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ABSTRACT

Existing neural architecture search (NAS) methods explore a limited feature-
transformation-only search space, ignoring other advanced feature operations
such as feature self-calibration by attention and dynamic convolutions. This dis-
ables the NAS algorithms to discover more advanced network architectures. We
address this limitation by additionally exploiting feature self-calibration opera-
tions, resulting in a heterogeneous search space. To solve the challenges of opera-
tion heterogeneity and significantly larger search space, we formulate a neural op-
erator search (NOS) method. NOS presents a novel heterogeneous residual block
for integrating the heterogeneous operations in a unified structure, and an attention
guided search strategy for facilitating the search process over a vast space. Exten-
sive experiments show that NOS can search novel cell architectures with highly
competitive performance on the CIFAR and ImageNet benchmarks.

1 INTRODUCTION

Recent advances of Neural Architecture Search (NAS) are remarkable in challenging tasks, e.g. im-
age classification (Zoph & Le, 2017), object detection (Ghiasi et al., 2019), and semantic segmenta-
tion (Liu et al., 2019a; Nekrasov et al., 2019), greatly alleviating the demands for human knowledge
and interventions by automating the laborious process of designing neural network architectures.
One common scheme for the standard proxy-based neural architecture search methods (Pham et al.,
2018; Zoph et al., 2018; Liu et al., 2019b) is to factorise the search space via repeatedly stacking the
same cell structure, within which a computing block generates an output tensor Fk by combining
the transformations of two input feature tensors Fi and Fj :

Fk “ oiÑk pFiq ‘ o
jÑk pFjq s.t. i ă k & j ă k, (1)

where oiÑk and ojÑk are the i-th and j-th primitive operations for feature transformation, selected
from a candidate operation set O, and ‘ is the element-wise addition. Existing NAS methods
use only the standard feature learning/transformation operations (convolution, pooling and identity
mapping) as the building components.

Besides, extensive studies (Hu et al., 2018b; Bertinetto et al., 2016; Wang et al., 2017; Jia et al.,
2016; Wu et al., 2019b; Zhu et al., 2019) have proven that other advanced operations for feature
self-calibration, such as attention learning and dynamic convolutions, can bring great benefits for
representation learning. For example, Hu et al. (2018b) proposes Squeeze-and-Excitation Networks
to explicitly model inter-dependencies between channels by learning channel-wise self-attention.
Jia et al. (2016) presents Dynamic Filter Networks to generate context-aware filters for increasing
the flexibility and adaptiveness of networks. However, these useful feature calibration elements
have never been well exploited in NAS, significantly limiting the potentials of NAS which aims for
automatically discovering more sophisticated and advanced network architectures without human
engineering.

In this work, we aim to address this limitation by extending the search space of NAS with feature
self-calibration operations for scaling up the search boundary. This makes a heterogeneous search
space. Consequently, the way of feature tensor interaction and combination is dramatically diversi-
fied, from the conventional addition operator‘ only to the combination of addition‘, multiplication
d for attention modelling, and dynamic convolution ~. In this regard,we call the proposed method
Neural Operator Search (NOS).

Such a search space enhancement is critical since NAS is enabled to explore stronger and previously
undiscovered network architectures, which opens a door to potentially take the NAS research to the

1



Under review as a conference paper at ICLR 2020

next level. In the no free lunch saying, this also comes with two new challenges: (i) It is non-trivial
and more challenging to assemble such heterogeneous tensors and operations (i.e. features, atten-
tions and dynamic weights) in a unified computing block, as compared to the conventional homoge-
neous feature-tensor-to-feature-tensor transformation; (ii) The search space increases exponentially
which leads to a much harder NAS problem.

To address the first challenge, we formulate a heterogeneous operator cell characterised by a novel
heterogeneous residual block. This block, formulated in a residual learning spirit (He et al., 2016), is
designed specially for fusing all the different types of tensors and operations synergistically. To solve
the second challenge, we propose leveraging the attention transfer (Zagoruyko & Komodakis, 2017)
idea to facilitate the search behaviour across this significantly larger network space via following the
attention guidance of a pretrained teacher model. As we will show, this guidance not only makes the
search more efficient but also improves the search result.

Our contributions in this work are: (1) We present a novel heterogeneous search space for NAS
characterised by richer primitive operations including both conventional feature transformations and
newly introduced feature self-calibration. This breaks the conventional selection limit of candidate
neural networks and enables the NAS process to find stronger architectures, many of which are
impossible to be discovered in the conventional space. This opens new territories for supporting
stronger NAS algorithms and new possibilities for most expressive architectures ever to be revealed.
(2) We formulate a novel Neural Operator Search (NOS) method dedicated for NAS in the proposed
heterogeneous search space, with a couple of key designs – heterogeneous residual block for fusing
different types of tensor operations synergistically and attention guided search for facilitating the
search process over a vast search space more efficiently and more effectively. (3) With extensive
comparisons to the state-of-the-art NAS methods, the experiments show that our approach is highly
competitive on both CIFAR and ImageNet-mobile image classification tests.

2 RELATED WORK

Neural Architecture Search. Since the seminal work by Zoph & Le (2017), neural architecture
search has gained a surge of interest, effectively replacing laborious human designs by the compu-
tational process. From the strategy point of view, NAS methods can be categorised into two types:
(1) proxy-based (Zoph & Le, 2017; Zoph et al., 2018; Pham et al., 2018; Liu et al., 2019b) and
(2) proxy-less (Cai et al., 2019; Tan et al., 2019; Wu et al., 2019a) NAS. Specifically, to alleviate
the computational cost during search, the proxy-based NAS methods search for building cells on
proxy tasks, with one or more of following compromised strategies: starting with fewer cells; using
a smaller dataset (e.g. CIFAR-10); learning with fewer epochs. Then, to transfer to the large-scale
target task, one can build a network by stacking searched cells without further exploration. How-
ever, suffering from lacking of directness and specialisation, the searched cells by proxy-based NAS
methods are not guaranteed to be optimal on the target task. In contrast, proxy-less NAS methods
directly learns architectures on a target task by starting with an over-parameterised network (super-
net) that contains all possible paths, in which the redundant paths are pruned to derive the optimised
architecture. Notwithstanding significant better results than proxy-based approaches, proxy-less
NAS methods require massive computational cost and GPU memory assumption, due to learning
with the vast-size supernet. From the optimisation point of view, existing NAS methods usually fall
into three groups: reinforcement learning (RL) based methods, evolutionary algorithm (EA) based
methods, and gradient differentiable (GD) methods. In particular, RL-based NAS methods (Zoph &
Le, 2017; Pham et al., 2018; Tan et al., 2019) control the selection of architecture component in a
sequential order with policy networks. EA-based NAS methods (Real et al., 2019; Liu et al., 2018b)
employ the validation accuracies to guide the evolution of a population of initialised architectures.
RL- an EA-based NAS methods usually suffer from low efficiency and high computational resource
demand, due to the fundamental searching challenge in a discrete space. In contrast, GD-based NAS
methods (Liu et al., 2019b; Xie et al., 2019; Luo et al., 2018) conduct searching over a continuous
space by relaxation or mapping, substantially reducing the search cost to a few GPU days. Whilst
varying in the algorithmic aspects, all these works commonly explore the feature-transformation-
only search spaces without more diverse and advanced operations as we investigate here. To show
the NAS potential of the proposed richer search space with self-calibration learning operations, we
take the efficient proxy-based GD optimisation due to the resource constraint.
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Self-Calibration. Self-calibration is a type of mechanism enabling a network to dynamically per-
form input-conditional self-adjustment, which has been studied extensively in both the computer
vision (Hu et al., 2018b; Jia et al., 2016; Li et al., 2018; Park et al., 2018) and natural language pro-
cessing (NLP) literature (Wu et al., 2019b; Vaswani et al., 2017). There are two typical paradigms
of self-calibration: self-attention learning and dynamic convolutions, realised via an element-wise
multiplication operator d and a dynamic convolution operator ~, respectively. Despite showing
significant efficacy, self-calibration is only exploited independently after architecture hand-design
(Hu et al., 2018b) or auto-search (Tan et al., 2019). We move a step further by fully exploring the
potential of self-calibration along with feature transformation in joint optimisation, bringing a richer
search space for neural architecture search.

Knowledge Distillation. There are recent works that use knowledge distillation to help computer
vision and NLP tasks. Three types of knowledge are usually considered in distillation: features
(Yim et al., 2017), attention (Zagoruyko & Komodakis, 2017), and predictions (Hinton et al., 2015).
We leverage the attention distillation with a different objective – alleviating the intrinsic training-test
discrepancy issue of the proxy-based NAS strategy, particularly with a more expressive search space.
This represents a novel exploitation of attention distillation (Zagoruyko & Komodakis, 2017).

3 METHOD

In this section, we start by formulating a heterogeneous search space for NAS (Sec 3.1), followed
by a dedicated heterogeneous operator cell to enable composing the heterogeneous operations in a
unified computing block with synergistic interaction and cooperation (Sec 3.2). To overcome the
intrinsic architecture discovery challenges from more expressive search space, we further develop
an attention guided search scheme (Sec. 3.3).

3.1 HETEROGENEOUS SEARCH SPACE

Figure 1: Structure of the proposed dy-
namic convolutions for image classifi-
cation. b denotes matrix multiplication.

To enrich the NAS search space so that more advanced
network architectures can be discovered, we introduce a
heterogeneous search space A that considers three dif-
ferent types of representation learning capabilities: (1)
Feature transformations; (2) Attention learning; and (3)
Dynamic convolutions. More concretely, we form three
sets of primitive computing operations that produce fea-
tures, attentions and dynamic weights, respectively. This
novel search space generalises the conventional counter-
part which is limited to the first type of operations (Liu
et al., 2019b; Pham et al., 2018), and incorporates the
self-calibration learning capabilities (i.e. the second and
third types) in NAS. Importantly, while the search space
changes, the generic search strategies still apply therefore
being largely open for collaborating with existing NAS
methods. For instance, in the proxy-based NAS strategy
we may first search for a computing cell with heteroge-
neous operations as the building block and then form the
final network architecture by sequentially stacking multi-
ple such cells layer-by-layer.

Next, let us describe the heterogeneous primitive opera-
tion set O which consists of the following three disjoint
subsets: Of , Oa and Od, along with their aggregation or
application operators.

Feature Transformation Operations Of . We adopt the feature transformation/learning operation
set Of same as in Liu et al. (2019b; 2018a), including the following 7 operations: 3 ˆ 3 and 5 ˆ 5
separable convolutions, 3 ˆ 3 and 5 ˆ 5 dilated separable convolutions, 3 ˆ 3 average pooling,
3 ˆ 3 max pooling, and identity. Every operation of P Of takes as input a feature tensor and
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outputs another feature tensor, i.e. homogeneous feature-tensor-to-feature-tensor transformation.
For multiple feature tensor aggregation, the element-wise addition operator ‘ is typically used.

Attention Learning Operations Oa. Inspired by recent exquisite designs of attention learning
modules (Hu et al., 2018b; Li et al., 2018; Park et al., 2018), we form the Oa by considering two
types of attention learning prototypes: spatial-wise and channel-wise attentions. Specifically, a
spatial-wise attention operation learns a saliency map for an input feature tensor in order to calibrate
the importance of different spatial positions. In contrast, a channel-wise attention operation produces
a vector of scaling factors from the aggregated global context of an input tensor for adaptively
calibrating the channel dependency. To enforce attentive calibration on feature tensor, the element-
wise multiplication operator d is a typical choice for both spatial-wise and channel-wise attentions.

Dynamic Convolution Operations Od. Dynamic convolutions, designed for the sake of self-
adaptation, generate dynamic kernel weights in accordance with the input feature tensor. It is often
in form of depth-wise separable convolution as the feature transformation operation. Tailored for
either NLP or dense prediction tasks, existing dynamic convolution designs (Wu et al., 2019b; Jia
et al., 2016) are not suitable for image classification (our focus) with different problem nature. It
hence needs to be reformulated in order to be effective for learning discriminative image representa-
tions. We consider two design principles: (i) structurally lightweight whilst (ii) functionally strong
with great modelling capability.

Figure 2: Heterogeneous Residual block
for formulating the inner node computa-
tion. (a) First-tier individual computation;
(b) Second-tier collective computation.

To that end, we present an exquisite dynamic con-
volution structure specialised for cost-effective im-
age classification, as shown in Fig. 1. Concretely,
it consists of three compact modules composed in
an exquisite cooperation: (a) a bottleneck module,
to compress an input feature tensor by a ratio of r;
(b) a kernel transform module, to learn latent rep-
resentations with a kernel dimension of k ˆ k; (c)
a kernel decode module, to read out the dynamic
kernel weights with the channel dimension same as
the input feature tensor. This design is motivated, in
part, by the long-range dependency modeling (Wang
et al., 2018; Cao et al., 2019) and global context ag-
gregation (Hu et al., 2018b;a), elegantly integrating
their merits via a unified formulation. For the output
of dynamic convolutions, we consider two common
kernel sizes: 3ˆ3 and 5ˆ5. In a depth-wise manner,
we apply a standard or dilated convolution operator
~ to transform the input feature tensor. It is notewor-
thy to point out that, this type of convolutional kernel
is specific for each feature tensor of a particular im-
age sample (i.e. dynamic), rather than learned from
a training dataset and fixed for all the input samples
(i.e. static) as the conventional convolutional opera-
tions in the feature transformation set.

Detailed implementations of self-calibration opera-
tions are presented in Appendix A.1.

3.2 HETEROGENEOUS OPERATOR CELL

Due to different natures of heterogeneous computing capabilities, a unification structure is needed
for composing the primitive operations O “ Of YOa YOd and aggregation/application operators
C “ t‘, d, ~u in such a way that their representation learning potentials can be well mined. To that
end, we formulate a heterogeneous operator cell, a directed acyclic graph (DAG) G “ pV, Eq, join-
ing conventional feature transformations and proposed self-calibration operations synergistically.

Formally, a heterogeneous operator cell consists of N ordered feature (tensor) nodes V “

tFk|, 1 ă“ k ă“ Nu. Following (Zoph et al., 2018), F1 and F2 are the outputs from the previ-
ous cells regarded as two input nodes, tFku

N´1
k“3 denotes the inner nodes that perform computation,
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and the N -th node FN is the cell output node formed as the concatenation of all the inner nodes, i.e.
FN “concatptFku

N´1
k“3 q. The edge eiÑk“pi, kq PE specifies the connection between the i-th and

k-th nodes (the information flow i Ñ k), associated with a specific operation oiÑk selected from
the heterogeneous primitive operation set O. The key is to design a computing block for the inner
nodes with heterogeneous computations.

Heterogeneous Residual Block. It is non-trivial to design a heterogeneous computing block due
to being not straightforward feature-tensor-to-feature-tensor transformation as in the conventional
homogeneous operation. It involves self-calibrating the input feature tensor itself in addition to
the homogeneous feature transformation. To facilitate adding the extra capacity, we formulate a
heterogeneous residual block (see Fig. 2) characterised by a surrogate node k1 in the computing
block associated with each inner node k, for enabling richer feature tensor manipulations. This is in
a residual learning spirit (He et al., 2016), allowing to conduct self-calibration reliably.

Moreover, we design a two-tier computing hierarchy: the first tier for individual computation per
input feature tensor to capture the specificity, and the second tier for collective computation on the
set of all the input feature tensors as a whole to capture the intrinsic structural relations between
feature tensors and the global input properties. The two tiers are connected by the surrogate node k1.

Formally, we take as input all the previous nodes tFi|, i ă ku, process them separately with hetero-
geneous operations, and combine the processed results by summation (Fig. 2 (a)):

Fk1 “
ÿ

iăk

oiÑk1

f pFiq, Ak1“
ÿ

iăk

oiÑk1

a pFiq, Dk1 “

!

oiÑk1

d pFiq

)

iăk
(2)

where Fk1 , Ak1 , and Dk1 are the three types of intermediate outputted tensors, i.e. features, atten-
tions, and dynamic weights, respectively. These are subsequently aggregated into an intermediate
calibrated tensor, i.e. the surrogate node Fk1 , using element-wise addition in-between on feature
self-calibration and transformation as:

Fk1 “ Fk1
loomoon

feature

‘ pFk1 d Ak1q
looooomooooon

attention

‘
ÿ

Dk1PDk1

Fk1 ~ Dk1

looooooooomooooooooon

dynamic conv

(3)

Next, Fk1 is used as the input for the second-tier set-level collective computation (Fig. 2 (b)). Like-
wise, we consider the same three types of operations:

Fk “ ok
1
Ñk

f pFk1q, Ak “ ok
1
Ñk

a pFk1q, Dk “

!

ok
1
Ñk

d pFk1q

)

, (4)

and form the inner node Fk via further feature self-calibration and transformation as:

Fk “ Fk
loomoon

feature

‘ pFk d Akq
loooomoooon

attention

‘
ÿ

DkPDk

Fk ~ Dk

looooooomooooooon

dynamic conv

(5)

In doing so, our heterogeneous residual block presents a two-tier combinatorial operations structure
for each inner node, resulting in a more expressive search space (see Sec. 4.2).

3.3 ATTENTION GUIDED SEARCH OPTIMISATION IN A HETEROGENEOUS SEARCH SPACE

To showcase the effectiveness of the proposed heterogeneous search space and operator cell, we
adopt the proxy-based NAS strategy, due to the computing resource constraints and the enormous
search space. This search is done by constructing a small proxy network parametrised by Θ.

Attention Guided Search. Compared with proxyless search strategy, proxy-based NAS is more ef-
ficient but relatively less optimal due to not directly optimising the final network architecture. This
training-test discrepancy problem can be worsened when the search space provides more flexibil-
ity and combinatorial capability, such as the proposed space. To solve this obstacle, we propose
attention guided search, which optimises the proxy network in a knowledge distillation manner by
injecting an external guidance from a pre-trained teacher network into the NAS process.
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Figure 3: Overview of attention guided search. Ti
and Si (i P t0, 1, 2u) denote the i-th stage of the
teacher and proxy (student) networks.

Specifically, we leverage the attention transfer
idea (Zagoruyko & Komodakis, 2017) that en-
courages a student (the proxy network in our
case) to hierarchically imitate a teacher’s hid-
den attention knowledge. Intuitively, this may
benefit the search for self-calibration learning.
Formally, let us denote a feature tensor at the
j-th stage of the teacher and student network as
Fj
T and Fj

S , separately. Attention transfer is re-
alised by imposing an alignment loss function
across the two networks as:

LAT “
1

2

ÿ

jPJ
}

xj
S

}xj
S}2

´
xj
T

}xj
T }2

}2, with xj
S{T “ vecp

ÿ

i

|Fj
S{T p¨, ¨, iq|

2q (6)

where xj
S{T is the spatial-wise accumulated feature vector. An overview of attention guided search

is depicted in Fig. 3. An overview of attention guided search is depicted in Fig. 3.

Optimisation. For NAS optimisation, we adopt the DARTS method (Liu et al., 2019b). In our
context, we conduct the continuous relaxation over all the possible heterogeneous operations O for
making a continuous search space:

oiÑjpxq “
ÿ

oPO

exp
`

aiÑj
o

˘

ř

o1PO exp
´

aiÑj
o1

¯opxq, (7)

where an architecture vector aiÑj
o P R|O| is used for each possible connection iÑ j. We summarise

the architecture vector of all the connections as a matrix A “
“

a1, ¨ ¨ ¨ ,a|E|
‰

P R|E|ˆ|O|. With this
relaxation, we can jointly optimise the architecture parameters A and the network weights Θ in
a fully gradient differentiable manner. Equipped with the proposed attention guidance search, the
search objective function is finally formulated as the following bilevel optimisation process:

Θ˚pAq “ arg min
Θ

LtrainpΘ,Aq ` λLAT pΘ,Aq, (8)

A˚ “ arg min
A

LvalpΘ
˚pAq,Aq ` λLAT pΘ

˚pAq,Aq, (9)

where λ denotes the weighting hyper-parameter. For the first level Eq. (8), we learn the optimal pa-
rameters Θ˚ for a given architecture A w.r.t a training objective Ltrain and the attention alignment
loss LAT . The second level Eq. (9) then explores the optimal architecture A˚ over the heteroge-
neous search space A w.r.t a validation objective Lval and LAT . For image classification, Ltrain

and Lval usually take the cross-entropy loss function.

Search Outcome. Once the above alternated optimisation is done, we derive an amenable cell
architecture with heterogeneous operators. In practice, for each heterogeneous computing block we
retain the top-2 strongest incoming operations with at least one feature transformation operation for
the first-tier (Fig. 2(a)), and the top-1 strongest operation for the second-tier (Fig. 2(b)).

4 EXPERIMENTS

We evaluated the proposed NOS method on image classification using three common datasets. CI-
FAR10/100: Both CIFAR10 and CIFAR100 have 50K/10K train/test RGB images of size 32ˆ32ˆ3,
categorised into 10 and 100 classes, respectively (Krizhevsky et al., 2009). ImageNet: We use the
ILSVRC2012 version for large-scale image classification evaluation, containing 1.28M training im-
ages, 50K validation samples, and 1K classes (Russakovsky et al., 2015).

We first conduct preliminary experiments on CIFAR10/100 to select the heterogeneous primitive op-
erations O. To test the efficacy and transferability of NOS, we search the cell structures on CIFAR10
only, and compare the performance with existing methods on CIFAR10/100 and ImageNet.
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Table 1: Evaluating the feature self-calibration operations on CIFAR10 and CIFAR100.

Model Type Kernels CIFAR10 CIFAR100 FLOPS(M) #Params(MB)Top-1(%) Top-5(%) Top-1(%) Top-5(%)
ResNet-18 - - 4.95 0.22 23.61 7.16 555.42 11.17

+ Dynamic
Normal 3 4.63 Ò 0.13 Ò 22.63 Ò 6.44 Ò + 3.85 + 0.03

5 4.78 Ò 0.14 Ò 23.45 Ò 6.82 Ò + 7.62 + 0.04

Dilated 3 4.97 Ó 0.23 Ó 24.00 Ó 7.28 Ó + 3.85 + 0.03
5 4.92 Ò 0.17 Ò 23.75 Ó 7.20 Ó + 7.62 + 0.04

+ Attention Spatial 4.79 Ò 0.16 Ò 23.51 Ò 7.04 Ò + 1.08 + 0.01
Channel 4.83 Ò 0.19 Ò 23.20 Ò 6.89 Ò + 0.40 + 0.15

Ò Higher than the baseline. Ó Lower than the baseline.

4.1 PRELIMINARY STUDY OF FEATURE SELF-CALIBRATION OPERATIONS

We conducted a controlled experiment to test the introduced self-calibration operations on CIFAR-
10 and CIFAR-100. Specifically, for the proposed dynamic convolutions, we considered both normal
and dilated convolutions and two kernel sizes (3 ˆ 3 and 5 ˆ 5). We adopted the channel-wise and
spatial-wise attention learning. For the baseline model, we used ResNet-18 (He et al., 2016) with
4 stages in the backbone. To build a model with self-calibration, we added each self-calibration
operation at the stages 1, 2, 3 of ResNet-18, respectively. For fair comparison, we trained each
model in the same setting (see Appendix A.2.1). In Table 1, we summarised the model parameters
and FLOPs in addition to the test set performance (error rates). We observed that: (1) Both attention
operations and our normal dynamic convolutions outperform the baseline consistently; (2) Adding
dilated dynamic convolutions causes performance drop in most cases. We hence exclude it from
the candidate set; (3) Very marginal FLOPs and parameters increase from these self-calibration
operations over the baseline, suggesting their high cost-effectiveness.

Figure 4: Normal cell and reduction cell searched on CIFAR-10. f0: sep conv 3x3, f1: sep conv 5x5,
f2: dil conv 3x3, f4: max pooling, f6: identity, a0: spatial attention, a1: channel attention,
d0: dynamic conv 3x3, d1: dynamic conv 5x5.

4.2 CELL SEARCH

Search Space. As found out above, the heterogeneous primitive operation set O contains 11 oper-
ations in total: |Of | “ 7 feature transformation operations, |Oa| “ 2 attention learning operations,
|Od| “ 2 dynamic convolutions, respectively. We constructed the proposed heterogeneous operator
cell (G “ pV, Eq) with |V| “ 7 nodes (2 input nodes, 4 inner nodes and 1 output node). So, all 4
heterogeneous residual blocks contain |E | “ 18 edges in total (14 first-tier connections and 4 second-
tier connections). To derive the final cell architecture, we kept 2 first-tier connections and 1 second-
tier connection for each block. As a result, there is a total number of

ś4
n“1

pn`1qn
2 ˆ 113 « 1014

possible choices, 5 orders of magnitude larger than the conventional size of
ś4

n“1
pn`1qn

2 ˆ72 « 109

as in (Liu et al., 2019b; Dong & Yang, 2019; Xie et al., 2019).

Training. Following the setup of existing methods (Real et al., 2019; Liu et al., 2019b; 2018a;
Akimoto et al., 2019), we searched the convolutional architectures on CIFAR10. We constructed a
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Table 2: Comparisons with the state-of-the-art architectures on CIFAR10 and CIFAR100.

Architecture Error (%) Params Search Cost Type
CIFAR10 CIFAR100 (M) GPUs Days

PyramidNet (Han et al., 2017)* 3.92 20.11 2.5 - - Manual
DenseNet-BC (Huang et al., 2017) 3.46 17.18 25.6 - - Manual
NASNet-A (Zoph et al., 2018) 2.65 - 3.3 450 1800 RL
AmoebaNet-B (Real et al., 2019) 2.55˘0.05 - 2.8 450 3150 EA
Hierarchical-Evolution (Liu et al., 2018b) 3.75˘0.12 - 15.7 200 300 EA
PNAS (Liu et al., 2018a) 3.41˘0.09 - 3.2 100 1.5 SMBO
ENAS (Pham et al., 2018) 2.89 - 4.6 1 0.5 RL
ProxylessNAS Cai et al. (2019) 2.08 - 5.7 - 4 GD
RENAS (Chen et al., 2019) 2.88˘0.02 - 3.5 4 6 EA&RL
DARTS(1st) (Liu et al., 2019b) 3.00˘0.14 - 3.3 1 1.5 GD
DARTS(2nd) (Liu et al., 2019b) 2.76˘0.09 17.54 3.3 1 4.0 GD
SNAS (moderate) (Xie et al., 2019) 2.85˘0.02 - 2.8 1 1.5 GD
GHN (Zhang et al., 2019) 2.84˘0.07 - 5.7 1 0.84 GD
GDAS (Dong & Yang, 2019) 2.93 18.38 3.4 1 0.84 GD
BayesNAS(0.005) (Zhou et al., 2019) 2.81˘0.04 - 3.4 1 0.2 GD
ASNG (Akimoto et al., 2019) 2.83˘0.14 - 3.9 1 0.11 GD
Random Baseline; 3.85 21.66 2.4 - - Random
NOS (best) 2.53 16.21 2.6 1 0.35 GD
NOS (average) 2.67˘0.06 16.72˘0.24 2.6 1 0.35 GD
* The teacher model. ‡ Best architecture among 30 random samples.

small proxy network with 8 heterogeneous operator cells, and two reduction cells at 1/3 and 2/3 of
the total network depth for feature shape reduction. We used 25K images split from the training set
for validation. We randomly initialised the architecture parameters A P R18ˆ11 in the normal distri-
bution. We used a pre-trained PyramidNet-110 (bottleneck, α “ 84) (Han et al., 2017) as the teacher
model. We set the weight λ “ 103 for attention guidance loss LAT . After 25 epochs of training on
the proxy network, we derived the final heterogeneous operator cells from the architecture matrix
A. See Appendix A.2.1 for more configurations for training the proxy and teacher networks.

The search on CIFAR10 took only 8.4 hours using a single NVIDIA Tesla V100 GPU. The searched
heterogeneous operator cells by NOS is shown in Fig. 4, in which the self-calibration operators d
and ~ appear in both first-tier and second-tier. For example, there are two attention operations in
first-tier and two dynamic convolutions in second-tier in the normal cell.

4.3 ARCHITECTURE EVALUATION

CIFAR. To measure the final image classification performance of the searched heterogeneous op-
erator cells on CIFAR10 and CIFAR100, we created an evaluation network with 20 cells, 36 initial
channels, and an auxiliary tower with loss weight 0.4. See Appendix A.2.1 for more configurations
for training the evaluation network. Due to high variance of results on CIFAR, we conducted 10
independent runs and reported both the best and average results. We summarised the results of NOS
and the state-of-the-art methods in Table 2. The comparisons show that: (1) NOS achieves a very
competitive result (second best) on CIFAR10, whilst enjoying the smallest model parameters (only
2.6M). Comparing with the best performer ProxylessNAS at the size of 5.7M (searched with a su-
pernet) (Cai et al., 2019), it shows the significant cost-effectiveness and compactness advantages
of our method. (2) Despite a significantly larger search space (1014 vs 109 in (Liu et al., 2019b;
Akimoto et al., 2019; Xie et al., 2019; Dong & Yang, 2019; Akimoto et al., 2019)), NOS shows
high cost-effectiveness in computing cost (only 0.35 GPU day). (3) NOS achieves the best result
on CIFAR100 by directly transferring the CIFAR10 searched network, significantly outperforming
DARTS (Liu et al., 2019b) and GDAS (Dong & Yang, 2019). This challenging cross-dataset test
indicates a superior transferability of the network searched by NOS.

ImageNet. To evaluate the transferability of architecture discovered by NOS on large scale Ima-
geNet, we used the mobile setting same as in (Liu et al., 2019b; Dong & Yang, 2019; Xie et al.,
2019), where the number of multiply-add operations is restricted to be less than 600M at the input

8
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Table 3: Comparisons with the state-of-the-art architectures on ImageNet-mobile.

Architecture Test Err. (%) Params ˆ` Search Cost Type
top-1 top-5 (M) (M) (GPU-days)

MobileNet-v1(1.0)Howard et al. (2017) 29.4 10.5 4.2 575 - Manual
MobileNet-v2(1.0)Sandler et al. (2018) 28.0 - 3.4 300 - Manual
ShuffleNet 2ˆ(v1) Zhang et al. (2018) 26.4 10.2 «5 524 - Manual
ShuffleNet 2ˆ(v2) Ma et al. (2018) 25.1 - «5 591 - Manual
NASNet-A Zoph et al. (2018) 26.0 8.4 5.3 564 1800 RL
NASNet-B Zoph et al. (2018) 27.2 8.7 5.3 488 1800 RL
NASNet-C Zoph et al. (2018) 27.5 9.0 4.9 558 1800 RL
PNAS Liu et al. (2018a) 25.8 8.1 5.1 588 1.5 SMBO
AmoebaNet-A Real et al. (2019) 25.5 8.0 5.1 555 3150 EA
AmoebaNet-B Real et al. (2019) 26.0 8.5 5.3 555 3150 EA
AmoebaNet-C Real et al. (2019) 24.3 7.6 6.4 570 3150 EA
RENAS Chen et al. (2019) 24.3 7.4 5.4 580 6 EA&RL
MnasNet-A3 Tan et al. (2019) 23.3 6.7 5.2 403 -: RL
ProxylessNAS (GPU) Cai et al. (2019) 24.9 7.5 7.1 465 8.3 GD
FBNet-C Wu et al. (2019a) 25.1 - 5.5 375 9.0 GD
GHN Zhang et al. (2019) 27.0 8.7 6.1 569 0.84 GD
DARTS Liu et al. (2019b) 26.7 8.7 4.7 574 4.0 GD
SNAS Xie et al. (2019) 27.3 9.2 4.3 522 1.5 GD
GDAS Dong & Yang (2019) 26.0 8.5 5.3 581 0.84 GD
BayesNAS (0.005) Zhou et al. (2019) 26.5 8.9 3.9 - 0.2 GD
NOS (searched on CIFAR10) 25.8 8.1 4.0 440 0.35 GD

:

The architecture search takes 4.5 days on 64 TPUv2 devices.

size of 224 ˆ 224. Specifically, we constructed an evaluation network with 14 cells and 48 initial
channels. An auxiliary tower with loss weight 0.4 was also applied. See Appendix A.2.2 for more
training details. Table 3 shows the ImageNet results in the mobile setting. Notably, the cell architec-
tures found by NOS on CIFAR10 can achieve highly competitive performance with significantly less
computational cost (0.35 day on 1 GPU vs 4.5 days using 64 TPUv2 devices required by MnasNet-
A3 (Tan et al., 2019)). Unlike MnasNet-A3 (Tan et al., 2019) and ProxylessNAS (Cai et al., 2019)
searching the network on ImageNet directly (resource-intensive), the network searched by NOS on
CIFAR10 can be successfully transferred. Also, compared to other state-of-the-art gradient based
proxy-based NAS (GHN, DARTS, SNAS, GDAS and BayesNAS), NOS discovers a cell structure
that performs better with higher efficiency (only 440M FLOPs).

4.4 FURTHER ANALYSIS

Figure 5: Train/Val set accuracy on CIFAR10.

Table 4: Testing attention guided search (AGS).

AGS Test Error (%)
CIFAR10 CIFAR100

w/o 3.44 18.80
w/ 2.53 16.21

We evaluated attention guided search (AGS) on CIFAR10/100 by comparing a NOS variant without
attention transfer loss. The same training setting was used (Appendix A.2.1). We used a pre-trained
PyramidNet-110 as teacher. Table 4 shows that learning with attention guidance can significantly
benefit the NOS search process. We further showed the training curves in Fig. 5 and observed that
AGS clearly improves the train/val accuracies. This suggests that AGS is effective to alleviate the
architecture training-test discrepancy issue involved in the proxy-based NAS.

9
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5 CONCLUSION

We presented Neural Operator Search (NOS), featured by a heterogeneous search space for neural
architecture search (NAS). This search space expansion enables NAS to discover more expressive
and previously undiscovered architectures, significantly expanding the search horizon and enriching
the possible search outcomes. We further formulated heterogeneous residual block and attention
guided search to solve the intrinsic search challenges involved. Extensive experiments on image
classification show that NOS can discover novel and high-quality cell architectures in a cost-effective
process. We hope that this work will shed light on the future directions for the NAS community.
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A APPENDIX

A.1 SELF-CALIBRATION OPERATIONS

A.1.1 ATTENTION LEARNING

1 import torch
2 import torch.nn as nn
3 import torch.nn.functional as F
4

5

6 # channel-wise attention
7 class AttentionC(nn.Module):
8

9 def __init__(self, C_in, C_out, reduction=16, affine=True):
10 super(AttentionC, self).__init__()
11 self.conv_1 = nn.Conv2d(C_in, C_in // reduction, 1, stride=1, padding

=0, bias=False)
12 self.relu = nn.ReLU(inplace=False)
13 self.conv_2 = nn.Conv2d(C_in // reduction, C_out, 1, stride=1,

padding=0, bias=False)
14 self.sigm = nn.Sigmoid()
15

16 def forward(self, x):
17

18 y = F.avg_pool2d(x, kernel_size=x.size()[2:4])
19 y = self.relu(self.conv_1(y))
20 y = self.sigm(self.conv_2(y))
21

22 return y
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23

24

25 # spatial-wise attention
26 class AttentionS(nn.Module):
27

28 def __init__(self, C_in, C_out, stride, reduction=16, affine=True):
29 super(AttentionS, self).__init__()
30

31 self.conv_1 = nn.Conv2d(C_in, C_in // reduction, 1, stride=stride,
padding=0, bias=False)

32 self.bn_1 = nn.BatchNorm2d(C_in // reduction, affine=affine)
33 self.relu = nn.ReLU(inplace=False)
34 self.conv_2 = nn.Conv2d(C_in // reduction, 1, 3, stride=1, padding=1,

bias=False)
35 self.sigm = nn.Sigmoid()
36

37 def forward(self, x):
38

39 y = self.relu(self.bn_1(self.conv_1(x)))
40 y = self.sigm(self.conv_2(y))
41

42 return y

A.1.2 DYNAMIC CONVOLUTIONS

1 # dynamic convolution
2 class DynamicF(nn.Module):
3

4 def __init__(self, C_in, C_out, F_size, reduction=8, affine=True):
5 super(DynamicF, self).__init__()
6 self.f_size = F_size
7 self.reduction = reduction
8 self.c_in = C_in
9 self.c_out = C_out

10 self.conv_1 = nn.Conv2d(C_in, C_in // reduction, 1, stride=1, padding
=0, bias=False)

11 self.bn_1 = nn.BatchNorm2d(C_in // reduction, affine=affine)
12 self.relu = nn.ReLU(inplace=False)
13 self.conv_2 = nn.Conv2d(C_in, F_size*F_size, 1, stride=1, padding=0,

bias=False)
14 self.soft = nn.Softmax(dim=2)
15 self.conv_3 = nn.Conv2d(C_in // reduction, C_out, 1, stride=1,

padding=0, bias=False)
16

17 def forward(self, x):
18

19 input_x = self.relu(self.bn_1(self.conv_1(x)))
20 N, C, H, W = input_x.size()
21 input_x = input_x.view(N, C, H * W) # [N, C, H * W]
22 input_x = input_x.unsqueeze(1) # [N, 1, C, H * W]
23 dynamic_mask = self.conv_2(x) # [N, -1, H , W]
24 dynamic_mask = dynamic_mask.view(N, -1, H * W) # [N, -1, H * W]
25 dynamic_mask = self.soft(dynamic_mask) # [N, -1, H * W]
26 dynamic_mask = dynamic_mask.unsqueeze(3) # [N, -1, H * W, 1]
27 dynamic_mask = dynamic_mask.permute(0, 3, 2, 1) # [N, 1, H * W, -1]
28 dynamic = torch.matmul(input_x, dynamic_mask) # [N, 1, C, -1]
29 dynamic = dynamic.squeeze(1) # [N, C, -1]
30 dynamic = dynamic.view(N, C, self.f_size, self.f_size)
31 dynamic = self.conv_3(dynamic)
32 dynamic = dynamic.view(N, self.c_out, -1)
33 dynamic = self.soft(dynamic)
34 dynamic = dynamic.view(N, self.c_out, self.f_size, self.f_size)
35

36 return dynamic
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A.2 DETAILS OF TRAINING CONFIGURATIONS

A.2.1 CIFAR

ResNet-18 and PyramidNet-110. We trained these models for 300 epochs with batch size 32.
The learning rate was initialised as 0.025, which was decayed by 10 every 30 epochs. The standard
SGD optimiser with momentum of 0.9 was employed. We set a weight decay value of 1 ˆ 10´4

to avoid overfitting. Other additional enhancements were not involved except the standard data
augmentations.

Cell Search. For network parameters Θ of proxy network, we used SGD with an initial learning
rate 0.025 and set the momentum value as 0.9. This learning rate was decayed to 0 with a cosine
scheduler. A weight decay value of 3 ˆ 10´4 was imposed to avoid over-fitting. For learning
architecture matrix A, we used the Adam optimiser with a fixed learning rate value 6 ˆ 10´4 and
set the weight decay to 1ˆ 10´3.

Cell Evaluation. The evaluation network was trained from scratch directly for 600 epochs with
batch size 128. Note that, the attention transfer was not involved for training. We set the weight
decay values for CIFAR-10 and CIFAR-100 to 3 ˆ 10´4 and 5 ˆ 10´4 individually. The standard
SGD optimiser with a momentum of 0.9 was applied. The initial learning rate was 0.25, decayed
to 0 with a cosine scheduler. Following existing works (Liu et al., 2019b; Pham et al., 2018; Zoph
et al., 2018; Real et al., 2019), we performed two additional enhancements: the cutout regularisation
DeVries & Taylor (2017) with length 16 and the drop-path Larsson et al. (2017) of probability 0.3.

A.2.2 IMAGENET

We trained the evaluation model for ImageNet using SGD optimiser for 300 epochs with batch size
512. We initialised the learning rate as 0.25 and reduced it to 0 by a linear scheduler. Learning rate
warmup Goyal et al. (2017) was applied for the first 5 epochs to deal with the large batch size and
learning rate.
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