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ABSTRACT

Exploration for reinforcement learning (RL) is well-studied for model-free meth-
ods but a relatively unexplored topic for model-based methods. In this work, we
investigate several exploration techniques injected into the two stages of model-
based RL: (1) during optimization: adding transition-space and action-space noise
when optimizing a policy using learned dynamics, and (2) after optimization: in-
jecting action-space noise when executing an optimized policy on the real en-
vironment. When given a good deterministic dynamics model, like the ground-
truth simulation, exploration can significantly improve performance. However,
using randomly initialized neural networks to model environment dynamics can
implicitly induce exploration in model-based RL, reducing the need for explicit ex-
ploratory techniques. Surprisingly, we show that in the case of a local optimizer,
using a learned model with this implicit exploration can actually outperform us-
ing the ground-truth model without exploration, while adding exploration to the
ground-truth model reduces the performance gap. However, the learned models
are highly local, in that they perform well only for the task for which it is opti-
mized, and fail to generalize to new targets.

1 INTRODUCTION

Reinforcement learning (RL) with deep neural networks combines two extremely data inefficient
techniques, increasing the need for efficient exploration. In model-free methods, exploration is
usually done by adding noise to the action suggested by the optimized policy. Here, exploration
helps primarily by encouraging the agent to visit new states that might have better reward. On the
other hand, model-based RL (MBRL) has been more focused on reaching parity with model-free
methods in asymptotic performance on environments with high-dimensional state- and action-spaces
(Chua et al. (2018)). As a result, exploration in MBRL is a relatively nascent field, though it is still
thought to help by generating diverse environment data to train the dynamics model (Pathak et al.
(2019)). However, exploration methods designed for the model-free case may result in non-trivial,
potentially problematic, effects when used in MBRL.

In this work, we take a step back and analyze how exploration behavior can be injected into MBRL,
and extensively evaluate the effect of various exploration strategies on learning performance. Most
MBRL approaches iterate between two phases for learning a task: 1) simulation/planning phase:
using the current approximation of the dynamics, optimize a policy which accomplishes the task,
and 2) environment interaction phase: the optimized policy is executed in the real world, which
allows the agent to collect new observations; the approximate dynamics model is then updated with
these new observations.

Exploration can be injected during both phases. First, exploration can take place during the real-
world execution phase by perturbing the optimized actions, similar to how many model-free methods
implement exploration. We call this exploration type action-space exploration. Second, exploration
can also be performed during the planning phase, either by performing action-space exploration dur-
ing policy optimization itself or by considering the distribution of predicted trajectories, and using a
risk-seeking approach to encourage the exploration of parts of the model with high uncertainty. We
call this type of exploration transition-space exploration.

In this paper, we thoroughly investigate the effect of these different types of exploration strategies
on the performance of MBRL. We especially focus our analysis on algorithms that use the itera-
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tive Linear Quadratic Regulator GLQR) (Li & Todorov (2004)) as the policy optimization method;
a well-established approach both in RL and optimal control settings for real robotic applications
(Levine et al. (2016); Bechtle et al. (2019); Viereck et al. (2018); Neunert et al. (2016)). This choice
is motivated by our desire to focus on methods that are demonstrably applicable to real robotic mo-
tor control problems. We focus our analysis to a reaching task for a 7-DoF arm. Our experimental
results lead to the following surprising observations:

e Action-space exploration, especially the commonly-cited iLQR solution for maximum-
entropy RL, results in significant deterioration of performance.

e Some exploration methods can improve performance of iLQR with a ground-truth dynam-
ics model, but do not improve performance for iLQR using learned dynamics models.

e In our setting, using learned models with iLQR results in implicit exploration that can lead
to better performance than using a ground-truth dynamics model. In the process of learning
amodel, iLQR is able to escape local minima despite a poor initialization, while iLQR with
a good model is more sensitive to initialization.

We conclude that certain choices for modeling dynamics, such as randomly initialized neural net-
works, implicitly provide an exploration mechanism in model-based RL and reduce the need and
benefit of explicit exploration. However, policy optimization with using a strong, deterministic
model, such as the ground-truth dynamics, can benefit from exploration because they lack this im-
plicit exploration mechanism.

2 RELATED WORK

2.1 EXPLORATION FOR MODEL-FREE RL

Model-free methods have worked exceptionally well using only simple forms of exploration, such as
injecting noise in different stages of a greedy (short-term optimal) algorithm. Noise can be injected
in the action space for the discrete case through e-greedy exploration (Sutton et al. (1998)) and
for the continuous case through additive Gaussian noise or by sampling directly from stochastic
policies. Alternatively, noise can be injected into the parameter-space of the policy (Riickstief et al.
(2008); Fortunato et al. (2017); Plappert et al. (2017)), or explore by modeling data from previous
tasks (Bogdanovic & Righetti (2019)).

A related line of work also maximizes an auxiliary objective along with the main objective to in-
crease exploration, such as entropy or expected improvement to encourage diverse solutions and
sample-efficiency. Pelikan et al. (1999); Snoek et al. (2012) use Bayesian optimization to model the
objective landscape and explore by incorporating both the mean and uncertainty about the prediction
in an auxiliary optimization. Williams & Peng (1991); Ziebart (2010); Haarnoja et al. (2017; 2018)
augment the standard RL objective with an entropy maximization term, which is deeply linked with
risk-sensitive optimal control theory (Rawlik et al. (2013)), which we build upon in our work.

2.1.1 USING MODELS FOR EXPLORATION IN MODEL-FREE RL

Curiosity-driven exploration can be summarized as “explore what surprises you”; often, this takes
the form of incentivizing exploration of states with high prediction error with respect to a dynamics
model (Schmidhuber (1991; 2006)) even while using model-free algorithms to learn to act. This
line of work can be scaled up to higher-dimensional environments including images Stadie et al.
(2015); Pathak et al. (2017). This may perform well in the absence of extrinsic reward, as Burda
et al. (2018a;b) demonstrate, and even when disregarding the temporal structure of RL as in Conti
etal. (2018).

2.2  EXPLORATION FOR MODEL-BASED RL

There are comparatively fewer exploration methods designed specifically for model-based RL. As
mentioned previously, model-based RL methods can perform exploration during the planning phase
as well as the system rollout phase; we categorize the following related work based on this distinc-
tion.
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Exploration during environment interaction: Wiering & Schmidhuber (1998) propose using
an exploration @-function to generate exploratory actions for model-based RL. Lopes et al. (2012)
empirically measures learning progress to drive exploratory behavior. Hester & Stone (2017) use
random forests for modeling dynamics and encourage exploration using model uncertainty and dis-
tance measure from previously explored regions. All of these methods only consider the tabular
case, while we examine exploration for model-based RL in high-dimensional continuous state- and
action-spaces.

Exploration during planning: Moldovan et al. (2015) use the principle of “optimism in the face
of uncertainty” by learning a Dirichlet process mixture of linear models for model-predictive control.
Shyam et al. (2018) also use an ensemble of deep neural networks to model forward dynamics and
use disagreement between models to provide exploratory signal. Boedecker et al. (2014) use proba-
bilistic dynamics models with iLQR to encourage exploration through model uncertainty; however,
they consider lower-dimensional problems using Gaussian Processes, which do not scale well to
large number of data points. Our work is most closely related to Bechtle et al. (2019), which uses
risk-sensitive stochastic optimal control and the uncertainty of probabilistic dynamics models to
provide exploration signal. We follow their formulation but use ensembles of deep neural networks
as the dynamics model choice for better scaling properties, simplify the variance estimate used to
provide exploration signal, and perform much larger scale simulation experiments.

3 MODEL-BASED REINFORCEMENT LEARNING (MBRL)

Algorithm 1 MBRL(s,, F, F, T, n_iter) Algorithm 3 derive_policy iLQR(Fy, Tnominal, 1)

1: D < run_policy(s1, Toavbling, F5 1) 1: A < line search parameters [0, . .., 1]
2: 0« train,model(f?‘g, D) 20 7%, J* 4= Thom, cost of (Tnom)
3: for iter=1, ..., n_iter do 3: for opt_iter in 1, ..., max_opt_iters do
4: T + last trajectory from D 4: k¢, K; < Riccati equation
5. Tie + derive_policy(Fo, Tias, T)) 5. foracAdo .
6: D =D U run_policy(s1, Tier, F, T) 6 Tsimulated <— Simulate policy 7 using Fop
7: 0 «— trainmodel(Fg 'D) 7: :]simulalcd — Cosi of Tsimulated
8: end for ’ 8: if Jsiinulal:d < J* then
9: return T er, Fo 1?) ;*’ ;]_ ;r_ Teimulated Jsimulated
. - 11: end if
Algorithm 2 run_policy(sy, 7, f,T) 12: if converged then
I: Toew = {}, S1=1 = 81 13: br.eak
2: fort=1,...,T do 14: end if
3: a; ~ 7(8st) 15: end for
4 si11 = f(s,ar) 16: end for )
5: Thew = Tnew U {(St, ag, 8t+1)} 17: return 7
6: end for
7: return Thew

Following Bellman (1957), consider a finite-horizon Markov decision process (MDP) with the time
horizon T € N. In this setting, the aim of reinforcement learning is to find a stochastic policy 7
which minimizes the expected total cost C'(7) = Eg, q, ... Zthl c(st, ay) where s1 ~ p1(s1),a; ~
m(ag|st), St41 ~ F(St11]|8t,at). St,a; is the state and action at time ¢ respectively, and the
dynamics function F' induces a distribution over the next state s;1.

MBRL (Algorlthm 1) approaches this problem by approximating the dynamics function F' with
a model F, parameterized by some 6. Given Fy, MBRL derives a policy 7z by optimizing
the predicted long-term cost. This can be done through sampling-based methods like the cross-
entropy method (Chua et al. (2018)) or gradient-based optimal control methods like iterative LQR
(Li & Todorov (2004)). Bechtle et al. (2019) show that MBRL with iLQR can be applied to high-
dimensional real-world tasks.
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3.1 DYNAMICS MODEL LEARNING THROUGH EPNNSs

A recently popular choice for modeling dynamics are ensembles of probabilistic neural networks
(EPNNs) (Chua et al. (2018)). EPNNSs provides a probabilistic prediction of the dynamics, and
scale well with respect to dataset size. Following Lakshminarayanan et al. (2017): we define a
probabilistic neural network (PNN) fg () as a deep neural network which outputs the parameters of
a probability distribution, in this case the mean p(x) and diagonal covariance () of a multivariate
Gaussian distribution. The parameters 6 are learned by minimizing the negative log likelihood of
data collected on the true dynamics. We define a B-sized ensemble of probabilistic neural networks
(EPNN) as the bootstrapped ensemble of B PNN models and treat the output of the ensemble as a
uniformly-weighted Gaussian mixture model.

3.2 POLICY OPTIMIZATION VIA ITERATIVE LINEAR QUADRATIC REGULATOR (ILQR)

Given a model F, finite horizon T', a nominal trajectory 7™ = {(s°™ @lo™) . . (slom ghom},
and a known cost function ¢(s, a), iLQR returns a set of control parameters k., K; for a time-varying
locally-linear feedback policy: a; = m:(s:) = ai*™ + ak; + K (s§°™ — s;), with step size « chosen

by line search.

In more detail: given the nominal initial actions a;,t = 1,...,T,iLQR in the forward pass rolls out
the actions using the learned dynamics model s, = F (8¢, at). The policy is then optimized in the
backward pass by computing a linear approximation of the dynamics and a quadratic approximation
of the cost using Riccati equations. We make a linear approximation at each time step s;11 =
Fs St + Fat a; to construct the local value function (), and its derivatives. This is used to update the

parameters of the time-varying locally-linear feedback policies k;, K;. See Algorithm 3 for details
and Li & Todorov (2004) for a derivation.

4 EXPLORATION IN MODEL-BASED REINFORCEMENT LEARNING

We consider two dimensions of exploration in MBRL. We first note that we can apply exploration in
both the environment-interaction phase (when collecting data on the real environment), and during
the simulation phase (when simulating a rollout with a learned dynamics model). Here, we con-
sider two classes of exploration: action-space noise, by applying Gaussian noise to the actions of
a deterministic policy, and transition-space noise, by eliciting risk-seeking behavior over modeling
uncertainty in the simulated state transitions. Action-space noise can be applied during both the
environment-interaction phase and the simulation phase, while the transition-space noise operates
only in the simulation phase.

4.1 EXPLORATION IN ACTION SPACE FOR ILQR

Even though iLQR returns a deterministic policy, we can explore by inducing a probabilistic policy
7rt(at|st) NN(G?Om—‘y—akt—f—Kt(Sgom —St)72ﬂ—t) (1)

for some choice of time-dependent Gaussian noise covariance ., Here, we consider two options
for the covariance of the time-varying linear-Gaussian policies:

Action-fixed-covariance: We can set diag(Xr,) = [e7,--- , € | for some fixed (i.e. not time-
varying) €7, ..., egmn where daion 18 the dimensionality of the action space. This is a popular
exploration method in model-free RL for continuous action spaces. In this work, we make the
further assumption that the noise is isotropic, and set 612 =0.2fori =1, -, daction-

Action-maximum-entropy: A more principled choice for ¥, for each timestep ¢ is the curvature
of the value function Q,, i.e. ¥; = Q7' , which is shown in Levine & Koltun (2013) to be the solu-

tion of the maximum entropy control problem min Z;‘FZI E(s;,a0)~m(ss,as)[C(8t, at) —H(m(ai|s))]
where H(-) measures the entropy of action distribution induced by the policy 7¢(a¢|s:). This solu-
tion has been used in subsequent work (e.g. Levine & Abbeel (2014); Levine et al. (2016)).
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4.2 EXPLORATION IN TRANSITION SPACE FOR ILQR

We can also explore through the transitions of the dynamics model by inducing a Gaussian distribu-
tion over our dynamics:
St41 ™~ N(F(St7 at)> Ztrans,t) (2)

We consider two options for Y ¢

Transition-model-uncertainty: If the dynamics are modeled through a probabilistic model, a
natural choice for X ¢ 18 the predictive uncertainty of the learned probabilistic dynamics model,
i.e. diag(Zians,t) = var[s;+1 ~ F(s¢,a,)]. Intuitively, this encourages iLQR to explore states for
which the learned model is uncertain.

Transition-fixed-covariance: ~Alternatively, we can induce exploration by fixing diag(Xiwans ¢) to
be some vector [¢Z, . . ., egm], which is equivalent to assuming fixed isotropic uncertainty throughout
the state space. In this work, we set €7 = 1.0 fori = 1, .. ., dyue-

As described in Bechtle et al. (2019), in this setting, the variance of the trajectory cost C(7) =

E, [Zf ¢(8t, at)] can be incorporated in iLQR by taking an exponential transform of the total cost
function C’ = exp[oC()]. A first order Taylor expansion of the cost gives

élog[C'] = E[C] + SvarlC] + ... 3)

where var[C] is the variance of the trajectory cost. Bechtle et al. (2019) solves this optimal control
problem using a variant of the Riccati equation, following results from stochastic optimal control
(Farshidian & Buchli (2015)).

The parameter o weights the effect of X4, in the Riccati equation. ¢ = 0 is equivalent to un-
modified iLQR, while ¢ < 0 leads to exploratory behavior by incentivizing states which lead to
trajectories with high uncertainty var[C]. In this work we set 0 = —0.3, but extensively test the
effect of modifying this parameter in Appendix A.

5 EXPERIMENTS

For our experiments, we consider a PyBullet (Coumans & Bai (2016)) simulation of a 7 degree-of-
freedom robotic manipulator, the Kuka iiwa7 robot arm. This physics simulator has been used in
prior work to learn policies which transfer onto a real robot (Tan et al. (2018)). Our state represen-
tation includes the position and velocity of each joint, with dimensionality dgae = 2 - 7 = 14, and
the action is the applied joint torques after gravity compensation, with dimensionality daction = 7.
The cost function per timestep is the distance from the target joint state and a penalty on velocity
and action norm:

C(S, a) = onsHSpos — Starget posH% + QVeIHSvel”% + ractionllallg €]

with cost parameters gpos = 5, ¢vet = 0.1, and

Taction = le—7. iLQR optimizes the summed  Fjgure 1: For each of 3 distances of 0.1, 0.45, 0.80
total cost over the trajectory Zle c(st, ay). meters representing 3 difficulty tiers, we generate
5 targets at that distance away from the initial end-
effector position. We visualize the initial position
and example target joint configurations for each.

The target joint state is generated using in-
verse kinematics for a random end-effector po-
sition. We generate targets three distances
0.1m, 0.45m, 0.8m away from the initial end-
effector position as visualized by Figure 1, and 1 W 1 I
5 targets per distance, with a total of 15. These j ‘ ‘ ?
target end-effector positions signify increas-

ingly difficult scenarios for the algorithm. We ’

check to make sure all targets are achievable ‘

through inverse kinematics.

Initial b) 0.1 0.45 d) 0.80
For each target, we initialize 10 random torque (2) Initia ®0.Im  (©) m () m

trajectories and run iLQR with learned EPNN
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dynamics, measuring the quality of the solution through the iLQR cost over the real unrolled trajec-
tory. To evaluate, we compute the mean and standard deviation of the trajectory cost across targets
in each tier of difficulty.

5.1 EXPLORATION FOR MODEL-BASED RL

Best reward seen so far Terminal joint distance to target
— iLgR Mean over 3 seeds over 3 seeds.

iLQR-N
curious

— et
- PETS at convergence over 300 iterations

— ILOR+EPNN [no exploration}
nce PETS
—— ILQR+EPNN (no explr

Fixed-cov == PETS at convergence over 300 iterations

—— Varying cov

int.

terminal joi

6 5 n» B A 3 W B A
number of real rollouts

5 0 15 0 5 015 0 5 w150
Real eny iterations Real env iterations. Real eny iterations

(b) iLQR vs. PETS (iLQR (c) iLQR vs. PETS (joint
(a) iLQR with different exploration methods cost) dist)

Figure 2: MBRL learning curves with learned dynamics models. Here, we plot the best reward found
so far averaged over 3 seeds. PETS takes much longer to reach convergence, so we additionally plot
the best reward over any trajectory seen by PETS over the full 300 episode training.

We start out by analyzing the effect of adding exploration to the model-based RL loop (Algorithm
1). We note that action-space exploration can be applied both to the real rollout, which occurs in the
outer loop as in line 6 of Algorithm 1, and within the simulated rollout, which occurs in the inner
loop as in line 6 of Algorithm 3.

For completeness, we also provide a comparison to a state-of-the-art model-based RL algorithm,
PETS, in Figure 2b tasked with optimizing the same cost function. PETS does receding-horizon
MPC by replanning at every timestep, while iLQR optimizes over the full trajectory. As a result,
iLQR trajectories can be unrolled on real systems, while PETS can take up to 1s for inferring actions
at each time step. PETS quickly reaches a comparable solution to iLQR in terms of final distance to
the desired joint position, but fails to reduce iLQR cost to comparable levels.

As a first step, we visualize the training curve for one of the randomly-generated targets in Figure 2a,
to give some insights into convergence behavior for different exploration behaviors. Based on these
plots, the first result is that, at least for this target, there is little to no benefit of adding exploration
to the MBRL loop.

As a second step we perform all possible combinations of the two types of exploration methods and
show results in Table 1.

Table 1: Exploration with EPNN model.

Full trajectory cost, averaged over targets with equal distance from initial end-effector

[ Inner Outer [010m std [ 045m std [ 0.80m std |
[ No exploration [ 1677 805 [ 19002 13945 [ 38311 53.53 |
Trans-model-uncertainty 18.18 8.03 205.18 146.09 | 391.96 43.59
Trans-fixed-cov 18.70 9.22 196.26  138.44 | 397.74 53.47
Action-fixed-cov 38.80 940 | 230.08 133.09 | 456.40 64.71
Action-max-ent 236.98 2599 | 471.01 132.17 | 755.74 63.21

Action-fixed-cov || 20.76 8.34 205.85 152.07 | 395.90 49.62
Action-max-ent 11296 11.34 | 284.14 138.00 | 481.44 4225
Trans-model-uncertainty ~ Action-fixed-cov || 20.63 8.05 194.86 135.92 | 393.06 41.09
Trans-fixed-cov Action-fixed-cov || 21.65 8.06 231.65 148.29 | 406.17 40.65

The most significant findings across this large-scale experiment:

e Both action-phase exploration methods, produce better results when applied in the real-
system rollout phase (outer loop). Action-fixed-cov performs better than Action-max-ent.
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o All transition-exploration based methods perform better than the action-based exploration
methods.

e However, most notably, none of the exploration methods improve the performance of our
basic MBRL loop without exploration.

5.2 EXPLORATION FOR TRAJECTORY OPTIMIZATION USING GROUND-TRUTH DYNAMICS

In an attempt to get a better understanding of the surprising result that exploration does not aid
MBRL, we aim to isolate the effect of policy optimization from dynamics model learning. In our
next set of experiments, we use a ground-truth dynamics model, wherein the simulator itself is
used as the dynamics model. We use the finite-difference approximation of the model gradients
when required by iLQR. We run the same set of experiments as above, but only with inner-loop
exploration. Results are summarized in Table 2.

Table 2: Exploration with ground-truth model.
Full trajectory cost, averaged over targets with equal distance from initial end-effector

[ Algorithm [0I0m std [ 045m std [ 0.80m  std ]
[None [ 3671 60.75 | 20563 128.92 | 51273 21029 |

Action-fixed-cov || 73.70 60.76 | 22240 105.10 | 563.15 218.87
Action-max-ent 214.53  79.96 | 432.82  90.46 801.94  186.32

[ Trans-fixed-cov || 2452 25.67 | 196.81 109.81 | 535.25  190.15 |

Here, we clearly see a benefit of adding transition-exploration for the first set of targets. Second, we
note the high variance of iLQR without exploration results, clearly demonstrating the inability of
iLQR to find good solutions consistently, across all target difficulties. iLQR with fixed-covariance
and transition-space exploration leads to better mean results, as well as reduced variance of the
solutions for nearby targets.

This exploration bonus likely only comes up because of the local nature of our optimizer and our
choice of globalization strategy (simple line search). This effect might be mitigated when using
more advanced (and more complex) globalization strategies (Nocedal & Wright (2006)) or using
a multiple shooting version of iLQR, less sensitive to initial conditions (Mastalli et al. (2019)).
Nevertheless, most optimizers in high-dimensional spaces are necessarily local when used on real
robots for computational efficiency reasons and will remain prone to getting stuck in local minima
even when using sampling methods.

While this set of experiments confirms our intuition that exploration can help, it is unclear why this
effect is not visible during the MBRL experiments. However, when taking a step back, and looking
at all results generated so far, Tables 1 and 2, we observe a surprising result: the MBRL loop via
regular iLQR, which learns a dynamics model via EPNN, actually outperforms iLQR on ground
truth dynamics. We discuss this below.

5.3 EXPLORATION THROUGH EXPLOITATION FOR MODEL-BASED RL

For clarity, we present the key results again, but from a different perspective. We compare iLQR on
ground truth dynamics with and without exploration with iLQR on learned dynamics (Table 3).

Table 3: iLQR with learned dynamics vs ground truth dynamics.
Full trajectory cost, averaged over targets with equal distance from initial end-effector

[ Problem setting [010m std [ 045m std [ 0.80m  std ]
Ground-truth with no exploration || 36.71  60.75 | 205.63 12892 | 512.73  210.29
Ground-truth with fixed-cov 2452  25.67 | 196.81 109.81 | 535.25 190.15
EPNN with no exploration 16.77  8.05 190.12 13945 | 383.11 53.53

These results show that using iLQR within a MBRL loop to learn the dynamics model leads to a
better performance consistently.
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This effect can be explained as follows: starting from a randomly initialized dynamics model in
MBRL has an unexpected benefit: it results in an implicit exploration. During policy optimization,
the poor predictions from the dynamics model will initially lead to undirected policies, that perform
poorly on the task but creates diverse data to update the dynamics model, and a better initialization
for the optimizer. Because of this implicit exploration from the bad dynamics model, the advan-
tage of explicit exploration is less visible in MBRL. Incorporating fixed transition-covariance in the
trajectory optimization with ground-truth dynamics improves its performance, bringing it closer to
learned dynamics. This reinforces our hypothesis that the poor performance on ground-truth is due
to lack of exploration.

5.3.1 MODEL GENERALIZATION TO NEW TARGETS

Finally, we evaluate the generalization capabilities of the dynamics models learned from the various
explorations methods. For each dynamics model learned for targets of distance d meters, we use the
standard iLQR algorithm (with no exploratory behavior) to optimize a policy for other targets at the
same distance d. We roll out the policy onto the real environment once (i.e. no model learning). In
this way, we aim to measure the ability of the dynamics models themselves to generalize without
additional training.

Table 4: EPNN model generalization. Models are taken after training and tested on new targets.
Full trajectory cost, averaged over targets with equal distance from initial end-effector

[ Algorithm for dynamics data [ 0.10m  std [ 0.45m  std [ 0.80m std ]
EPNN without exploration 56.21  20.49 | 365.33 218.38 | 1402.28 1246.29
Action-fixed-cov (inner) 54.93 16.62 | 307.65 14574 | 1414.48 1556.82
Trans-model-uncertainty 58.78  18.07 | 329.90 150.20 | 1539.96 1547.73
Trans-fixed-cov 59.18  24.09 | 325.34 152.16 | 1267.18 1011.21

The results show that exploration does provide some benefit - it helps learn somewhat better models,
although there is no consistent “winner”’. Also, note that the trained models do not actually gen-
eralize well to new targets, as compared to EPNN trained on a target (old cost for d = 0.10 was
16.77 £ 8.05), or using ground truth (cost for d = 0.10 was 36.71 £ 60.75).

Thus, we conclude that though iLQR with EPNN can perform better than iLQR with ground-truth
for a particular target, the learned EPNN models fail to generalize to new targets without retraining.
This demonstrates that the models learned in our model-based RL loop are effective local models:
highly specific to the task for which it is trained but not well-suited for solving new tasks without
further training, in contrast to global models like the ground-truth dynamics.

6 CONCLUSION

In this work, we studied the effect of exploration in different stages of a model-based RL loop. We
added action-space noise when executing a policy on the real system, as well as when rolling out
on the simulated dynamics. Whether isotropic Gaussian noise or the maximum-entropy solution,
action-space noise applied to the optimized policy degrades performance across all our experiments.
We also added transition-space noise to the dynamics when doing trajectory optimization, using a
risk-seeking iLQR formulation from literature. In this case, we observe that iLQR with learned
dynamics and no exploration performs better than all the transition-space exploration techniques
considered. In fact, for our experimental setup, using ground-truth dynamics without exploration
performs worse than EPNN with iLQR due to the exploratory nature of imperfect dynamics models.

Although our conclusions are limited by the choice of policy optimization algorithms, model rep-
resentations and experimental environments, our results shed lights on effects that are seldom dis-
cussed in MBRL. Future work will explore the effect of exploration with different classes of MBRL
algorithms and other robotic tasks.
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A INFLUENCE OF RISK-SEEKING PARAMETER

We measure the effect of modifying o to produce varying levels of risk-seeking behavior, on ground
truth and EPNN dynamics. In the case of ground-truth, increased exploration helps achieve better
performance, in line with our previous observations. However, for EPNN all values of o perform
equally if not worse than o = 0.

A.1 TRAJECTORY OPTIMIZATION ON GROUND-TRUTH DYNAMICS

Table 5: Varying o (ground-truth model)
Full trajectory cost, averaged over targets with equal distance from initial end-effector

[ Algorithm [010m sd [ 045m std [ 0.80m  std ]
0=0.0 36.71 60.75 | 205.63 128.92 | 512.73 210.29
Trans-fixed-cov 0=-0.3 || 24.52  25.67 | 196.81 109.81 | 535.25 190.15
Trans-fixed-cov 0=-0.5 || 21.67 11.09 | 186.83 94.14 548.62 207.91

A.2 MBRL LooP

Table 6: Varying ¢ (EPNN)

Full trajectory cost, averaged over targets with equal distance from initial end-effector

[ Algorithm [ 0.10m std [ 045m  std [ 0.80m std |
0=0.0 16.77  8.05 | 190.12 139.45 | 383.11 53.53
Trans-fixed-cov 0=-0.3 || 18.70  9.22 | 196.26 138.44 | 397.74 53.47
Trans-fixed-cov 0=-0.5 || 18.47  8.26 | 199.48 140.16 | 404.73 40.94
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