
each other, but we expect each to use the best settings for their method. The GCFN method is
trained on the ResNet-152 backbone networks for the Scene-15 data set in comparison with the
ResNet+weighted_layout (Weng et al., 2016) scheme in Table 7. Although they do not use the
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Table 3: Experiments on the OfficeHome dataset with the ResNet-18 backbone.

Method Art Clipart Product Real-world Average

Deep All (feat.) 52.7 48.4 71.4 71.5 61.0
Deep All 55.6 42.4 70.3 70.9 59.8
D-SAMs 58.0 44.4 69.2 71.5 60.8

GCFN 61.9 44.8 75.2 76.8 64.7

Table 4: Experiments on the VLCS dataset with the AlexNet backbone.

Method Pascal Labelme Caltech Sun Average

DANN 66.4 64.0 92.6 63.6 71.7
MetaReg 65.0 60.2 92.3 64.2 70.4
MMD-AAE 67.7 62.6 94.4 64.4 72.3
Epi-FCR 67.1 64.3 94.1 65.9 72.9

GCFN 73.8 61.7 93.9 67.5 74.2

multiscale scheme, the spatial pyramid pooling is applied to use the spatially multi-level features.
The PC(ResNet-50), PC(Densenet-161) (Dubey et al., 2018) and MAMC(ResNet-50) (Sun et al.,
2018) methods are evaluated with the GCFN(ResNet-50) algorithm in Table 9. Overall, the proposed
GCFN method performs favorably against state-of-the-art methods. Since the random forest has been
one of the most widely used classifiers to the visual data, we show the generic performance of the
proposed GCFN in the five datasets of three visual domains. These experimental results demonstrate
the generalization ability of the proposed algorithm.

Table 5: Experiments on the MIT-Indoor dataset.

Method DeepTen DFT DFT+ GCFN

Acc 76.2 78.6 80.2 80.3

Table 6: Experiments on the 4D-Light dataset.

Method FV-CNN Deep-Ten GCFN

Acc 77.6 81.4 82.2

Table 7: Experiments on the Scene-15 dataset.

Method ResNet+SVM ResNet+wl GCFN

Acc 92.3 94.5 94.3

Table 8: Experiments on the DTD dataset.

Method FV-CNN Deep-Ten DEP GCFN

Acc 72.3 69.6 73.2 76.8

Table 9: Experiments on the Stanford-Dog dataset. The results are acquired on the ResNet-50 and
DenseNet-161 for PC, MAMC, and GCFN.

PC (ResNet) PC (DenseNet) MAMC (ResNet) GCFN (ResNet) GCFN (DenseNet)

73.4 83.6 84.8 86.7 86.8

5 CONCLUSIONS

In this paper, we propose the GCFN method which learns the generalized feature space iteratively
such that the discrimination strength of each tree classifier is increased while the correlation is
suppressed. The proposed learning algorithm uses the triplet sampling on the probability distributions
of split results of the decision trees. The data with the same label with the anchor but in different
nodes are likely to be positive samples to increase strength, and the data in the same nodes with the
anchor be negative samples to suppress correlation and diffuse data to avoid falling in local minima.
We experimentally show that the proposed method outperforms baseline random forests on various
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experiments. Furthermore, the proposed algorithm performs favorably against state-of-the-art methods
for domain generalization and visual recognition tasks.
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