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ABSTRACT

Batch normalization (BN) is often used in an attempt to stabilize and accelerate
training in deep neural networks. In many cases it indeed decreases the number
of parameter updates required to achieve low training error. However, it also reduces
robustness to small adversarial input perturbations and common corruptions by
double-digit percentages, as we show on five standard datasets. Furthermore, we find
that substituting weight decay for BN is sufficient to nullify a relationship between
adversarial vulnerability and the input dimension. A recent mean-field analysis
found that BN induces gradient explosion when used on multiple layers, but this
cannot fully explain the vulnerability we observe, given that it occurs already for a
single BN layer. We argue that the actual cause is the tilting of the decision boundary
with respect to the nearest-centroid classifier along input dimensions of low variance.
As a result, the constant introduced for numerical stability in the BN step acts as an
important hyperparameter that can be tuned to recover some robustness at the cost of
standard test accuracy. We explain this mechanism explicitly on a linear “toy model”
and show in experiments that it still holds for nonlinear “real-world” models.

1 INTRODUCTION

BN is a standard component of modern deep neural networks, and tends to make the training process less
sensitive to the choice of hyperparameters in many cases (Ioffe & Szegedy, 2015). While ease of training
is desirable for model developers, an important concern among stakeholders is that of model robustness
during deployment to plausible, previously unseen inputs. The adversarial examples phenomenon has
exposed unstable predictions across state-of-the-art models (Szegedy et al., 2014). This has led to a
variety of methods that aim to improve robustness, but doing so effectively remains a challenge (Athalye
et al., 2018; Schott et al., 2019; Hendrycks & Dietterich, 2019; Jacobsen et al., 2019). We believe that a
prerequisite to developing methods that increase robustness is an understanding of factors that reduce it.

Approaches for improving robustness often begin with existing neural network architectures—that
use BN—and patch them against specific attacks, e.g., through inclusion of adversarial examples
during training (Szegedy et al., 2014; Goodfellow et al., 2015; Kurakin et al., 2017; Madry et al., 2018).
An implicit assumption is that batch norm itself does not reduce robustness – an assumption that we
tested empirically and found to be invalid. In the original work that introduced BN, it was suggested
that other forms of regularization can be turned down or disabled when using it without decreasing
standard test accuracy. Robustness, however, is less forgiving: it is strongly impacted by the disparate
mechanisms of various regularizers.

The frequently made observation that adversarial vulnerability can scale with the input dimen-
sion (Goodfellow et al., 2015; Gilmer et al., 2018; Simon-Gabriel et al., 2019) highlights the importance
of identifying regularizers as more than merely a way to improve test accuracy. In particular, BN was
a confounding factor in Simon-Gabriel et al. (2019), making the results of their initialization-time
analysis hold after training. By adding `2 regularization and removing BN, we show that there is
no inherent relationship between adversarial vulnerability and the input dimension.

2 BATCH NORMALIZATION

We briefly review how BN modifies the hidden layers’ pre-activations h of a neural network. We use
the notation of Yang et al. (2019), where α is an index for units in a layer l, and i for a mini-batch of

1



Under review as a conference paper at ICLR 2020

B samples from the dataset; Nl denotes the number of units in layer l, W l is the matrix of weights
and bl is the vector of biases that parametrize layer l. The batch mean is defined as µα = 1

B

∑
ihαi,

and the variance is σ2
α = 1

B

∑
i (hαi−µα)

2. In the BN procedure, the mean µα is subtracted from
the pre-activation of each unit hlαi (consistent with Ioffe & Szegedy (2015)), the result is divided by
the standard deviation σα plus a small constant c to prevent division by zero, then scaled and shifted
by the learned parameters γα and βα, respectively. This is described in equation 1, where a per-unit
nonlinearity φ, e.g., ReLU, is applied after the normalization.

hli=W lφ(h̃l−1i )+bl, h̃lαi=γα
hαi−µα√
σ2
α+c

+βα. (1)

This procedure introduces complications, however. Consider two mini-batches that differ by only
a single example: due to the induced batch-wise nonlinearity, they will have different representations
of all examples. These differences are amplified by stacking BN layers, and were shown to cause
exploding gradients at initialization (Yang et al., 2019). Conversely, normalization of intermediate
representations for two different training inputs impairs the ability to distinguish definite examples that
ought to be classified with a large prediction margin (as judged by an “oracle”), from more ambiguous
instances. The last layer of a discriminative neural network, in particular, is typically a linear decoding
of class label-homogeneous clusters, and thus makes use of information contained in the mean and
variance at this stage for classification. In light of these observations, we begin in our analysis by
adding a single BN layer to models trained by gradient descent (GD). This is the most favorable
scenario according to the analysis of Yang et al. (2019), where more layers and a smaller mini-batch
size exacerbate the exploding gradients.

3 BOUNDARY TILTING

Tanay & Griffin (2016) relate the adversarial vulnerability of linear classifiers to the tilting angle θ of
the decision boundary w.r.t. the nearest-centroid classifier. Following their setup, we examine how BN
affects this angle in a simple linear model, and then show that increasing model complexity cannot
“undo” this vulnerability.

α
=

2

a. GD(x)

α = 1

b. BNGD(x) c. BN(x), GD

Figure 1: A dataset with one task-relevant (α=1)
and one task-irrelevant dimension (α=2). Normal-
ization aligns the decision boundary with the Bayes
solution (indicated by arrows in “BNGD”), but this
minimizes the averaged distance between the points
and the boundary, maximizing adversarial vulnera-
bility. Compared with the decision boundary of a
linear model (θ≈0◦), the batch-normalized model
has θ= 66.7◦. On the right is the dataset seen by
the BNGD classifier. We use Σ11 =1, Σ22 =0.01,
Σ12 =Σ21 =0.05, ν0 =[−5,0], and ν1 =[5,0].

Consider the binary classification task of iden-
tifying two different types of input x subject to
Gaussian noise with a linear classifier w>x+b.
This can be modeled by the class-conditional
distribution p(x|y = j) = N (νj ,Σ) with la-
bel y ∼ Ber(0.5). The Bayes-optimal so-
lution to this problem is given by the weight
vector w = Σ−1

(
ν0 − ν1

)
, and b = 1

2 (ν1 +

ν0)>Σ−1(ν1−ν0)+log p(y=0)
p(y=1) , where p(y) de-

notes the marginal probability for the label y (see
e.g. (Jordan, 1995)), while the nearest-centroid
classifier is defined byw∗=ν0−ν1.

We analyze the effect of batch-normalizing the
input to the classifier for this problem (i.e., hαi=
xαi), first in the simplest setting where γα =
1,βα = 0 ∀α. We select the class distribution
means νj to be symmetric around zero, so that
the batch mean computed by BN is µα = 0 ∀α.
The batch-normalized linear classifier is thus de-
fined as: f(x)= w>x+b√

σ2+c
. By construction of our

synthetic dataset, the variance of the batch can
be deduced from the data parameters: σ2

α=(νjα)2+Σαα. The tilting angle θ of the batch-normalized
decision boundary w.r.t. the one given byw∗ (note that the boundary is perpendicular tow) is therefore
approximately equal to the angle between the datasets before and after normalization. To compute θ,
we divide the weightsw by

√
σ2+c, and then normalizew/‖w‖2, such that θ=cos−1(w>w∗). From

this analysis it follows that the order of magnitude of c is important relative to the data variance: if
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Table 1: As predicted by the theory, batch-normalized gradient descent (BNGD) yields a tilted decision
boundary w.r.t. the nearest-centroid classifier, regardless of the affine parameters being learned or fixed.
We report the tilting angle (θ) and accuracies of linear models trained on MNIST 3 vs. 7 for vanilla GD,
GD with L2 weight decay “WD”(λ=0.1), and BNGD. Affine = “F” indicates γ=1 and β=0, whereas
“T” means they are randomly initialized and learnable. AWGN =N (0,1), FGSM used with ε=1/10.
Entries are the mean and its standard error over five random seeds.

Model Test Acc. AWGN Acc. FGSM Acc. θ∈ [0,90◦]

GD 96.94±0.08 90.08±0.07 66.96±0.49 49.04±0.46

GD + WD 96.93±0.05 91.93±0.14 74.20±0.35 40.83±0.46

BNGD Affine F 97.75±0.03 49.67±0.18 0.15±0.02 90.00±0.00

BNGD Affine T 97.40±0.07 49.50±0.20 0.13±0.02 90.00±0.00

c>σ2
α then the effective weight valuewα is reduced, and if c<σ2

α and σ2
α is small, thenwα increases

greatly, causing boundary tilting along direction α.

We depict simulations of the toy model in Figure 1. We use constant learning rate GD, which is known
to converge to the max-margin solution—equivalent to the nearest centroid classifier in this case–for
linear models on separable data (Soudry et al., 2018). Batch-normalized GD (BNGD) converges for
arbitrary learning rates for linear models (Cai et al., 2019); we use a value of 0.1 for 1000 epochs.

Next, we train linear models on the MNIST 3 vs. 7 dataset with 5000 training samples (drawn uniformly
per class) using a learning rate of 0.1 for 50 epochs. We compute the angle θ w.r.t. the nearest-centroid
classifier, which is obtained by subtracting the “average 3” from the “average 7” of the full training
set. Although this may seem like a crude reference point, the nearest-centroid classifier is much more
robust than the linear model of Goodfellow et al. (2015), achieving 40% accuracy for the fast gradient
sign method (FGSM) at ε=1/4 vs.≈0%. Results consistent with the boundary tilting theory are shown
in Table 1, which not only shows that BN causes tilting, but that this is unaffected by the parameters γ
and β. Post-normalization, there is no signal to γ and β about the variances of the original dataset. This
is consistent with other works that observe γ and β do not influence the studied effect (van Laarhoven,
2017; Zhang et al., 2019a; Yang et al., 2019)

Increasing the numerical stability constant c increases robustness in terms of absolute test accuracy
for additive white Gaussian noise (AWGN) on MNIST and CIFAR-10 datasets by 33% and 41%
respectively (at the cost of standard accuracy). For brevity, we defer the experimental details and full
results to Appendix A.

4 EMPIRICAL RESULTS

For the main practical results, we evaluate the robustness (quantified as the drop in test accuracy under
input perturbations) of convolutional networks, with and without BN.1 Although the use of BN affects
the range of suitable training hyperparameters, standard procedures from the literature were used that
were originally tuned for batch-normalized models. The datasets – MNIST, SVHN, CIFAR-10, and
ImageNet – were normalized to zero mean and unit variance.

As a white-box adversarial attack we use projected gradient descent (PGD), `∞- and `2-norm variants,
for its simplicity and ability to degrade performance with little perceptible change to the input (Madry
et al., 2018). We run PGD for 20–40 iterations, with ε∞=0.03 and a step size of ε∞/10 for SVHN,
CIFAR-10, and ε∞ = 0.01 for ImageNet. For PGD-`2 we set ε2 = ε∞

√
d, where d is the input

dimension. We report the test accuracy for additive Gaussian noise of zero mean and variance 1/4,
denoted as “Noise”, as well as the CIFAR-10-C common corruption benchmark (Hendrycks &
Dietterich, 2019). We found these methods were sufficient to demonstrate a considerable disparity

1Unless stated otherwise, we leave the internal parameters of BN to their default values as in modern deep
learning frameworks, c=1e-5 with γ and β enabled.
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in robustness due to BN, but this is not intended as a formal security evaluation. All uncertainties are
the standard error of the mean.2

Table 2: Test accuracies of VGG8 on SVHN.

BN Clean Noise PGD-`∞ PGD-`2
7 92.60±0.04 83.6±0.2 27.1±0.3 22.0±0.8
3 94.46±0.02 78.1±0.6 10±1 1.6±0.3

For SVHN, models were trained
by stochastic gradient descent
(SGD) with momentum 0.9 for 50
epochs, with a batch size of 128
and initial learning rate of 0.01,
which was dropped by a factor of
ten at epochs 25 and 40. Trials
were repeated over five random
seeds. We show the results of this experiment in Table 2, finding that BN increased clean test accuracy
by 1.86±0.05%, and reduced test accuracy for additive noise by 5.5±0.6%, for PGD-`∞ by 17±1%,
and for PGD-`2 by 20±1%.

Table 3: Test accuracies of VGG8 and WideResNet–28–10 on CIFAR-10 and CIFAR-10.1 (v6) in
several variants: clean, noisy, and PGD perturbed.

CIFAR-10 CIFAR-10.1

Model BN Clean Noise PGD-`∞ PGD-`2 Clean Noise

VGG 7 87.9±0.1 79±1 52.9±0.6 65.6±0.3 75.3±0.2 66±1
VGG 3 88.7±0.1 73±1 35.7±0.3 59.7±0.3 77.3±0.2 60±2
WRN F 94.6±0.1 69±1 20.3±0.3 9.4±0.2 87.5±0.3 68±1
WRN 3 95.9±0.1 58±2 14.9±0.6 8.3±0.3 89.6±0.2 58±1

For the CIFAR-10 experiments we trained models with a similar procedure as for SVHN, but with
random 32×32 crops using four-pixel padding, and horizontal flips. We evaluate two families of
contemporary models: one without skip connections (VGG) and a WideResNets (WRN) using “Fixup”
initialization (Zhang et al., 2019b) to reduce the use of BN.

In the first experiment, a basic comparison with and without BN shown in Table 3, we evaluate the
best model in terms of test accuracy after training for 150 epochs with a fixed learning rate of 0.01. In
this case, inclusion of BN for VGG reduces the clean generalization gap (difference between training
and test accuracy) by 1.1±0.2%. For additive noise, test accuracy drops by 6±1%, and for PGD
perturbations by 17.3±0.7% and 5.9±0.4% for `∞ and `2 variants, respectively. Very similar results
are obtained on a new test set, CIFAR-10.1 v6 (Recht et al., 2018): BN slightly improves the clean test
accuracy (by 2.0±0.3%), but leads to a considerable drop in test accuracy of 6±1% for the case with
additive noise, and 15±1% and 3.4±0.6% respectively for `∞ and `2 PGD variants (PGD absolute
values omitted for CIFAR-10.1 in Table 3 for brevity).

Table 4: VGG models of increasing depth on CIFAR-
10, with and without BN (BN). See text for differences
in hyperparameters compared to Table 3.

Model Test Accuracy (%)
L BN Clean Noise PGD-`∞
8 7 89.29±0.09 81.7±0.3 55.6±0.4
8 3 90.49±0.01 77±1 40.6±0.6

13 7 91.74±0.02 77.8±0.7 40.3±0.7
13 3 93.0±0.1 67±1 28.5±0.4
16 3 92.8±0.1 66±2 28.9±0.2
19 3 92.65±0.09 68±2 30.0±0.1

It has been suggested that one of the bene-
fits of BN is that it facilitates training with a
larger learning rate (Ioffe & Szegedy, 2015;
Bjorck et al., 2018). We test this from a ro-
bustness perspective in an experiment sum-
marized in Table 4, where the initial learning
rate is increased to 0.1 when BN is used. We
prolong training for up to 350 epochs, and
drop the learning rate by a factor of ten at
epoch 150 and 250 in both cases, which in-
creases clean test accuracy relative to results
in Table 3. The deepest model that is train-
able using standard “He” initialization (He
et al., 2015) without BN is VGG13. 3 None
of the deeper batch-normalized models re-

2Each experiment has a unique uncertainty, hence the number of decimal places varies.
3For which one of ten random seeds failed to achieve better than chance accuracy on the training set, while

others performed as expected. We report the first three successful runs for consistency with the other experiments.
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Table 5: Robustness of three modern convolutional neural network architectures with and without BN
on the CIFAR-10-C common “noise” corruptions (Hendrycks & Dietterich, 2019). We use “F” to
denote the Fixup variant of WRN. Values were averaged over five intensity levels for each corruption.

Model Test Accuracy (%)

Variant BN Clean Gaussian Impulse Shot Speckle

VGG8 7 87.9±0.1 65.6±1.2 58.8±0.8 71.0±1.2 70.8±1.2
3 88.7±0.1 56.4±1.5 51.2±0.1 65.4±1.1 66.3±1.1

VGG13 7 91.74±0.02 64.5±0.8 63.3±0.3 70.9±0.4 71.5±0.5
3 93.0±0.1 43.6±1.2 49.7±0.5 56.8±0.9 60.4±0.7

WRN28 F 94.6±0.1 63.3±0.9 66.7±0.9 71.7±0.7 73.5±0.6
3 95.9±0.1 51.2±2.7 56.0±2.7 63.0±2.5 66.6±2.5

cover the robustness of the most shallow, or
same-depth unnormalized equivalents, nor does the higher learning rate with BN improve robustness
compared to baselines trained for the same number of epochs. Additional results for deeper models on
SVHN and CIFAR-10 can be found in Appendix D.

We also evaluate robustness on the common corruption benchmark comprising 19 types of real-
world effects that can be grouped into four categories: “noise”, “blur”, “weather”, and “digital”
corruptions (Hendrycks & Dietterich, 2019). Each corruption has five “severity” or intensity levels.
We report the mean error on the corrupted test set (mCE) by averaging over all intensity levels and
corruptions (Hendrycks & Dietterich, 2019). We summarize the results for two VGG variants and a
WideResNet on CIFAR-10-C, trained from scratch on the default training set for three and five random
seeds, respectively. Accuracy for the noise corruptions, which caused the largest difference in accuracy
with BN, are outlined in Table 5.

The key takeaway is: For all models tested, the batch-normalized variant has a higher error rate for all
corruptions of the “noise” category, at every intensity level.

Table 6: Robustness of pre-trained ImageNet mod-
els with and without BN. Note: The numeric suf-
fix indicates number of layers, or the spatial patch
width in pixels (of 224) for BagNet.

Top 5 Test Accuracy (%)

Model BN Clean Noise PGD-`∞

VGG11 7 88.63 49.16 37.12

VGG11 3 89.81 49.95 26.12

VGG19 7 90.88 64.86 34.19

VGG19 3 91.84 68.79 24.49

AlexNet 7 79.07 41.41 39.12

ResNet18 3 88.65 79.62 31.07

BagNet-9 3 70.39 1.25 7.42

BagNet-17 3 81.16 5.09 16.66

BagNet-33 3 86.99 14.62 24.34

Averaging over all 19 corruptions we find that
BN increases mCE by 1.9± 0.9% for VGG8,
2.0±0.3% for VGG13, and 1.6±0.4% for WRN.
There is a large disparity in accuracy when mod-
ulating BN for different corruption categories,
therefore we examine these in more detail in Ap-
pendix F.

Interestingly, some corruptions that led to a
positive gap for VGG8 show a negative gap
for the WRN, i.e., BN improved accuracy to:
Contrast—4.9 ± 1.1%, Snow—2.8 ± 0.4%,
Spatter—2.3± 0.8%. These are the same cor-
ruptions for which VGG13 loses, or does not
improve its robustness when BN is removed. We
suspect accuracy for these corruptions correlates
with standard test accuracy, which is highest for
the WRN. Visually, these corruptions appear to
preserve texture information. Conversely, noise
is applied in a spatially global way that dispropor-
tionately degrades these textures, emphasizing
shapes and edges. It is now known that mod-
ern CNNs trained on standard image datasets
have a propensity to rely heavily on texture in
addition to shape and edge cues for object recog-
nition (Geirhos et al., 2019). We evaluate pre-trained bag-of-local-feature models (BagNets) on
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Figure 2: We extend the experiment of Yang et al. (2019) by training fully-connected nets of depthL
and constant-width (Nl=384) ReLU layers by SGD, batch sizeB, and learning rate η=10−5B on
MNIST. The BN parameters γ and β were left as default, momentum disabled, and c= 10−3. The
dashed line is the theoretical maximum trainable depth of batch-normalized networks as a function
of the batch size. We report the clean test accuracy, and that for additive Gaussian noise and BIM
perturbations. The batch-normalized models were trained for 10 epochs, while the unnormalized ones
were trained for 40 epochs as they took longer to converge. The 40 epoch batch-normalized plot was
qualitatively similar with dark blue bands for BIM for shallow and deep variants. The dark blue patch
for 55 and 60 layer unnormalized models at large batch sizes depicts a total failure to train. These
networks were trainable by reducing η, but for consistency we keep η the same in both cases.

ImageNet with an architecture that discards spatial information between patches and is thus considered
to make extensive use of texture patterns for classification (Brendel & Bethge, 2019). For patch sizes
{9,17,33}, the top-5 accuracies of the BagNets are reduced to just 1.25%, 5.09%, and 14.62% for
AWGN, respectively. Compared with Table 6, where all models obtain over 40%, these figures suggest
that robustness to Gaussian noise is a good proxy for the use of texture for ImageNet classification.
Our results support the hypothesis that BN may be exacerbating this tendency to leverage superficial
texture-like information for classification of image data.

Next, we evaluate the robustness of pre-trained ImageNet models from the torchvision.models
repository, which conveniently provides models with and without BN.4 Results are shown in Table 6,
where BN improves top-5 accuracy on noise in some cases, but consistently reduces it by 8.54% to
11.00% (absolute) for PGD. The trends are the same for top-1 accuracy, only the absolute values are
smaller; the degradation varies from 2.38% to 4.17%. Given the discrepancy between noise and PGD
for ImageNet, we include a black-box transfer analysis in the Appendix D.2 that is consistent with the
white-box analysis.

Finally, we explore the role of batch size and depth in Figure 2. We find that BN limits the maximum
trainable depth, which increases with the batch size, but quickly plateaus as predicted by Theorem 3.10
of (Yang et al., 2019). Robustness decreases with the batch size for depths that maintain a reasonable
test accuracy, at around 25 or fewer layers. This tension between clean accuracy and robustness as a
function of the batch size is not observed in unnormalized networks.

4https://pytorch.org/docs/stable/torchvision/models.html, v1.1.0.
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5 VULNERABILITY AND INPUT DIMENSION

A recent work Simon-Gabriel et al. (2019) analyzes adversarial vulnerability of batch-normalized
networks at initialization time and conjectures based on a scaling analysis that, under the
commonly used He et al. (2015) initialization scheme, adversarial vulnerability scales as ∼

√
d.

Table 7: Evaluating the robustness of a MLP with and
without batch norm. See text for architecture. We
observe a 61± 1% reduction in test accuracy due to
batch norm for

√
d=84 compared to

√
d=28.

Model Test Accuracy (%)
√
d BN Clean Noise ε=0.1

28 7 97.95±0.08 93.0±0.4 66.7±0.9

3 97.88±0.09 76.6±0.7 22.9±0.7

56 7 98.19±0.04 93.8±0.1 53.2±0.7

3 98.22±0.02 79.3±0.6 8.6±0.8

84 7 98.27±0.04 94.3±0.1 47.6±0.8

3 98.28±0.05 80.5±0.6 6.1±0.5

They also show in experiments that indepen-
dence between vulnerability and the input
dimension can be approximately recovered
through adversarial training by projected
gradient descent (PGD) (Madry et al., 2018),
with a modest trade-off of clean accuracy.

We show that this can be achieved by sim-
pler means and with little to no trade-off
through `2 weight decay, where the regular-
ization constant λ corrects the loss scaling
as the norm of the input increases with d.
We increase the MNIST image width

√
d

from 28 to 56, 84, and 112 pixels. The loss
L is predicted to grow like

√
d for ε-sized

attacks by Thm. 4 of Simon-Gabriel et al.
(2019). We confirm that without regulariza-
tion the loss does scale roughly as predicted:
the predicted values lie between loss ratios
obtained for ε = 0.05 and ε = 0.1 attacks
for most image widths (see Table 4 of Ap-
pendix E). Training with `2 weight decay, however, we obtain adversarial test accuracy ratios of
0.98±0.01, 0.96±0.04, and 1.00±0.03 and clean accuracy ratios of 0.999±0.002, 0.996±0.003,
and 0.987±0.004 for

√
d of 56, 84, and 112, respectively, relative to the original

√
d=28 dataset. A

more detailed explanation and results are provided in Appendix E.

Table 8: Evaluating the robustness of a MLP with `2
weight decay (same λ as for linear model, see Table 5
of Appendix E). See text for architecture. Adding batch
norm degrades all accuracies.

Model Test Accuracy (%)
√
d BN Clean Noise ε=0.1

56 7 97.62±0.06 95.93±0.06 87.9±0.2

3 96.23±0.03 90.22±0.18 66.2±0.8

84 7 96.99±0.05 95.69±0.09 87.9±0.1

3 93.30±0.09 87.72±0.11 65.1±0.5

Next, we repeat this experiment with a two-
hidden-layer ReLU MLP, with the number of
hidden units equal to the half the input dimen-
sion, and optionally use one hidden layer with
batch norm.5 To evaluate robustness, 100 it-
erations of BIM-`∞ were used with a step
size of 1e-3, and ε∞ = 0.1. We also report
test accuracy with additive Gaussian noise of
zero mean and unit variance, the same first
two moments as the clean images.6

Despite a difference in clean accuracy of only
0.08±0.05%, Table 7 shows that for the orig-
inal image resolution, batch norm reduced
accuracy for noise by 16.4±0.4%, and for
BIM-`∞ by 43.8±0.5%. Robustness keeps
decreasing as the image size increases, with
the batch-normalized network having∼40%
less robustness to BIM and 13−16% less to noise at all sizes.

We then apply the `2 regularization constants tuned for the respective input dimensions on the linear
model to the ReLU MLP with no further adjustments. Table 8 shows that by adding sufficient `2
regularization (λ=0.01) to recover the original (

√
d=28, no BN) accuracy for BIM of≈66% when

using batch norm, we induce a test error increase of 1.69±0.01%, which is substantial on MNIST.

5This choice of architecture is mostly arbitrary, the trends were the same for constant width layers.
6We first apply the noise to the original 28×28 pixel images, then resize them to preserve the appearance of the

noise.
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Furthermore, using the same regularization constant and no batch norm increases clean test accuracy
by 1.39±0.04%, and for the BIM-`∞ perturbation by 21.7±0.4%.

Finally, following the guidance in the original work on batch norm (Ioffe & Szegedy, 2015) to the
extreme (λ= 0): when we reduce weight decay when using batch norm, accuracy for the ε∞= 0.1
perturbation is degraded by 79.3±0.3% for

√
d=56, and 81.2±0.2% for

√
d=84.

In all cases, using batch norm greatly reduced test accuracy for noisy and adversarially perturbed
inputs, while weight decay increased accuracy for such inputs.

6 RELATED WORK

Our work examines the effect of batch norm on model robustness at test time. References with an
immediate connection to our work were discussed in the previous sections; here we briefly mention other
works that do not have a direct relationship to our experiments, but are relevant to batch norm in general.

The original work Ioffe & Szegedy (2015) that introduced batch norm as a technique for improving
neural network training and test performance motivated it by the “internal covariate shift” – a term
referring to the changing distribution of layer outputs, an effect that requires subsequent layers to
steadily adapt to the new distribution and thus slows down the training process. Several follow-up
works started from the empirical observation that batch norm usually accelerates and stabilizes training,
and attempted to clarify the mechanism behind this effect. One argument is that batch-normalized
networks have a smoother optimization landscape due to smaller gradients immediately before the batch-
normalized layer (Santurkar et al., 2018). However, Yang et al. (2019) study the effect of stacking many
batch-normalized layers and prove that this causes gradient explosion that is exponential in network
depth for networks without skip connections and holds for any non-linearity. In practice, relatively
shallow batch-normalized networks seem to benefit from the “helpful smoothing” of the loss surface
property Santurkar et al. (2018), while very deep networks are not trainable (Yang et al., 2019). In our
work, we found that a single batch-normalized layer suffices to induce severe adversarial vulnerability.

Weight decay’s loss scaling mechanism is complementary to other mechanisms identified in the
literature, for instance that it increases the effective learning rate (van Laarhoven, 2017; Zhang et al.,
2019a). Our results are consistent with these works in that weight decay reduces the generalization
gap (between training and test error), even in batch-normalized networks where it is presumed to have
no effect. Given that batch norm is not typically used on all layers, the loss scaling mechanism persists,
although to a lesser degree in this case.

Shafahi et al. (2019) performed similar input dimension scaling experiments as in this work and came
to a similar conclusion that the input dimension is irrelevant to adversarial vulnerability. However,
like Simon-Gabriel et al. (2019), they use PGD rather than weight decay to prevent vulnerability from
increasing with input dimension. Although it can be shown that robust optimization is equivalent to
parameter norm regularization for linear models if we allow the ε-ball (aka disturbance δ) to vary with
each example (Xu et al., 2009), we maintain that the latter is a more efficient approach.

7 CONCLUSION

We found that there is no free lunch with batch norm when model robustness is a concern: the
accelerated training properties and occasionally higher clean test accuracy come at the cost of increased
vulnerability, both to additive noise and for adversarial perturbations. We have shown that there is
no inherent relationship between the input dimension and vulnerability. Our results highlight the
importance of identifying the disparate mechanisms of regularization techniques.
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A THE NUMERICAL STABILITY CONSTANT

The constant c originally added to the mini-batch variance in the denominator for numerical stability
(named ε in Ioffe & Szegedy (2015)) turns out to be an important hyperparameter in terms of robustness.
It acts as a threshold on the variance of all input dimensions or neurons. When c is much less than
the minimum variance over dimensions, it induces boundary tilting along the low-variance dimensions.
In Figure 3 we sweep c for MNIST 3 vs. 7 and CIFAR-10, and compare the corresponding clean
test accuracy with FGSM and AWGN accuracy for MNIST, and AWGN for CIFAR-10. For MNIST,
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increasing c allows us to trade-off clean accuracy for robustness to FGSM, but is suboptimal compared
to L2 weight decay. For these experiments we fixed γα=1 and βα=0.

For CIFAR-10, eight-layer VGG models were trained with a constant learning rate of 0.01 with no
drops, momentum of 0.9, a batch size of 128, and 50 epochs (for computational reasons) over four
random seeds. As for BNGD, for this particular experiment we apply BN only to the input layer. A
consistent trend is observed where robustness to noise increases greatly as c is increased, but we note
that this occurs for c several orders of magnitude greater than default settings.

(a) (b)

Figure 3: Sweeping the BN numerical stability constant for (a) the MNIST 3 vs. 7 dataset with c∈ [1e-3,
2e+1] for BNGD, and as a baseline the L2 regularization constantλ∈ [1e-3, 9] (shown as “GD-L2”). (b)
Sweeping c for batch-normalized SGD (BNSGD) on the CIFAR-10 dataset with c∈ [1e-6, 3e+3] for
the VGG8 architecture. Increasing either c or λ has a similar effect to trade clean test accuracy for
increased robustness, until the effect is too large and both accuracies degrade. The absolute accuracies
are consistently higher without BN. Error bars indicate standard error of the mean over four and five
random seeds for MNIST and CIFAR-10, respectively. We recommend following each curve from
right to left to be consistent with our description above. The default setting (highest clean test accuracy,
lowest robustness) starts in the bottom right corner and the initial trade-off between clean test accuracy
and robustness is traced up and leftwards until the curves inflect.

B ON AN ACCURACY VS. ROBUSTNESS TRADE-OFF

It is natural to wonder if the degradation in robustness arising from the use of BN is simply due to
BN increasing the standard test accuracy, given a known trade-off between the two (Tanay & Griffin,
2016; Galloway et al., 2018; Su et al., 2018; Tsipras et al., 2019). Note that if the relationship between
input X and label Y is free of noise, e.g., as in Gilmer et al. (2018), then there is no such trade-off
and increasing accuracy corresponds to increasing robustness. For the toy problem we studied in § 3,

(a) (b) (c) (d)

Figure 4: Accuracy of batch-normalized versus unnormalized (Fixup) residual networks of varying
depth. Models were trained with standard hyperparameters and evaluated on CIFAR-10: (a) clean test
set, (b) noisy test set, (c) PGD `∞, and (d) PGD `2. Error bars denote the standard error of the mean
over five random seeds. The unnormalized networks obtain higher accuracy for all tests and depths.
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Figure 5: Test accuracy vs. ε for (a), a naturally trained ResNet32 and (b)a state-of-the-art WideResNet
28-10 CIFAR-10 baseline (Madry et al., 2018) trained with PGD-`∞ (εmax = 4, 5 iterations, step size
1 out of 255, w/rand. start) in batch-normalized (‘B’) and unnormalized (‘F’ for Fixup) variants. At
test-time, 20 PGD iterations are used (the “strong” adversary from Madry et al.) for the `∞, and `2
norms. A misclassification objective (‘mis’) is compared to targeting the least-likely label (‘tgt-ll’).

BN actually aligned the decision boundary with the Bayes-optimal solution, so increasing standard
accuracy may be intrinsic to the normalization itself in some cases.

Given that BN does typically increase clean test accuracy by some small amount on commonly
used datasets, we thought it was most representative to not intentionally limit the performance of
BN. We did, however, find natural cases where BN did not improve clean test accuracy. We trained
ResNets{20,32,44,56,110} using Fixup initialization on CIFAR-10: all consistently obtain about 0.5%
higher clean test accuracy than their batch-normalized equivalent, and are also more robust to noise
(≈15%) and PGD `∞ and `2 perturbations (≈30%), as shown in Figure 4.

For MNIST, the results of Tables 6 & 7 also show compatible clean accuracy irrespective of BN, and
yet vastly different robustness. Thus, the vulnerability induced by BN is not merely a consequence
of increasing standard test accuracy.

C ADVERSARIAL TRAINING AND ACCURACY VS. ε-CURVES

For brevity, we opted to report accuracy for an arbitrary small value of ε in the main text. In general,
however, it is more useful to plot accuracy vs. ε to ensure the accuracy reaches zero for reasonably
large ε to help rule out gradient masking issues (Papernot et al., 2017; Athalye et al., 2018). This also
shows that εwas not cherry-picked.

Figure 5(b) shows that PGD-`∞ training recovers much of the BN-vulnerability gap when tested on
PGD-`∞, but there is a still a non-trivial improvement at ε=8/255 from 38.84% to 41.57% (recall that
we only trained with εmax =4/255, so absolute accuracy is slightly lower than in Madry et al. (2018)).
Ultimately, adversarial robustness is concerned with robustness to the worst attack in our threat model.
If we consider the contrast corruption from (Hendrycks & Dietterich, 2019), PGD training reduces
accuracy by 23.5% and 28.5% for Fixup and BN respectively. We do not believe it is reasonable for
a threat model of natural image classifiers to exclude natural changes in image contrast. Increasing
capacity combined with adversarial training therefore does not solve the robustness issue, and can
exacerbate other vulnerabilities in the model (Jacobsen et al., 2019; Mu & Gilmer, 2019).

Similar results are observed on MNIST with 40 iterations of PGD training, step size of 0.01, and
εmax = 0.3/1.0. Here, PGD training reduces overall accuracy on MNIST-C (Mu & Gilmer, 2019) by
4.28%, and an additional 3.82% when BN is used.

D ADDITIONAL EMPIRICAL RESULTS

This section contains supplementary explanations and results to those of Section 4.
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D.1 ADDITIONAL SVHN AND CIFAR-10 RESULTS FOR DEEPER MODELS

Our first attempt to train VGG models on SVHN with more than eight layers failed, therefore for a
fair comparison we report the robustness of the deeper models that were only trainable by using BN
in Table 9. None of these models obtained much better robustness in terms of PGD-`2, although they
did better for PGD-`∞.

Table 9: VGG variants on SVHN with BN.

Test Accuracy (%)

L Clean Noise PGD-`∞ PGD-`2
11 95.31±0.03 80.5±1 20.2±0.2 6.1±0.2

13 95.88±0.05 77.2±7 21.7±0.5 5.4±0.2

16 94.59±0.05 78.1±4 19.2±0.3 3.0±0.2

19 95.1±0.3 78±1 24.2±0.6 4.1±0.4

Fixup initialization was recently proposed to reduce the use of normalization layers in deep residual
networks (Zhang et al., 2019b). As a natural test we compare a WideResNet (28 layers, width factor
10) with Fixup versus the default architecture with BN. Note that the Fixup variant still contains one
BN layer before the classification layer, but the number of BN layers is still greatly reduced.7

Table 10: Accuracies of WideResNet–28–10 on CIFAR-10 and CIFAR-10.1 (v6).

CIFAR-10 CIFAR-10.1

Model Clean Noise PGD-`∞ PGD-`2 Clean Noise

Fixup 94.6±0.1 69.1±1.1 20.3±0.3 9.4±0.2 87.5±0.3 67.8±0.9

BN 95.9±0.1 57.6±1.5 14.9±0.6 8.3±0.3 89.6±0.2 58.3±1.2

We train WideResNets (WRN) with five unique seeds and report their test accuracies in Table 10. Con-
sistent with (Recht et al., 2018), higher clean test accuracy on CIFAR-10, i.e. obtained by the WRN com-
pared to VGG, translated to higher clean accuracy on CIFAR-10.1. However, these gains were wiped
out by moderate Gaussian noise. VGG8 dramatically outperforms both WideResNet variants subject to
noise, achieving 78.9±0.6 vs. 69.1±1.1. Unlike for VGG8, the WRN showed little generalization gap
between noisy CIFAR-10 and 10.1 variants: 69.1±1.1 is reasonably comparable with 67.8±0.9, and
57.6±1.5 with 58.3±1.2. The Fixup variant improves accuracy by 11.6±1.9% for noisy CIFAR-10,
9.5±1.5% for noisy CIFAR-10.1, 5.4±0.6% for PGD-`∞, and 1.1±0.4% for PGD-`2.

We believe our work serves as a compelling motivation for Fixup and other techniques that aim to
reduce usage of BN. The role of skip-connections should be isolated in future work since absolute
values were consistently lower for residual networks.

D.2 IMAGENET BLACK-BOX TRANSFERABILITY ANALYSIS

The discrepancy between the results in additive noise and for white-box BIM perturbations for
ImageNet in Section 3 raises a natural question: Is gradient masking a factor influencing the success
of the white-box results on ImageNet? No, consistent with the white-box results, when the target
is unnormalized but the source is, top 1 accuracy is 10.5%−16.4% higher, while top 5 accuracy is
5.3%−7.5% higher, than vice versa. This can be observed in Table 11 by comparing the diagonals
from lower left to upper right. When targeting an unnormalized model, we reduce top 1 accuracy by
16.5%−20.4% using a source that is also unnormalized, compared to a difference of only 2.1%−4.9%
by matching batch-normalized networks. This suggests that the features used by unnormalized
networks are more stable than those of batch-normalized networks.

7We used the implementation from https://github.com/valilenk/fixup, but stopped training at
150 epochs for consistency with the VGG8 experiment. Both models had already fit the training set by this point.
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Table 11: ImageNet validation accuracy for adversarial examples transfered between VGG variants
of various depths, indicated by number, with and without BN (“3”, “7”). All adversarial examples
were crafted with BIM-`∞ using 10 steps and a step size of 5e-3, which is higher than for the white-box
analysis to improve transferability. The BIM objective was simply misclassification, i.e., it was not a
targeted attack. For efficiency reasons, we select 2048 samples from the validation set. Values along
the diagonal in first two columns for Source = Target indicate white-box accuracy.

Target

11 13 16 19

Acc. Type Source 7 3 7 3 7 3 7 3

Top 1 11 7 1.2 42.4 37.8 42.9 43.8 49.6 47.9 53.8

3 58.8 0.3 58.2 45.0 61.6 54.1 64.4 58.7

Top 5 11 7 11.9 80.4 75.9 80.9 80.3 83.3 81.6 85.1

3 87.9 6.8 86.7 83.7 89.0 85.7 90.4 88.1

10

20

30

40

50

L

Clean Accuracy (%) Noise Accuracy (%)

50 100 150 200 250

B

10

20

30

40

50

L

50 100 150 200 250

B

B
at
ch

n
or
m

U
n
n
or
m
al
iz
ed

0.4 0.5 0.6 0.7 0.8 0.9

(a)

10

20

30

40

50

L

Clean Accuracy (%) Noise Accuracy (%)

50 100 150 200 250

B

10

20

30

40

50

L

50 100 150 200 250

B

B
at
ch

n
or
m

U
n
n
or
m
al
iz
ed

0.5 0.6 0.7 0.8 0.9

(b)

Figure 6: We repeat the experiment of Yang et al. (2019) by training fully-connected models of depthL
and constant width (Nl=384) with ReLU units by SGD, and learning rate η=10−5B for batch sizeB
on MNIST. We train for 10 and 40 epochs in (a) and (b) respectively. The BN parameters γ and β were
left as default, momentum disabled, and c = 1e-3. Each coordinate is first averaged over three seeds.
Diamond-shaped artefacts for unnormalized case indicate one of three seeds failed to train – note that
we show an equivalent version of (a) with these outliers removed and additional batch sizes from 5–20
in Figure 2. Best viewed in colour.

Unfortunately, the pre-trained ImageNet models provided by the PyTorch developers do not include
hyperparameter settings or other training details. However, we believe that this speaks to the generality
of the results, i.e., that they are not sensitive to hyperparameters.

D.3 BATCH NORM LIMITS MAXIMUM TRAINABLE DEPTH AND ROBUSTNESS

In Figure 6 we show that BN not only limits the maximum trainable depth, but robustness decreases
with the batch size for depths that maintain test accuracy, at around 25 or fewer layers (in Figure 6(a)).
Both clean accuracy and robustness showed little to no relationship with depth nor batch size in
unnormalized networks. A few outliers are observed for unnormalized networks at large depths and
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batch size, which could be due to the reduced number of parameter update steps that result from a
higher batch size and fixed number of epochs (Hoffer et al., 2017).

Note that in Figure 6(a) the bottom row—without batch norm—appears lighter than the equivalent
plot above, with batch norm, indicating that unnormalized networks obtain less absolute peak accuracy
than the batch-normalized network. Given that the unnormalized networks take longer to converge, we
prolong training for 40 epochs total. When they do converge, we see more configurations that achieve
higher clean test accuracy than batch-normalized networks in Figure 6(b). Furthermore, good robustness
can be experienced simultaneously with good clean test accuracy in unnormalized networks, whereas
the regimes of good clean accuracy and robustness are still mostly non-overlapping in Figure 6(b).

E WEIGHT DECAY AND INPUT DIMENSION

Consider a logistic classification model represented by a neural network consisting of a single unit,
parameterized by weights w ∈ Rd and bias b ∈ R, with input denoted by x ∈ Rd and true labels
y ∈ {±1}. Predictions are defined by s= w>x+ b, and the model is optimized through empirical
risk minimization, i.e., by applying stochastic gradient descent (SGD) to the loss function equation 2,
where ζ(z)=log(1+e−z):

Ex,y∼pdata ζ(y(w>x+b)). (2)

We note that w>x+b is a scaled, signed distance between x and the classification boundary defined
by our model. If we define d(x) as the signed Euclidean distance between x and the boundary, then
we have: w>x+b=‖w‖2d(x). Hence, minimizing equation 2 is equivalent to minimizing

Ex,y∼pdata ζ(‖w‖2×yd(x)). (3)

We define the scaled loss as
ζ‖w‖2(z) :=ζ(‖w‖2×z) (4)

and note that adding a `2 regularization term in equation 3, resulting in equation 5, can be understood
as a way of controlling the scaling of the loss function:

Ex,y∼pdata ζ‖w‖2(yd(x))+λ‖w‖2 (5)

(a) w>x (b) y(w>x) (c) ζ(y(w>x)) (d) ζ5(yd(x)) (e) ζ0.5(yd(x)) (f) ζ0.05(yd(x))

Figure 7: (a) For a given weight vectorw and bias b, the values ofw>x+b over the training set typically
follow a bimodal distribution (corresponding to the two classes) centered on the classification boundary.
(b) Multiplying by the label y allows us to distinguish the correctly classified data in the positive region
from misclassified data in the negative region. (c) We can then attribute a penalty to each training
point by applying the loss to y(w>x+b). (d) For a small regularization parameter (large ‖w‖2), the
misclassified data is penalized linearly while the correctly classified data is not penalized. (e) A medium
regularization parameter (medium ‖w‖2) corresponds to smoothly blending the margin. (f) For a large
regularization parameter (small ‖w‖2), all data points are penalized almost linearly.

In Figures 7(a)-7(c), we develop intuition for the different quantities contained in equation 2 with
respect to a typical binary classification problem, while Figures 7(d)-7(f) depict the effect of the
regularization parameter λ on the scaling of the loss function.

To test this theory empirically we study a model with a single linear layer (number of units equals input
dimension) and cross-entropy loss function on variants of MNIST of increasing input dimension, to
approximate the toy model described in the “core idea” from Simon-Gabriel et al. (2019) as closely as
possible, but with a model capable of learning. Clearly, this model is too simple to obtain competitive
test accuracy, but this is a helpful first step that will be subsequently extended to ReLU networks. The
model was trained by SGD for 50 epochs with a constant learning rate of 1e-2 and a mini-batch size
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Table 12: Mitigating the effect of the input dimension on adversarial vulnerability by correcting the
margin enforced by the loss function. Regularization constant λ is for `2 weight decay. Consistent
with Simon-Gabriel et al. (2019), we use ε-FGSM perturbations, the optimal `∞ attack for a linear
model. Values in rows with

√
d>28 are ratios of entry (accuracy or loss) wrt the

√
d= 28 baseline.

“Pred.” is the predicted increase of the lossLdue to a small ε-perturbation using Thm. 4 of Simon-Gabriel
et al. (2019).

Model (Relative) Test Accuracy (Relative) Loss
√
d λ Clean ε=0.1 Clean ε=0.1 Pred.

28 – 92.4±0.1% 53.9±0.3% 0.268±0.001 1.410±0.004 -

56 – 1.001±0.001 0.33±0.03 1.011±0.007 2.449±0.009 2

56 0.01 0.999±0.002 0.98±0.01 1.010±0.007 1.01±0.01 -

84 – 0.998±0.002 0.10±0.09 1.06±0.01 4.15±0.02 3

84 0.0225 0.996±0.003 0.96±0.04 1.05±0.02 1.06±0.03 -

112 – 0.992±0.004 0.1±0.2 1.18±0.03 5.96±0.02 4

112 0.05 0.987±0.004 1.00±0.03 1.14±0.04 1.04±0.03 -

of 128. In Table 12 we show that increasing the input dimension by resizing MNIST from 28×28 to
various resolutions with PIL.Image.NEAREST interpolation increases adversarial vulnerability in
terms of accuracy and loss. Furthermore, the “adversarial damage”, defined as the average increase of
the loss after attack, which is predicted to grow like

√
d by Theorem 4 of Simon-Gabriel et al. (2019),

falls in between that obtained empirically for ε=0.05 and ε=0.1 for all image widths except for 112,
which experiences slightly more damage than anticipated.

Simon-Gabriel et al. (2019) note that independence between vulnerability and the input dimension can
be recovered through adversarial-example augmented training by projected gradient descent (PGD),
with a small trade-off in terms of standard test accuracy. We find that the same can be achieved through
a much simpler approach: `2 weight decay, with parameter λ chosen dependent on d to correct for the
loss scaling. This way we recover input dimension invariant vulnerability with little degradation of
test accuracy, e.g., see the result for

√
d=112 and ε=0.1 in Table 12: the accuracy ratio is 1.00±0.03

with weight decay regularization, compared to 0.10±0.09 without.

Compared to PGD training, weight decay regularization i) does not have an arbitrary ε hyperparameter
that ignores inter-sample distances, ii) does not prolong training by a multiplicative factor given by
the number of steps in the inner loop, and 3) is less attack-specific. Thus, we do not use adversarially
augmented training because we wish to convey a notion of robustness to unseen attacks and common cor-
ruptions. Furthermore, enforcing robustness to ε-perturbations may increase vulnerability to invariance-
based examples, where semantic changes are made to the input, thus changing the Oracle label, but not
the classifier’s prediction Jacobsen et al. (2019). Our models trained with weight decay obtained 12%
higher accuracy (86% vs. 74% correct) compared to batch norm on a small sample of 100 `∞ invariance-
based MNIST examples.8 We make primary use of traditional `p perturbations as they are well studied
in the literature and straightforward to compute, but solely defending against these is not the end goal.

A more detailed comparison between adversarial training and weight decay can be found in Galloway
et al. (2018). The scaling of the loss function mechanism of weight decay is complementary to
other mechanisms identified in the literature recently, for instance that it also increases the effective
learning rate van Laarhoven (2017); Zhang et al. (2019a). Our results are consistent with these works
in that weight decay reduces the generalization gap, even in batch-normalized networks where it
is presumed to have no effect. Given that batch norm is not typically used on the last layer, the loss
scaling mechanism persists in this setting, albeit to a lesser degree.

8Invariance based adversarial examples downloaded from https://github.com/ftramer/
Excessive-Invariance.
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Table 13: Two-hidden-layer ReLU MLP (see main text for architecture), with and without batch norm
(BN), trained for 50 epochs and repeated over five random seeds. Values in rows with

√
d>28 are ratios

wrt the
√
d=28 baseline (accuracy or loss). There is a considerable increase of the loss, or similarly, a

degradation of robustness in terms of accuracy, due to batch norm. The discrepancy for BIM-`∞ with
ε=0.1 for

√
d=84 with batch norm represents a 61±1% degradation in absolute accuracy compared

to the baseline.

Model (Relative) Test Accuracy (Relative) Loss
√
d BN Clean ε=0.1 Clean ε=0.1

28 7 97.95±0.08% 66.7±0.9% 0.0669±0.0008 1.06±0.02

28 3 0.9992±0.0012 0.34±0.03 1.06±0.04 3.18±0.03

56 7 1.0025±0.0009 0.80±0.02 0.87±0.02 1.68±0.03

56 3 1.0027±0.0008 0.13±0.09 0.91±0.03 5.83±0.03

84 7 1.0033±0.0009 0.71±0.02 0.86±0.02 2.15±0.03

84 3 1.0033±0.0010 0.09±0.08 0.88±0.02 7.34±0.02

F COMMON CORRUPTION ROBUSTNESS

For VGG8, the mean generalization gaps due to batch norm for noise were: Gaussian—9.2±1.9%,
Impulse—7.5± 0.8%, Shot—5.6± 1.6%, and Speckle—4.5± 1.6%. After the “noise” category
the next most damaging corruptions (by difference in accuracy due to batch norm) were: Contrast—
4.4± 1.3%, Spatter—2.4± 0.7%, JPEG—2.0± 0.4%, and Pixelate—1.3± 0.5%. Results for the
remaining corruptions were a coin toss as to whether batch norm improved or degraded robustness,
as the random error was in the same ballpark as the difference being measured.

For VGG13, the batch norm accuracy gap enlarged to 26−28% for Gaussian noise at severity levels
3, 4, and 5; and over 17% for Impulse noise at levels 4 and 5. Averaging over all levels, we have
gaps for noise variants of: Gaussian—20.9±1.4%, Impulse—13.6±0.6%, Shot—14.1±1.0%, and
Speckle—11.1±0.8%. Robustness to the other corruptions seemed to benefit from the slightly higher
clean test accuracy of 1.3±0.1% for the batch-normalized VGG13. The remaining generalization
gaps varied from (negative) 0.2±1.3% for Zoom blur, to 2.9±0.6% for Pixelate.

For the WRN, the mean generalization gaps for noise were: Gaussian—12.1± 2.8%, Impulse—
10.7±2.9%, Shot—8.7±2.6%, and Speckle—6.9±2.6%. Note that the large uncertainty for these
measurements is due to high variance for the model with batch norm, on average 2.3% versus 0.7%
for Fixup. JPEG compression was next at 4.6±0.3%.

G ADVERSARIAL SPHERES

The “Adversarial Spheres” dataset contains points sampled uniformly from the surfaces of two
concentric n-dimensional spheres with radii R= 1 and R= 1.3 respectively, and the classification
task is to attribute a given point to the inner or outer sphere. We consider the case n = 2, that is,
datapoints from two concentric circles. This simple problem poses a challenge to the conventional
wisdom regarding batch norm: not only does batch norm harm robustness, it makes training
less stable. In Figure 9 we show that, using the same architecture as in Gilmer et al. (2018), the
batch-normalized network is highly sensitive to the learning rate η. We use SGD instead of Adam
to avoid introducing unnecessary complexity, and especially since SGD has been shown to converge to
the maximum-margin solution for linearly separable data Soudry et al. (2018). We use a finite dataset
of 500 samples from N (0,I) projected onto the circles. The unormalized network achieves zero
training error for η up to 0.1 (not shown), whereas the batch-normalized network is already untrainable
at η=0.01. To evaluate robustness, we sample 10,000 test points from the same distribution for each
class (20k total), and apply noise drawn fromN (0,0.005×I). We evaluate only the models that could
be trained to 100% training accuracy with the smaller learning rate of η=0.001. The model with batch
norm classifies 94.83% of these points correctly, while the unnormalized net obtains 96.06%.
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Input Layer 2 Layer 14

(a)

Input Layer 2 Layer 14

(b)

Figure 8: Two mini-batches from the “Adversarial Spheres” dataset (2D variant), and their representa-
tions in a deep linear network at initialization time (a) with batch norm and (b) without batch norm.
Mini-batch membership is indicated by marker fill and class membership by colour. Each layer is
projected to its two principal components. In (b) we scale both components by a factor of 100, as the
dynamic range decreases with depth under default initialization. We observe in (a) that some samples
are already overlapping at Layer 2, and classes are mixed at Layer 14.

(a) (b)

Figure 9: We train the same two-hidden-layer fully connected network of width 1000 units using
ReLU activations and a mini-batch size of 50 on a 2D variant of the “Adversarial Spheres” binary
classification problem Gilmer et al. (2018). Dashed lines denote the model with batch norm. The
batch-normalized model fails to train for a learning rate of η=0.01, which otherwise converges quickly
for the unnormalized equivalent. We repeat the experiment over five random seeds, shaded regions
indicate a 95% confidence interval.
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