ABSTRACT

Equilibrium Propagation (EP) is a learning algorithm that bridges Machine Learning and Neuroscience, by computing gradients closely matching those of Backpropagation Through Time (BPTT), but with a learning rule local in space. Given an input x and associated target y, EP proceeds in two phases: in the first phase neurons evolve freely towards a first steady state; in the second phase output neurons are nudged towards y until they reach a second steady state. However, in existing implementations of EP, the learning rule is not local in time: the weight update is performed after the dynamics of the second phase have converged and requires information of the first phase that is no longer available physically. This is a major impediment to the biological plausibility of EP and its efficient hardware implementation. In this work, we propose a version of EP named Continual Equilibrium Propagation (C-EP) where neuron and synapse dynamics occur simultaneously throughout the second phase, so that the weight update becomes local in time. We prove theoretically that, provided the learning rates are sufficiently small, at each time step of the second phase the dynamics of neurons and synapses follow the gradients of the loss given by BPTT (Theorem 1). We demonstrate training with C-EP on MNIST and generalize C-EP to neural networks where neurons are connected by asymmetric connections. We show through experiments that the more the network updates follows the gradients of BPTT, the best it performs in terms of training. These results bring EP a step closer to biology while maintaining its intimate link with backpropagation.

1 Introduction

A motivation for deep learning is that a few simple principles may explain animal intelligence and allow us to build intelligent machines, and learning paradigms must be at the heart of such principles, creating a synergy between neuroscience and Artificial Intelligence (AI) research. In the deep learning approach to AI, backpropagation combined with stochastic gradient descent thrives as the most powerful algorithm for training artificial neural networks (LeCun et al., 2015). Unfortunately, backpropagation implemented verbatim is not biologically realistic, and its implementation on GPUs consumes more energy than the brain by several orders of magnitude (Strubell et al., 2019). Investigating more biorealistic learning schemes with real-world applicability is therefore of interest not only for understanding the brain, but also for developing neuromorphic computing hardware that takes inspiration from information-encoding, dynamics and topology of the brain to reach fast and energy efficient AI (Ambrogio et al., 2018; Romera et al., 2018). In these regards, Equilibrium Propagation (EP) is an alternative style of computation for estimating error gradients that presents significant advantages (Scellier and Bengio, 2017).

First, EP belongs to the family of contrastive Hebbian learning (CHL) algorithms (Ackley et al., 1985; Movellan, 1991; Hinton, 2002) and therefore benefits from an important feature of these algorithms: neural dynamics and synaptic updates depend solely on information that is locally available. As a CHL algorithm, EP applies to convergent RNNs, i.e. RNNs that are fed by a static input and converge to a steady state. Training such a convergent RNN consists in adjusting the weights so that the steady state corresponding to an input x produces output values close to associated targets y. CHL algorithms proceed in two phases: in the first phase, neurons evolve freely without external influence and settle to a (first) steady state; in the second phase, the values of output neurons are influenced by the target y and the neurons settle to a second steady state. CHL weight updates consist
in a Hebbian rule strengthening the connections between co-activated neurons at the first steady state, and an anti-Hebbian rule with opposite effect at the second steady state.

A second key property of EP is that, unlike CHL and other related algorithms, it is intimately linked to backpropagation. It has been shown that synaptic updates in EP follow gradients of recurrent backpropagation (RBP) [Scellier and Bengio, 2019] and backpropagation through time (BPTT) [Ernoult et al., 2019]. This makes it especially attractive to bridge the gap between neural networks developed by neuroscientists and AI researchers.

Nevertheless, in all existing implementations of EP the weight update is performed after the dynamics of the second phase have converged, when the first steady state is no longer physically available. Thus the first steady state has to be artificially stored. This requirement remains a major impediment to the biological plausibility of EP, and also to the development of efficient EP computing hardware. In this work, we propose an alternative implementation of EP which avoids this issue, by enabling synaptic dynamics to occur throughout the second phase, simultaneously with neural dynamics.

More specifically, the contributions of the current paper are the following:

- We introduce Continual Equilibrium Propagation (C-EP), a new version of EP with continual weight updates: the weights of the network are adjusted continually in the second phase of training using local information in space and time. Neuron steady states do not need to be stored after the first phase, in contrast with standard EP where a global weight update is performed at the end of the second phase. Synaptic connections between neurons are first assumed to be symmetric and tied (Section 3.1–3.2).

- We show mathematically that, provided that the changes in synaptic strengths are sufficiently slow (i.e. the learning rates are sufficiently small), at each time step of the second phase the dynamics of neurons and synapses follow the gradients of the loss obtained with BPTT (Theorem 1 and Fig. 1). We call this property the Gradient Descending Dynamics (GDD) property, for consistency with the terminology used in Ernoult et al. [2019] (Section 3.3).

- We demonstrate training with C-EP on MNIST, with accuracy approaching the one obtained with standard EP (Section 4.2).

- Finally, we generalize C-EP to the more bio-realistic situation of a neural network with asymmetric connections between neurons, inspired by the vector field method proposed in Scellier et al. [2018]. We demonstrate this approach on MNIST, and show numerically that the training performance is correlated with the satisfaction of Gradient Descending Dynamics (Section 4.3).

For completeness, we also show how the Recurrent Backpropagation (RBP) algorithm of Almeida [1987], Pineda [1987] relates to C-EP, EP and BPTT. We illustrate the equivalence of these four algorithms on a simple analytical model (Fig. 3) and we develop their relationship in Appendix A.

2 BACKGROUND: CONVERGENT RNNs AND EQUILIBRIUM PROPAGATION

Convergent RNNs With Static Input. We consider the supervised setting, where we want to predict a target y given an input x. The model is a recurrent neural network (RNN) parametrized by θ and evolving according to the dynamics:

$$ s_{t+1} = F(x, s_t, \theta). \quad (1) $$

F is the transition function of the system. Assuming convergence of the dynamics before time step T, we have $s_T = s_*$ where s_* is the steady state of the network characterized by

$$ s_* = F(x, s_*, \theta). \quad (2) $$

The number of timesteps T is a hyperparameter that we choose large enough so that $s_T = s_*$ for the current value of θ. The goal is to optimize the parameter θ in order to minimize a loss:

$$ L^* = \ell(s_*, y). \quad (3) $$

Algorithms that optimize the loss L^* for RNNs include Backpropagation Through Time (BPTT) and the Recurrent Backpropagation (RBP) algorithm of Almeida (1987); Pineda (1987), presented in Appendix B.
Figure 1: Gradient-Descending Dynamics (GDD, Theorem 1). In the second phase of Continual Equilibrium Prop (C-EP), the dynamics of neurons and synapses descend the gradients of BPTT, i.e. $\Delta^{C-\text{EP}}(t) = -\nabla^{\text{BPTT}}(t)$. The colors illustrate when corresponding computations are realized in C-EP and BPTT. Top left. 1st phase of C-EP with static input x and target y. The final state s_T is the steady state s_*. Bottom left. Backprop through time (BPTT). Bottom right. 2nd phase of C-EP. The starting state $s^{\beta,\eta}_0$ is the final state of the forward-time pass, i.e. the steady state s_*.

Equilibrium Propagation (EP)

EP [Scellier and Bengio (2017)] is a learning algorithm that computes the gradient of L^* in the particular case where the transition function F derives from a scalar function Φ, i.e. with F of the form $F(x, s, \theta) = \frac{\partial \Phi}{\partial s}(x, s, \theta)$. The algorithm consists in two phases (see Alg. 1 of Fig. 2). During the first phase, the network follows a sequence of states s_1, s_2, s_3, \ldots and converges to a steady state denoted s_*. In the second phase, an extra term $\beta \frac{\partial \ell}{\partial s}$ perturbs the dynamics of the neurons (where $\beta > 0$ is a scalar hyperparameter): starting from the steady state $s^{\beta,\eta}_0 = s_*$, the network follows a second sequence of states $s^{\beta}_1, s^{\beta}_2, s^{\beta}_3 \ldots$ and converges to a new steady state denoted s^{β}_*. Scellier and Bengio (2017) have shown that the gradient of the loss L^* can be estimated based on the two steady states s_* and s^{β}_*. Specifically, in the limit $\beta \to 0$,

$$
\frac{1}{\beta} \left(\frac{\partial \Phi}{\partial \theta}(x, s^{\beta}_*, \theta) - \frac{\partial \Phi}{\partial \theta}(x, s_*, \theta) \right) \to -\frac{\partial L^*}{\partial \theta}.
$$

(4)

3 Equilibrium Propagation with Continual Weight Updates (C-EP)

This section presents the main theoretical contributions of this paper. We introduce a new algorithm to optimize L^* (Eq. 3): a new version of EP with continual parameter updates that we call C-EP. Unlike typical machine learning algorithms (such as BPTT, RBP and EP) in which the weight updates occur after all the other computations in the system are performed, our algorithm offers a mechanism in which the weights are updated continuously as the states of the neurons change.

3.1 From EP to C-EP: An intuition behind continual weight updates

The key idea to understand how to go from EP to C-EP is that the update of EP appearing in Eq. (4) reads as the following telescopic sum:

$$
\frac{1}{\beta} \left(\frac{\partial \Phi}{\partial \theta}(x, s^{\beta}_*, \theta) - \frac{\partial \Phi}{\partial \theta}(x, s_*, \theta) \right) = \sum_{t=1}^{\infty} \frac{1}{\beta} \left(\frac{\partial \Phi}{\partial \theta}(x, s^{\beta}_t, \theta) - \frac{\partial \Phi}{\partial \theta}(x, s^{\beta}_{t-1}, \theta) \right).
$$

(5)
The difference in C-EP compared to EP is that the value of the parameter used to update s_t changes are negligible so that it is slow compared to the neurons, this effect is weak. Intuitively, in the limit $\eta \to 0$, the parameter changes are negligible so that $\theta_t^{\beta,\eta}$ can be approximated by its initial value $\theta_0^{\beta,\eta} = \theta$. Under this approximation, the dynamics of $s_t^{\beta,\eta}$ in C-EP and the dynamics of s_t^{β} in EP are the same. See Fig. 3 for a simple example, and Appendix A.3 for a proof in the general case.
3.3 Gradient-Descending Dynamics (GDD)

Now we prove that, provided the hyperparameter \(\beta \) and the learning rate \(\eta \) are small enough, the dynamics of the neurons and the weights given by Eq. (6) follow the gradients of BPTT (Theorem 1) and Fig. 1. For a formal statement of this property, we define the continual updates of C-EP, as well as the gradients of the loss \(\mathcal{L} = \ell(s_T, y) \) after \(T \) time steps, computed with BPTT:

\[
\begin{align*}
\Delta^C_{s} - \text{EP}(\beta, \eta, t) &= \frac{1}{\beta} \left(\sigma^t_{\beta, \eta} - \sigma^t \right), \\
\Delta^C_{\theta} - \text{EP}(\beta, \eta, t) &= \frac{1}{\eta} \left(\theta^t_{\beta, \eta} - \theta^t \right), \\
\nabla_{s} - \text{BPTT}(t) &= \frac{\partial \mathcal{L}}{\partial s_{T-t}}, \\
\nabla_{\theta} - \text{BPTT}(t) &= \frac{\partial \mathcal{L}}{\partial \theta_{T-t}}.
\end{align*}
\]

(7)

More details about \(\mathcal{L} \) and the gradients \(\nabla_{s} - \text{BPTT}(t) \) and \(\nabla_{\theta} - \text{BPTT}(t) \) are provided in Appendix B.

Theorem 1 (GDD Property). Let \(s_0, s_1, \ldots, s_T \) be the convergent sequence of states and denote \(s_\ast = s_T \) the steady state. Further assume that there exists some step \(K \) where \(0 < K \leq T \) such that \(s_\ast = s_T = s_{T-1} = \ldots = s_{T-K} \). Then, in the limit \(\eta \to 0 \) and \(\beta \to 0 \), the first \(K \) updates in the second phase of C-EP are equal to the negatives of the first \(K \) gradients of BPTT, i.e.

\[
\forall t = 0, 1, \ldots, K : \begin{cases}
\lim_{\beta \to 0} \lim_{\eta \to 0} \Delta^C_{s} - \text{EP}(\beta, \eta, t) = -\nabla_{s} - \text{BPTT}(t), \\
\lim_{\beta \to 0} \lim_{\eta \to 0} \Delta^C_{\theta} - \text{EP}(\beta, \eta, t) = -\nabla_{\theta} - \text{BPTT}(t).
\end{cases}
\]

(8)

(9)

Theorem 1 rewrites \(\sigma^t_{\beta, \eta} \approx s^t_{\ast} - \beta \frac{\partial \mathcal{L}}{\partial s_{T-t}} \) and \(\theta^t_{\beta, \eta} \approx \theta^t_{\ast} - \eta \frac{\partial \mathcal{L}}{\partial \theta_{T-t}} \), showing that in the second phase of C-EP, neurons and synapses descend the gradients of the loss \(\mathcal{L} \) obtained with BPTT, with the hyperparameters \(\beta \) and \(\eta \) playing the role of learning rates for \(s^t_{\beta, \eta} \) and \(\theta^t_{\beta, \eta} \), respectively. Fig. 3 illustrates Theorem 1 with a simple dynamical system for which the updates \(\Delta^C - \text{EP} \) and the gradients \(\nabla_{s} - \text{BPTT} \) are analytically tractable - see Appendix C for derivation details.

![Diagram](image)

Figure 3: Illustration of Theorem 1 on a simple model. The variables \(s \) and \(\theta \) are scalars, the first phase equation is \(s_{t+1} = s_t + \theta \), the steady state is denoted \(s_\ast \) and the loss is \(\mathcal{L}_\ast = \frac{1}{2} s^2_\ast \). For completeness, we also include the corresponding gradients of Recurrent Backpropagation (RBP) and the updates of EP, denoted \(\nabla_{s} - \text{RBP} \) and \(\Delta^C_{s} - \text{EP} \) respectively. The equivalence between C-EP, EP, RBP and BPTT holds in the general setting: see Appendix A for a thorough study of their relationship.

4 Numerical Experiments

In this section, we validate our continual version of Equilibrium Propagation against training on the MNIST data set with two models. The first model (C-EP model) is defined with tied and symmetric weights and dynamics which approximately derive from a primitive function. The second model allows for untied and asymmetric weights, which is therefore closer to biology. We call this second model C-VF (Continual Vector Field) as it is inspired from the EP model with Vector-Field dynamics of [Scellier et al. (2018)](https://example.com) and [Ernoult et al. (2019)](https://example.com). They showed with simulations the intuitive result that, if a model is such that the updates of EP *match* the gradients of BPTT (i.e. if they are approximately equal), then the model trained with EP performs as well as the model trained with BPTT. Along the
same lines, we show in this work that the more the EP updates follow the gradients of BPTT before training, the best is the resulting training performance. To accelerate simulations, the two models are introduced in the discrete-time setting of [Ernoult et al. (2019)].

4.1 C-EP AND C-VF MODELS

C-EP model. The dynamics in the first phase is defined as:

\[s_{t+1} = \sigma (W \cdot s_t), \]

where \(\sigma \) is an activation function and \(W \) is a symmetric weight matrix. Although the dynamics are not directly defined in terms of a primitive function, note that \(s_{t+1} \approx \frac{\partial \Psi}{\partial s} (s_t, W) \) with \(\Psi(s, W) = \frac{1}{2} s^T \cdot W \cdot s \) if we ignore the activation function \(\sigma \). Following Eq. (6) and Eq. (7), we define the neural and weight updates as:

\[
\Delta s_{\text{C-EP}}^{C-EP} (\beta, \eta, t) = \frac{1}{\beta} (\beta_\eta - \sigma(s)), \quad \Delta W_{\text{C-EP}}^{C-EP} (\beta, \eta, t) = \frac{1}{\beta} (\sigma(s) s^\top \cdot s) \cdot (s^\top \cdot s). \tag{10}
\]

C-VF model. The dynamics in the first phase is defined as Eq. (9) but now the weight matrix \(W \) is no longer assumed to be symmetric, i.e. the reciprocal connections between neurons are not constrained. In this setting the weight dynamics in the second phase is replaced by a version for asymmetric weights: \(W_{\text{C-VF}}^{\beta, \eta} = W_{\text{C-EP}}^{\beta, \eta} + \eta s^\top \cdot s \cdot (s^\top \cdot s) \), so that:

\[
\Delta s_{\text{C-VF}}^{C-VF} (\beta, \eta, t) = \frac{1}{\beta} (\beta_\eta - \sigma(s)), \quad \Delta W_{\text{C-VF}}^{C-VF} (\beta, \eta, t) = \frac{1}{\beta} (\beta_\eta s^\top \cdot s) \cdot (s^\top \cdot s) \cdot (s^\top \cdot s). \tag{11}
\]

Importantly, the dynamics of the weights is not one that derives from a primitive function as in Eq. (6). Remarkably, even in this setting, the biologically plausible weight updates of Eq. (11) can approximately follow the gradients of BPTT, provided that the values of reciprocal connections are not too dissimilar (see Fig. 12, Fig. 13 of Appendix E.6 and Appendix D.2 for numerical and mathematical justifications respectively). This property motivates the following training experiments.

<table>
<thead>
<tr>
<th>Error (%)</th>
<th>Test</th>
<th>Train</th>
<th>T</th>
<th>K</th>
<th>Epochs</th>
</tr>
</thead>
<tbody>
<tr>
<td>EP-1h</td>
<td>2.00 ± 0.13</td>
<td>(0.20)</td>
<td>30</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>EP-2h</td>
<td>1.95 ± 0.10</td>
<td>(0.14)</td>
<td>100</td>
<td>20</td>
<td>50</td>
</tr>
<tr>
<td>C-EP-1h</td>
<td>2.28 ± 0.16</td>
<td>(0.41)</td>
<td>40</td>
<td>15</td>
<td>100</td>
</tr>
<tr>
<td>C-EP-2h</td>
<td>2.44 ± 0.14</td>
<td>(0.31)</td>
<td>100</td>
<td>20</td>
<td>150</td>
</tr>
<tr>
<td>C-VF-1h</td>
<td>2.43 ± 0.08</td>
<td>(0.77)</td>
<td>40</td>
<td>15</td>
<td>100</td>
</tr>
<tr>
<td>C-VF-2h</td>
<td>2.97 ± 0.19</td>
<td>(1.58)</td>
<td>100</td>
<td>20</td>
<td>150</td>
</tr>
</tbody>
</table>

Figure 4: **Left:** Training results on MNIST with EP, C-EP and C-VF. "#h" stands for the number of hidden layers. We indicate over 5 trials the mean and standard deviation for the test error (mean train error in parenthesis). \(T \) (resp. \(K \)) is the number of iterations in the 1\(^{st}\) (resp. 2\(^{nd}\)) phase. For C-VF results, the initial angle between forward (\(\theta_1 \)) and backward (\(\theta_b \)) weights is \(\Psi(\theta_1, \theta_b) = 0^\circ \). **Right:** Test error rate on MNIST achieved by C-VF as a function of the initial \(\Psi(\theta_1, \theta_b) \).

4.2 C-EP TRAINING EXPERIMENTS

The table of Fig. 4.1 presents training results obtained on MNIST with C-EP benchmarked against standard discrete-time EP [Ernoult et al. (2019)] - see Appendix E for model details and Appendix F.1 for training conditions. Although the test error of C-EP approaches that of EP, we observe a degradation in accuracy. This is because although Theorem 1 guarantees Gradient Descending Dynamics (GDD) in the limit of infinitely small learning rates, in practice we have to strike a balance between having a learning rate that is small enough to ensure this condition but not too small to
observe convergence within a reasonable number of epochs. As seen on Fig. 5(b), the finite learning rate \(\eta \) of continual updates leads to \(\Delta^{C-\text{EP}}(\beta, \eta, t) \) curves splitting apart from the \(-\nabla^{\text{BPTT}}(t) \) curves. As seen per Fig. 5(a) - see next subsection for details - this effect is emphasized with the depth: before training, angles between C-EP updates and BPTT gradients reach 50 degrees for two hidden layers. The deeper the network, the more difficult it is for the C-EP dynamics to follow the gradients provided by BPTT. As an evidence, we show in Appendix E.2 that when we use extremely small learning rates throughout the second phase (\(\theta \leftarrow \theta + \eta_{\text{tiny}} \Delta^{C-\text{EP}}(\beta, \eta, t) \)) and rescale up the resulting total weight update (\(\theta \leftarrow \theta - \Delta \theta_{\text{tot}} + \frac{\alpha}{\eta_{\text{tiny}}} \Delta \theta_{\text{tot}} \)), we recover standard EP results.

4.3 Continual Vector Field (C-VF) Training Experiments

Depending on whether the updates occur continuously during the second phase and the system obey general dynamics with untied forward and backward weights, we can span a large range of deviations from the ideal conditions of Theorem 1. Fig. 5(b) qualitatively depicts these deviations with a model for which the updates of EP match the gradients of BPTT (EP); with continual weight updates, the updates and gradients start splitting apart (C-EP), and even more so if the weights are untied (C-VF).

Protocol. In order to create these deviations from Theorem 1 and study the consequences in terms of training, we proceed as follows. For each C-VF simulation, we tune the initial angle between forward weights (\(\theta_1 \)) and backward weights (\(\theta_b \)) between 0 and 180°. We denote this angle \(\Psi(\theta_1, \theta_b) \) - see Appendix E.1 for the angle definition and the angle tuning technique employed. For each of these weight initialization, we compute the angle between the total update provided by C-VF, i.e. \(\Delta^{C-\text{VF}}(\beta, \eta, t) = \sum_{t=0}^{K-1} \Delta^{C-\text{VF}}(\beta, \eta, t) \) and the total gradient provided by BPTT, i.e. \(\nabla^{\text{BPTT}}(t) = \sum_{t=0}^{K-1} \nabla^{\text{BPTT}}(t) \) on random mini-batches before training. We denote this angle \(\Psi(\Delta^{C-\text{VF}}(t), -\nabla^{\text{BPTT}}(t)) \). Finally for each weight initialization, we perform training in the discrete-time setting of Ernoult et al. (2019) - see Appendix E.4 for model details. We proceed in the same way for EP and C-EP simulations, computing \(\Psi(\Delta^{\text{EP}}(t), -\nabla^{\text{BPTT}}(t)) \) and \(\Psi(\Delta^{\text{C-EP}}(t), -\nabla^{\text{BPTT}}(t)) \) before training. We use the generic notation \(\Delta(\text{tot}) \) to denote the total update. This procedure yields \((x, y)\) data points with \(x = \Psi(\Delta(\text{tot}), -\nabla^{\text{BPTT}}(\text{tot})) \) and \(y = \text{test error} \), which are reported on Fig. 5(a) - see Appendix E.1 for the full table of results.

Results. Fig. 5(a) shows the test error achieved on MNIST by EP, C-EP and C-VF for different number of hidden layers as a function of the angle \(\Psi(\Delta(\text{tot}), -\nabla^{\text{BPTT}}(\text{tot})) \) before training. This graphical representation spreads the algorithms between EP which best satisfies the GDD property (leftmost point in green at \(\sim 20° \)) to C-VF which satisfies the less the GDD property (rightmost points in red and orange at \(\sim 100° \)). As expected, high angles between gradients of C-VF and BPTT lead to high error rates that can reach 90% for \(\Psi(\Delta^{C-\text{VF}}(t), -\nabla^{\text{BPTT}}(t)) \) over 100°. More precisely, the inset of Fig. 5 shows the same data but focusing only on results generated by initial weight angles lying below 90°, i.e. \(\Psi(\theta_1, \theta_b) = \{0°, 22.5°, 45°, 67.5°, 90°\} \). From standard EP with one hidden layer to C-VF with two hidden layers, the test error increases monotonically with \(\Psi(\Delta(\text{tot}), -\nabla^{\text{BPTT}}(\text{tot})) \) but does not exceed 5.05% on average. This result confirms the importance of proper weight initialization when weights are untied, also discussed in other context [Lillicrap et al., 2016]. When the initial weight angle is of 0°, the impact of untying the weights on classification accuracy remains constrained, as shown in table of Fig. 4.1. Upon untying the forward and backward weights, the test error increases by \(\sim 0.2\% \) with one hidden layer and by \(\sim 0.5\% \) with two hidden layers compared to standard C-EP.

5 Discussion

Equilibrium Propagation is an algorithm that leverages the dynamical nature of neurons to compute weight updates through the physics of the neural network. C-EP brings EP a step closer to biological plausibility by embracing simultaneous synapse and neuron dynamics, resolving the initial need of artificial memory units for storing the neuron values between different phases. C-VF extends the model to asymmetric weights between neurons, as is the case in biology. Its learning rule, local in space and time, is furthermore closely acquainted to Spike Timing Dependent Plasticity (STDP), a learning rule widely studied in Neuroscience, inferred in vitro and in vivo from neural recordings in

(a): test error rate on MNIST as a function of the initial angle 𝜃 between the total update of EP and the total gradient of BPTT. (b): Dashed and continuous lines respectively represent the updates \(\Delta \theta(t) \) (i.e. \(\Delta_{\text{EP}} \theta(t), \Delta_{\text{C-EP}} \theta(t), \Delta_{\text{C-VF}} \theta(t) \)) and the gradients \(-\nabla_{\text{BPTT}} \theta(t) \). Each randomly selected synapse corresponds to one color. While dashed and continuous lines coincide for standard EP, they split apart upon untying the weights and using continual updates.

The enhanced biological plausibility of the C-EP framework preserves the equivalence with Backpropagation Through Time: in the limit of sufficiently slow synaptic dynamics (i.e. small learning rates), the system satisfies Gradient Descending Dynamics (Theorem 1). Our experimental results confirm this theorem. When training C-EP while ensuring convergence in 100 epochs, a modest reduction in MNIST accuracy is seen with regards to standard EP. This accuracy reduction can be eliminated by using smaller learning rates and rescaling up the total weight update at the end of the second phase (Appendix F.2). On top of extending the theory of Ernoult et al. (2019), Theorem 1 also appears to provide a statistically robust tool for C-EP based learning. Our experimental results show that, for a given network with specified neuron and synapse dynamics, the more the updates of Equilibrium Propagation follow the gradients provided by Backpropagation Through Time before training (in terms of angle in this work), the better this network can learn.

When computed on a standard computer, due to the use of small learning rates to mimic analog dynamics within a finite number of epochs, C-EP and C-VF have long simulation times. With a Titan RTX GPU, training a fully connected architecture on MNIST takes 2 hours 39 mins with 1 hidden layer and 10 hours 49 mins with 2 hidden layers. On the other hand, C-EP and C-VF might be particularly efficient in terms of speed and energy consumption when operated on neuromorphic hardware that employs analog device physics (Ambrogio et al., 2018; Romera et al., 2018). To this purpose, our work can provide an engineering guidance to map our algorithm onto a neuromorphic system. Fig. 5 (a) shows that hyperparameters should be tuned so that before training, C-EP updates stay within \(90^\circ \) of the gradients provided by BPTT. More concretely in practice, it amounts to tune the degree of symmetry of the dynamics, for instance the angle between forward and backward weights - see Fig. 4.1. Our work is one step towards bridging Equilibrium Propagation with neuromorphic computing and thereby energy efficient implementations of gradient-based learning algorithms.
REFERENCES

L. B. Almeida. A learning rule for asynchronous perceptrons with feedback in a combinatorial

S. Ambrogio, P. Narayanan, H. Tsai, R. M. Shelby, I. Boybat, C. Nolfo, S. Sidler, M. Giordano,

Y. Bengio, T. Mesnard, A. Fischer, S. Zhang, and Y. Wu. Stdp as presynaptic activity times rate of

G.-q. Bi and M.-m. Poo. Synaptic modifications in cultured hippocampal neurons: dependence
on spike timing, synaptic strength, and postsynaptic cell type. Journal of neuroscience, 18(24):

2004.

M. Ernoult, J. Grollier, D. Querlioz, Y. Bengio, and B. Scellier. Updates of equilibrium prop match
gradients of backprop through time in an rnn with static input. arXiv preprint arXiv:1905.13633,
2019.

G. E. Hinton. Training products of experts by minimizing contrastive divergence. Neural computation,

J. R. Movellan. Contrastive hebbian learning in the continuous hopfield model. In Connectionist

M. Romera, P. Talatchian, S. Tsunegi, F. A. Araujo, V. Cros, P. Bortolotti, J. Trastoy, K. Yakushiji,

B. Scellier and Y. Bengio. Equilibrium propagation: Bridging the gap between energy-based models

B. Scellier and Y. Bengio. Equivalence of equilibrium propagation and recurrent backpropagation.

B. Scellier, A. Goyal, J. Binas, T. Mesnard, and Y. Bengio. Generalization of equilibrium propagation

E. Strubell, A. Ganesh, and A. McCallum. Energy and policy considerations for deep learning in nlp.
Appendix

A Proof of Theorem 1

In this appendix, we prove Theorem 1 which we recall here.

Theorem 1 (GDD Property). Let s_0, s_1, \ldots, s_T be the convergent sequence of states and denote $s_\ast = s_T$ the steady state. Further assume that there exists some step K where $0 < K \leq T$ such that $s_s = s_T = s_{T-1} = \ldots = s_{T-K}$. Then, in the limit $\eta \to 0$ and $\beta \to 0$, the first K updates in the second phase of C-EP are equal to the negatives of the first K gradients of BPTT, i.e.

$$\forall t = 0, 1, \ldots, K : \begin{cases} \lim_{\beta \to 0} \lim_{\eta \to 0} \Delta_{s}^{\text{C-EP}}(\beta, \eta, t) = -\nabla_{s}^{\text{BPTT}}(t), \\ \lim_{\beta \to 0} \lim_{\eta \to 0} \Delta_{\theta}^{\text{C-EP}}(\beta, \eta, t) = -\nabla_{\theta}^{\text{BPTT}}(t). \end{cases}$$

(8)

A.1 A Spectrum of Four Computationally Equivalent Learning Algorithms

Proving Theorem 1 amounts to prove the equivalence of C-EP and BPTT. In fact we can prove the equivalence of four algorithms, which all compute the gradient of the loss:

1. Backpropagation Through Time (BPTT), presented in Section B.2
2. Recurrent Backpropagation (RBP), presented in Section B.3
3. Equilibrium Propagation (EP), presented in Section 2
4. Equilibrium Propagation with Continual Weight Updates (C-EP), introduced in Section 3.

In this spectrum of algorithms, BPTT is the most practical algorithm to date from the point of view of machine learning, but also the less biologically realistic. In contrast, C-EP is the most realistic in terms of implementation in biological systems, while it is to date the least practical and least efficient for conventional machine learning (computations on standard Von-Neumann hardware are considerably slower due to repeated parameter updates, requiring memory access at each time-step of the second phase).

A.2 Sketch of the Proof

Theorem 1 can be proved in three phases, using the following three lemmas.

Lemma 2 (Equivalence of C-EP and EP). In the limit of small learning rate, i.e. $\eta \to 0$, the updates of C-EP are equal to those of EP:

$$\forall t \geq 0 : \begin{cases} \lim_{\eta \to 0} \Delta_{s}^{\text{C-EP}}(\beta, \eta, t) = \Delta_{s}^{\text{EP}}(\beta, t), \\ \lim_{\eta \to 0} \Delta_{\theta}^{\text{C-EP}}(\beta, \eta, t) = \Delta_{\theta}^{\text{EP}}(\beta, t). \end{cases}$$

(12)

Lemma 3 (Equivalence of EP and RBP). Assume that the transition function derives from a primitive function, i.e. that F is of the form $F(x, s, \theta) = \frac{\partial \Phi}{\partial s}(x, s, \theta)$. Then, in the limit of small hyperparameter β, the updates of EP are equal to the gradients of RBP:

$$\forall t \geq 0 : \begin{cases} \lim_{\beta \to 0} \Delta_{s}^{\text{EP}}(\beta, t) = -\nabla_{s}^{\text{RBP}}(t), \\ \lim_{\beta \to 0} \Delta_{\theta}^{\text{EP}}(\beta, t) = -\nabla_{\theta}^{\text{RBP}}(t). \end{cases}$$

(13)

Lemma 4 (Equivalence of BPTT and RBP). In the setting with static input x, suppose that the network has reached the steady state s_\ast after $T - K$ steps, i.e. $s_{T-K} = s_{T-K+1} = \ldots = s_{T-1} = s_T = s_\ast$. Then the first K gradients of BPTT are equal to the first K gradient of RBP, i.e.

$$\forall t = 0, 1, \ldots, K : \begin{cases} \nabla_{s}^{\text{BPTT}}(t) = \nabla_{s}^{\text{RBP}}(t), \\ \nabla_{\theta}^{\text{BPTT}}(t) = \nabla_{\theta}^{\text{RBP}}(t). \end{cases}$$

(14)

Proofs of the Lemmas can be found in the following places:
We also recall the dynamics of EP in the second phase: starting from \(s_0^\beta = s_* \) and \(\theta_0^\beta = \theta \) we have
\[
\forall t \geq 0 : \begin{cases}
 s_{t+1}^\beta = \frac{\partial \Phi}{\partial s} (x, s_t^\beta, \theta_t^\beta, \theta_t^\eta) - \beta \frac{\partial \ell}{\partial s} (s_t^\beta, y), \\
 \theta_{t+1}^\beta = \theta_t^\beta + \eta \beta \left(\frac{\partial \Phi}{\partial \theta} (x, s_{t+1}^\beta, \theta_{t+1}^\eta) - \frac{\partial \Phi}{\partial \theta} (x, s_t^\beta, \theta_t^\eta) \right).
\end{cases}
\] (15)

We also recall the dynamics of C-EP in the second phase:
\[
s_0^\beta = s_* \quad \text{and} \quad s_{t+1}^\beta = \frac{\partial \Phi}{\partial s} (x, s_t^\beta, \theta) - \beta \frac{\partial \ell}{\partial s} (s_t^\beta, y),
\] (17)

as well as the neural and weight updates of EP, as defined in Ernoult et al. (2019):
\[
\forall t \geq 0 : \begin{cases}
 \Delta_s^\mathrm{C-EP} (\beta, \eta, t) = \frac{1}{\beta} (s_{t+1}^\beta - s_t^\beta), \\
 \Delta_\theta^\mathrm{C-EP} (\beta, \eta, t) = \frac{1}{\eta} (\theta_{t+1}^\beta - \theta_t^\beta).
\end{cases}
\] (16)

Lemma 2 (Equivalence of C-EP and EP). In the limit of small learning rate, i.e. \(\eta \to 0 \), the updates of C-EP are equal to those of EP:
\[
\forall t \geq 0 : \begin{cases}
 \lim_{\eta \to 0} \Delta_s^\mathrm{C-EP} (\beta, \eta, t) = \Delta_s^\mathrm{EP} (\beta, t), \\
 \lim_{\eta \to 0} \Delta_\theta^\mathrm{C-EP} (\beta, \eta, t) = \Delta_\theta^\mathrm{EP} (\beta, t).
\end{cases}
\] (12)

Proof of Lemma 2 Taking \(\eta = 0 \) in the bottom equation of Eq. (15) yields the recurrence relation \(\theta_{t+1}^{\beta,0} = \theta_t^{\beta,0} \), so that \(\theta_t^{\beta,0} = \theta_0^{\beta,0} = \theta \) for every \(t \). Injecting \(\theta_t^{\beta,0} = \theta \) in the top equation of Eq. (15) yields for \(s_t^{\beta,0} \) the same recurrence relation as that of \(s_t^\beta \) in Eq. (17), so that \(s_t^{\beta,0} = s_t^\beta \) for every \(t \). Therefore, for \(\eta = 0 \), we have
\[
\Delta_s^\mathrm{C-EP} (\beta, 0, t) = \frac{1}{\beta} (s_{t+1}^{\beta,0} - s_t^{\beta,0}) = \frac{1}{\beta} (s_{t+1}^{\beta} - s_t^{\beta}) = \Delta_s^\mathrm{EP} (\beta, t).
\] (19)

Similarly, in the limit \(\eta \to 0 \)
\[
\Delta_\theta^\mathrm{C-EP} (\beta, \eta, t) = \frac{1}{\eta} (\theta_{t+1}^{\beta,\eta} - \theta_t^{\beta,\eta})
\]
\[
= \frac{1}{\beta} \left(\frac{\partial \Phi}{\partial \theta} (x, s_{t+1}^{\beta,\eta}, \theta_{t+1}^{\beta,\eta}) - \frac{\partial \Phi}{\partial \theta} (x, s_t^{\beta,\eta}, \theta_t^{\beta,\eta}) \right)
\]
\[
= \Delta_\theta^\mathrm{EP} (\beta, t).
\] (22)
B EQUIVALENCE OF BPTT AND RBP

In this section, we recall Backprop Through Time (BPTT) and the Almeida-Pineda Recurrent Backprop (RBP) algorithm, which can both be used to optimize the loss \mathcal{L}^* of Eq. [3]. Historically, BPTT and RBP were invented separately around the same time. RBP was introduced at a time when convergent RNNs (such as the one studied in this paper) were popular. Nowadays, convergent RNNs are less popular; in the field of deep learning, RNNs are almost exclusively used for tasks that deal with sequential data and BPTT is the algorithm of choice to train such RNNs. Here, we present RBP in a way that it can be seen as a particular case of BPTT.

B.1 SKETCH OF THE PROOF OF LEMMA 4

Lemma 4, which we recall here, is a consequence of Proposition 5 and Definition 6 below.

Lemma 4 (Equivalence of BPTT and RBP). In the setting with static input x, suppose that the network has reached the steady state s_t after $T - K$ steps, i.e. $s_{T - K} = s_{T - K + 1} = \cdots = s_T = s_{T - 1} = s_T = s^*$. Then the first K gradients of BPTT are equal to the first K gradient of RBP, i.e.

$$\forall t = 0, 1, \ldots, K : \begin{cases} \nabla^{\text{BPTT}}_s (t) = \nabla^{\text{RBP}} (t), \\ \nabla^{\text{BPTT}}_\theta (t) = \nabla^{\text{RBP}}_\theta (t). \end{cases} \tag{14}$$

However, in general, the gradients $\nabla^{\text{BPTT}}_s (t)$ of BPTT and the gradients $\nabla^{\text{RBP}} (t)$ of RBP are not equal for $t > K$. This is because BPTT and RBP compute the gradients of different loss functions:

- BPTT computes the gradient of the loss after T time steps, i.e. $\mathcal{L} = \ell (s_T, y)$,
- RBP computes the gradients of the loss at the steady state, i.e. $\mathcal{L}^* = \ell (s^*, y)$.

B.2 BACKPROPAGATION THROUGH TIME (BPTT)

Backpropagation Through Time (BPTT) is the standard method to train RNNs and can also be used to train the kind of convergent RNNs that we study in this paper. To this end, we consider the cost of the state s_T after T time steps, denoted $\mathcal{L} = \ell (s_T, y)$, and we substitute the loss after T time steps \mathcal{L} as a proxy for the loss at the steady state $\mathcal{L}^* = \ell (s^*, y)$. The gradients of \mathcal{L} can then be computed with BPTT.

To do this, we recall some of the inner workings of BPTT. Eq. [1] rewrites in the form $s_{t+1} = F (x, s_t, \theta_{t+1} = \theta)$, where θ_t denotes the parameter of the model at time step t, the value θ being shared across all time steps. This way of rewriting Eq. [1] enables us to define the partial derivative $\partial \mathcal{L} / \partial \theta_t$ as the sensitivity of the loss \mathcal{L} with respect to θ_t when $\theta_1, \ldots, \theta_{t-1}, \theta_{t+1}, \ldots, \theta_T$ remain fixed (set to the value θ). With these notations, the gradient $\partial \mathcal{L} / \partial \theta_t$ reads as the sum:

$$\frac{\partial \mathcal{L}}{\partial \theta_t} = \frac{\partial \mathcal{L}}{\partial \theta_1} + \frac{\partial \mathcal{L}}{\partial \theta_2} + \cdots + \frac{\partial \mathcal{L}}{\partial \theta_T}. \tag{23}$$

BPTT computes the 'full' gradient $\partial \mathcal{L} / \partial \theta_t$ by first computing the partial derivatives $\partial \mathcal{L} / \partial s_t$ and $\partial \mathcal{L} / \partial \theta_t$ iteratively, backward in time, using the chain rule of differentiation. In this work, we denote the gradients that BPTT computes:

$$\forall t \in [0, T - 1] : \begin{cases} \nabla^{\text{BPTT}}_s (t) = \frac{\partial \mathcal{L}}{\partial s_{T - t}}, \\ \nabla^{\text{BPTT}}_\theta (t) = \frac{\partial \mathcal{L}}{\partial \theta_{T - t}}. \tag{24} \end{cases}$$

Proposition 5 (Gradients of BPTT). The gradients $\nabla^{\text{BPTT}}_s (t)$ and $\nabla^{\text{BPTT}}_\theta (t)$ satisfy the recurrence relationship

$$\nabla^{\text{BPTT}}_s (0) = \frac{\partial \ell}{\partial s} (s_T, y), \tag{25}$$

$$\forall t = 1, 2, \ldots, T, \quad \nabla^{\text{BPTT}}_s (t) = \frac{\partial F}{\partial s} (x, s_{T - t}, \theta)^\top \cdot \nabla^{\text{BPTT}}_s (t - 1), \tag{26}$$

$$\forall t = 1, 2, \ldots, T, \quad \nabla^{\text{BPTT}}_\theta (t) = \frac{\partial F}{\partial \theta} (x, s_{T - t}, \theta)^\top \cdot \nabla^{\text{BPTT}}_s (t - 1). \tag{27}$$
B.3 From Backprop Through Time (BPTT) to Recurrent Backprop (RBP)

In general, to apply BPTT, it is necessary to store in memory the history of past hidden states \(s_1, s_2, \ldots, s_T\) in order to compute the gradients \(\nabla_{\theta}^{\text{BPTT}}(t)\) and \(\nabla_{\theta}^{\text{BPTT}}(t)\) as in Eq. \[26\][27]. However, in our specific setting with static input \(x\), if the network has reached the steady state \(s_t\) after \(T-K\) steps, i.e. if \(s_{T-K} = s_{T-K+1} = \cdots = s_{T-1} = s_T = s_\ast\), then we see that, in order to compute the first \(K\) gradients of BPTT, all one needs to know is \(\frac{\partial F}{\partial s}(x, s_\ast, \theta)\) and \(\frac{\partial F}{\partial \theta}(x, s_\ast, \theta)\). To this end, all one needs to keep in memory is the steady state \(s_\ast\). In this particular setting, it is not necessary to store the past hidden states \(s_T, s_{T-1}, \ldots, s_{T-K}\) since they are all equal to \(s_\ast\).

The Almeida-Pineda algorithm (a.k.a. Recurrent Backpropagation, or RBP for short), which was invented independently by Scellier and Bengio (2019), relies on this property to compute the gradients of the loss \(L'\) using only the steady state \(s_\ast\). Similarly to BPTT, it computes quantities \(\nabla_{s}^{\text{RBP}}(t)\) and \(\nabla_{\theta}^{\text{RBP}}(t)\), which we call ‘gradients of RBP’, iteratively for \(t = 0, 1, 2, \ldots\)

Definition 6 (Gradients of RBP). The gradients \(\nabla_{s}^{\text{RBP}}(t)\) and \(\nabla_{\theta}^{\text{RBP}}(t)\) are defined and computed iteratively as follows:

\[
\nabla_{s}^{\text{RBP}}(0) = \frac{\partial F}{\partial s}(s_\ast, y), \tag{28}
\]
\[
\forall t \geq 0, \quad \nabla_{s}^{\text{RBP}}(t+1) = \frac{\partial F}{\partial s}(x, s_\ast, \theta) \cdot \nabla_{s}^{\text{RBP}}(t), \tag{29}
\]
\[
\forall t \geq 0, \quad \nabla_{\theta}^{\text{RBP}}(t+1) = \frac{\partial F}{\partial \theta}(x, s_\ast, \theta) \cdot \nabla_{s}^{\text{RBP}}(t). \tag{30}
\]

Unlike in BPTT where keeping the history of past hidden states is necessary to compute (or ‘back-propagate’) the gradients, in RBP Eq. \[29\][30] show that it is sufficient to keep in memory the steady state \(s_\ast\) only in order to iterate the computation of the gradients. RBP is more memory efficient than BPTT.

![Algorithm 3 BPTT](image)

Algorithm 3 BPTT

Input: \(x, y, \theta\).

Output: \(\theta\).

1: \(s_0 \leftarrow 0\)
2: **for** \(t = 0\) to \(T-1\) **do**
3: \(s_{t+1} \leftarrow F(x, s_t, \theta)\)
4: **end for**
5: \(\nabla_{s}^{\text{BPTT}}(0) \leftarrow \frac{\partial F}{\partial s}(s_\ast, y)\)
6: **for** \(t = 1\) to \(T\) **do**
7: \(\nabla_{s}(t) \leftarrow \frac{\partial F}{\partial s}(x, s_{t-1}, \theta) \cdot \nabla_{s}(t-1)\)
8: \(\nabla_{\theta}(t) \leftarrow \frac{\partial F}{\partial \theta}(x, s_{t-1}, \theta) \cdot \nabla_{s}(t-1)\)
9: **end for**
10: \(\nabla_{\theta}^{\text{BPTT}}(\text{tot}) \leftarrow \sum_{t=0}^{T-1} \nabla_{\theta}^{\text{BPTT}}(t)\)

![Algorithm 4 RBP](image)

Algorithm 4 RBP

Input: \(x, y, \theta\).

Output: \(\theta\).

1: \(s_0 \leftarrow 0\)
2: **repeat**
3: \(s_{t+1} \leftarrow F(x, s_t, \theta)\)
4: **until** \(s_t = s_\ast\)
5: \(\nabla_{s}^{\text{RBP}}(0) \leftarrow \frac{\partial F}{\partial s}(s_\ast, y)\)
6: **repeat**
7: \(\nabla_{s}^{\text{RBP}}(t) \leftarrow \frac{\partial F}{\partial s}(x, s_\ast, \theta) \cdot \nabla_{s}^{\text{RBP}}(t-1)\)
8: \(\nabla_{\theta}^{\text{RBP}}(t) \leftarrow \frac{\partial F}{\partial \theta}(x, s_\ast, \theta) \cdot \nabla_{s}^{\text{RBP}}(t-1)\)
9: **until** \(\nabla_{\theta}^{\text{RBP}}(t) = 0\)
10: \(\nabla_{\theta}^{\text{RBP}}(\text{tot}) \leftarrow \sum_{t=0}^{\infty} \nabla_{\theta}^{\text{RBP}}(t)\)

Figure 6: **Left.** Pseudo-code of BPTT. The gradients \(\nabla(t)\) denote the gradients \(\nabla_{\theta}^{\text{BPTT}}(t)\) of BPTT. **Right.** Pseudo-code of RBP. **Difference between BPTT and RBP.** In BPTT, the state \(s_{T-t}\) is required to compute \(\frac{\partial F}{\partial s}(x, s_{T-t}, \theta)\) and \(\frac{\partial F}{\partial \theta}(x, s_{T-t}, \theta)\); thus it is necessary to store in memory the sequence of states \(s_1, s_2, \ldots, s_T\). In contrast, in RBP, only the steady state \(s_\ast\) is required to compute \(\frac{\partial F}{\partial s}(x, s_\ast, \theta)\) and \(\frac{\partial F}{\partial \theta}(x, s_\ast, \theta)\); it is not necessary to store the past states of the network.

B.4 What ‘Gradients’ are the Gradients of RBP?

In this subsection we motivate the name of ‘gradients’ for the quantities \(\nabla_{s}^{\text{RBP}}(t)\) and \(\nabla_{\theta}^{\text{RBP}}(t)\) by proving that they are the gradients of \(L'\) in the sense of Proposition \[7\] below. They are also the gradients of what we call the ‘projected cost function’ (Proposition \[8\]), using the terminology of Scellier and Bengio (2019).
Proposition 7 (RBP Optimizes L^*). The total gradient computed by the RBP algorithm is the gradient of the loss $L^* = \ell(s, y)$, i.e.

\[
\sum_{t=1}^{\infty} \nabla_{\theta}^{\text{RBP}}(t) = \frac{\partial L^*}{\partial \theta}.
\]

$\nabla_{\theta}^{\text{RBP}}(t)$ and $\nabla_{s}^{\text{RBP}}(t)$ can also be expressed as gradients of $L_t = \ell(s_t, y)$, the cost after t time steps. In the terminology of [Scellier and Bengio (2019)], L_t was named the projected cost. For $t = 0$, L_0 is simply the cost of the initial state s_0. For $t > 0$, L_t is the cost of the state projected a duration t in the future.

Proposition 8 (Gradients of RBP are Gradients of the Projected Cost). The ‘RBP gradients’ $\nabla_{s}^{\text{RBP}}(t)$ and $\nabla_{\theta}^{\text{RBP}}(t)$ can be expressed as gradients of the projected cost:

\[
\forall t \geq 0, \quad \nabla_{s}^{\text{RBP}}(t) = \left. \frac{\partial L_t}{\partial s} \right|_{s_0 = s}, \quad \nabla_{\theta}^{\text{RBP}}(t) = \left. \frac{\partial L_t}{\partial \theta} \right|_{s_0 = s_*}
\]

where the initial state s_0 is the steady state s_*.

Proof of Proposition 7 First of all, by Definition 6 (Eq. 28–30) it is straightforward to see that

\[
\forall t \geq 0, \quad \nabla_{s}^{\text{RBP}}(t) = \left(\frac{\partial F}{\partial s}(x, s, \theta)^\top \right)^t \cdot \frac{\partial \ell}{\partial s}(s, y),
\]

\[
\forall t \geq 1, \quad \nabla_{\theta}^{\text{RBP}}(t) = \left(\frac{\partial F}{\partial \theta}(x, s, \theta)^\top \cdot \left(\frac{\partial F}{\partial s}(x, s, \theta)^\top \right)^{t-1} \right) \cdot \frac{\partial \ell}{\partial s}(s, y).
\]

Second, recall that the loss L^* is

\[
L^* = \ell(s, y),
\]

where

\[
s_* = F(x, s, \theta).
\]

By the chain rule of differentiation, the gradient of L^* (Eq. 35) is

\[
\frac{\partial L^*}{\partial \theta} = \frac{\partial \ell}{\partial s}(s, y) \cdot \frac{\partial s_*}{\partial \theta}.
\]

In order to compute $\frac{\partial s_*}{\partial \theta}$, we differentiate the steady state condition (Eq. 36) with respect to θ, which yields

\[
\frac{\partial s_*}{\partial \theta} = \frac{\partial F}{\partial s}(x, s, \theta) \cdot \frac{\partial s_*}{\partial \theta} + \frac{\partial F}{\partial \theta}(x, s, \theta).
\]

Rearranging the terms, and using the Taylor expansion $(\text{Id} - A)^{-1} = \sum_{t=0}^{\infty} A^t$ with $A = \frac{\partial F}{\partial s}(x, s, \theta)$, we get

\[
\frac{\partial s_*}{\partial \theta} = \left(\text{Id} - \frac{\partial F}{\partial s}(x, s, \theta) \right)^{-1} \cdot \frac{\partial F}{\partial \theta}(x, s, \theta)
\]

\[
= \sum_{t=0}^{\infty} \left(\frac{\partial F}{\partial s}(x, s, \theta) \right)^t \cdot \frac{\partial F}{\partial \theta}(x, s, \theta).
\]

Therefore

\[
\frac{\partial L^*}{\partial \theta} = \frac{\partial \ell}{\partial s}(s, y) \cdot \frac{\partial s_*}{\partial \theta}
\]

\[
= \sum_{t=0}^{\infty} \frac{\partial \ell}{\partial s}(s, y) \cdot \left(\frac{\partial F}{\partial s}(x, s, \theta) \right)^t \cdot \frac{\partial F}{\partial \theta}(x, s, \theta)
\]

\[
= \sum_{t=0}^{\infty} \nabla_{s}^{\text{RBP}}(t).
\]
Proof of Proposition. By the chain rule of differentiation we have
\[\frac{\partial L_{t+1}}{\partial s_0} = \frac{\partial F}{\partial s} (x, s_0, \theta)^T \cdot \frac{\partial L_{t+1}}{\partial s_1}. \] (44)

Evaluation this expression for \(s_0 = s_* \) we get
\[\frac{\partial L_{t+1}}{\partial s_0} \bigg|_{s_0 = s_*} = \frac{\partial F}{\partial s} (x, s_*, \theta)^T \cdot \frac{\partial L_{t+1}}{\partial s_1} \bigg|_{s_0 = s_*}. \] (45)

Finally note that
\[\frac{\partial L_{t+1}}{\partial s_1} \bigg|_{s_0 = s_*} = \frac{\partial L_{t+1}}{\partial s_1} \bigg|_{s_1 = s_*} = \frac{\partial L_t}{\partial s_0} \bigg|_{s_0 = s_*}. \] (46)

Therefore \(\frac{\partial L_t}{\partial s_0} \bigg|_{s_0 = s_*} \) and \(\nabla^\text{RBP}_s (t) \) satisfy the same recurrence relation, thus they are equal. Proving the equality of \(\frac{\partial L_t}{\partial s_0} \bigg|_{s_0 = s_*} \) and \(\nabla^\text{RBP}_s (t) \) is analogous. \(\square \)

C Illustrating the Equivalence of the Four Algorithms on an Analytically Tractable Model

Model. To illustrate the equivalence of the four algorithms (BPTT, RBP, EP and CEP), we study a simple model with scalar variable \(s \) and scalar parameter \(\theta \):
\[s_0 = 0, \quad s_{t+1} = \frac{1}{2} (s_t + \theta), \quad L^* = \frac{1}{2} s_*^2, \] (47)
where \(s_* \) is the steady state of the dynamics (it is easy to see that the solution is \(s_* = \theta \)). The dynamics rewrites \(s_{t+1} = F(s_t, \theta) \) with the transition function \(F(s, \theta) = \frac{1}{2} (s + \theta) \), and the loss rewrites \(\mathcal{L}^* = \ell(s_*) \) with the cost function \(\ell(s) = \frac{1}{2} s^2 \). Furthermore, a primitive function of the system is \(\Phi(s, \theta) = \frac{1}{2} (s + \theta)^2 \). This model has no practical application; it is only meant for pedagogical purpose.

Backpropagation Through Time (BPTT). With BPTT, an important point is that we approximate the steady state \(s_* \) by the state after \(T \) time steps \(s_T \), and we approximate \(L^* \) (the loss at the steady state) by the loss after \(T \) time steps \(L = \ell(s_T) \).

In order to compute (i.e. ‘backpropagate’) the gradients of BPTT, Proposition tells us that we need to compute \(\frac{\partial L}{\partial s} (s_T) = s_T, \frac{\partial F}{\partial s} (s_T, \theta) = \frac{1}{2} \) and \(\frac{\partial \ell}{\partial s} (s_T, \theta) = \frac{1}{2} \). We get
\[\forall t = 0, 1, \ldots, T - 1, \quad \nabla_{s} s^\text{BPTT}(t) = \frac{s_T}{2^t}, \quad \nabla_{\theta} s^\text{BPTT}(t) = \frac{s_T}{2^t+1}. \] (48)

Recurrent Backpropagation (RBP). Similarly, to compute the gradients of RBP, Definition tells us that we need to compute \(\frac{\partial L}{\partial s} (s_*) = s_*, \frac{\partial F}{\partial s} (s_*, \theta) = \frac{1}{2} \) and \(\frac{\partial \ell}{\partial s} (s_*, \theta) = \frac{1}{2} \). We have
\[\forall t \geq 0, \quad \nabla_{s} s^\text{RBP}(t) = \frac{s_*}{2^t}, \quad \nabla_{\theta} s^\text{RBP}(t) = \frac{s_*}{2^t+1}. \] (49)

The state after \(T \) time steps in BPTT converges to the steady state \(s_* \) as \(T \to \infty \), therefore the gradients of BPTT converge to the gradients of RBP. Also notice that the steady state of the dynamics is \(s_* = \theta \).

Equilibrium Propagation (EP). Following the equations governing the second phase of EP (Fig. 2), we have:
\[s_0^\beta = \theta, \quad s_{t+1}^\beta = \left(\frac{1}{2} - \beta \right) s_t^\beta + \frac{1}{2} \theta. \] (50)

This linear dynamical system can be solved analytically:
\[\forall t \geq 0, \quad s_t^\beta = \frac{\theta}{1 + 2 \beta} \left(1 + 2 \beta \left(\frac{1}{2} - \beta \right)^t \right). \] (51)
Notice that $s^\beta_t \to \theta$ as $\beta \to 0$; for small values of the hyperparameter β, the trajectory in the second phase is close to the steady state $s_* = \theta$.

Using Eq. [18], it follows that the neural and weight updates of EP are

$$\forall t \geq 0, \quad \Delta^{\text{EP}}_s(\beta, t) = -\frac{\theta}{2t} (1 - 2\beta)^t, \quad \Delta^{\text{EP}}_\theta(\beta, t) = -\frac{\theta}{2t+1} (1 - 2\beta)^t. \quad (52)$$

Notice again that the updates of EP converge to the gradients of RBP as $\beta \to 0$.

Continual Equilibrium Propagation (C-EP). The system of equations governing the system is:

$$\begin{cases} s^\beta_0,\eta = s_*, \\ \theta^\beta_0,\eta = \theta, \end{cases} \quad \forall t \geq 0 : \begin{cases} s^\beta_{t+1} = \left(\frac{1}{2} - \beta\right) s^\beta_t + \frac{1}{2} \theta^\beta_t, \\ \theta^\beta_{t+1} = \theta^\beta_t + \frac{\eta}{2\beta} (s^\beta_{t+1} - s^\beta_t). \end{cases} \quad (53)$$

First, rearranging the terms in the second equation, we get

$$\frac{1}{\eta} \left(\theta^\beta_{t+1} - \theta^\beta_t\right) = \frac{1}{2\beta} \left(s^\beta_{t+1} - s^\beta_t \right). \quad (54)$$

It follows that

$$\Delta^{\text{C-EP}}_\theta(\beta, \eta, t) = \frac{1}{2} \Delta^{\text{C-EP}}_s(\beta, \eta, t). \quad (55)$$

Therefore, all we need to do is to compute $\Delta^{\text{C-EP}}_s(\beta, \eta, t)$. Second, by iterating the second equation over all indices from $t = 0$ to $t - 1$ we get

$$\theta^\beta_t = \theta + \frac{\eta}{2\beta} \left(s^\beta_t - s_* \right). \quad (56)$$

Using $s_* = \theta$ and plugging this into the first equation we get

$$s^\beta_{t+1} = \left(\frac{1}{2} - \beta + \frac{\eta}{4\beta}\right) s^\beta_t + \left(\frac{1}{2} - \frac{\eta}{4\beta}\right) \theta. \quad (57)$$

Solving this linear dynamical system, and using the initial condition $s^\beta_0,\eta = \theta$ we get

$$s^\beta_t = \frac{\theta}{1 - \frac{\eta}{2\beta} + 2\beta} \left[1 - \frac{\eta}{2\beta} + 2\beta \left(\frac{1}{2}\right)^t \left(1 - \frac{\eta}{2\beta}\right)^t \right]. \quad (58)$$

Finally:

$$\Delta^{\text{C-EP}}_s(\beta, \eta, t) = -\frac{\theta}{2t} \left(1 - 2\beta + \frac{\eta}{2\beta}\right)^t. \quad (59)$$
D COMPLEMENT ON GRADIENT-DESCENDING DYNAMICS (GDD)

Step-by-step equivalence of the dynamics of EP and gradient computation in BPTT was shown in [Ernoult et al. (2019)] and was referred to as the Gradient-Ascending Updates (GDU) property. In this appendix, we first explain the connection between the GDD property of this work and the GDU property of [Ernoult et al. (2019)]. Then we prove another version of the GDD property (Theorem 9 below), more general than Theorem 1.

D.1 GRADIENT-DESCENDING UPDATES (GDU) OF [ERNOULT ET AL. (2019)]

The GDU property of [Ernoult et al. (2019)] states that the updates of EP are equal to the gradients of BPTT. Similarly, the Gradient-Descending Dynamics (GDD) property of this work states that the updates of C-EP are equal to the gradients of BPTT. The difference between the GDU property and the GDD property is that the term ‘update’ has slightly different meanings in the contexts of EP and C-EP. In C-EP, the ‘updates’ are the effective updates by which the neuron and synapses are being dynamically updated throughout the second phase. In contrast in EP, the ‘updates’ are effectively performed at the end of the second phase.

D.2 A GENERALISATION OF THE GDD PROPERTY

The Gradient Descending Dynamics property (GDD, Theorem 1) states that, when the system dynamics derive from a primitive function, i.e. when the transition function \(F \) is of the form \(F = \frac{\partial \theta}{\partial s} \), then the updates of C-EP match the gradients provided by BPTT. Remarkably, even in the case of the C-VF dynamics that do not derive from a primitive function \(\Phi \), Fig 5 shows that the biologically realistic update rule of C-VF follows well the gradients of BPTT. More illustrations of this property are shown on Fig. 12 and Fig. 13. In this section we give a theoretical justification for this fact by proving a more general result than Theorem 1.

First, recall the dynamics of the C-VF model. In the first phase:

\[
s_{t+1} = \sigma (W \cdot s_t),
\]

where \(\sigma \) is an activation function and \(W \) is a square weight matrix. In the second phase, starting from \(s_0, \eta = s_* \) and \(W_0 = W \), the dynamics read:

\[
\forall t \geq 0 : \begin{cases}
\sigma_{t+1} = \sigma (W_\eta \cdot s_{t+1}) - \beta \frac{\partial \ell}{\partial s} (s_{t+1}), \\
W_{t+1} = W_\eta + \eta \frac{\partial F}{\partial W} (s_{t}, W_\eta) \cdot \left(s_{t+1} - s_t \right).
\end{cases}
\]

Now let us define the transition function \(F(s, W) = \sigma (W \cdot s) \), so that the dynamics of the first phase rewrites

\[
s_{t+1} = F(s_t, W).
\]

As for the second phase, notice that \(\frac{\partial F}{\partial W}(s, W) = \sigma'(W \cdot s) \cdot s \), so that if we ignore the factor \(\sigma'(W \cdot s) \), Eq. (61) rewrites

\[
\forall t \geq 0 : \begin{cases}
s_{t+1} = F(s_t, W) - \beta \frac{\partial \ell}{\partial s} (s_{t+1}), \\
W_{t+1} = W_t + \eta \frac{\partial F}{\partial W} (s_t, W_t) \cdot \left(s_{t+1} - s_t \right).
\end{cases}
\]

Now, recall the definition of the continual updates of C-VF, as well as the gradients of the loss \(\ell = \ell(s_T, y) \) after \(T \) time steps, computed with BPTT:

\[
\begin{align*}
\Delta_{s}^{C-VF}(\beta, \eta, t) &= \frac{1}{\beta} \left(s_{t+1} - s_t \right), \\
\nabla_s^{BPTT}(t) &= \frac{\partial \ell}{\partial s_T},
\end{align*}
\]

\[
\begin{align*}
\Delta_{s}^{C-VF}(\beta, \eta, t) &= \frac{1}{\eta} \left(W_{t+1} - W_t \right), \\
\nabla_s^{BPTT}(t) &= \frac{\partial \ell}{\partial W_T},
\end{align*}
\]

The loss \(\ell \) and the gradients \(\nabla_s^{BPTT}(t) \) and \(\nabla_0^{BPTT}(t) \) are defined formally in Appendix B.2.
They satisfy the recurrence relationship

$$\forall t = 0, 1, \ldots, K : \begin{cases} \lim_{\beta \to 0} \lim_{\eta \to 0} \Delta_{\beta}^C(s, \eta, t) = -\nabla_{\beta}^{\text{BPTT}}(t), \\ \lim_{\beta \to 0} \lim_{\eta \to 0} \Delta_{\eta}^C(s, \beta, t) = -\nabla_{\eta}^{\text{BPTT}}(t). \end{cases} \quad (65)$$

A few remarks need to be made:

1. Observe that

$$\frac{\partial F}{\partial s}(s, W) = \sigma'(W \cdot s) \cdot W^\top.$$ \hspace{1cm} (66)

Ignoring the factor $\sigma'(W \cdot s)$, we see that if W is symmetric then the Jacobian of F is also symmetric, in which case the conditions of Theorem 9 are met.

2. Theorem 1 is a special case of Theorem 9. To see why, notice that if the transition function $F(s, W) = \frac{\partial F}{\partial s}(s, W)$, then

$$\frac{\partial F}{\partial s}(s, W) = \frac{\partial^2 \Phi}{\partial s^2}(s, W) = \frac{\partial F}{\partial s}(s, W)^\top$$ \hspace{1cm} (67)

In this case the extra assumption in Theorem 9 is automatically satisfied.

D.3 PROOF OF THEOREM 9

Theorem 9 is a consequence of Proposition 5 (Appendix B.2), which we recall here, and Lemma 10 below.

Proposition 5 (Gradients of BPTT). The gradients $\nabla_s^{\text{BPTT}}(t)$ and $\nabla_\theta^{\text{BPTT}}(t)$ satisfy the recurrence relationship

$$\nabla_s^{\text{BPTT}}(0) = \frac{\partial \ell}{\partial s}(s_T, y),$$ \hspace{1cm} (25)

$$\forall t = 1, 2, \ldots, T, \quad \nabla_s^{\text{BPTT}}(t) = \frac{\partial F}{\partial s}(x, s_{T-t}, \theta)^\top \cdot \nabla_s^{\text{BPTT}}(t-1),$$ \hspace{1cm} (26)

$$\forall t = 1, 2, \ldots, T, \quad \nabla_\theta^{\text{BPTT}}(t) = \frac{\partial F}{\partial \theta}(x, s_{T-t}, \theta)^\top \cdot \nabla_\theta^{\text{BPTT}}(t-1).$$ \hspace{1cm} (27)

Lemma 10 (Updates of C-VF). Define the neural and weight updates of C-VF in the limit $\eta \to 0$ and $\beta \to 0$:

$$\forall t = 0, 1, \ldots, K : \begin{cases} \Delta_{\beta}^C(s, \eta, t) = \lim_{\beta \to 0} \lim_{\eta \to 0} \Delta_{\beta}^C(s, \eta, t), \\ \Delta_{\eta}^C(s, \beta, t) = \lim_{\beta \to 0} \lim_{\eta \to 0} \Delta_{\eta}^C(s, \beta, t). \end{cases} \quad (68)$$

They satisfy the recurrence relationship

$$\Delta_{\beta}^C(s, 0) = -\frac{\partial \ell}{\partial s}(s, y),$$ \hspace{1cm} (69)

$$\forall t \geq 0, \quad \Delta_{\beta}^C(s, t+1) = \frac{\partial F}{\partial s}(x, s, \theta) \cdot \Delta_{\beta}^C(s, t),$$ \hspace{1cm} (70)

$$\forall t \geq 0, \quad \Delta_{\eta}^C(s, t+1) = \frac{\partial F}{\partial \theta}(x, s, \theta)^\top \cdot \Delta_{\eta}^C(s, t).$$ \hspace{1cm} (71)

The proof of Lemma 10 is similar to the one provided in [Ernoult et al. (2019)].
E MODELS

In this section, we describe Continual Equilibrium Propagation on fully connected layered architectures, in the standard case with tied weights and with untied weights - respectively denoted as C-EP and C-VF in Section 4. In the fully connected layered architecture model, the neurons are only connected between two consecutive layers (no skip-layer connections and no lateral connections within a layer). We denote neurons of the n-th layer as s^n with $n \in [0, N - 1]$. Layers are labelled in a backward fashion: $n = 0$ labels the output layer, $n = 1$ the first hidden layer starting from the output layer, and $n = N - 1$ the visible layer. There are $N - 2$ hidden layers in total. Fig. 7 shows this architecture with $N = 4$. Each model is presented here in a "real-time" and "discrete-time" settings.

For each model we lay out the equations of the neuron and synapse dynamics, we demonstrate the GDD property and we specify in which part of the main text they are used.

We present in this order:

1. EP in the discrete-time setting,
2. C-EP in the discrete-time setting,
3. C-EP in the real-time setting,
4. C-VF in the discrete-time setting,
5. C-VF in the real-time setting.

Demonstrating the Gradient Descending Dynamics (GDD) property (Theorem 1) on MNIST.

For this experiment, we consider the 784-512-...-512-10 network architecture, with 784 input neurons, 10 output neurons, and 512 neurons per hidden layer. The activation function used is $\sigma(x) = \tanh(x)$. The experiment consists of the following: we take a random MNIST sample (of size 1×784) and its associated target (of size 1×10). For a given value of the time-discretization parameter ϵ, we perform the first phase for T steps. Then, we perform on the one hand BPTT over K steps (to compute the gradients ∇_{BPTT}), on the other hand C-EP (or C-VF) over K steps for given values of β and η (to compute the neural updates $\Delta_{\text{C-EP}}$ or $\Delta_{\text{C-VF}}$) and compare the gradients and updates provided by the two algorithms. Precise values of the hyperparameters ϵ, T, K, β and η are given in Tab. E.6.

Figure 7: Fully connected layered architecture with $N = 4$

E.1 EP, DISCRETE-TIME

Context of use. This model is used for training experiments in Section 4.2 and Table 4.1.

Equations. We consider the layered architecture of Fig. 7, where s^0 denotes the output layer, and the feedback connections are constrained to be the transpose of the feedforward connections, i.e. $W_{nn-1} = W_{n-1n}^\top$. In the discrete-time setting of EP, the dynamics of the first phase are defined as:

$$
\forall t \in [0, T] : \left\{ \begin{array}{l}
 s^0_{t+1} = \sigma(W_{01} \cdot s^1_t) \\
 s^n_{t+1} = \sigma(W_{nn+1} \cdot s^{n+1}_{t+1} + W_{n-1n}^\top \cdot s^{n-1}_t) \\
\end{array} \right. \forall n \in [1, N-2]$$

These settings were respectively referred to as the "energy-based" and the "prototypical" settings by Ernoult et al. (2019).
In the second phase the dynamics reads:

$$\forall t \in [0, K] : \begin{cases} s_{t+1}^0 = \sigma(W_{01} \cdot s_t^1) + \beta \epsilon \left(y - s_t^0 \right) \\ s_{t+1}^n = \sigma(W_{n+1} \cdot s_t^{n+1} + W_{n-1,n}^T \cdot s_t^{n-1}) \end{cases} \quad \forall n \in [1, N - 2]$$ \hspace{1cm} (72)

As usual, y denotes the target. According to the definition of Eq. (15), for every layer W_{n+1} and every $t \in [0, K]$:

$$\Delta_{W_{n+1}}^\text{EP} (\beta, t) = \frac{1}{\beta} \left(s_{t+1}^{n,\beta} \cdot s_{t+1}^{n+1,\beta^T} - s_t^{n,\beta} \cdot s_t^{n+1,\beta^T} \right)$$

E.2 C-EP, DISCRETE-TIME

Context of use. This model is used for training experiments in Section 4.2 and Table 4.1

Equations. Recall that we consider the layered architecture of Fig. 7, where s^0 denotes the output layer. Just like in the discrete-time setting of EP, the dynamics of the first phase are defined as:

$$\forall t \in [0, T] : \begin{cases} s_{t+1}^0 = \sigma(W_{01} \cdot s_t^1) \\ s_{t+1}^n = \sigma(W_{n+1} \cdot s_t^{n+1} + W_{n-1,n}^T \cdot s_t^{n-1}) \end{cases} \quad \forall n \in [1, N - 2]$$

Again, as in EP, the feedback connections are constrained to be the transpose of the feedforward connections, i.e. $W_{n-1} = W_{n-1}^T$. In the second phase the dynamics reads:

$$\forall t \in [0, K] : \begin{cases} s_{t+1}^{0,\beta,\eta} = \sigma(W_{01} \cdot s_t^{1,\beta,\eta}) + \beta \epsilon \left(y - s_t^{0,\beta,\eta} \right) \\ s_{t+1}^{n,\beta,\eta} = \sigma(W_{n+1} \cdot s_t^{n+1,\beta,\eta} + W_{n-1,n}^T \cdot s_t^{n-1,\beta,\eta}) \end{cases} \quad \forall n \in [1, N - 2], \forall \theta \in \{ W_{n+1}, W_{n+1} \}

As usual, y denotes the target. According to the definitions of Eq. (6) and Eq. (7), for every layer W_{n+1} and every $t \in [0, K]$:

$$\Delta_{W_{n+1}}^\text{C-EP} (\beta, \eta, t) = \frac{1}{\beta} \left(s_{t+1}^{n,\beta,\eta} \cdot s_{t+1}^{n+1,\beta,\eta^T} - s_t^{n,\beta,\eta} \cdot s_t^{n+1,\beta,\eta^T} \right)$$

E.3 C-EP, REAL-TIME

Context of use. This model has not been used in this work. We only introduce it for completeness with respect to Ermon et al. (2019).

Equations. For this model, the dynamics of the first phase are defined as:

$$\forall t \in [0, T] : \begin{cases} s_{t+1}^0 = (1 - \epsilon) s_t^0 + \epsilon W_{01} \cdot \sigma(s_t^1) \\ s_{t+1}^n = (1 - \epsilon) s_t^n + \epsilon W_{n+1} \cdot \sigma(s_t^{n+1}) + W_{n-1,n}^T \cdot \sigma(s_t^{n-1}) \end{cases} \quad \forall n \in [1, N - 2]$$

Again, as in the discrete-time settings of EP and C-EP, the feedback connections are constrained to be the transpose of the feedforward connections, i.e. $W_{n-1} = W_{n-1}^T$. In the second phase:

$$\forall t \in [0, K] : \begin{cases} s_{t+1}^{0,\beta,\eta} = (1 - \epsilon) s_t^{0,\beta,\eta} + \epsilon W_{01} \cdot \sigma(s_t^{1,\beta,\eta}) + \beta \epsilon (y - s_t^{0,\beta,\eta}(t)) \\ s_{t+1}^{n,\beta,\eta} = (1 - \epsilon) s_t^{n,\beta,\eta} + \epsilon W_{n+1} \cdot \sigma(s_t^{n+1,\beta,\eta}) + W_{n-1,n}^T \cdot \sigma(s_t^{n-1,\beta,\eta}) \end{cases} \quad \forall n \in [1, N - 2], \forall \theta \in \{ W_{n+1} \}

where ϵ is a time-discretization parameter and y denotes the target. According to Eq. (6) and Eq. (7), for all time step $t \in [0, K]$ and all layer $n \in [0, N - 2]$, we define:

$$\Delta_{W_{n+1}}^\text{C-EP} (\beta, \eta, t) = \frac{1}{\beta} \left(\sigma(s_{t+1}^{n,\beta,\eta}) \cdot \sigma(s_{t+1}^{n+1,\beta,\eta^T}) - \sigma(s_t^{n,\beta,\eta}) \cdot \sigma(s_t^{n+1,\beta,\eta^T}) \right)$$

E.4 C-VF, DISCRETE-TIME

Context of use. This model is used for training experiments in Section 4.3 and Table 4.1
Equations. Recall that we consider the layered architecture of Fig. 7 where \(s^0 \) denotes the output layer. The dynamics of the first phase in C-VF are defined as:

\[
\forall t \in [0, T] : \begin{cases} s_{t+1}^0 & = \sigma(W_{01} \cdot s_t^0) \\ s_{t+1}^n & = \sigma(W_{nn+1} \cdot s_{t+1}^{n+1} \cdot s_t^n) & \forall n \in [1, N - 2] \end{cases}
\]

Here, note the difference with EP and C-EP: the feedforward and feedback connections are unconstrained. In the second phase of C-VF:

\[
\forall t \in [0, K] : \begin{cases} s_{t+1}^{0,\beta,\eta} & = \sigma(W_{01} \cdot s_t^{1,\beta,\eta}) + \beta \epsilon(y - s_{t+1}^{0,\beta,\eta}) \\ s_{t+1}^{n,\beta,\eta} & = \sigma(W_{nn+1} \cdot s_{t+1}^{n+1,\beta,\eta} + W_{nn-1} \cdot s_t^{n-1,\beta,\eta}) & \forall n \in [1, N - 2] \\ \beta_{t+1}^{\beta,\eta} & = \beta_{t}^{\beta,\eta} + \eta \Delta_{\theta}^{C,-VF}(\beta, \eta, t) & \forall \theta \in \{W_{nn+1}, W_{n+1n}\} \end{cases}
\]

As usual \(y \) denotes the target. For all layers \(W_{nn+1} \) and \(W_{n+1n} \), and every \(t \in [0, K] \), we define:

\[
\begin{cases} \Delta_{W_{n+1n}}^{C,-VF}(\beta, \eta, t) & = \frac{1}{\beta}(s_{t+1}^{n,\beta,\eta} - s_t^{n,\beta,\eta}) \cdot s_t^{n+1,\beta,\eta} \top \\ \Delta_{W_{nn+1}}^{C,-VF}(\beta, \eta, t) & = \frac{1}{\beta}(s_{t+1}^{n+1,\beta,\eta} - s_t^{n+1,\beta,\eta}) \cdot s_t^{n,\beta,\eta} \top \end{cases}
\]

E.5 C-VF, REAL-TIME

Context of use. This model is used to generate Fig. 5 - see Table E.5 C-VF, see Table E.6 for precise hyperparameters.

Equations. For this model, the dynamics of the first phase are defined as:

\[
\forall t \in [0, T] : \begin{cases} s_{t+1}^0 & = (1 - \epsilon)s_t^0 + \epsilon W_{01} \cdot \sigma(s_t^0) \\ s_{t+1}^n & = (1 - \epsilon)s_t^n + \epsilon (W_{nn+1} \cdot \sigma(s_{t+1}^{n+1}) + W_{n+1n} \cdot \sigma(s_t^{n-1})) & \forall n \in [1, N - 2] \end{cases}
\]

where \(\epsilon \) is the time-discretization parameter. Again, as in the discrete-time version of C-VF, the feedforward and feedback connections \(W_{n+1n} \) and \(W_{n-1n} \) are unconstrained. In the second phase, the dynamics reads:

\[
\forall t \in [0, K] : \begin{cases} s_{t+1}^{0,\beta,\eta} & = (1 - \epsilon)s_t^{0,\beta,\eta} + \epsilon W_{01} \cdot \sigma(s_t^{1,\beta,\eta}) + \beta \epsilon(y - s_t^{0,\beta,\eta}) \\ s_{t+1}^{n,\beta,\eta} & = (1 - \epsilon)s_t^{n,\beta,\eta} + \epsilon (W_{nn+1} \cdot \sigma(s_{t+1}^{n+1,\beta,\eta}) + W_{n+1n} \cdot \sigma(s_t^{n-1,\beta,\eta})) & \forall n \in [1, N - 2] \\ \beta_{t+1}^{\beta,\eta} & = \beta_t^{\beta,\eta} + \eta \Delta_{\theta}^{C,-VF}(\beta, \eta, t) & \forall \theta \in \{W_{nn+1}, W_{n+1n}\} \end{cases}
\]

where \(y \) denotes the target, as usual. For every feedforward connection matrix \(W_{nn+1} \) and every feedback connection matrix \(W_{n+1n} \), and for every time step \(t \in [0, K] \) in the second phase, we define:

\[
\begin{cases} \Delta_{W_{n+1n}}^{C,-VF}(\beta, \eta, t) & = \frac{1}{\beta}(s_{t+1}^{n,\beta,\eta} - s_t^{n,\beta,\eta}) \cdot \sigma(s_t^{n+1,\beta,\eta}) \top \\ \Delta_{W_{nn+1}}^{C,-VF}(\beta, \eta, t) & = \frac{1}{\beta}(s_{t+1}^{n+1,\beta,\eta} - s_t^{n+1,\beta,\eta}) \cdot \sigma(s_t^{n,\beta,\eta}) \top \end{cases}
\]
E.6 Figures for the GDD experiments

In the following figures, we show the effect of using continual updates with a finite learning rate in terms of the Δ_{C-EP} and $-\nabla_{BPTT}$ processes on different models introduced above. These figures have been realized either in the discrete-time or continuous-time setting with the fully connected layered architecture with one hidden layer on MNIST. Dashed and continuous lines respectively represent the updates Δ and the gradients ∇_{BPTT}. Each randomly selected synapse or neuron correspond to one color. We add an s or θ index to specify whether we analyse neuron or synapse updates and gradients. Each C-VF simulation has been realized with an angle between forward and backward weights of 0 degrees (i.e. $\Psi(\theta_f, \theta_b) = 0^\circ$). For each figure, left panels demonstrate the GDD property with C-EP with $\eta = 0$ and the right panels show that, upon using $\eta > 0$, dashed and continuous lines start to split apart.

Table 1: Table of hyperparameters used to demonstrate Theorem 1

<table>
<thead>
<tr>
<th>Figure</th>
<th>Angle Ψ ($^\circ$)</th>
<th>Activation</th>
<th>T</th>
<th>K</th>
<th>β</th>
<th>ϵ</th>
<th>Learning rates</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-EP 5</td>
<td>0</td>
<td>tanh</td>
<td>800</td>
<td>80</td>
<td>0.01</td>
<td>0.08</td>
<td>0 – 0</td>
</tr>
<tr>
<td>C-EP 5</td>
<td>45</td>
<td>tanh</td>
<td>800</td>
<td>80</td>
<td>0.01</td>
<td>0.08</td>
<td>0 – 0</td>
</tr>
<tr>
<td>C-EP 5</td>
<td>0</td>
<td>tanh</td>
<td>800</td>
<td>80</td>
<td>0.01</td>
<td>0.08</td>
<td>$1.510^{-5} - 1.510^{-5}$</td>
</tr>
<tr>
<td>C-EP 5</td>
<td>45</td>
<td>tanh</td>
<td>800</td>
<td>80</td>
<td>0.01</td>
<td>0.08</td>
<td>$1.510^{-5} - 1.510^{-5}$</td>
</tr>
<tr>
<td>C-VF 14-15</td>
<td>0</td>
<td>tanh</td>
<td>800</td>
<td>80</td>
<td>0.005</td>
<td>0.08</td>
<td>0 – 0</td>
</tr>
<tr>
<td>C-VF 14-15</td>
<td>0</td>
<td>tanh</td>
<td>800</td>
<td>80</td>
<td>0.005</td>
<td>0.08</td>
<td>$2.10^{-5} - 2.10^{-5}$</td>
</tr>
<tr>
<td>C-VF 14-15</td>
<td>0</td>
<td>tanh</td>
<td>150</td>
<td>10</td>
<td>0.01</td>
<td>–</td>
<td>0 – 0</td>
</tr>
<tr>
<td>C-VF 14-15</td>
<td>0</td>
<td>tanh</td>
<td>150</td>
<td>10</td>
<td>0.01</td>
<td>–</td>
<td>$2.10^{-5} - 2.10^{-5}$</td>
</tr>
<tr>
<td>C-VF 14-15</td>
<td>0</td>
<td>tanh</td>
<td>800</td>
<td>80</td>
<td>0.05</td>
<td>0.08</td>
<td>0 – 0</td>
</tr>
<tr>
<td>C-VF 14-15</td>
<td>0</td>
<td>tanh</td>
<td>800</td>
<td>80</td>
<td>0.05</td>
<td>0.08</td>
<td>$2.10^{-5} - 2.10^{-5}$</td>
</tr>
<tr>
<td>C-EP 8-9</td>
<td>0</td>
<td>tanh</td>
<td>150</td>
<td>10</td>
<td>0.01</td>
<td>–</td>
<td>0 – 0</td>
</tr>
<tr>
<td>C-EP 8-9</td>
<td>0</td>
<td>tanh</td>
<td>150</td>
<td>10</td>
<td>0.01</td>
<td>–</td>
<td>$2.10^{-5} - 2.10^{-5}$</td>
</tr>
</tbody>
</table>
Figure 8: Discrete-time setting. **Left**: $\Delta_{\theta}^{C-EP}(t)$ updates ($\eta = 0$) and $-\nabla^{BPTT}_{\theta}(t)$ gradients. **Right**: $\Delta_{s}^{C-EP}(t)$ updates ($\eta > 0$) and $-\nabla^{BPTT}_{s}(t)$ gradients.

Figure 9: Discrete-time setting. **Left**: $\Delta_{\theta}^{C-EP}(t)$ updates ($\eta = 0$) and $-\nabla^{BPTT}_{\theta}(t)$ gradients. **Right**: $\Delta_{\theta}^{C-EP}(t)$ updates ($\eta > 0$) and $-\nabla^{BPTT}_{\theta}(t)$ gradients.
Figure 10: Real-time setting. **Left:** $\Delta_{\theta}^C-\text{EP}(t)$ updates ($\eta = 0$) and $-\nabla^B\text{PTT}_s(t)$ gradients. **Right:** $\Delta_{\theta}^C-\text{EP}(t)$ updates ($\eta > 0$) and $-\nabla^B\text{PTT}_s(t)$ gradients.

Figure 11: Real-time setting. **Left:** $\Delta_{\theta}^C-\text{EP}(t)$ updates ($\eta = 0$) and $-\nabla^B\text{PTT}_\theta(t)$ gradients. **Right:** $\Delta_{\theta}^C-\text{EP}(t)$ updates ($\eta > 0$) and $-\nabla^B\text{PTT}_\theta(t)$ gradients.
Figure 12: Discrete-time setting. **Left:** $\Delta_{\mathbf{V}_F}^C(t)$ updates ($\eta = 0$) and $-\nabla_{\mathbf{V}_F}^{\text{BPTT}}(t)$ gradients. **Right:** $\Delta_{\mathbf{V}_F}^{\text{C-EP}}(t)$ updates ($\eta > 0$) and $-\nabla_{\mathbf{V}_F}^{\text{BPTT}}(t)$ gradients.

Figure 13: Discrete-time setting. **Left:** $\Delta_{\theta}^{\text{C-EP}}(t)$ updates ($\eta = 0$) and $-\nabla_{\theta}^{\text{BPTT}}(t)$ gradients. **Right:** $\Delta_{\theta}^{\text{C-EP}}(t)$ updates ($\eta > 0$) and $-\nabla_{\theta}^{\text{BPTT}}(t)$ gradients.
Figure 14: Real-time setting. **Left:** $\Delta C-VF(t)$ updates ($\eta = 0$) and $-\nabla_{s}\text{BPTT}(t)$ gradients. **Right:** $\Delta s-VF(t)$ updates ($\eta > 0$) and $-\nabla_{s}\text{BPTT}(t)$ gradients.

Figure 15: Real-time setting. **Left:** $\Delta C-VF(t)$ updates ($\eta = 0$) and $-\nabla_{\theta}\text{BPTT}(t)$ gradients. **Right:** $\Delta \theta-VF(t)$ updates ($\eta > 0$) and $-\nabla_{\theta}\text{BPTT}(t)$ gradients.
F Experimental Details

F.1 Training experiments (Table 4.1)

Simulation framework. Simulations have been carried out in Pytorch. The code has been attached to the supplementary materials upon submitting this work on OpenReview. We have also attached a readme.txt with a specification of all dependencies, packages, descriptions of the python files as well as the commands to reproduce all the results presented in this paper.

Data set. Training experiments were carried out on the MNIST data set. Training set and test set include 60000 and 10000 samples respectively.

Optimization. Optimization was performed using stochastic gradient descent with mini-batches of size 20. For each simulation, weights were Glorot-initialized. No regularization technique was used and we did not use the persistent trick of caching and reusing converged states for each data sample between epochs as in Scellier and Bengio (2017).

Activation function. For training, we used the activation function

$$\sigma(x) = \frac{1}{1 + \exp(-4(x - 1/2))}.$$ (77)

Although it is a shifted and rescaled sigmoid function, we shall refer to this activation function as ‘sigmoid’.

Use of a randomized β. The option ‘Random β’ appearing in the detailed table of results (Table 3) refers to the following procedure. During training, instead of using the same β across mini-batches, we only keep the same absolute value of β and sample its sign from a Bernoulli distribution of probability $\frac{1}{2}$ at each mini-batch iteration. This procedure was hinted at by Scellier and Bengio (2017) to improve test error, and is used in our context to improve the model convergence for Continual Equilibrium Propagation - appearing as C-EP and C-VF in Table 4.1 - training simulations.

Tuning the angle between forward and backward weights. In Table 4.1 we investigate C-VF initialized with different angles between the forward and backward weights - denoted as Ψ in Table 4.1. Denoting them respectively θ_f and θ_b, the angle κ between them is defined here as:

$$\kappa(\theta_f, \theta_b) = \cos^{-1} \left(\frac{\text{Tr}(\theta_f \cdot \theta_b^\top)}{\sqrt{\text{Tr}(\theta_f \cdot \theta_f^\top) \cdot \text{Tr}(\theta_b \cdot \theta_b^\top)}} \right),$$

where Tr denotes the trace, i.e. $\text{Tr}(A) = \sum_i A_{ii}$ for any squared matrix A. To tune arbitrarily well enough $\kappa(\theta_f, \theta_b)$, the procedure is the following: starting from $\theta_b = \theta_f$, i.e. $\kappa(\theta_f, \theta_b) = 0$, we can gradually increase the angle between θ_f and θ_b by flipping the sign of an arbitrary proportion of components of θ_b. The more components have their sign flipped, the larger is the angle. More formally, we write θ_b in the form $\theta_b = M(p) \odot \theta_f$ and we define:

$$\Psi(p) = \kappa(\theta_f, M(p) \odot \theta_f),$$ (78)

where $M(p)$ is a mask of binary random values $\{+1, -1\}$ of the same dimension of θ_f: $M(p) = -1$ with probability p and $M(p) = +1$ with probability $1 - p$. Taking the cosine and the expectation of Eq. (78), we obtain:

$$\langle \cos(\Psi(p)) \rangle = p \times \frac{\text{Tr}(\theta_f \cdot \theta_f^\top)}{\text{Tr}(\theta_f \cdot \theta_f^\top)} + (1 - p) \times \frac{\text{Tr}(\theta_f \cdot \theta_f^\top)}{\text{Tr}(\theta_f \cdot \theta_f^\top)} = 1 - 2p.$$
Thus, the angle Ψ between θ_f and $\theta_f \odot M(p)$ can be tuned by the choice of p through:

$$p(\Psi) = \frac{1}{2}(1 - \langle \cos(\Psi) \rangle)$$

(79)

Hyperparameter search for EP. We distinguish between two kinds of hyperparameters: the recurrent hyperparameters - i.e. T, K and β - and the learning rates. A first guess of the recurrent hyperparameters T and β is found by plotting the $\Delta^{\text{C-EP}}_W$ and ∇^{BPTT}_W processes associated to synapses and neurons to see qualitatively whether the theorem is approximately satisfied, and by conjointly computing the proportions of synapses whose $\Delta^{\text{C-EP}}_W$ processes have the same sign as its ∇^{BPTT}_W processes. K can also be found out of the plots as the number of steps which are required for the gradients to converge. Moreover, plotting these processes reveal that gradients are vanishing when going away from the output layer, i.e. they lose up to 10^{-1} in magnitude when going from a layer to the previous (i.e. upstream) layer. We subsequently initialized the learning rates with increasing values going from the output layer to upstream layers. The typical range of learning rates is $[10^{-3}, 10^{-1}]$, $[10, 1000]$ for T, $[2, 100]$ for K and $[0.01, 1]$ for β. Hyperparameters were adjusted until having a train error the closest to zero. Finally, in order to obtain minimal recurrent hyperparameters - i.e. smallest T and K possible - we progressively decreased T and K until the train error increases again.

Table 2: Table of hyperparameters used for training. "C" and "VF" respectively denote "continual" and "vector-field", "-#h" stands for the number of hidden layers. The sigmoid activation is defined by Eq. (77).

<table>
<thead>
<tr>
<th>Activation</th>
<th>T</th>
<th>K</th>
<th>β</th>
<th>Random β</th>
<th>Epochs</th>
<th>Learning rates</th>
</tr>
</thead>
<tbody>
<tr>
<td>EP-1h</td>
<td>sigmoid</td>
<td>30</td>
<td>10</td>
<td>0.1</td>
<td>False</td>
<td>30</td>
</tr>
<tr>
<td>EP-2h</td>
<td>sigmoid</td>
<td>100</td>
<td>20</td>
<td>0.5</td>
<td>False</td>
<td>50</td>
</tr>
<tr>
<td>C-Ep-1h</td>
<td>sigmoid</td>
<td>40</td>
<td>15</td>
<td>0.2</td>
<td>False</td>
<td>100</td>
</tr>
<tr>
<td>C-Ep-1h</td>
<td>sigmoid</td>
<td>40</td>
<td>15</td>
<td>0.2</td>
<td>True</td>
<td>100</td>
</tr>
<tr>
<td>C-Ep-2h</td>
<td>sigmoid</td>
<td>100</td>
<td>20</td>
<td>0.5</td>
<td>False</td>
<td>150</td>
</tr>
<tr>
<td>C-VF-1h</td>
<td>sigmoid</td>
<td>40</td>
<td>15</td>
<td>0.2</td>
<td>True</td>
<td>100</td>
</tr>
<tr>
<td>C-VF-2h</td>
<td>sigmoid</td>
<td>100</td>
<td>20</td>
<td>0.35</td>
<td>True</td>
<td>150</td>
</tr>
</tbody>
</table>
Table 3: Training results on MNIST with EP, C-EP and C-VF.
"#h" stands for the number of hidden layers. We indicate over five trials the mean and standard deviation for the test error, the mean error in parenthesis for the train error. \(T\) (resp. \(K\)) is the number of iterations in the first (resp. second) phase.

Full table of results. Since Table 4.1 does not show C-VF simulation results for all initial weight angles, we provide below the full table of results, including those which were used to plot Fig. 5.

<table>
<thead>
<tr>
<th>Initial (\Psi(\theta_f, \theta_b)) (°)</th>
<th>Error (%)</th>
<th>Test</th>
<th>Train</th>
<th>T</th>
<th>K</th>
<th>Random (\beta)</th>
<th>Epochs</th>
</tr>
</thead>
<tbody>
<tr>
<td>EP-1h</td>
<td>–</td>
<td>2.00 ± 0.13</td>
<td>(0.20)</td>
<td>30</td>
<td>10</td>
<td>No</td>
<td>30</td>
</tr>
<tr>
<td>EP-2h</td>
<td>–</td>
<td>1.95 ± 0.10</td>
<td>(0.14)</td>
<td>100</td>
<td>20</td>
<td>No</td>
<td>50</td>
</tr>
<tr>
<td>C-EP-1h</td>
<td>–</td>
<td>2.85 ± 0.18</td>
<td>(0.83)</td>
<td>40</td>
<td>15</td>
<td>No</td>
<td>100</td>
</tr>
<tr>
<td>C-EP-1h</td>
<td>–</td>
<td>2.28 ± 0.16</td>
<td>(0.41)</td>
<td>40</td>
<td>15</td>
<td>Yes</td>
<td>100</td>
</tr>
<tr>
<td>C-EP-2h</td>
<td>–</td>
<td>2.44 ± 0.14</td>
<td>(0.31)</td>
<td>100</td>
<td>20</td>
<td>No</td>
<td>150</td>
</tr>
<tr>
<td>C-VF-1h</td>
<td>0</td>
<td>2.43 ± 0.08</td>
<td>(0.77)</td>
<td>40</td>
<td>15</td>
<td>Yes</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>22.5</td>
<td>2.38 ± 0.15</td>
<td>(0.74)</td>
<td>40</td>
<td>15</td>
<td>Yes</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>2.37 ± 0.06</td>
<td>(0.78)</td>
<td>40</td>
<td>15</td>
<td>Yes</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>67.5</td>
<td>2.48 ± 0.15</td>
<td>(0.81)</td>
<td>40</td>
<td>15</td>
<td>Yes</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>2.46 ± 0.18</td>
<td>(0.78)</td>
<td>40</td>
<td>15</td>
<td>Yes</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>112.5</td>
<td>4.51 ± 3.96</td>
<td>(2.92)</td>
<td>40</td>
<td>15</td>
<td>Yes</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>135</td>
<td>86.61 ± 4.27</td>
<td>(88.51)</td>
<td>40</td>
<td>15</td>
<td>Yes</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>157.5</td>
<td>91.08 ± 0.01</td>
<td>(90.98)</td>
<td>40</td>
<td>15</td>
<td>Yes</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>180</td>
<td>92.82 ± 3.47</td>
<td>(92.71)</td>
<td>40</td>
<td>15</td>
<td>Yes</td>
<td>100</td>
</tr>
<tr>
<td>C-VF-2h</td>
<td>0</td>
<td>2.97 ± 0.19</td>
<td>(1.58)</td>
<td>100</td>
<td>20</td>
<td>Yes</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>22.5</td>
<td>3.54 ± 0.75</td>
<td>(2.70)</td>
<td>100</td>
<td>20</td>
<td>Yes</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>3.78 ± 0.78</td>
<td>(2.86)</td>
<td>100</td>
<td>20</td>
<td>Yes</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>67.5</td>
<td>4.59 ± 0.92</td>
<td>(4.08)</td>
<td>100</td>
<td>20</td>
<td>Yes</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>5.05 ± 1.17</td>
<td>(4.81)</td>
<td>100</td>
<td>20</td>
<td>Yes</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>112.5</td>
<td>20.33 ± 13.03</td>
<td>(20.30)</td>
<td>100</td>
<td>20</td>
<td>Yes</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>135</td>
<td>59.04 ± 17.97</td>
<td>(60.53)</td>
<td>100</td>
<td>20</td>
<td>Yes</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>157.5</td>
<td>77.90 ± 13.49</td>
<td>(78.04)</td>
<td>100</td>
<td>20</td>
<td>Yes</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>180</td>
<td>74.17 ± 12.76</td>
<td>(74.05)</td>
<td>100</td>
<td>20</td>
<td>Yes</td>
<td>150</td>
</tr>
</tbody>
</table>
F.2 Why C-EP does not perform as well as standard EP?

We provide here further ground for the training performance degradation observed on the MNIST task when implementing C-EP compared to standard EP. In practice, when training with C-EP, we have to make a trade-off between:

1. Having a learning rate that is small enough so that C-EP updates are subsequently close enough to the gradients of BPTT (Theorem 1),
2. Having a learning rate that is large enough to ensure convergence within a reasonable number of epochs.

In other words, the degradation of accuracy observed in the table of Fig. 4.1 is due to using a learning rate that is too large to observe convergence within 100 epochs. To demonstrate this, we implement Alg. 5 which simply consists in using a very small learning rate throughout the second phase (denoted as η_{tiny}), and artificially rescaling the resulting weight update by a bigger learning rate (denoted as η).

Applying Alg. 5 to a fully connected layered architecture with one hidden layer, $T = 30$, $K = 10$, $\beta = 0.1$, yields $2.06 \pm 0.13\%$ test error and $0.18 \pm 0.01\%$ train error over 5 trials, where we indicate mean and standard deviation. Similarly, applying Alg. 5 to a fully connected layered architecture with two hidden layers, $T = 100$, $K = 20$, $\beta = 0.5$, yields $1.89 \pm 0.22\%$ test error and $0.02 \pm 0.02\%$ train error. These results are exactly the same as the one provided by standard EP - see Table 5.

Algorithm 5 Debugging procedure of C-EP

Input: x, y, θ, β, η, $\eta_{\text{tiny}} = 10^{-5}\eta$.

Output: θ.

1: $s_0 \leftarrow 0$ \hspace{1cm} \triangleright First Phase
2: $\Delta \theta \leftarrow 0$ \hspace{1cm} \triangleright Temporary variable accumulating parameter updates
3: repeat
4: $s_{t+1} \leftarrow \frac{\partial \Phi}{\partial s}(x, s_t, \theta)$
5: until $s_t = s^*_t$
6: $s^*_0 \leftarrow s_*$ \hspace{1cm} \triangleright Second Phase
7: repeat
8: $s^*_{t+1} \leftarrow \frac{\partial \Phi}{\partial s}(x, s^*_t, \theta) - \beta \frac{\partial \Phi}{\partial s}(s^*_t, y)$
9: 10: $\theta \leftarrow \theta + \frac{\eta_{\text{tiny}}}{\beta} \left(\frac{\partial \Phi}{\partial s}(s^*_{t+1}) - \frac{\partial \Phi}{\partial s}(s^*_t) \right)$
11: $\Delta \theta \leftarrow \Delta \theta + \frac{\eta_{\text{tiny}}}{\beta} \left(\frac{\partial \Phi}{\partial s}(s^*_{t+1}) - \frac{\partial \Phi}{\partial s}(s^*_t) \right)$
12: until s^*_t and θ are converged.
13: $\theta \leftarrow \theta - \Delta \theta + \frac{\eta}{\eta_{\text{tiny}}} \Delta \theta$ \hspace{1cm} \triangleright Rescale the total parameter update by $\frac{\eta}{\eta_{\text{tiny}}}$

Figure 16: Train and test error achieved on MNIST with Continual Equilibrium Propagation (C-EP). Plain lines indicate mean, shaded zones delimiting mean plus/minus standard deviation over 5 trials. Left: C-EP on the fully connected layered architecture with one hidden layer (784-512-10) without beta randomization. Middle: C-EP on the fully connected layered architecture with one hidden layer (784-512-10) with beta randomization. Right: C-EP on the fully connected layered architecture with two hidden layers (784-512-512-10) without beta randomization.
Figure 17: Train and test error achieved on MNIST by Continual Vector Field Equilibrium Propagation in the discrete-time setting (C-VF) with a fully connected layered architecture with one hidden layer (784-512-10) for different initialization for the angle between forward and backward weights (Ψ). Plain lines indicate mean, shaded zones delimiting mean plus/minus standard deviation over 5 trials.
Figure 18: Train and test error achieved on MNIST by Continual Vector Field Equilibrium Propagation in the discrete-time setting (C-VF) with a fully connected layered architecture with two hidden layers (784-512-512-10) for different initialization for the angle between forward and backward weights (Ψ). Plain lines indicate mean, shaded zones delimiting mean plus/minus standard deviation over 5 trials.