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ABSTRACT

Three-dimensional data, such as point clouds, are often composed of three co-
ordinates with few featrues. In view of this, it is hard for common neural net-
works to learn and represent the characteristics directly. In this paper, we focus
on latent space’s representation of data characteristics, introduce a novel gen-
erative framework based on AutoEncoder(AE) and Generative Adversarial Net-
work(GAN) with extra well-designed loss. We embed this framework directly into
the raw 3D-GAN, and experiments demonstrate the potential of the framework in
regard of improving the performance on the public dataset compared with other
point cloud generation models proposed in recent years. It even achieves state-
of-the-art performance. We also perform experiments on MNIST and exhibit an
excellent result on 2D dataset.

1 INTRODUCTION

Three-dimensional data points begin to play a key role in many practical applications recently, in-
cluding vision, robotics, 3D object detection and so on. While merely occupying a rather small
space, three-dimensional data points are capable of providing expressive and compact represen-
tation of surface-based geometry, which means representing geometric details of the object. In the
past few years point clouds are more and more popular and particularly suitable for simple geometric
transformation. However, point cloud data have some disadvantages, for instance, the geometrical
data points of objects in the distance are often more sparse than those at close range under the same
scene, and more difficult to identify due to the imaging principle; raw and high-dimensional rep-
resentations are typically not well suited for the design of generative models via classic statistical
methods and so on Gumhold et al. (2001); Daniels et al. (2007); Achlioptas et al. (2018). Thus how
to effectively and accurately use and generate point cloud data is an urgent problem to be solved at
present.

A qualified point cloud data generation network should satisfy the following conditions: 1) It should
be able to synthesize 3D objects that are both highly varied and vivid, which means that there need to
be fine details in the generated examples Wu et al. (2016). 2) The distribution of the data generated
should be similar to that of the original data. If the dimension of the generated sample is higher than
that of the raw data, the additional generated portion must follow the potential distribution of raw
data points. In the past few years, many researchers have developed a lot of meaningful work in this
direction, such as 3D modeling and synthesis Carlson (1982); Kaick et al. (2011). However, many
of these traditional methods synthesize new objects by borrowing components from existing CAD
model libraries. Therefore, synthetic objects may look realistic, but they are not novel in concept in
fact.

In recent years, the development of deep learning has provided a new way to solve this problem.
Deep learning can well learn the characteristics of data in a domain by self-updating. Girdhar et al.
(2016); Qi et al. (2016) propose voxelized-object based method in learning deep object represen-
tations, while Kalogerakis et al. (2017); Su et al. (2015)(add) from the perspective of view-based
projections. Besides these, graph methods Mikael Henaff (2015); Defferrard et al. (2016); Yi et al.
(2017); Bruna et al. (2014) are also considered for processing algorithms for 3D data. The method
of generating point clouds at this stage no longer retrieves them from the object database, instead,
most of them synthesize new objects based on learning objects. It is a more difficult task compared
to operating on 2D data because of the higher data dimension and fewer data features.
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Generative Adversarial Network(GAN) Goodfellow et al. (2014) is the most widely used model in
the current generation domain and has achieved great success in 2D image generation field. Wu
et al. (2016) first applied this network to the 3D point cloud generation field, and named it as 3D-
GAN and achieved great results. It introduces an adversarial discriminator to differentiate whether
an object is synthesized or real, which may own the potential to capture the structural difference of
two 3D objects.

Although 3D-GAN has been proved to be successful, it still has some problems. Because of the fact
that GAN training is difficult and unstable, its huge network parameters drag down the calculation
speed Salimans et al. (2016). Achlioptas et al. (2018) adopts the idea of adversarial in latent space,
but the specific approach is completely different. The former propose a workflow that first learns
a representation by training an AE with a compact bottleneck layer, then trains a plain GAN in
that fixed latent representation. The two parts are trained separately, and their sampling and coding
representations are different thus they can’t be translated or interpreted within both spaces; the latter
has used the Adversarial Autoencoder(AAE) Makhzani et al. (2015) for 3D generation, having the
distribution of latent space of Autoencoder trained on point cloud data close to the prior distribution,
such as standard gaussian distribution.

In this paper we propose a dual generation model, which can fully make use of the characteristics
of data in low-dimensional latent space to help the network better learn and generate point cloud
data. Our contributions are mainly from the following aspects:

• Compared to the literature study on the latent space of raw data, our method, through rea-
sonable theory explaining and experimental verification, proposes dual generate adversarial
networks architecture, from which the two networks are divided into the primary and sec-
ondary part. The secondary network assists the primary network by learning that the data
is compressed to features on different dimensions, and our results exceed the same type of
articles that focus on hidden space learning Achlioptas et al. (2018).

• Our model consists of three parts and can be trained end-to-end, what’s more, each part
interacts and restricts each other, which can be trained efficiently and steadily without us-
ing the pre-trained weights related to point cloud data and only adopt the normal random
initialization method. The loss function is designed in the light of the function of each part
in the network, and we managed to find the best strategy of each part’s iteration renewal
through experiments.

• The framework we proposed on learning different low-dimension channel can be trans-
ferred to other vision tasks easily. We do experiment on the MNIST dataset to demonstrate
its implementability on 2D image tasks.

2 RELATED WORK

In this section, we mainly introduce the necessary research backgrounds of this paper, including the
characteristics of point cloud data and some related work.

point cloud The Point cloud is a collection of massive points that form characteristic of the target’s
surface represents the shape of the object in 3D space. It consists of many x,y,z coordinates points,
which have a matrix structrue of N × 3, where N is the number of points in a set. Compared
with image data, there are few information and extractable features as to point cloud data, so how
to effectively learn and represent the featrues of point cloud data has become the focus of current
research. Wu et al. (2015) took an input point cloud as the voxelized representation, other methods
like Maturana & Scherer (2015) using 3D-CNN to calculate occupancy grid. Charles et al. (2017)
proposed the PointNet architecture, it can solve the difficulty of dealing with unordered sets by
introducing permutation-invariant function instead of convolutions.

deep learning for generating 3D data Learning and generating 3D object is an essential task
in the graphics and vision community. In 3D generating field, Wu et al. (2016) proposed the 3D-
GAN, which can generate 3D object from a probabilistic space by leveraging recent advances in
volumetric convolutional networks and generative adversarial nets. Achlioptas et al. (2018) designed
a generative model called latent-GAN which is composed of two procedures: first using the point
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cloud data as an input to train an Autoencoder(AE)Rumelhart et al. (1988), and then using the
pre-trained encoder output as the label to train GAN, instead of training on the raw point cloud.
Compared with 3D-GAN, its generative ability has improved, but the drawback of this model is
that it is not an end-to-end one. Sampling and coding representations are different and can not be
translated or interpreted within both spaces. Our model solves this shortcoming by proposing a dual
GAN architecture and the result shows that it can largely improves the generation ability.

3 BACKGROUND

In this part we give the necessary introduction on some basic concepts which we will use in the rest
of this paper, including point cloud metrics and some fundamental building blocks.

Autoencoder Autoencoder(AE) is a multi-layer neural network
that can learn the efficient representation of input data through unsu-
pervised learning. It is composed of two parts: Encoder and Decoder.
The networks’ width of the former part gradually becomes shallower
as the network becomes deeper, while the latter part is reversed, as
is shown on the right. The Encoder learns a low-dimensional latent
representation z of the input data x and the Decoder restores z to
original x.

Generative Adversarial Network Generative Adversarial Net-
work(GAN) is the most widely used generative model today. It consists of a model generator(G)
and a model discriminator(D) and establishes a min-max adversarial game between these two
models. The generator tries to get the function G(z) that maps z sample from the prior p(z) to the
data space. The discriminator tries to distinguish the real data between the generated output. The
loss function of this game can be expressed as:

min
G

max
D

Ex∼pdata
[logD(x)] + Ez∼p(z)[log 1−D(G(z))] (1)

The model mainly includes two parts of training process:1) Train the discriminator to distinguish the
true label between the fake data generated from sample noise by generator. 2) Train the generator to
generate samples which aims to fool the discriminator.

Point Cloud Metrics We adopt two permutation-invariant metrics
to compare unordered point sets, which was proposed by Fan et al.
(2017).
The Earth Mover′s distance(EMD): Introduced in Rubner et al.
(2000), it is a metrics of a transpotation problem based on the mini-
mal cost to transform one distribution into the other. For two equally
sized subsets s1 ⊆ R3, s2 ⊆ R3, their EMD is difined by:

dEMD(S1, S2) = min
∅:S1→S2

∑
x∈S1

‖x− ∅(x)‖2 (2)

where ∅(x) is a bijection, EMD is differentialble almost everywhere as a loss.

Chamfer pseudo−distance(CD): It measures the squared distance between each point in one set
to its nearest neighbor in another set, and the function is shown below:

CD(S1, S2) =
∑
x∈S1

min
y∈S2

‖x− y‖22 +
∑
y∈S2

min
x∈S1

‖x− y‖22 (3)

Compared to EMD , CD is more efficient to compute as a loss and is totally differentiable.

4 DUAL GENERATION MODEL FOR LEARNING REPRESENTATION

In this section we first describe the architecture of our model and the motivation why we design
such a network. Then we give a brief introduction to some similar previous work on generating
point cloud, and make a comparison of these models to our model. Finally we present a detail
explanation of the loss function in our model and how to train it.
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4.1 OUR ARCHITECTURE

The dataset we use to present our result is ShapeNet Chang et al. (2015), the dimension of each
sample is 2048 × 3. Inspired by the article Achlioptas et al. (2018) which proposes that using the
latent codes instead of raw point data to train 3D-GAN can achieve more precise metrics and less
network computing consumption, it is sensible to make a hypothesis that if learning the latent codes
can achieve better result, the generator, in the process of generating images from noise, must have a
certain dimension that the feature map generated in this dimension is the effective encoding of the
raw data. In other words, the function of the latter multiple layers is simply to decode this feature.

Figure 1: The structure of our assumption

As the figure shows above, the top of figure is the generator architecture, dimensional transformation
occurs at the dotted line. x represents the raw data while D stands for Discriminator, ẑi(i=1, 2,
3 ,...) stands for the hidden output derived from each dimension of the generator. According to the
above hypothesis, we may make an assumption that ẑi(i=1 or 2 or 3,...) is an effective compress of
the raw data, which will be evaluated at the next section, then we can achieve high level on each
indicator by adding an adversarial branch to the 3D-GAN in appropriate dimension and precisely
designing loss function and updating strategy of each module.

Figure 2: The structure of our approach

From what has been discussed above, we propose a dual generative model which is presented in
Figure 2. To make it easier to illustrate, the modules in the structure are named separately as
g1, g2, d1, d2 and E. g1 and d1 are combined as generative adversarial model G1 and they are
against each other in latent space. The raw data are trained as the label of G1 after being encoded by
module E while g1, g2, d2 are combined as the 3D-GAN model named G2 as figure shows above.
To expressly state it, we name the lower part of the structure as E which is similar to the model
Encoder in order to be easily understood. In fact, there is no real ”decoder” in this model to form
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the autoencoder. During the training process, G1 will provide auxiliary training for G2, we can
consider G1 as a regularization for G2, since it helps G2 more fully trained and better capture the
distribution of the raw data.

Our structure combines the advantages of many classic structures in forward propagation, if we
focus on module E and g2, this branch is like Autoencoder; if we pay attention to g1,g2 and d2, we
will get the structure of raw-gan; if we only use g1,d1 and E, they make up latent-gan proposed by
Achlioptas et al. (2018). In other words, our model can be transformed into the three frameworks
mentioned above by some tricks, so we can achieve better performance on their basis.

4.2 LOSS DESIGN AND TRAINING PROCEDURE

In this section, we will show our design of the error function, as well as the update strategy of each
part. We use the loss function LGAN and LAE referred to in Section 3 to compose our loss. The
following statements are details of the loss function in each module. We use leaky-ReLU Andrew
L. Maas (2013) as our active function and there is no batch-norm.

• E: Since the module E is to make an effective dimension reduction for the raw point
cloud data, we use the dEMD(X̂real, Xreal) orCD(X̂real, Xreal) to update its parameters.
X̂real is the output of G, so the update process of this module is in cooperation with the
auxiliary generator training. The loss function of module E is named as LE .

• G1: The purpose of module G1 is to constrain the output of the hidden layer in the entire
model, so that the output distribution of the hidden layer is close to the output distribu-
tion after the dimension reduction which is operated by module E. We use loss function
LGAN (noise→z) to train this module.

• G2: G2 is a typical 3D-GAN structure, and its loss function must contain
LGAN (noise→X̂real). Inspired by Makhzani et al. (2015) & Larsen et al. (2016), the
difference between the generated data and the raw data can be considered as a con-
straint while updating generation network. Therefore, the loss function of this module
is LG =LGAN (noise→X̂real)+λLE(0 <λ< 1).

The flowchart of the updating process is as follows:

Algorithm 1 Training the Dual Generation Model
initialize paramaters of each module θG1, θG, θE
repeat
Xreal ← random mini-batch from dataset
noise← sampled from prior distribution N (0, I)
z ←E(Xreal)
ẑ ←g1(noise)
X̂real ←G(noise)
LE ←dEMD(X̂real, Xreal) or CD(X̂real, Xreal)
update parameter θE ←∇θELE
LG1←LGAN (noise→z)
update parameter θG1 ←∇θG1

LGAN (noise→z)
update parameter θG ←∇θG (LGAN + λLE)

until algorithm convergence

5 EVALUATION

In this section we will present our results and the enhancement on 2D and 3D data. In 3D case, if
we want to evaluate how well the fake data generated by our model matches the given set, we need a
comparison to evaluate the faithfulness and diversity of a generative model, referring to Achlioptas
et al. (2018), we will use the following metrics:
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Coverage It is defined as the fraction of the point clouds inB, from which we first find its clostest
neighbor inA. It has two forms – COV-CD and COV-EMD, depending on which metrics in Section 3
we use to compute point-set distance.The value of coverage will highly increase if most of the point
clouds in B are more matched to point clouds in A.

Minimum Matching Distance(MMD) Unlike COV, which only focus on the closest point
cloud and isn’t the representative of fidelity, we consider MMD as a metric to report the average
of distance in the matching. Just like COV, we can use either of the structural distance, so there
are MMD-CD and MMD-EMD. The lower the value of MMD is, the stronger the model generation
ability will be.

Jensen − Shannon Divergence(JSD) The Jensen-Shannon Divergence(JSD) is used to mea-
sure the difference between two empirical distributions. Assume that we have two distribution P
and Q, so JSD is defined as:

JSD(P ‖Q ) =
1

2
KL

(
P (x)

∥∥∥∥P (x) +Q(x)

2

)
+

1

2
KL

(
Q(x)

∥∥∥∥P (x) +Q(x)

2

)
(4)

where KL(P (x) ‖Q(x) ) means the KL-Divergence between P and Q Kullback & Leibler (1951)

5.1 OTHER WORK FOR CONTRAST

Referring to what was described in Achlioptas et al. (2018), we use the following algorithm frame-
work as comparison:

• Raw-GAN: It use the basic architecture of GAN which directly generates the raw point
cloud data using noise sampled from prior distribution N (0, I).

• l-GAN: Instead of operating on the raw point cloud input, it passes the data through a pre-
trained autoencoder, and each object class is trained separately with EMD or CD loss. The
dimensional of bottleneck variable of AE is 128.

5.2 EVALUATING THE LATENT SPCACE REPRESENTATION

We use the linear model on latent space which is generated by our modelE, and its performance can
reflect the quality of the latent representation. We train our module E across all shape categories.
To obtain features for an input of 3D shape, we feed the point-cloud into module E and then extract
the 128-dimensional bottleneck layer vector. The features are processed by a linear classification
SVM trained on the 3D classification benchmark of ModelNet Wu et al. (2015). Table 1 shows the
comparative results.

Dataset SPH LFD 3D-GAN l-GAN 3D-AAE ours-CD
MN10 0.798 0.799 0.910 0.954 - 0.932
MN40 0.682 0.755 0.833 0.845 0.847 840

Table 1: The Result of Classification on ModelNet40 and ModelNet10, from left to right we refer
to Kazhdan et al. (2003); Chen et al. (2003); Wu et al. (2016); Achlioptas et al. (2018)

We can clearly see from the table that our method’s performance is between the performance of
l-GAN and 3D-GAN. This result is very consistent with our previous inferences. The results of
l-GAN’s latent space will be directly used for the generation of point cloud images, but the repre-
sentation of our latent space is only used as an assistance for the main framework. Our results, better
than 3D-GAN, also prove that the generation framework, after adding the adversarial branch, has
better representation in the latent space.

5.3 EVALUATING THE RECONSTRUCTION

In this section, we evaluate the reconstruction capabilities of the proposed autoencoders using unseen
test examples. We confront the reconstruction results obtained by the E model and use G2 model
as decoder with our approaches to examine the influence of a prior regularization on reconstruction
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quality. In Table 2 we show the MMD-CD and MMD-EMD value between reconstruction and
corresponding ground-truth in the dataset of chair object class.

Method JSD(tr) JSD(te) MMD-CD MMD-EMD
AE-CD 0.0028 0.0067 0.0004 0.0527
ours-E 0.0026 0.0067 0.0011 0.0562

Table 2: The Result of Latent Space Reconstruction Ability(tr:train-split, te:test-split)

The result in Table 2 shows that our end-to-end model can approximate result from l-GAN when
trained by step. This encouraging result indicates that the generation ability of this network will
probably exceed the result of l-GAN step-by-step generation. We will introduce the experiment of
this part in the next section.

5.4 EVALUATING THE GENERATION

We train and compare a total of five generative models on the point clouds data of car category.
The model E is established with 128-dimensional bottleneck, and trained with CD or EMD loss
respectively. The training procedure will be stopped once our model’s performance on the valida-
tion dataset is poor. According to the loss used by module E, we have two models of evaluating,
which are DG-CD and DG-EMD. We also train 3D-GAN directly on the raw point cloud data as
comparison.

Method JSD MMD-CD MMD-EMD COV-EMD COV-CD
R-GAN 0.1764 0.0020 0.1230 19.0 52.3
l-GAN(CD) 0.0486 0.0020 0.0796 32.2 59.4
l-GAN(EMD) 0.0227 0.0019 0.0660 66.9 67.6
DG-CD 0.0135 0.0017 0.0632 56.3 61.7
DG-EMD 0.0008 0.0013 0.0581 68.2 68.5

Table 3: evaluating 5 generators on test-split of car dataset, for our model we did five experiments
and reported its average value

In two different sets of experiments, we measure how well the distribution of the generated samples
resembles both the train and test splits of the ground truth distribution, by using our models to
generate a set of synthetic point clouds and employing the metrics which is introduced above to
compare with the train or test set distributions respectively. All experimental results are shown
in Table 3, and it can be seen that our method has achieved the best result on all five indicators,
which means that in the algorithm based on generative adversarial network structure, our method
has achieved the-state-of-art performance. Figure 3 is a comparison of the results of our method
with the results of the R-GAN in generating point cloud data. We can clearly see when generating
the same dimensional point cloud data, our method is more concentrated and its contour is more
obvious. Figure 4 shows some other examples and results.

Figure 3: Left:Image generated by R-GAN Right:Image generated by our method
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Figure 4: Some Results generated by our method

5.5 2D RESULT

To prove the mobility of this structure, we did some experiments on the 2D image dataset. We use
our method to generate MNIST dataset and compare it with the result of Goodfellow et al. (2014),
we can see that the edges of the images we generate are sharper and the texture of the picture is more
clear.

Figure 5: Left:Image generated by GAN Right:Image generated by our method

6 CONCLUSION

In this paper we propose a dual generation architecture for learning and generating 3D point cloud
data, and our experiments show that learning the characteristics of raw input data in different coding-
and-low dimension can indeed help the GAN to generate object. Compared with other generative
frameworks, our model is an end-to-end architecture which has better performance and higher effi-
ciency. Although our experiment result may not be sufficient due to limited time, the insight of our
work is worth for further study and discussion, what’s more, the framework based on our learning
and representing latent space feature will surely achieve a better result in the future.
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