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APPENDIX

In this section, we provide elaboration on footnotes, extended derivations of our Theorems, some
supplementary mathematical results, and details of experimental validation.

A TECHNICAL NOTES AND EXTENDED COMMENTS

Here, we provide elaboration on footnotes/ some extended explanations.

A.1 MEASURABLE SETS AND 0-ALGEBRA

Any mathematical set can be equipped with a o-algebra to form a measurable space, say, X'. The
common choices are: (i) the power set if X is countable/ finite, (ii) the Borel o-algebra if X" is a
topological space (e.g., continuous embeddings), (iii) Product o-algebra if X is a product of spaces
(e.g., sequences of tokens or multimodal outputs). For a measure space (X, Fy,u) and 1 < p < oo
(where p is the integrability exponent, not to be clashed with “prompts™), the space LP (X, Fx, )
consists of (equivalence classes of) yi-measurable ¢ : X — R with [, [¢(x)[? dpu(x) < co; the norm

is [lqllr = ([ |qPdp) P For p = oo, L* denotes essentially bounded functions with norm
llgllz := esssup, |q(x)|. In particular, L' denotes integrable functions (p = 1).

A.2 GROUND TRUTH DISTRIBUTION

The absence of an exact analytical expression of g(z) limits the direct interpretability, but provides a
flexible framework for comparing the model outputs to the ground-truth via the functional and spec-
tral metrics. This is used only as a theoretical reference for calibration/fidelity analyses representing
the (idealized) generative distribution of facts/outputs as seen in Kalai & Vempala (2024).

A.3 DEFINITION OF KL-DIVERGENCE

For any two probability distributions P; (x) and P»(x), say defined over the same space x € X, the
functional operator Dy, € R refers to the KL divergence of P (x) from the “true” reference or
actual distribution Pj () as:

Py (z)
P2 (I)

DK]_ Pl( ‘ P2 ZP]_ IOg
zeX

When 2 is a continuous random variable, ) __ . is evidently replaced by froi_oo with Py (z) &

P, (x) by respective probability densities. More generally, if P; & P, are probability measures on a
measurable space X, then

=—00

Py (dx)
P, (dx)

where is the Radon—-Nikodym derivative of P, w.r.t Ps.

A.4 ABSENCE OF THE “GROUND-TURTH”

Even without access to g, one can (i) estimate Py (KC) from samples, (ii) compute per-instance distor-
tions via the log—likelihood ratio, and (iii) aggregate these into empirical bounds and diagnostics. In
multimodal settings, the same decomposition localizes contributions by modality and by interaction
(intra/cross/joint), enabling targeted interventions—e.g., modality-specific calibration, cross-modal
consistency constraints, or temperature schedules—and straightforward experimental verification
via ablations that track how PP, (KC) and the induced distortions respond to each mitigation.
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A.5 MODALITIES IN EXPANDED FORMS

In multi-modal settings, the LLM outputs involve textual (T"), visual ('), audio (A) modalities and,
for better understanding, Eq. (7) can also be re-written as:

X Xpr x Xy x Xa, x:(m(T),x(V)7x(A)), H:=HrHy @ Ha,
K(z1,29) = K (:c(lT),xéT)) - Ky (x(lv),:cgv)) Ky (:v(lA),:ch)) , (22)

P : 7DT X PV X PA7 b= (p(T),p(V)7p(A))

A.6 EXPLANATION ON HALLUCINATION ENERGY

As noted in Eq.(8) in Section 4.3, three terms are: (i) £); encodes the intra-modal contributions,
(ii) €75, captures the pairwise cross-modal terms, while (iii) £, being the joint contribution of
all three modalities combined. For three modalities, (i) & (ii) form an energy matrix of order 3
with diagonals £y, and off-diagonals &,/ , while 4 is a single joint term. With > 3 modalities,
Enm becomes a higher order tensor. This structure not only reveals which modality interactions
contribute the most to the semantic drift dgep, (z; K, X), also enables deriving tight spectral bounds
on hallucination energy, which would be impossible under a monolithic energy formulation.

A.7 EXPLICIT JUSTIFICATION FOR ASSUMPTIONS 4 & 5

For Assumptions 4: this mirrors common practice: modern encoders (CLIP, BERT-style, vision
backbones) apply normalization or LayerNorm, and we L2-normalize final vectors so magnitudes
stay well-behaved. Bounded features make cosine/similarity scores comparable across modalities,
prevent numerical outliers, and keep spectral/energy measures meaningful. In deployment, this is
easy to enforce (normalize outputs) and verify (log histograms/max norms and alert on drift). Pro-
duction stacks (vector DBs, ANN indices, faiss/scann) expect bounded vectors so cosine similarity
behaves predictably and distances are comparable across batches and time.

* Why we need this: For numerical stability to prevents overflow/NaNs and keep the dot prod-
ucts/similarities in a usable range during training and evaluation and comparability across modal-
ities to handle text & image embeddings simultaneously.

* Real-world example: Modern vision-language encoders (e.g., CLIP) explicitly L2-normalize
image/text embeddings and use cosine similarity with temperature-scaled softmax, so represen-
tation norms are controlled by design; this makes cross-modal scoring numerically stable and
comparable out of the box Radford et al. (2021a;b); Zhang et al. (2025).

For Assumption 5: it is reasonable to assume small prompt edits should not cause large representa-
tional jumps - matching real product needs for predictable UX, reproducible evaluation, and reduced
prompt-sensitivity exploits. In practice, prompt encoders are compositions of linear layers + point-
wise activations + norm layers; we also L2-normalize the final embedding.

* Why we need this: If “Adding a comma” or “Swapping a synonym” flips the model’s answer,
the system feels brittle. Stability is essential for predictability and debuggability.

* Real-world example: Text prompts are tokenized into a finite vocabulary
(BPE/WordPiece/SentencePiece), and the transformer encoder maps these tokens through
a sequence of standard layers to probabilities via softmax, yielding well-defined distributions
on a discrete space—hence measurability is immediate and commonplace Vaswani et al.
(2017); Sennrich et al. (2016); Kudo & Richardson (2018). Length caps, normalization, and
regularization used in real systems keep prompt embeddings within reasonable ranges and make
small paraphrases produce small representational changes, which is precisely the stability we
assume.

A.8 FEATURE MAPS IN RKHS

RKHS theory is rooted in Hilbert space theory (inner product spaces of functions) and uses results
like the Moore—Aronszajn theorem Aronszajn (1950)). In Measure Theory & Probability, when
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kernels are used for distributions (e.g., kernel mean embeddings), the feature map connects to in-
tegration theory and probabilistic representations. In Machine Learning, the feature maps are used
in kernel methods (in practice: SVMs, Gaussian processes, etc.), making this concept central to the
theory of statistical learning (e.g., RKHS regularization). Let ®,; be a feature map (i.e., identified
as a function) such that

KM <$(1M),J,‘(2M)) = <(I)]\/[(J}(1M)), (I)]\/[(J}(QM))>HM 5 (23)

embedding raw objects, say outputs (x1, x2), into the modality-specific RKHS 7 ;. Instead of just
outputs, it can very well mix with the inputs as well meaning: (x,p). Eq. (23) makes this RKHS
H s unique up to isometry according to the Moore—Aronszajn theorem.

In classical ML, we use “features” to describe the structured attributes of the input data (e.g., pixel
values, word embeddings etc.). In the theory of kernels, the feature maps are abstract (possibly
infinite), but they play the same role: they represent the data in a space where linear methods (dot
products) can capture nonlinear similarities. Thus, ®;, allows nonlinear learning algorithms to
operate in a high-dimensional feature space of an MLLM via the kernel trick.

In practice, implementations typically compute K, directly—or via finite approximations like
Nystrom Williams & Seeger (2001) or Random Fourier Features Rahimi & Recht (2007) - so @y,
need not be explicitly materialized.

A.9 JUSTIFICATION FOR ASSUMPTION 6

In practice, an MLLM scores a finite candidate set C'(x, p) (beam/nucleus/reranked hypotheses)
via logits or similarity, so with counting measure and energy £ = —logit (or a bounded margin),
the induced softmax probability prob.(c | z,p;T;) x exp(—E&(c)/T¢) is exactly a Boltzmann
distribution with finite partition function Z = 3 . exp(—&(c)/T;)—hence both operationally
realistic and mathematically well-posed.

A.10 AN EXAMPLE (IMAGE—CAPTION PAIR)

One can consider an MLLM generating a caption for an image. Let X’ be the space of all captions,
with  C A& denoting those grounded in the image (e.g., “A cat on a sofa”), while f,, may also
assign mass outside /C to hallucinated captions (e.g., “A dog playing with a ball”’). The hallucination
divergence Dx1(g || f») quantifies this deviation.

In this paper, as a part of our main theoretical contributions, we define a multimodal graph whose
nodes are caption tokens 7" and image patches V', with edge weights Wy, (4, j) computed from the
fixed embeddings and modulated by a time-varying temperature 7;. From these weights, we will
define the normalized multimodal Laplacian E‘%”m associated with a spectral grounding energy as the

quadratic form of C’%”“i evaluated on the residual feature field induced by our energy prescription. It
helps reveal how hallucination energy is distributed across the modes (e.g., textual vs. cross-modal
misalignment).

A.11 GRAPH NOTATIONS AND ADJACENCY WEIGHTS

In Eq. (12) noted in Section 5.1, V is the finite set of nodes, E is the set of edges, and W, is a
temperature-modulated, symmetric, non-negative, weighted adjacency matrix (zero diagonal) intro-
duced to assign different weights to the edges (indexed by F). We consider either a node-wise local
schedule 7; : V — R™T in which the edge temperatures are combined symmetrically to keep W,
symmetric or a global scalar schedule (7; constant over V). Here, each node represents a semantic
unit (e.g., concepts, tokens, ideas), and edges represent the semantic similarity. The multimodal
structure is represented by a disjoint partition of the node set V = |#,,c v, Vs and correspond-
ing within- and cross-modal blocks of W, which is constructed from fixed modality embeddings
via temperature-controlled similarity functions. Lower 7; yields more localized (sharper) affinities;
higher 7; diffuses those (or, in other words, induces more “noise”). This is a standard property under
any temperature—scaled affinity constructions - e.g., Gaussian/RBF kernels with bandwidth propor-
tional to 7; or softmax similarities with temperature 7; Ng et al. (2002); Coifman & Lafon (2006);
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Zelnik-Manor & Perona (2004); Hinton et al. (2015); Chung (1997). Thus, the temperature 7; dy-
namically modulates the graph edge connectivity and semantic distortion dg, noted in Theorem 1
and, being a time-indexed function, captures the semantic evolution or uncertainty drift across the
graph nodes as knowledge updates over time .

Here, we drop the explicit modality subscripts in Eq. (12), as the modality information is carried by
a fixed partition of the vertex set V = |4, 1, Vs together with the block structure of the tempera-
ture-modulated weights Wz, , so we do not maintain separate graphs per modality. We assume Wy
to be symmetric, non-negative, and zero on the diagonal, with 7; acting as a bandwidth/temperature
schedule that controls the locality of affinities. From W;, we define the normalized multimodal
Laplacian Em““‘ in Section 5.1 and design it to be symmetric and PSD by construction; its spectral
decomp051t10n yields an orthonormal basis of eigenmodes together with nonnegative eigenvalues.
We interpret each mode by its loadings on the partition {Vas } pseaq: some modes are concentrated
on a single modality (text, vision, or audio), while others are cross-modal mixtures that capture inter-
actions between partitions. These modes serve as canonical coordinates for representing the residual
signal induced by the energy model and for attributing hallucination energy across modality-specific
and cross-modal directions. We use this spectral basis to define propagation in time (via diffusion
generated by Lg“-;‘l“) and to derive mode-wise bounds that connect the Boltzmann formulation to
spectral-graph structure in a implementable manner.

Hypergraph blocks and effective pairwise adjacency. To accommodate > 2 modalities, we con-
struct each interaction block via the normalized hypergraph Laplacian Zhou et al. (2006):

£ =1 - (D) (@@ Wi (pl )t @) (pl) Y,

V7

*, eff
Wr
D), = diag({0F Whev), (W) = Y wrn(e)ZW(v,e), (24)
ec E(x)

Dg’% = diag({r(e)}eeE<*)), r(e) = |e| (hyperedge cardinality),
7¢) € {0, 1}V1XIE1 (node-hyperedge incidence), W%) = diag({w7; (€)}ecp)
Vs € {intrays, crossaya, joint o}, Vv € V (graph nodes).

Here I is the |V| x |V| identity. To be noted that

(i) v runs over the graph nodes, and no roles attached yet. Output or prompt embeddings are later
designated roles on the nodes: v,,v, € V only while forming the contrast ¢, x(t) seen in

Eq.(58). Thus, E%) itself is designed to be role-agnostic.

(ii) E* denotes the hyperedge set used to build each interaction block (x) above, while E still
remains consistent as per Eq.(12). r(e) is the number of nodes in the hyperedge €; i.e., e =
Vi, Ve C V.

(iii) D) v.7, is the node—degree matrix (of size [V| x |V|) for block *: it is diagonal with entries

(1)\(,*7)-f ) w= Dg-t ) (v), the temperature-weighted degree of node v computed from the hyperedge
weights in that block.

(iv) D‘(: is the hyperedge—cardinality matrix (of size |E*)| x |E®*)|) for block #: it is diagonal
with entries (D(E% ) .. =r(e).

(v) The node set V is fixed; r(e) is a property of each hyperedge e C V and is independent of |V|
(and of the number of modalities |M | unless joint hyperedges is specifically chosen to include
one node per modality).

The matrix W( et — (*)Wf;-j ) (Dé*;—t )~ HZ)) T is the “effective” pairwise adjacency induced by
hyperedges (zero diagonal by convention). The pairwise quantities in Eq. (12) are then obtained by
summing blocks:

= Z Wi W(f)’ eH, w4 > 0 (absorbed by interaction coefficients s, Basnsry Y )-

(25)
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We pick any two nodes: say, Vv,, Vs in the hyperedge e = {v1,..,Vq, .., Vi, .., Vr(e)} C V to define

a symmetric, nonnegative pairwise dissimilarity dsem (Va,Vs). This quantity captures the semantic
distortion at node level.

For some modality-aware permutation factor 7, a generic choice of wr, (e) is

Z C/l\sem (Va , Vb)

1<vqa,vp<r(e)

S Tve) |

1<va<r(e)

wr,(€) = lfccpey exXp| —1 (26)

which is permutation—invariant and temperature—scaled.

-1

KT (), 22) [(1 = 2) Z(p, ) ™' eS0T 4 play)] du()

Acp(z | p) = llog . —

27)

- log(/XKh(x,xg) [(1 —¢) Z(p,ﬁ)_le_‘g(“’p)/ﬂ +5p(x2)} dﬂ($2)>‘| ,

(28)

A.12 MERCER’S THEOREM

By Mercer’s theorem Mercer (1909), if K7; is a continuous, symmetric, positive-definite on a com-
pact measure space (V, (1), then there exists a unique RKHS 7 which is associated with a reproduc-
ing kernel K'7;. In the present context of discrete graph, V is finite which satisfies the criterion. This
theorem ensures that there exists a feature map

P:V—-H, (29)

which admits an orthonormal eigen decomposition. We have leveraged it in Eq. (13).

A.13 GRAPH MAPS

This construction is separate from the modality feature maps ®;(z(*)) and prompt embeddings
U s (p) that live in modality RKHS # s used in the energy landscape as noted in Section 4.3. Here,
T is defined on the node set, with v, b being the graph nodes, induced by a single graph RKHS
Heraph or just H for notational simplicity. Therefore, ®p; : Xy — Has and o @ P — Hyy
play complementary roles with Y : V — # in the context of graph theory (i.e., modality & prompt
embeddings vs. graph embeddings).

A.14 WHY TIME-VARYING EIGENPAIRS?

The eigenpairs of the multimodal Laplacian L’%‘ﬂ“, as presented in Eq. (14) are:

e A = diag </\1(t), AW (t)) with \;(¢) € RT being the time-varying eigenvalues at node i
(that acts like a frequency-dependent penalty or diffusion coefficient),
e U = {ul(t), e ,uM(t)} is the orthonormal eigenvector matrix with u;(t) € RIV! being the
time-varying eigenfunctions.
Note: We assume G, is connected for each fixed ¢, so that A;(¢) = 0 and A2(¢) > 0 hold true;

when not connected, all occurrences of uq(t) and A2(t) below should be read as the orthogonal
complement of the full nullspace and the first strictly positive eigenvalue, respectively.

Eigenvalues )\, (t) contract or expand based on evolving inter-node (semantic) affinities, while eigen-
vectors wu;(t) adjust the directions of these semantic modes. Including 7; explicitly allows us to
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control hallucination sensitivity: as lower temperatures 7; | 0 emphasize stable low-energy modes,
reducing hallucinations leading to more desired outputs and vice versa. In a nutshell, the time varia-
tion of {(\;(t), u;(t))} arises from the temperature schedule 7;, which changes the affinities on the
graph edges and hence the spectrum of E“ﬁ“lti.

B EXTENDED PROOFS
In this section, we provide detailed proofs for Theorems 1 and 2.

B.1 PROOF OF THEOREM 1

Proof. Step 0 (setup and measurability). By assumption, p > 0 p-a.e. with . ypdu =1, and
Kp : X x X — (0,00) is a p-Markov kernel with [, K, (21, x2) dp(xz) = 1 forall z; € X.
Define

(Thq)(z1) = / K (z1,22) q(z2) dp(z2), g€ L' (p), =, € X. (30)
X
Let the e—smoothed model be
Foe(ws) = (1—=¢) fy(wa) + ep(za), €€ (0,1), 31)
and its C—restricted renormalization be
N 1 f 1 f
féfg(fz) — {:izelC}fp,s(CEQ) _ {szK%fp,€(1'2)7 Z. € (0,1]. (32)
[ o) duta) ‘

Measurability of I : X — K (with H(z) = « for x € K) ensures (T}, ~§€)0H;c is measurable;
thus Eq. (6) is meaningful pointwise.

Step 1 (strict positivity = finiteness). From Eq. (31) and Eq. (30), for any z; € &,
(Tufpar) = [ Kl (1= 2)fylaa) + eplen)) dute)

25/ Kp(z1,z2)p(xe) du(ze) = € (Thp)(z1) > 0, (33)
X

since p > 0 p-a.e. and K, > 0. Similarly, by Eq. (32),

(T3 FE) (1) = Zi /K Kn(r,22) foo(2) dpa() > 0, (34)

and (T} ;’fs)(xl) > 0 whenever j({zs € K : Kj(21,22) > 0}) > 0, which holds for all z; if
K}, > 0 everywhere. Hence, both logarithms in Eq. (6) are finite; déirg ) is well-defined.

Step 2 (g-independence). By inspection of Eq. (6), only ( fp, p, K, Ik, 1) appear; the ground-truth
g is absent. Thus the statistic is independent of g.

Step 3 (behavior on K). We fix € K. Then Il (z) = z, and
(T, ;)7?5)('7;1) _ f;c Kh(x1>x2)fp,6($2) dp(z2) _ Az

= = = = ) (33)
(Thfp’s)(xl) Z fx Kh(x17x2)fp,€(x2)dﬂ($2) ZE(A7J+BI)
where
AJ/, = / Kh(:chxg)fp’g(xg) d/L(.'L'Q), Bz = Kh($1a$2)fp,€(x2)du(x2) > 0.
K x\K
(36)
If
then the right-hand side of Eq. (35) is < 1, so the inner logarithm in Eq. (6) is < 0 and the [-]*-

clipping yields d.&:;{?(x; K,X) = 0. Even when Eq. (37) fails, the clipped score never becomes

negative, so no spurious negative penalties occur on K.
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Step 4 (behavior off ). We fix « ¢ K. Then IIx(z) € K and

(T fX.) (M (1)) _ S Kn (T (1), 2) fp.e (w2) dp(w2)
(Th fp.e) (1) Z. [ Kn(z1,22) fp.e(22) dp(z2)

We assume the following localization/consistency condition holds for some coeff > 0:

(38)

/Kh(H;C(xl),x2)fp7E(x2)du(ajg) > (1 + coeff) zs/ Kn(z1,22) fpe(2) du(za), VY ¢ K.
K X

(39)
Then the ratio in Eq. (38) exceeds 1, the inner log in Eq. (6) is strictly positive, and thus

x ¢ Kand Eq. (39) = d&M(x;K,X) > 0. (40)

sem

Therefore a strictly positive, finite penalty is assigned to implausible outputs under the mild consis-
tency assumption in Eq. (39).

Step 5 (conclusion for hallucination tracking). From Step 1, Eq. (6) is finite and well-defined;
from Step 2 it is reference-free (independent of g). Step 3 shows the score vanishes on X under
Eq. (37) and never assigns negative values there; Step 4 shows it is strictly positive off /C under
Eq. (39). Hence Eq. (6) furnishes a pointwise, KL-calibrated signal separating plausible from im-
plausible outputs in the smoothed sense determined by (e, h, K},), enabling stable hallucination
tracking across prompts and model versions without access to g. O

B.2 PROOF OF LEMMA 1

Proof. Since H p is separable, Bochner measurability of @, and ¥, is equivalent to strong (Borel)
measurability; see, e.g., (Diestel & John J. Uhl, 1977, Ch. II). Thus

®,}(U) € Fx,, and U} (V)€ Fp forallopen U,V C Hy. 41)

We define the product map
T: Xy xP— Hy X Huy, Y(z,p) = (<I>M(:z:),\I'M(p)). (42)

Let B(Har x Har) denote the product Borel o-algebra. For any open rectangles U x V with
U,V C Has open,

T U V) ={(z,p): m(z) €U, Upr(p) €V} =03/ (U) x U (V) € Fa,, @ Fp (43)

by Eq. (41). Since the family of open rectangles generates B(H; x Hys) and Fx,, ® Fp is a
o-algebra, a monotone class/m—\ argument implies that

T is (.FXM ® Fp)—B(’HM X Hpr) measurable. (44)

Let’s consider the inner-product map
ip: Hy X Hy — R, ip(u, v) == (u, V)1, - (45)

Continuity of ip follows from the Cauchy—Schwarz and triangle inequalities: for all u;, ug,v1,v2 €
Hus

|ip(u1, v1) — ip(ugz, v2)| = [(u1 — uz, v1) + (uz, vi — va)| (46)
< fur = vl {lor ]| + fluz] flor = vell;
which shows that ip is continuous and hence Borel measurable with respect to B(H s X Has).

The composition
(z,p) — ip(Y(z,p)) = (Pum(2), ‘I’M(p)>HM 47)

is therefore measurable from (X, x P, Fx,, ® Fp) to (R, B(R)) by Eq. (44) and the Borel
measurability of ip in Eq. (45)—(46). This yields the claimed joint measurability on Fy,, ® Fp. [
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B.3 PROOF OF THEOREM 2

Proof. Step 1: Well-posedness and nonnegativity of the block quadratic form. Let m := | M| >
2 be fixed. For each M € M, set

vn(z,p) = Ay ru(e,p) € Ha,  ra(wp) = O (@) = Wu(p).  (48)
By boundedness and self-adjoint PSD of Aj,, A}éz is bounded and self-adjoint PSD, and v, is
well-defined. Write the first two terms of Eq. (10) as

2
%:HUMH%{M + mMZ]:V[ (oars Ranrome )y, - (49)
< !

Since Rasnv @ Harr — Hor is a symmetric contraction with || Rasas|| < 1 and Ryar = Riyppprs
the Cauchy—Schwarz inequality and the operator norm bound yield

[(var, Raenerone)| < [Raenae || o] Joar | < Hoar] foae |- (50)
Therefore,
2 2
> lloal? + i > (var, Rangrvar) > Z loar|l* = pre > ol loar - (51
M M<M' M M<M’'

m 1 2
= S o2 = (Y lowl)
m—lM m—1 v

where the identity >, ab = 1[(3,;a)® — 3°,; o] has been used with @ = ||v||. By the
Cauchy—Schwarz inequality,

(S hoarl)” < m > o (52
M M

Substituting Eq. (52) into Eq. (51) gives

2
Z lvarl? + e Z (vars Ryveaveronar) > 0. (53)
M M<M’

Hence the block quadratic form in Eq. (49) is nonnegative for all (z, p).

Step 2: Nonnegativity of the joint tensor term. By construction,
2

Em(e.r) = || @ eu@™) - @ v =0, (54)

MeM MeMm EHu
since it is the square of a norm in the tensor-product RKHS &, H 5s.

Step 3: Measurability. Bochner measurability of ®,, and ¥, into the separable Hilbert space
H s (refer to Lemma 1) implies that (z,p) — ras(z, p) is Fx ® Fp—measurable for each M, be-
cause subtraction is continuous. Since A}f is bounded linear, (z,p) — va(x,p) = A}V/[er(x, D)
is measurable, and so are (z,p) +— |[var(z,p)||? and (z,p) — (var(z,p), Rararva (z,p)); in-
ner products are continuous (hence Borel-measurable), and composition with measurable maps
preserves measurability. For the joint tensor term, bilinearity and continuity of the finite tensor
product map (uar)ar — @, uar in separable Hilbert spaces imply Bochner measurability of
(z,p) = &, @ar(z™)) and (z,p) = @,, Yar(p); the norm || - ||, is continuous, hence
(z,p) = Eam(x, p) is measurable. Combining these facts shows that (z, p) — E(x, p) in Eq. (10) is
Fx ® Fp—measurable.

Step 4: Finiteness of the partition function. Since £(x, p) > 0 by Steps 1-2, for any 7; > 0,

0<Z(p,Te) = /Xexp(—g(w,p)/ﬁ) du(x) < /deu(fﬂ)- (55)

Hence, whenever pu(X') < oo, Z(p, T) < p(X) < oo. In the case u(X') = oo, a standard integra-
bility condition suffices: assume there exists a measurable, coercive lower bound ¢ : X — [0, c0)
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with £(z,p) > ¢(z) forall z and [, e=*@/ Tt dpu(z) < oo (e.g., d(z) = c[|z||* under Lebesgue
measure on R%). Then

Z(p,Ty) < / e ?@ T dp(z) < oo. (56)
X

Under either case, Z(p, 7;) is finite, so f,, in Eq. (9) is well-defined.

Step 5: Canonical instances and summary. Equation (10) is a finite sum of measurable, nonnega-
tive terms, hence measurable and nonnegative. The block quadratic part is nonnegative by Eq. (53),
and the joint tensor term is nonnegative by Eq. (54). The partition function is finite under Eq. (55)
or Eq. (56). Therefore, £ is a valid energy and the Boltzmann density f, in Eq. (9) is a proper
probability density. This completes the proof. [

C SUPPLEMENTARY RESULTS
In this section, we provide further empirical details complementing the main results of ours.

C.1 DERIVATION OF FULL ENERGY FUNCTIONAL

Setup and identities. By Eq. (13), the diffusion kernel is K'7; = exp(—7 L%“lti), andY :V - H

is a feature map with (Y (v), T(v)) = K7 (v,0). Let {()\i(t),ui(t))}g‘l be the eigenpairs of
L2 a5 in Eq. (14). For any nodes v,v € V and any graph signal s € R!VI, the two standard
spectral identities used throughout are:

V| V]
1T T) =T T3, = D e ™ O (1), 6,-80)|7, (s, L2 5) = S N(t) [(wi(t), 5)]%,
=1 i=1

which are exactly the two statements in Eq. (15).

From operator energies to graph-kernel distances. Recall the total energy decomposition from
Eq. (10):

2
E@,p) = > (rar, Aurar)an + Ml -1 S° (AP, R Ayiran) + Emlz,p),
MeM M,M'eM
M#M'

where ry; = @7 (2M)) — W, (p). By the interconnection note after Eq. (13), fix, for each modality

M, two designated nodes (vg(gM), v,) € V that represent the output and prompt anchors used to
evaluate the modality-M discrepancy in the graph-RKHS. The bounded PSD operators A, define a
(possibly weighted) inner product on H j; absorbing this metric into the graph-kernel geometry (as
described in the appendix note referenced there), each (rpr, Apsrar) can be written as a nonnegative
multiple of the squared distance between the corresponding graph features:

M 2
(rar, Avtan)a,, = oo || Y5 TE) — Y (05 T1) |5 an € Rxo.
Likewise, using the polarization identity and the symmetric contraction structure B =

A}\f Ry M/AM,Q, the cross term is representable as a signed combination of graph-kernel distances
between the same anchors; collecting the prefactors into Sy € R>¢ (as in the main text where
Coeﬁ.crossMM/ = BM]\/I’)» we may write

1/2 1/2 =
<A1\g rar, Rarae AM/,, ) = Bume Envine (05 Tr),
where S/ (+) is a bilinear form built from the same pairwise graph-feature differences (its ex-
plicit expansion into distance terms follows from polarization and is omitted here for compactness).
2
Finally, the joint term Eaq(z,p) = H R rrer@ar () — ®]\4€/\/[\I!]\/[(p)H@H is nonnegative
M

and measurable; by the same graph-kernel identification used for the intra/cross parts (applied to
the joint anchor selection explained in the appendix note you referenced), it too can be expressed as

a quadratic form in graph signals supported on {vg(cM)7 v, } mem and thus admits the same spectral
expansion pattern with a nonnegative coefficient ya4.
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Modal spectral expansions. Define, for each modality M, the basic signed indicator sy (z, p) :=
8, — Ov, € RIVI. Then, by the first identity in Eq. (15),

VI
P05 70) =g Tl = D™ e sae
Hence each intra-modal contribution expands as
VI
e D045 T0) = X0y Ty = 3 a7 @), e )

which gives the per-mode terms

Efimeraan)( “TH |(u

x,p,t) == e t), sp(z,p)) |2 with coefficient coeffintra,, = anr-

For the cross-modal part, set syrar (z,p) := sy (z,p) and sy, (2,p) := sy (z,p). Using the
polarization identity in the RKHS generated by K7, and the same eigenbasis {u;(t)}, one obtains a
spectral expansion that is bilinear in the modal projections:

(V|
Enar (@03 Ta Ze MO (1), v (,0)) (s (1), Shrags (2,9)),
so that
V|
|M| T D Bun S (2,0 T) ZM S Barar ™G (wi(t), sar(,p)) (ui(8), sare(x, p)).

M;AM’
Thus the per-mode cross-modal contributions are

M;ﬁM’

E(crosswfklr ) (

2, p,t) = e MO (uy(t), sara, p)) (wi(t), sae (2, p))  with coefficient coeffeross,, ,,, = Barar-

For the joint term, denote by s(z,p) € RVl the graph signal associated (as per the appendix
link you gave) to the joint interaction in Exq(x, p). Since this term is a quadratic form in the same
graph-kernel geometry, it has the spectral expansion

(V]
—s 2
Em(T,p) = YMm Ze Ailt) |(ui(t), sam(z, p))|”,
i=1
whence
El(-Joth)(x,p, t) = e N ’(ui(t),sM(sc,p))|2 with coefficient coeffjoint,, = Y-

Summing all components. By construction of the multimodal Laplacian as a nonnegative com-
bination of the intra/cross/joint blocks and the definitions of the interaction coefficients in L‘%‘ﬂ“ =
>, coeff, E%), the total energy &(z, p; T¢) is the sum of the three families above. Collecting the
per-mode pieces yields

V]

E(x,p; Te ZZcoeff E( (z,p,t),
*  i=1
where the index * € {intra, crossasas, joint 54}, and each Eg*) depends only on \;(t), u;(t), and
the fixed graph signals determined by (z, p) as detailed above. This is the claimed spectral form:
V]

E(x,p;T) = ZZcoeff E (z,p,t). (57)

*  i=1
Now choosing mx € A(K), where A(K) is the probability simplex on K, satisfies

I 1ti : 1i1/2 v
>_melv) (DY), = (DRY),, . () = DR (6, —me) €RM, - (58)
ver
where ¢} (¢) is the raw contrast vector. Projecting away the leading mode gives ¢, x(t) = (I-

ul(t)ul(t)T) ik (t) that ensures ¢, xc(t) L uy(t) without assuming a specific null-space structure
of the assembled hypergraph.
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Why the bounds in Eq. (18) hold, and how to choose m(t), M (t) (non-vacuous). By Eq. (57),
the full energy is a nonnegative linear combination of blockwise spectral terms. For the de-
gree—matched contrast ¢, () L uy(t), the energy difference admits the decomposition

v

E(@,p;Te) — (. p; Te ZQ (t.7) | {us(t), o (8))] Z 0.0\ (t,7), (59)

where * € {intrays, crosspsas, joint 5} indexes the blocks, 6. € {ar, Bararr, Y} are the non-
negative coefficients from Eq. (57), and

eV (t,7) == (wi(t), Dut,T) wi(t)),  Dult,7) =0,

are block response factors evaluated on the same eigenmodes {u;(t)}i> of L. For normal-
ized hypergraph constructions (Eq. (24)—(25)) and diffusion-type couplings (Sectlon 4.1), the block
responses satisfy the Loewner sandwich

2B Dotr) < T — e 2NO < (pgj)(t,T) <1, i>2. (60)

The left inequality follows from monotonicity of the matrix exponential and the fact that each block
smoother is at least as contractive as the global diffusion on ui-; the right inequality follows from
D.(t,7) < L Plugging Eq. (60) into Eq. (59) yields

29 e 2T M) < Gi(t,7) 29*7 i>2.

Refined (spectral) empirical bounds. Define, for each block *,
/iinax(t) — H:D*(t’o)HOp <1, Hinin(t) = )\min(g*(t,O)’ul(t)J_) S [0, 1], (61)

where both quantities are directly estimable from the spectrum of the effective adjacency in
Eq. (24)—(25) (restricted to u1-). Then, using e 27 < D, (t,7) < D.(t,0) and the Courant—Fischer
characterization on u1-,

(Za* m;“m(t)) “2N® < (L 7) Ze K (1 i> 2 (62)

so one can take

= > 06T, M) =) 0.5I(L). (63)

In practice, k}***(t) equals the top eigenvalue of the block response on ui (often close to 1), while

K™ () equals the blockwise algebraic connectivity surrogate (the smallest nonzero eigenvalue on

ull). Estimating (63) from the spectra of W7(-j )seff

yields tight, data-driven m(t), M (t) for Eq. (18).

or the corresponding normalized block Laplacians

Below is the block decomposition of the multimodal Laplacian:

£(T) E(TV E(TA)

. intra Cross Cross M)
L%um = VD) Ei(r‘lﬁa VA 4 Lot (64)
cn O i)

The corresponding eigenvalue problem for the i-th mode becomes:
LM i) = Ni(t) wi(t), (65)
with eigenvalues \;(¢) encoding the “cost” of semantic diffusion along each mode .
C.2 DERIVATIONS OF HALLUCINATION BOUNDS AND TEMPERATURE ANNEALING
We derive the operator-tight lower/upper bounds, noted in Eq. (19) in Section 5.3, for £ Il‘“l‘lltl (x,p,")

using the block-weighted, temperature—modulated Laplacian spectrum in Eq. (14), the spectral
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energy form in Eq. (57), and the hallucination component in Eq. (11). By Eq. (14) and the
Courant—Fischer principle, the quadratic in Section 5.3 satisfies the two-sided spectral envelope

2w e, k(D] < De(asTe) < €220 e (1)1, (66)

with )\max(t) = /\W‘ (t)

Next, we relate the full energy to ID.. Under Theorem 2 and the block assembly in Egs. (24)—(25),
there exist finite scale factors m(t), M(t) € (0,00), determined only by the operator norms of
the intra-/cross-/joint blocks (i.e., by {Anr}, {Rarar } with || Rarar || < 1, the interaction weights
an, By Y, and the temperature—-modulated hyperedge weights inducing L"ﬁu“i), such that

m(t) D (x; T) < E(x,p;Ty) < M(t) Do(z; Ty), >0, (67)

where Dy corresponds to 7 = 0. The left inequality follows from bounding each spectral contri-

bution EE*)(x, p,t) below by a nonnegative multiple of ’(ul (1), ez k(1)) ‘2 using the PSD structure
of Ajs and the contraction bound on Rjsj/, while the right inequality follows from operator-norm
upper bounds on the same spectral blocks; full details are supplied in Appendix C.2.

Combining Egs. (66) and (67) yields the Courant—Fischer sandwich for the full energy:
m(t) e 2 O le, e ()P < E@,pTe) < M) e 20220 |leg (D7 = M(2) llexnc()]”.
(68)

Since the hallucination energy is the positive part of the difference in Eq. (11), we obtain, for x ¢ K.
When Ex(z, p; T¢) is implemented as the same operator restricted to K, the same spectral envelope
applies to it, hence the difference inherits a sandwich with the same eigenvalue pair {\2(t), Amax(t)}
and scales {m(t), M(t)}.

A calibrated lower bound of the form advocated by Kalai & Vempala (2024) is matched empirically

by choosing a time-indexed temperature profile and interaction scales so that m(t) e =27 Amax(t) —
O(t) for a prescribed calibration function ©(t) > 0; for instance,
7T; and 7(t) chosen so that  ©(t) = m(t) e~ 27(®) Amax(t) (69)
which yields the explicit calibrated bound
&niltep) 2 (00 leax I — EclepT)) . gk (0)

In particular, for £k treated as a fixed baseline (e.g., a distributional or quantile baseline computed on
K), Eq. (70) reproduces the calibrated-margin—times—distance structure and can be tuned to overlay
the empirical lower bound in calibrated models by setting ©(t) to the target slope. The upper
envelope in Eq. (19) is simultaneously controlled by M (t) and the spectral gap A2 (t) via Eq. (66),
and both {\;(¢)} and {m(t), M (¢)} are tunable through the time-indexed temperature profile 7; and

the block weights inside W% ) that define L%‘ﬂti.

D EXPERIMENTAL SETUP

As noted in Section 6.2, below are the essential details about our experiments followed by a full-
pager algorithm box.

D.1 METRICS AND EVALUATION

Primary. AUROC/AUPRC for hallucination detection using ngH’f ) (instance-level, aggregated per
dataset/model). Baselines. Entropy, max-probability, and margin from /C-posteriors. Secondary.
CF bounds for 5}‘1‘;‘11“ and their temperature/c surfaces; decay with increasing 7 (nonincreasing,
sandwiched between e~27*max and e~27*2); Good-Turing—calibrated lower envelope (strictly >
0). Observed. Our score is best across all three datasets: COCO 0.86/0.84, VQAv2 0.84/0.81,
AudioCaps 0.80/0.77 (Table 1a). CF planes are tight and monotone with lower 7; and higher 7,
matching theory (Fig. 3); AudioCaps—BLIP is blank by design (as expected!).
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D.2 PROTOCOL AND DESIGN

For each prompt p, we form an admissible set K of candidate answers (dataset-provided or pro-
grammatically generated) and use the selector Il as soft_nearest (nearest-point with con-
vex projection fallback). We sweep a grid over temperature 7; and smoothing mass ¢; plots show
Zmid = %(Zlo + Zy;) bounded by per-panel CF lower/upper planes. When plotting, we aggregate
across diffusion time 7 and kernel bandwidth A by the median.

Defaults. ¢ = 0.01, h = 0.4, 7 = 0.25, fixed 7T; per run unless stated, logits sharpening Tiogiis €
[0.01, 0.05]. Each run logs the full YAML config.

D.3 INFERENCE AND COMPUTE

Experiments run on Databricks (A100) with private checkpoints (gated tokens). Datasets stream
from the Hub with synthetic fallback when a split is unavailable. Diffusion kernels use sparse
Chebyshev/Lanczos; hypergraphs are CSR; eigen-modes via iterative solvers. Throughput (ex/s):
CLIP+Whisper+T5 420 (fastest), SigLIP+Whisper+T5 400, BLIP+CLIP+Whisper 360
(Table 1b). Seeds and env versions are pinned in run reports.

Takeaways. déi}ﬁ) consistently outperforms entropy/margin baselines (Table la). Spectrally,

SigLIP+Whisper+T5 achieves the lowest median energy across datasets (COCO 1.92, VQAv2
1.99, AudioCaps 2.08), while CLIP+Whisper+T5 is fastest (420 ex/s), exposing a clean accu-
racy—efficiency trade-off (Table 1b).
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Algorithm 2: KL-SMOOTHED MULTIMODAL HALLUCINATION — Extended version of Alg. 1

Input: Prompt p € P; sampler for f, (model generations); admissible set K; base measure fi;
kernel K}, (bandwidth h); smoothing mass € € (0, 1); baseline density p; incidence
matrices {Z(*)} and block selectors £(*); interaction weights {w, }; time horizon
t =0,...,T; temperature profile T;; diffusion schedule 7(t).

Output: Node scores d.5;) (2| p); hyperedge weights wr, (e); effective adjacency W, ;
block/multi Laplacians {L‘%)} L3I0 spectra { (1), ui(t) }; contrasts ¢, i ();
hallucination energy bounds for Elrf;‘flltl (z,p,").

Phase I: per-prompt semantic score (Eq. (6)).

1. Estimate f,, from model samples (density or histogram on X" under ).
2. Form fp,s(x) = (1 - s)fp(x) + €p(:li) ar~1d f;]zc,s(xQ) = l{xgelc}f;z:,s(IQ)/ f}( fp,adﬂ-
3. Compute (T, fp.c)(x1) = [ Kn(21,22) fp.e(@2) dpu(z2) and (Thf;fs)(xl); evaluate
L - p
diei) (x| p) = [log(Tn fX. (I (x))) — log(Th fp.e ()], -
Phase II: hyperedges, weights, and Laplacian blocks (Egs. (24)-(25), (26)).
4. For each node v, ~ (24, p), store Ag :=dSl (24 | p).

5. For each hyperedge e = {v1, ... ,vr(e)} € E™, set

Ag,—A
wr,(€) = Leenny exp( = n. %)

6. Build W%k ) = diag{wr, (e)}, degrees D\(, 7)— and Di*% , effective adjacency
*),eff * * *

Wit = ZOWE (D) (T)T

7. Form block Laplacians L%) =1- (D\(,*%)’1/2W%)’6H(D§*7);)*1/2 and aggregate
Wr =3, w. W% o, assemble L7 accordingly.

Phase III: spectral objects and contrasts (Eqs. (14), (58)).

8. Compute leading spectrum of L1 {X;(t), u;(t)} (e.g., LOBPCG/power iteration on

sparse matrices). Ensure Ay () > 0 (connectedness).

9. Build degree-matched 7y and raw contrast c* “W( )= D%n—t““il/ 2 ((5\,00 — 7T;c); project
coe(t) = (T—wruf )R (1)
Phase IV: energies and guarantees (Eqs. (17) & (19)).
10. Evaluate the diffusion quadratic form Q- (t) = (¢, (), e 2L cz () via
Krylov—exponential or spectral filter.

11. Choose empirical m(t), M (t) from block coefficients/operator norms (bounds
discussion) and report

m(t) e W Amax® e ()12 < E(x,ps Th) — Exc(z,p; Tr) < M(t) e 27O O)je, o (1)]2

12. Set EM4l (z, p, ) = (€ — S;C)Jrl{xg,c} and record bounds from Eq. (19).
Phase V: calibration and decay control (Good-Turing, KV embedding, decay).

13. Compute Good-Turing missing-mass mqgr(t) on X'\ K; set Vxv (t) = £ mar(t) with
¢ € (0,1].

14. Update 7(t) to satisfy m(t) e =27 Amax®)||c, ()| > Yxv (t) (Eq. (20)); enforce
nondecreasing 7 (t).

15. Monitor decay envelope m(t)e ™27 (W Amax(1)||¢||2 < gmulti < A1 (¢)e=27(DA2(D)]|¢||2 and
stop when below a target threshold.

Implementation notes (Colab). Sparse matrices for Z(*) W(*) , and L’m“l“ row-normalize
K,; stabilize logs via log-sum-exp; estimate Ao, Apax by LOBPCG/power method; compute
e~ 27 via expm_multiply or truncated Chebyshev; Good—Turing from frequency table on
X\ K.
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