
Under review as a conference paper at ICLR 2020

EQUILIBRIUM PROPAGATION WITH
CONTINUAL WEIGHT UPDATES

Anonymous authors
Paper under double-blind review

ABSTRACT

Equilibrium Propagation (EP) is a learning algorithm that bridges Machine Learn-
ing and Neuroscience, by computing gradients closely matching those of Backprop-
agation Through Time (BPTT), but with a learning rule local in space. Given an
input x and associated target y, EP proceeds in two phases: in the first phase neu-
rons evolve freely towards a first steady state; in the second phase output neurons
are nudged towards y until they reach a second steady state. However, in existing
implementations of EP, the learning rule is not local in time: the weight update
is performed after the dynamics of the second phase have converged and requires
information of the first phase that is no longer available physically. This is a major
impediment to the biological plausibility of EP and its efficient hardware imple-
mentation. In this work, we propose a version of EP named Continual Equilibrium
Propagation (C-EP) where neuron and synapse dynamics occur simultaneously
throughout the second phase, so that the weight update becomes local in time.
We prove theoretically that, provided the learning rates are sufficiently small, at
each time step of the second phase the dynamics of neurons and synapses follow
the gradients of the loss given by BPTT (Theorem 1). We demonstrate training
with C-EP on MNIST and generalize C-EP to neural networks where neurons are
connected by asymmetric connections. We show through experiments that the
more the network updates follows the gradients of BPTT, the best it performs in
terms of training. These results bring EP a step closer to biology while maintaining
its intimate link with backpropagation.

1 INTRODUCTION

A motivation for deep learning is that a few simple principles may explain animal intelligence and
allow us to build intelligent machines, and learning paradigms must be at the heart of such principles,
creating a synergy between neuroscience and Artifical Intelligence (AI) research. In the deep
learning approach to AI, backpropagation combined with stochastic gradient descent thrives as the
most powerful algorithm for training artificial neural networks (LeCun et al., 2015). Unfortunately,
backpropagation implemented verbatim is not biologically realistic, and its implementation on
GPUs consumes more energy than the brain by several orders of magnitude (Strubell et al., 2019).
Investigating more biorealistic learning schemes with real-world applicability is therefore of interest
not only for understanding the brain, but also for developing neuromorphic computing hardware
that takes inspiration from information-encoding, dynamics and topology of the brain to reach fast
and energy efficient AI (Ambrogio et al., 2018; Romera et al., 2018). In these regards, Equilibrium
Propagation (EP) is an alternative style of computation for estimating error gradients that presents
significant advantages (Scellier and Bengio, 2017).

First, EP belongs to the family of contrastive Hebbian learning (CHL) algorithms (Ackley et al., 1985;
Movellan, 1991; Hinton, 2002) and therefore benefits from an important feature of these algorithms:
neural dynamics and synaptic updates depend solely on information that is locally available. As
a CHL algorithm, EP applies to convergent RNNs, i.e. RNNs that are fed by a static input and
converge to a steady state. Training such a convergent RNN consists in adjusting the weights so
that the steady state corresponding to an input x produces output values close to associated targets y.
CHL algorithms proceed in two phases: in the first phase, neurons evolve freely without external
influence and settle to a (first) steady state; in the second phase, the values of output neurons are
influenced by the target y and the neurons settle to a second steady state. CHL weight updates consist

1



Under review as a conference paper at ICLR 2020

in a Hebbian rule strengthening the connections between co-activated neurons at the first steady state,
and an anti-Hebbian rule with opposite effect at the second steady state.

A second key property of EP is that, unlike CHL and other related algorithms, it is intimately linked
to backpropagation. It has been shown that synaptic updates in EP follow gradients of recurrent
backpropagation (RBP) (Scellier and Bengio, 2019) and backpropagation through time (BPTT)
(Ernoult et al., 2019). This makes it especially attractive to bridge the gap between neural networks
developed by neuroscientists and AI researchers.

Nevertheless, in all existing implementations of EP the weight update is performed after the dynamics
of the second phase have converged, when the first steady state is no longer physically available.
Thus the first steady state has to be artificially stored. This requirement remains a major impediment
to the biological plausibility of EP, and also to the development of efficient EP computing hardware.
In this work, we propose an alternative implementation of EP which avoids this issue, by enabling
synaptic dynamics to occur throughout the second phase, simultaneously with neural dynamics.

More specifically, the contributions of the current paper are the following:

• We introduce Continual Equilibrium Propagation (C-EP), a new version of EP with continual
weight updates: the weights of the network are adjusted continually in the second phase of
training using local information in space and time. Neuron steady states do not need to be
stored after the first phase, in contrast with standard EP where a global weight update is
performed at the end of the second phase. Synaptic connections between neurons are first
assumed to be symmetric and tied (Section 3.1-3.2).
• We show mathematically that, provided that the changes in synaptic strengths are sufficiently

slow (i.e. the learning rates are sufficiently small), at each time step of the second phase
the dynamics of neurons and synapses follow the gradients of the loss obtained with BPTT
(Theorem 1 and Fig. 1). We call this property the Gradient Descending Dynamics (GDD)
property, for consistency with the terminology used in Ernoult et al. (2019) (Section 3.3).
• We demonstrate training with C-EP on MNIST, with accuracy approaching the one obtained

with standard EP (Section 4.2).
• Finally, we generalize C-EP to the more bio-realistic situation of a neural network with

asymmetric connections between neurons, inspired by the vector field method proposed
in Scellier et al. (2018). We demonstrate this approach on MNIST, and show numerically
that the training performance is correlated with the satisfaction of Gradient Descending
Dynamics (Section 4.3).

For completeness, we also show how the Recurrent Backpropagation (RBP) algorithm of Almeida
(1987); Pineda (1987) relates to C-EP, EP and BPTT. We illustrate the equivalence of these four
algorithms on a simple analytical model (Fig. 3) and we develop their relationship in Appendix A.

2 BACKGROUND: CONVERGENT RNNS AND EQUILIBRIUM PROPAGATION

Convergent RNNs With Static Input. We consider the supervised setting, where we want to
predict a target y given an input x. The model is a recurrent neural network (RNN) parametrized by θ
and evolving according to the dynamics:

st+1 = F (x, st, θ) . (1)

F is the transition function of the system. Assuming convergence of the dynamics before time step
T , we have sT = s∗ where s∗ is the steady state of the network characterized by

s∗ = F (x, s∗, θ) . (2)

The number of timesteps T is a hyperparameter that we choose large enough so that sT = s∗ for the
current value of θ. The goal is to optimize the parameter θ in order to minimize a loss:

L∗ = ` (s∗, y) . (3)

Algorithms that optimize the loss L∗ for RNNs include Backpropagation Through Time (BPTT) and
the Recurrent Backpropagation (RBP) algorithm of Almeida (1987); Pineda (1987), presented in
Appendix B.

2



Under review as a conference paper at ICLR 2020

Figure 1: Gradient-Descending Dynamics (GDD, Theorem 1). In the second phase of Continual
Equilibrium Prop (C-EP), the dynamics of neurons and synapses descend the gradients of BPTT, i.e.
∆C−EP(t) = −∇BPTT(t). The colors illustrate when corresponding computations are realized in
C-EP and BPTT. Top left. 1st phase of C-EP with static input x and target y. The final state sT is the
steady state s∗. Bottom left. Backprop through time (BPTT). Bottom right. 2nd phase of C-EP. The
starting state sβ,η0 is the final state of the forward-time pass, i.e. the steady state s∗.

Equilibrium Propagation (EP). EP (Scellier and Bengio, 2017) is a learning algorithm that
computes the gradient of L∗ in the particular case where the transition function F derives from
a scalar function Φ, i.e. with F of the form F (x, s, θ) = ∂Φ

∂s (x, s, θ). The algorithm consists in
two phases (see Alg. 1 of Fig. 2). During the first phase, the network follows a sequence of states
s1, s2, s3 . . . and converges to a steady state denoted s∗. In the second phase, an extra term β ∂`

∂s
pertubs the dynamics of the neurons (where β > 0 is a scalar hyperparameter): starting from the
steady state sβ0 = s∗, the network follows a second sequence of states sβ1 , s

β
2 , s

β
3 . . . and converges to

a new steady state denoted sβ∗ . Scellier and Bengio (2017) have shown that the gradient of the loss
L∗ can be estimated based on the two steady states s∗ and sβ∗ . Specifically, in the limit β → 0,

1

β

(
∂Φ

∂θ

(
x, sβ∗ , θ

)
− ∂Φ

∂θ
(x, s∗, θ)

)
→ −∂L

∗

∂θ
. (4)

3 EQUILIBRIUM PROPAGATION WITH CONTINUAL WEIGHT UPDATES (C-EP)

This section presents the main theoretical contributions of this paper. We introduce a new algorithm
to optimize L∗ (Eq. 3): a new version of EP with continual parameter updates that we call C-EP.
Unlike typical machine learning algorithms (such as BPTT, RBP and EP) in which the weight updates
occur after all the other computations in the system are performed, our algorithm offers a mechanism
in which the weights are updated continuously as the states of the neurons change.

3.1 FROM EP TO C-EP: AN INTUITION BEHIND CONTINUAL WEIGHT UPDATES

The key idea to understand how to go from EP to C-EP is that the update of EP appearing in Eq. (4)
reads as the following telescopic sum:

1

β

(
∂Φ

∂θ

(
x, sβ∗ , θ

)
− ∂Φ

∂θ
(x, s∗, θ)

)
︸ ︷︷ ︸

global parameter update in EP

=

∞∑
t=1

1

β

(
∂Φ

∂θ

(
x, sβt , θ

)
− ∂Φ

∂θ

(
x, sβt−1, θ

))
︸ ︷︷ ︸

parameter update at time t in C-EP

. (5)

3



Under review as a conference paper at ICLR 2020

Algorithm 1 EP
Input: x, y, θ, β, η.
Output: θ.

1: s0 ← 0 . First Phase
2: repeat
3: st+1 ← ∂Φ

∂s (x, st, θ)
4: until st = s∗
5: Store s∗
6: sβ0 ← s∗ . Second Phase
7: repeat
8: sβt+1 ← ∂Φ

∂s

(
x, sβt , θ

)
− β ∂`∂s

(
sβt , y

)
9: until sβt = sβ∗

10: . Global Parameter Update
11: θ ← θ + η

β

(
∂Φ
∂θ

(
sβ∗ , θ

)
− ∂Φ

∂θ (s∗, θ)
)

Algorithm 2 C-EP (with simplified notations)
Input: x, y, θ, β, η.
Output: θ.

1: s0 ← 0 . First Phase
2: repeat
3: st+1 ← ∂Φ

∂s (x, st, θ)
4: until st = s∗
5: sβ0 ← s∗ . Second Phase
6: repeat
7: sβt+1 ← ∂Φ

∂s

(
x, sβt , θ

)
− β ∂`∂s

(
sβt , y

)
8: . Parameter Update at Time t
9: θ ← θ + η

β

(
∂Φ
∂θ

(
sβt+1

)
− ∂Φ

∂θ

(
sβt

))
10: until sβt and θ are converged.

Figure 2: Left. Pseudo-code of EP. This is the version of EP for discrete-time dynamics introduced
in Ernoult et al. (2019). Right. Pseudo-code of C-EP with simplified notations (see section 3.2 for a
formal definition of C-EP). Difference between EP and C-EP. In EP, one global parameter update
is performed at the end of the second phase ; in C-EP, parameter updates are performed throughout
the second phase. Eq. 5 shows that the continual updates of C-EP add up to the global update of EP.

In Eq. (5) we have used that sβ0 = s∗ and sβt → sβ∗ as t→∞. Here lies the very intuition of continual
updates motivating this work; instead of keeping the weights fixed throughout the second phase and
updating them at the end of the second phase based on the steady states s∗ and sβ∗ , as in EP (Alg. 1 of
Fig. 2), the idea of the C-EP algorithm is to update the weights at each time t of the second phase
between two consecutive states sβt−1 and sβt (Alg. 2 of Fig. 2). One key difference in C-EP compared
to EP though, is that, in the second phase, the weight update at time step t influences the neural states
at time step t+ 1 in a nontrivial way, as illustrated in the computational graph of Fig. 1. In the next
subsection we define C-EP using notations that explicitly show this dependency.

3.2 DESCRIPTION OF THE C-EP ALGORITHM

The first phase of C-EP is the same as that of EP (see Fig. 2). In the second phase of C-EP the
parameter variable is regarded as another dynamic variable θt that evolves with time t along with
st. The dynamics of st and θt in the second phase of C-EP depend on the values of the two
hyperparameters β (the hyperparameter of influence) and η (the learning rate), therefore we write sβ,ηt
and θβ,ηt to show explicitly this dependence. With now both the neurons and the synapses evolving in
the second phase, the dynamic variables sβ,ηt and θβ,ηt start from sβ,η0 = s∗ and θβ,η0 = θ and follow:

∀t ≥ 0 :


sβ,ηt+1 =

∂Φ

∂s

(
x, sβ,ηt , θβ,ηt

)
− β ∂`

∂s

(
sβ,ηt , y

)
,

θβ,ηt+1 = θβ,ηt +
η

β

(
∂Φ

∂θ

(
x, sβ,ηt+1, θ

β,η
t

)
− ∂Φ

∂θ

(
x, sβ,ηt , θβ,ηt

))
.

(6)

The difference in C-EP compared to EP is that the value of the parameter used to update sβ,ηt+1 in
Eq. (6) is the current θβ,ηt , not θ. Provided the learning rate η is small enough, i.e. the synapses are
slow compared to the neurons, this effect is weak. Intuitively, in the limit η → 0, the parameter
changes are negligible so that θβ,ηt can be approximated by its initial value θβ,η0 = θ. Under this
approximation, the dynamics of sβ,ηt in C-EP and the dynamics of sβt in EP are the same. See Fig. 3
for a simple example, and Appendix A.3 for a proof in the general case.

4



Under review as a conference paper at ICLR 2020

3.3 GRADIENT-DESCENDING DYNAMICS (GDD)

Now we prove that, provided the hyperparameter β and the learning rate η are small enough, the
dynamics of the neurons and the weights given by Eq. (6) follow the gradients of BPTT (Theorem 1
and Fig. 1). For a formal statement of this property, we define the continual updates of C-EP, as well
as the gradients of the loss L = ` (sT , y) after T time steps, computed with BPTT:


∆C−EP
s (β, η, t) =

1

β

(
sβ,ηt+1 − s

β,η
t

)
,

∆C−EP
θ (β, η, t) =

1

η

(
θβ,ηt+1 − θ

β,η
t

)
,


∇BPTT
s (t) =

∂L
∂sT−t

,

∇BPTT
θ (t) =

∂L
∂θT−t

.
(7)

More details about L and the gradients∇BPTT
s (t) and ∇BPTT

θ (t) are provided in Appendix B.
Theorem 1 (GDD Property). Let s0, s1, . . . , sT be the convergent sequence of states and denote
s∗ = sT the steady state. Further assume that there exists some step K where 0 < K ≤ T such
that s∗ = sT = sT−1 = . . . sT−K . Then, in the limit η → 0 and β → 0, the first K updates in the
second phase of C-EP are equal to the negatives of the first K gradients of BPTT, i.e.

∀t = 0, 1, . . . ,K :

 lim
β→0

lim
η→0

∆C−EP
s (β, η, t) = −∇BPTT

s (t),

lim
β→0

lim
η→0

∆C−EP
θ (β, η, t) = −∇BPTT

θ (t).
(8)

Theorem 1 rewrites sβ,ηt+1 ≈ s
β,η
t − β ∂L

∂sT−t
and θβ,ηt+1 ≈ θ

β,η
t − η ∂L

∂θT−t
, showing that in the second

pĥase of C-EP, neurons and synapses descend the gradients of the loss L obtained with BPTT, with
the hyperparameters β and η playing the role of learning rates for sβ,ηt and θβ,ηt , respectively. Fig. 3
illustrates Theorem 1 with a simple dynamical system for which the updates ∆C−EP and the gradients
∇BPTT are analytically tractable - see Appendix C for derivation details.

Figure 3: Illustration of Theorem 1 on a simple model. The variables s and θ are scalars, the first
phase equation is st+1 = 1

2 (st + θ), the steady state is denoted s∗ and the loss is L∗ = 1
2s

2
∗. For

completeness, we also include the corresponding gradients of Recurrent Backpropagation (RBP) and
the updates of EP, denoted∇RBP and ∆EP respectively. The equivalence between C-EP, EP, RBP
and BPTT holds in the general setting: see Appendix A for a thorough study of their relationship.

4 NUMERICAL EXPERIMENTS

In this section, we validate our continual version of Equilibrium Propagation against training on the
MNIST data set with two models. The first model (C-EP model) is defined with tied and symmetric
weights and dynamics which approximately derive from a primitive function. The second model
allows for untied and asymmetric weights, which is therefore closer to biology. We call this second
model C-VF (Continual Vector Field) as it is inspired from the EP model with Vector-Field dynamics
of Scellier et al. (2018). Ernoult et al. (2019) showed with simulations the intuitive result that, if a
model is such that the updates of EP ‘match’ the gradients of BPTT (i.e. if they are approximately
equal), then the model trained with EP performs as well as the model trained with BPTT. Along the

5



Under review as a conference paper at ICLR 2020

same lines, we show in this work that the more the EP updates follow the gradients of BPTT before
training, the best is the resulting training performance. To accelerate simulations, the two models are
introduced in the discrete-time setting of Ernoult et al. (2019).

4.1 C-EP AND C-VF MODELS

C-EP model. The dynamics in the first phase is defined as:

st+1 = σ (W · st) , (9)

where σ is an activation function and W is a symmetric weight matrix. Although the dynamics are
not directly defined in terms of a primitive function, note that st+1 ≈ ∂Φ

∂s (st,W ) with Φ(s,W ) =
1
2s
> ·W · s if we ignore the activation function σ. Following Eq. (6) and Eq. (7), we define the neural

and weight updates as:

∆C−EP
s (β, η, t) =

1

β

(
sβ,ηt+1 − s

β,η
t

)
, ∆C−EP

W (β, η, t) =
1

β

(
sβ,η

>

t+1 · s
β,η
t+1 − s

β,η>

t · sβ,ηt
)
.

(10)

C-VF model. The dynamics in the first phase is the same as Eq. (9) but now the weight matrix
W is no longer assumed to be symmetric, i.e. the reciprocal connections between neurons are not
constrained. In this setting the weight dynamics in the second phase is replaced by a version for
asymmetric weights: W β,η

t+1 = W β,η
t + η

β s
β,η>

t ·
(
sβ,ηt+1 − s

β,η
t

)
, so that:

∆C−VF
s (β, η, t) =

1

β

(
sβ,ηt+1 − s

β,η
t

)
, ∆C−VF

W (β, η, t) =
1

β
sβ,η

>

t ·
(
sβ,ηt+1 − s

β,η
t

)
. (11)

Importantly, the dynamics of the weights is not one that derives from a primitive function as in
Eq. (6). Remarkably, even in this setting, the biologically plausible weight updates of Eq. (11) can
approximately follow the gradients of BPTT, provided that the values of reciprocal connections
are not too dissimilar (see Fig. 12, Fig. 13 of Appendix E.6 and Appendix D.2 for numerical and
mathematical justifications respectively). This property motivates the following training experiments.

Error (%) T K Epochs

Test Train

EP-1h 2.00± 0.13 (0.20) 30 10 30
EP-2h 1.95± 0.10 (0.14) 100 20 50

C-EP-1h 2.28± 0.16 (0.41) 40 15 100
C-EP-2h 2.44± 0.14 (0.31) 100 20 150

C-VF-1h 2.43± 0.08 (0.77) 40 15 100
C-VF-2h 2.97± 0.19 (1.58) 100 20 150

Figure 4: Left: Training results on MNIST with EP, C-EP and C-VF. "#h" stands for the number of
hidden layers. We indicate over 5 trials the mean and standard deviation for the test error (mean train
error in parenthesis). T (resp. K) is the number of iterations in the 1st (resp. 2nd) phase. For C-VF
results, the initial angle between forward (θf ) and backward (θb) weights is Ψ(θf , θb) = 0◦. Right:
Test error rate on MNIST achieved by C-VF as a function of the initial Ψ(θf , θb).

4.2 C-EP TRAINING EXPERIMENTS

The table of Fig. 4.1 presents training results obtained on MNIST with C-EP benchmarked against
standard discrete-time EP (Ernoult et al., 2019) - see Appendix E for model details and Appendix F.1
for training conditions. Although the test error of C-EP approaches that of EP, we observe a
degradation in accuracy. This is because although Theorem 1 guarantees Gradient Descending
Dynamics (GDD) in the limit of infinitely small learning rates, in practice we have to strike a balance
between having a learning rate that is small enough to ensure this condition but not too small to

6



Under review as a conference paper at ICLR 2020

observe convergence within a reasonable number of epochs. As seen on Fig. 5 (b), the finite learning
rate η of continual updates leads to ∆C−EP(β, η, t) curves splitting apart from the −∇BPTT(t)
curves. As seen per Fig. 5 (a) - see next subsection for details - this effect is emphasized with the
depth: before training, angles between C-EP updates and BPTT gradients reach 50 degrees for two
hidden layers. The deeper the network, the more difficult it is for the C-EP dynamics to follow the
gradients provided by BPTT. As an evidence, we show in Appendix F.2 that when we use extremely
small learning rates throughout the second phase (θ ← θ+ ηtiny∆C−EP

θ ) and rescale up the resulting
total weight update (θ ← θ −∆θtot + η

ηtiny
∆θtot), we recover standard EP results.

4.3 CONTINUAL VECTOR FIELD (C-VF) TRAINING EXPERIMENTS

Depending on whether the updates occur continuously during the second phase and the system obey
general dynamics with untied forward and backward weights, we can span a large range of deviations
from the ideal conditions of Theorem 1. Fig. 5 (b) qualitatively depicts these deviations with a model
for which the updates of EP match the gradients of BPTT (EP) ; with continual weight updates, the
updates and gradients start splitting apart (C-EP), and even more so if the weights are untied (C-VF).

Protocol. In order to create these deviations from Theorem 1 and study the consequences in
terms of training, we proceed as follows. For each C-VF simulations, we tune the initial angle
between forward weights (θf ) and backward weights (θb) between 0 and 180◦. We denote this angle
Ψ(θf , θb) - see Appendix F.1 for the angle definition and the angle tuning technique employed. For
each of these weight initialization, we compute the angle between the total update provided by
C-VF, i.e. ∆C−VF(β, η, tot) =

∑K−1
t=0 ∆C−VF(β, η, t) and the total gradient provided by BPTT,

i.e. ∇BPTT(tot) =
∑K−1
t=0 ∇BPTT(t) on random mini-batches before training. We denote this

angle Ψ
(
∆C−VF(tot),−∇BPTT(tot)

)
. Finally for each weight initialization, we perform training

in the discrete-time setting of Ernoult et al. (2019) - see Appendix E.4 for model details. We
proceed in the same way for EP and C-EP simulations, computing Ψ

(
∆EP(tot),−∇BPTT(tot)

)
and Ψ

(
∆C−EP(tot),−∇BPTT(tot)

)
before training. We use the generic notation ∆(tot) to denote

the total update. This procedure yields (x, y) data points with x = Ψ
(
∆(tot),−∇BPTT(tot)

)
and

y = test error, which are reported on Fig. 5 (a) - see Appendix F.1 for the full table of results.

Results. Fig. 5 (a) shows the test error achieved on MNIST by EP, C-EP and C-VF for different
number of hidden layers as a function of the angle Ψ

(
∆(tot),−∇BPTT(tot)

)
before training. This

graphical representation spreads the algorithms between EP which best satisfies the GDD property
(leftmost point in green at ∼ 20◦) to C-VF which satisfies the less the GDD property (rightmost
points in red and orange at ∼ 100◦). As expected, high angles between gradients of C-VF and
BPTT lead to high error rates that can reach 90% for Ψ

(
∆C−VF(tot),−∇BPTT(tot)

)
over 100◦.

More precisely, the inset of Fig. 5 shows the same data but focusing only on results generated by
initial weight angles lying below 90◦, i.e. Ψ(θf , θb) = {0◦, 22.5◦, 45◦, 67.5◦, 90◦}. From standard
EP with one hidden layer to C-VF with two hidden layers, the test error increases monotonically
with Ψ

(
∆(tot),−∇BPTT(tot)

)
but does not exceed 5.05% on average. This result confirms the

importance of proper weight initialization when weights are untied, also discussed in other context
(Lillicrap et al., 2016). When the initial weight angle is of 0◦, the impact of untying the weights on
classification accuracy remains constrained, as shown in table of Fig. 4.1. Upon untying the forward
and backward weights, the test error increases by ∼ 0.2% with one hidden layer and by ∼ 0.5% with
two hidden layers compared to standard C-EP.

5 DISCUSSION

Equilibrium Propagation is an algorithm that leverages the dynamical nature of neurons to compute
weight updates through the physics of the neural network. C-EP brings EP a step closer to biological
plausibility by embracing simultaneous synapse and neuron dynamics, resolving the initial need of
artificial memory units for storing the neuron values between different phases. C-VF extends the
model to asymmetric weights between neurons, as is the case in biology. Its learning rule, local in
space and time, is furthermore closely acquainted to Spike Timing Dependent Plasticity (STDP), a
learning rule widely studied in Neuroscience, inferred in vitro and in vivo from neural recordings in

7



Under review as a conference paper at ICLR 2020

Figure 5: Three versions of EP: standard Equilibrium Propagation (EP), Continual Equilibrium
Propagation (C-EP) and Continual Vector Field EP (C-VF). #-h denotes the number of hidden layers.
(a): test error rate on MNIST as a function of the initial angle Ψ between the total update of EP
and the total gradient of BPTT. (b): Dashed and continuous lines respectively represent the updates
∆θ(t) (i.e. ∆EP

θ (t), ∆C−EP
θ (t), ∆C−VF

θ (t)) and the gradients −∇BPTT
θ (t). Each randomly selected

synapse corresponds to one color. While dashed and continuous lines coincide for standard EP, they
split apart upon untying the weights and using continual updates.

the hippocampus (Dan and Poo, 2004). In STDP, the synaptic strength is modulated by the relative
timings of pre and post synaptic spikes within a precise time window (Bi and Poo, 1998; 2001).
Strikingly, the exact same rule that we use for C-VF learning can approximate STDP correlations in a
rate-based formulation, as shown through numerical experiments by Bengio et al. (2015).

The enhanced biological plausibility of the C-EP framework preserves the equivalence with Back-
propagation Through Time: in the limit of sufficiently slow synaptic dynamics (i.e. small learning
rates), the system satisfies Gradient Descending Dynamics (Theorem 1). Our experimental results
confirm this theorem. When training C-EP while ensuring convergence in 100 epochs, a modest
reduction in MNIST accuracy is seen with regards to standard EP. This accuracy reduction can be
eliminated by using smaller learning rates and rescaling up the total weight update at the end of the
second phase (Appendix F.2). On top of extending the theory of Ernoult et al. (2019), Theorem 1 also
appears to provide a statistically robust tool for C-EP based learning. Our experimental results show
as in Ernoult et al. (2019) that, for a given network with specified neuron and synapse dynamics,
the more the updates of Equilibrium Propagation follow the gradients provided by Backpropagation
Through Time before training (in terms of angle in this work), the better this network can learn.

When computed on a standard computer, due to the use of small learning rates to mimic analog
dynamics within a finite number of epochs, C-EP and C-VF have long simulation times. With a
Titan RTX GPU, training a fully connected architecture on MNIST takes 2 hours 39 mins with 1
hidden layer and 10 hours 49 mins with 2 hidden layers. On the other hand, C-EP and C-VF might
be particularly efficient in terms of speed and energy consumption when operated on neuromorphic
hardware that employs analog device physics (Ambrogio et al., 2018; Romera et al., 2018). To this
purpose, our work can provide an engineering guidance to map our algorithm onto a neuromorphic
system. Fig. 5 (a) shows that hyperparameters should be tuned so that before training, C-EP updates
stay within 90◦ of the gradients provided by BPTT. More concretely in practice, it amounts to tune the
degree of symmetry of the dynamics, for instance the angle between forward and backward weights
- see Fig. 4.1. Our work is one step towards bridging Equilibrium Propagation with neuromorphic
computing and thereby energy efficient implementations of gradient-based learning algorithms.

8



Under review as a conference paper at ICLR 2020

REFERENCES

D. H. Ackley, G. E. Hinton, and T. J. Sejnowski. A learning algorithm for boltzmann machines.
Cognitive science, 9(1):147–169, 1985.

L. B. Almeida. A learning rule for asynchronous perceptrons with feedback in a combinatorial
environment. volume 2, pages 609–618, San Diego 1987, 1987. IEEE, New York.

S. Ambrogio, P. Narayanan, H. Tsai, R. M. Shelby, I. Boybat, C. Nolfo, S. Sidler, M. Giordano,
M. Bodini, N. C. Farinha, et al. Equivalent-accuracy accelerated neural-network training using
analogue memory. Nature, 558(7708):60, 2018.

Y. Bengio, T. Mesnard, A. Fischer, S. Zhang, and Y. Wu. Stdp as presynaptic activity times rate of
change of postsynaptic activity. arXiv preprint arXiv:1509.05936, 2015.

G.-q. Bi and M.-m. Poo. Synaptic modifications in cultured hippocampal neurons: dependence
on spike timing, synaptic strength, and postsynaptic cell type. Journal of neuroscience, 18(24):
10464–10472, 1998.

G.-q. Bi and M.-m. Poo. Synaptic modification by correlated activity: Hebb’s postulate revisited.
Annual review of neuroscience, 24(1):139–166, 2001.

Y. Dan and M.-m. Poo. Spike timing-dependent plasticity of neural circuits. Neuron, 44(1):23–30,
2004.

M. Ernoult, J. Grollier, D. Querlioz, Y. Bengio, and B. Scellier. Updates of equilibrium prop match
gradients of backprop through time in an rnn with static input. arXiv preprint arXiv:1905.13633,
2019.

J. A. Hertz. Introduction to the theory of neural computation. CRC Press, 2018.

G. E. Hinton. Training products of experts by minimizing contrastive divergence. Neural computation,
14(8):1771–1800, 2002.

Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436, 2015.

T. P. Lillicrap, D. Cownden, D. B. Tweed, and C. J. Akerman. Random synaptic feedback weights
support error backpropagation for deep learning. Nature communications, 7:13276, 2016.

J. R. Movellan. Contrastive hebbian learning in the continuous hopfield model. In Connectionist
models, pages 10–17. Elsevier, 1991.

F. J. Pineda. Generalization of back-propagation to recurrent neural networks. 59:2229–2232, 1987.

M. Romera, P. Talatchian, S. Tsunegi, F. A. Araujo, V. Cros, P. Bortolotti, J. Trastoy, K. Yakushiji,
A. Fukushima, H. Kubota, et al. Vowel recognition with four coupled spin-torque nano-oscillators.
Nature, 563(7730):230, 2018.

B. Scellier and Y. Bengio. Equilibrium propagation: Bridging the gap between energy-based models
and backpropagation. Frontiers in computational neuroscience, 11, 2017.

B. Scellier and Y. Bengio. Equivalence of equilibrium propagation and recurrent backpropagation.
Neural computation, 31(2):312–329, 2019.

B. Scellier, A. Goyal, J. Binas, T. Mesnard, and Y. Bengio. Generalization of equilibrium propagation
to vector field dynamics. arXiv preprint arXiv:1808.04873, 2018.

E. Strubell, A. Ganesh, and A. McCallum. Energy and policy considerations for deep learning in nlp.
arXiv preprint arXiv:1906.02243, 2019.

9



Under review as a conference paper at ICLR 2020

Appendix
A PROOF OF THEOREM 1

In this appendix, we prove Theorem 1, which we recall here.
Theorem 1 (GDD Property). Let s0, s1, . . . , sT be the convergent sequence of states and denote
s∗ = sT the steady state. Further assume that there exists some step K where 0 < K ≤ T such
that s∗ = sT = sT−1 = . . . sT−K . Then, in the limit η → 0 and β → 0, the first K updates in the
second phase of C-EP are equal to the negatives of the first K gradients of BPTT, i.e.

∀t = 0, 1, . . . ,K :

 lim
β→0

lim
η→0

∆C−EP
s (β, η, t) = −∇BPTT

s (t),

lim
β→0

lim
η→0

∆C−EP
θ (β, η, t) = −∇BPTT

θ (t).
(8)

A.1 A SPECTRUM OF FOUR COMPUTATIONALLY EQUIVALENT LEARNING ALGORITHMS

Proving Theorem 1 amounts to prove the equivalence of C-EP and BPTT. In fact we can prove the
equivalence of four algorithms, which all compute the gradient of the loss:

1. Backpropagation Through Time (BPTT), presented in Section B.2,
2. Recurrent Backpropagation (RBP), presented in Section B.3,
3. Equilibrium Propagation (EP), presented in Section 2,
4. Equilibrium Propagation with Continual Weight Updates (C-EP), introduced in Section 3.

In this spectrum of algorithms, BPTT is the most practical algorithm to date from the point of view
of machine learning, but also the less biologically realistic. In contrast, C-EP is the most realistic
in terms of implementation in biological systems, while it is to date the least practical and least
efficient for conventional machine learning (computations on standard Von-Neumann hardware are
considerably slower due to repeated parameter updates, requiring memory access at each time-step of
the second phase).

A.2 SKETCH OF THE PROOF

Theorem 1 can be proved in three phases, using the following three lemmas.
Lemma 2 (Equivalence of C-EP and EP). In the limit of small learning rate, i.e. η → 0, the updates
of C-EP are equal to those of EP:

∀t ≥ 0 :

 lim
η→0

∆C−EP
s (β, η, t) = ∆EP

s (β, t),

lim
η→0

∆C−EP
θ (β, η, t) = ∆EP

θ (β, t).
(12)

Lemma 3 (Equivalence of EP and RBP). Assume that the transition function derives from a prim-
itive function, i.e. that F is of the form F (x, s, θ) = ∂Φ

∂s (x, s, θ). Then, in the limit of small
hyperparaneter β, the updates of EP are equal to the gradients of RBP:

∀t ≥ 0 :

 lim
β→0

∆EP
s (β, t) = −∇RBP

s (t),

lim
β→0

∆EP
θ (β, t) = −∇RBP

θ (t).
(13)

Lemma 4 (Equivalence of BPTT and RBP). In the setting with static input x, suppose that the network
has reached the steady state s∗ after T −K steps, i.e. sT−K = sT−K+1 = · · · = sT−1 = sT = s∗.
Then the first K gradients of BPTT are equal to the first K gradient of RBP, i.e.

∀t = 0, 1, . . . ,K :

{
∇BPTT
s (t) = ∇RBP

s (t),
∇BPTT
θ (t) = ∇RBP

θ (t).
(14)

Proofs of the Lemmas can be found in the following places:

10



Under review as a conference paper at ICLR 2020

• The link between BPTT and RBP (Lemma 2) is known since the late 1980s and can be
found e.g. in Hertz (2018). We also prove it here in Appendix B.

• Lemma 3 was proved in (Scellier and Bengio, 2019) in the setting of real-time dynamics.

• Lemma 4 is the new ingredient contributed here, and we prove it in Appendix A.3.

Also a direct proof of the equivalence of EP and BPTT was derived in Ernoult et al. (2019).

A.3 EQUIVALENCE OF C-EP AND EP

First, recall the dynamics of C-EP in the second phase: starting from sβ,η0 = s∗ and θβ,η0 = θ we have

∀t ≥ 0 :


sβ,ηt+1 =

∂Φ

∂s

(
x, sβ,ηt , θβ,ηt

)
− β ∂`

∂s

(
sβ,ηt , y

)
,

θβ,ηt+1 = θβ,ηt +
η

β

(
∂Φ

∂θ

(
x, sβ,ηt+1, θ

β,η
t

)
− ∂Φ

∂θ

(
x, sβ,ηt , θβ,ηt

))
.

(15)

We have also defined the updates of C-EP:

∀t ≥ 0 :


∆C−EP
s (β, η, t) =

1

β

(
sβ,ηt+1 − s

β,η
t

)
,

∆C−EP
θ (β, η, t) =

1

η

(
θβ,ηt+1 − θ

β,η
t

)
.

(16)

We also recall the dynamics of EP in the second phase:

sβ0 = s∗ and sβt+1 =
∂Φ

∂s

(
x, sβt , θ

)
− β ∂`

∂s

(
sβt , y

)
, (17)

as well as the neural and weight updates of EP, as defined in Ernoult et al. (2019):

∀t ≥ 0 :


∆EP
s (β, t) =

1

β

(
sβt+1 − s

β
t

)
,

∆EP
θ (β, t) =

1

β

(
∂Φ

∂θ

(
x, sβt+1, θ

)
− ∂Φ

∂θ

(
x, sβt , θ

))
.

(18)

Lemma 2 (Equivalence of C-EP and EP). In the limit of small learning rate, i.e. η → 0, the updates
of C-EP are equal to those of EP:

∀t ≥ 0 :

 lim
η→0

∆C−EP
s (β, η, t) = ∆EP

s (β, t),

lim
η→0

∆C−EP
θ (β, η, t) = ∆EP

θ (β, t).
(12)

Proof of Lemma 2. Taking η = 0 in the bottom equation of Eq. 15 yields the recurrence relation
θβ,0t+1 = θβ,0t , so that θβ,0t = θβ,00 = θ for every t. Injecting θβ,0t = θ in the top equation of Eq. 15
yields for sβ,0t the same recurrence relation as that of sβt Eq. 17), so that sβ,0t = sβt for every t.
Therefore, for η = 0, we have

∆C−EP
s (β, 0, t) =

1

β

(
sβ,0t+1 − s

β,0
t

)
=

1

β

(
sβt+1 − s

β
t

)
= ∆EP

s (β, t). (19)

Similarly, in the limit η → 0

∆C−EP
θ (β, η, t) =

1

η

(
θβ,ηt+1 − θ

β,η
t

)
(20)

=
1

β

(
∂Φ

∂θ

(
x, sβ,ηt+1, θ

β,η
t

)
− ∂Φ

∂θ

(
x, sβ,ηt , θβ,ηt

))
(21)

→ 1

β

(
∂Φ

∂θ

(
x, sβt+1, θ

)
− ∂Φ

∂θ

(
x, sβt , θ

))
= ∆EP

θ (β, t). (22)

11



Under review as a conference paper at ICLR 2020

B EQUIVALENCE OF BPTT AND RBP

In this section, we recall Backprop Through Time (BPTT) and the Almeida-Pineda Recurrent
Backprop (RBP) algorithm, which can both be used to optimize the loss L∗ of Eq. 3. Historically,
BPTT and RBP were invented separately around the same time. RBP was introduced at a time when
convergent RNNs (such as the one studied in this paper) were popular. Nowadays, convergent RNNs
are less popular ; in the field of deep learning, RNNs are almost exclusively used for tasks that deal
with sequential data and BPTT is the algorithm of choice to train such RNNs. Here, we present RBP
in a way that it can be seen as a particular case of BPTT.

B.1 SKETCH OF THE PROOF OF LEMMA 4

Lemma 4, which we recall here, is a consequence of Proposition 5 and Definition 6 below.
Lemma 4 (Equivalence of BPTT and RBP). In the setting with static input x, suppose that the network
has reached the steady state s∗ after T −K steps, i.e. sT−K = sT−K+1 = · · · = sT−1 = sT = s∗.
Then the first K gradients of BPTT are equal to the first K gradient of RBP, i.e.

∀t = 0, 1, . . . ,K :

{
∇BPTT
s (t) = ∇RBP

s (t),
∇BPTT
θ (t) = ∇RBP

θ (t).
(14)

However, in general, the gradients∇BPTT(t) of BPTT and the gradients∇RBP(t) of RBP are not
equal for t > K. This is because BPTT and RBP compute the gradients of different loss functions:

• BPTT computes the gradient of the loss after T time steps, i.e. L = ` (sT , y),
• RBP computes the gradients of the loss at the steady state, i.e. L∗ = ` (s∗, y).

B.2 BACKPROPAGATION THROUGH TIME (BPTT)

Backpropagation Through Time (BPTT) is the standard method to train RNNs and can also be used
to train the kind of convergent RNNs that we study in this paper. To this end, we consider the cost of
the state sT after T time steps, denoted L = ` (sT , y), and we substitute the loss after T time steps L
as a proxy for the loss at the steady state L∗ = ` (s∗, y). The gradients of L can then be computed
with BPTT.

To do this, we recall some of the inner working mechanisms of BPTT. Eq. (1) rewrites in the form
st+1 = F (x, st, θt+1 = θ), where θt denotes the parameter of the model at time step t, the value
θ being shared across all time steps. This way of rewriting Eq. (1) enables us to define the partial
derivative ∂L

∂θt
as the sensitivity of the loss L with respect to θt when θ1, . . . θt−1, θt+1, . . . θT remain

fixed (set to the value θ). With these notations, the gradient ∂L∂θ reads as the sum:
∂L
∂θ

=
∂L
∂θ1

+
∂L
∂θ2

+ · · ·+ ∂L
∂θT

. (23)

BPTT computes the ’full’ gradient ∂L∂θ by first computing the partial derivatives ∂L
∂st

and ∂L
∂θt

iteratively,
backward in time, using the chain rule of differentiation. In this work, we denote the gradients that
BPTT computes:

∀t ∈ [0, T − 1] :


∇BPTT
s (t) =

∂L
∂sT−t

,

∇BPTT
θ (t) =

∂L
∂θT−t

.
(24)

Proposition 5 (Gradients of BPTT). The gradients ∇BPTT
s (t) and ∇BPTT

θ (t) satisfy the recurrence
relationship

∇BPTT
s (0) =

∂`

∂s
(sT , y) , (25)

∀t = 1, 2, . . . , T, ∇BPTT
s (t) =

∂F

∂s
(x, sT−t, θ)

> · ∇BPTT
s (t− 1), (26)

∀t = 1, 2, . . . , T, ∇BPTT
θ (t) =

∂F

∂θ
(x, sT−t, θ)

> · ∇BPTT
s (t− 1). (27)

12



Under review as a conference paper at ICLR 2020

B.3 FROM BACKPROP THROUGH TIME (BPTT) TO RECURRENT BACKPROP (RBP)

In general, to apply BPTT, it is necessary to store in memory the history of past hidden states
s1, s2, . . . , sT in order to compute the gradients∇BPTT

s (t) and∇BPTT
θ (t) as in Eq. 26-27. However,

in our specific setting with static input x, if the network has reached the steady state s∗ after T −K
steps, i.e. if sT−K = sT−K+1 = · · · = sT−1 = sT = s∗, then we see that, in order to compute the
first K gradients of BPTT, all one needs to know is ∂F

∂s (x, s∗, θ) and ∂F
∂θ (x, s∗, θ). To this end, all

one needs to keep in memory is the steady state s∗. In this particular setting, it is not necessary to
store the past hidden states sT , sT−1, . . . , sT−K since they are all equal to s∗.

The Almeida-Pineda algorithm (a.k.a. Recurrent Backpropagation, or RBP for short), which was
invented independently by Almeida (1987) and Pineda (1987), relies on this property to compute
the gradients of the loss L∗ using only the steady state s∗. Similarly to BPTT, it computes quantities
∇RBP
s (t) and∇RBP

θ (t), which we call ‘gradients of RBP’, iteratively for t = 0, 1, 2, . . .

Definition 6 (Gradients of RBP). The gradients ∇RBP
s (t) and ∇RBP

θ (t) are defined and computed
iteratively as follows:

∇RBP
s (0) =

∂`

∂s
(s∗, y) , (28)

∀t ≥ 0, ∇RBP
s (t+ 1) =

∂F

∂s
(x, s∗, θ)

> · ∇RBP
s (t), (29)

∀t ≥ 0, ∇RBP
θ (t+ 1) =

∂F

∂θ
(x, s∗, θ)

> · ∇RBP
s (t). (30)

Unlike in BPTT where keeping the history of past hidden states is necessary to compute (or ‘back-
propagate’) the gradients, in RBP Eq. 29-30 show that it is sufficient to keep in memory the steady
state s∗ only in order to iterate the computation of the gradients. RBP is more memory efficient than
BPTT.

Algorithm 3 BPTT
Input: x, y, θ.
Output: θ.

1: s0 ← 0
2: for t = 0 to T − 1 do
3: st+1 ← F (x, st, θ)
4: end for
5: ∇BPTT

s (0)← ∂`
∂s (sT , y)

6: for t = 1 to T do
7: ∇s(t)← ∂F

∂s (x, sT−t, θ)
> · ∇s(t− 1)

8: ∇θ(t)← ∂F
∂θ (x, sT−t, θ)

> · ∇s(t− 1)
9: end for

10: ∇BPTT
θ (tot)←

∑T−1
t=0 ∇BPTT

θ (t)

Algorithm 4 RBP
Input: x, y, θ.
Output: θ.

1: s0 ← 0
2: repeat
3: st+1 ← F (x, st, θ)
4: until st = s∗
5: ∇RBP

s (0)← ∂`
∂s (s∗, y)

6: repeat
7: ∇RBP

s (t)← ∂F
∂s (x, s∗, θ)

> ·∇RBP
s (t−1)

8: ∇RBP
θ (t)← ∂F

∂θ (x, s∗, θ)
> ·∇RBP

s (t−1)

9: until∇RBP
θ (t) = 0.

10: ∇RBP
θ (tot)←

∑∞
t=0∇RBP

θ (t)

Figure 6: Left. Pseudo-code of BPTT. The gradients ∇(t) denote the gradients ∇BPTT(t) of BPTT.
Right. Pseudo-code of RBP. Difference between BPTT and RBP. In BPTT, the state sT−t is
required to compute ∂F

∂s (x, sT−t, θ) and ∂F
∂θ (x, sT−t, θ) ; thus it is necessary to store in memory the

sequence of states s1, s2, . . . , sT . In contrast, in RBP, only the steady state s∗ is required to compute
∂F
∂s (x, s∗, θ) and ∂F

∂θ (x, s∗, θ) ; it is not necessary to store the past states of the network.

B.4 WHAT ‘GRADIENTS’ ARE THE GRADIENTS OF RBP?

In this subsection we motivate the name of ‘gradients’ for the quantities∇RBP
s (t) and∇RBP

θ (t) by
proving that they are the gradients of L∗ in the sense of Proposition 7 below. They are also the
gradients of what we call the ‘projected cost function’ (Proposition 8), using the terminology of
Scellier and Bengio (2019).

13



Under review as a conference paper at ICLR 2020

Proposition 7 (RBP Optimizes L∗). The total gradient computed by the RBP algorithm is the
gradient of the loss L∗ = ` (s∗, y), i.e.

∞∑
t=1

∇RBP
θ (t) =

∂L∗

∂θ
. (31)

∇RBP
s (t) and ∇RBP

θ (t) can also be expressed as gradients of Lt = ` (st, y), the cost after t time
steps. In the terminology of Scellier and Bengio (2019), Lt was named the projected cost. For t = 0,
L0 is simply the cost of the initial state s0. For t > 0, Lt is the cost of the state projected a duration t
in the future.
Proposition 8 (Gradients of RBP are Gradients of the Projected Cost). The ‘RBP gradients’∇RBP

s (t)
and ∇RBP

θ (t) can be expressed as gradients of the projected cost:

∀t ≥ 0, ∇RBP
s (t) =

∂Lt
∂s0

∣∣∣∣
s0=s∗

, ∇RBP
θ (t) =

∂Lt
∂θ0

∣∣∣∣
s0=s∗

(32)

where the initial state s0 is the steady state s∗.

Proof of Proposition 7. First of all, by Definition 6 (Eq. 28-30) it is straightforward to see that

∀t ≥ 0, ∇RBP
s (t) =

(
∂F

∂s
(x, s∗, θ)

>
)t
· ∂`
∂s

(s∗, y) , (33)

∀t ≥ 1, ∇RBP
θ (t) =

∂F

∂θ
(x, s∗, θ)

> ·
(
∂F

∂s
(x, s∗, θ)

>
)t−1

· ∂`
∂s

(s∗, y) . (34)

Second, recall that the loss L∗ is
L∗ = ` (s∗, y) , (35)

where
s∗ = F (x, s∗, θ) . (36)

By the chain rule of differentiation, the gradient of L∗ (Eq. 35) is

∂L∗

∂θ
=
∂`

∂s
(s∗, y) · ∂s∗

∂θ
. (37)

In order to compute ∂s∗
∂θ , we differentiate the steady state condition (Eq. 36) with respect to θ, which

yields
∂s∗
∂θ

=
∂F

∂s
(x, s∗, θ) ·

∂s∗
∂θ

+
∂F

∂θ
(x, s∗, θ) . (38)

Rearranging the terms, and using the Taylor expansion (Id−A)
−1

=
∑∞
t=0A

t with A =
∂F
∂s (x, s∗, θ), we get

∂s∗
∂θ

=

(
Id− ∂F

∂s
(x, s∗, θ)

)−1

· ∂F
∂θ

(x, s∗, θ) (39)

=

∞∑
t=0

(
∂F

∂s
(x, s∗, θ)

)t
· ∂F
∂θ

(x, s∗, θ) . (40)

Therefore
∂L∗

∂θ
=
∂`

∂s
(s∗, y) · ∂s∗

∂θ
(41)

=

∞∑
t=0

∂`

∂s
(s∗, y) ·

(
∂F

∂s
(x, s∗, θ)

)t
· ∂F
∂θ

(x, s∗, θ) (42)

=

∞∑
t=0

∇RBP
θ (t). (43)

14



Under review as a conference paper at ICLR 2020

Proof of Proposition 8. By the chain rule of differentiation we have
∂Lt+1

∂s0
=
∂F

∂s
(x, s0, θ)

> · ∂Lt+1

∂s1
. (44)

Evaluation this expression for s0 = s∗ we get

∂Lt+1

∂s0

∣∣∣∣
s0=s∗

=
∂F

∂s
(x, s∗, θ)

> · ∂Lt+1

∂s1

∣∣∣∣
s0=s∗

. (45)

Finally note that
∂Lt+1

∂s1

∣∣∣∣
s0=s∗

=
∂Lt+1

∂s1

∣∣∣∣
s1=s∗

=
∂Lt
∂s0

∣∣∣∣
s0=s∗

(46)

Therefore ∂Lt

∂s0

∣∣∣
s0=s∗

and∇RBP
s (t) satisfy the same recurrence relation, thus they are equal. Proving

the equality of ∂Lt

∂θ0

∣∣∣
s0=s∗

and∇RBP
θ (t) is analogous.

C ILLUSTRATING THE EQUIVALENCE OF THE FOUR ALGORITHMS ON AN
ANALYTICALLY TRACTABLE MODEL

Model. To illustrate the equivalence of the four algorithms (BPTT, RBP, EP and CEP), we study a
simple model with scalar variable s and scalar parameter θ:

s0 = 0, st+1 =
1

2
(st + θ) , L∗ =

1

2
s2
∗, (47)

where s∗ is the steady state of the dynamics (it is easy to see that the solution is s∗ = θ). The
dynamics rewrites st+1 = F (st, θ) with the transition function F (s, θ) = 1

2 (s+ θ), and the loss
rewrites L∗ = ` (s∗) with the cost function `(s) = 1

2s
2. Furthermore, a primitive function of the

system 1 is Φ(s, θ) = 1
4 (s + θ)2. This model has no practical application ; it is only meant for

pedagogical purpose.

Backpropagation Through Time (BPTT). With BPTT, an important point is that we approximate
the steady state s∗ by the state after T time steps sT , and we approximate L∗ (the loss at the steady
state) by the loss after T time steps L = ` (sT ).

In order to compute (i.e. ‘backpropagate’) the gradients of BPTT, Proposition 5 tells us that we need
to compute ∂`

∂s (sT ) = sT , ∂F∂s (st, θ) = 1
2 and ∂F

∂θ (st, θ) = 1
2 . We get

∀t = 0, 1, . . . , T − 1, ∇BPTT
s (t) =

sT
2t
, ∇BPTT

θ (t) =
sT

2t+1
. (48)

Recurrent Backpropagation (RBP). Similarly, to compute the gradients of RBP, Definition 6
tells us that we need to compute ∂`

∂s (s∗) = s∗, ∂F∂s (s∗, θ) = 1
2 and ∂F

∂θ (s∗, θ) = 1
2 . We have

∀t ≥ 0, ∇RBP
s (t) =

s∗
2t
, ∇RBP

θ (t) =
s∗

2t+1
. (49)

The state after T time steps in BPTT converges to the steady state s∗ as T → ∞, therefore the
gradients of BPTT converge to the gradients of RBP. Also notice that the steady state of the dynamics
is s∗ = θ.

Equilibrium Propagation (EP). Following the equations governing the second phase of EP
(Fig. 2), we have:

sβ0 = θ, sβt+1 =

(
1

2
− β

)
sβt +

1

2
θ. (50)

This linear dynamical system can be solved analytically:

∀t ≥ 0, sβt =
θ

1 + 2β

(
1 + 2β

(
1

2
− β

)t)
. (51)

1The primitive function Φ is determined up to a constant.

15



Under review as a conference paper at ICLR 2020

Notice that sβt → θ as β → 0 ; for small values of the hyperparameter β, the trajectory in the second
phase is close to the steady state s∗ = θ.

Using Eq. 18, it follows that the neural and weight updates of EP are

∀t ≥ 0, ∆EP
s (β, t) = − θ

2t
(1− 2β)

t
, ∆EP

θ (β, t) = − θ

2t+1
(1− 2β)

t
. (52)

Notice again that the updates of EP converge to the gradients of RBP as β → 0.

Continual Equilibrium Propagation (C-EP). The system of equations governing the system is:

{
sβ,η0 = s∗,

θβ,η0 = θ,
∀t ≥ 0 :


sβ,ηt+1 =

(
1

2
− β

)
sβ,ηt +

1

2
θβ,ηt ,

θβ,ηt+1 = θβ,ηt +
η

2β

(
sβ,ηt+1 − s

β,η
t

)
.

(53)

First, rearranging the terms in the second equation, we get

1

η

(
θβ,ηt+1 − θ

β,η
t

)
=

1

2β

(
sβ,ηt+1 − s

β,η
t

)
. (54)

It follows that
∆C−EP
θ (β, η, t) =

1

2
∆C−EP
s (β, η, t). (55)

Therefore, all we need to do is to compute ∆C−EP
s (β, η, t). Second, by iterating the second equation

over all indices from t = 0 to t− 1 we get

θβ,ηt = θ +
η

2β

(
sβ,ηt − s∗

)
. (56)

Using s∗ = θ and plugging this into the first equation we get

sβ,ηt+1 =

(
1

2
− β +

η

4β

)
sβ,ηt +

(
1

2
− η

4β

)
θ. (57)

Solving this linear dynamical system, and using the initial condition sβ,η0 = θ we get

sβ,ηt =
θ

1− η
2β + 2β

[
1− η

2β
+ 2β

(
1

2

)t(
1− 2β +

η

2β

)t]
(58)

Finally:

∆C−EP
s (β, η, t) = − θ

2t

(
1− 2β +

η

2β

)t
(59)

16



Under review as a conference paper at ICLR 2020

D COMPLEMENT ON GRADIENT-DESCENDING DYNAMICS (GDD)

Step-by-step equivalence of the dynamics of EP and gradient computation in BPTT was shown in
Ernoult et al. (2019) and was refered to as the Gradient-Descending Updates (GDU) property. In
this appendix, we first explain the connection between the GDD property of this work and the GDU
property of Ernoult et al. (2019). Then we prove another version of the GDD property (Theorem 9
below), more general than Theorem 1.

D.1 GRADIENT-DESCENDING UPDATES (GDU) OF ERNOULT ET AL. (2019)

The GDU property of Ernoult et al. (2019) states that the updates of EP are equal to the gradients of
BPTT. Similarly, the Gradient-Descending Dynamics (GDD) property of this work states that the
updates of C-EP are equal to the gradients of BPTT. The difference between the GDU property and
the GDD property is that the term ‘update’ has slightly different meanings in the contexts of EP and
C-EP. In C-EP, the ‘updates’ are the effective updates by which the neuron and synapses are being
dynamically updated throughout the second phase. In contrast in EP, the ‘updates’ are effectively
performed at the end of the second phase.

D.2 A GENERALISATION OF THE GDD PROPERTY

The Gradient Descending Dynamics property (GDD, Theorem 1) states that, when the system
dynamics derive from a primitive function, i.e. when the transition function F is of the form F = ∂Φ

∂s ,
then the updates of C-EP match the gradients provided by BBTT. Remarkably, even in the case of the
C-VF dynamics that do not derive from a primitive function Φ, Fig. 5 shows that the biologically
realistic update rule of C-VF follows well the gradients of BPTT. More illustrations of this property
are shown on Fig. 12 and Fig. 13. In this section we give a theoretical justification for this fact by
proving a more general result than Theorem 1.

First, recall the dynamics of the C-VF model. In the first phase:

st+1 = σ (W · st) , (60)

where σ is an activation function and W is a square weight matrix. In the second phase, starting from
sβ,η0 = s∗ and W β,η

0 = W , the dynamics read:

∀t ≥ 0 :


sβ,ηt+1 = σ

(
W β,η
t · sβ,ηt

)
− β ∂`

∂s

(
sβ,ηt

)
,

W β,η
t+1 = W β,η

t +
η

β
sβ,η

>

t ·
(
sβ,ηt+1 − s

β,η
t

)
.

(61)

Now let us define the transition function F (s,W ) = σ(W · s), so that the dynamics of the first phase
rewrites

st+1 = F (st,W ) . (62)

As for the second phase, notice that ∂F
∂W (s,W ) = σ′(W · s) · s, so that if we ignore the factor

σ′(W · s), Eq. (61) rewrites

∀t ≥ 0 :


sβ,ηt+1 = F

(
sβ,ηt ,W β,η

t

)
− β ∂`

∂s

(
sβ,ηt

)
,

W β,η
t+1 = W β,η

t +
η

β

∂F

∂W

(
sβ,ηt ,W β,η

t

)>
·
(
sβ,ηt+1 − s

β,η
t

)
.

(63)

Now, recall the definition of the continual updates of C-VF, as well as the gradients of the loss
L = ` (sT , y) after T time steps, computed with BPTT:

∆C−VF
s (β, η, t) =

1

β

(
sβ,ηt+1 − s

β,η
t

)
,

∆C−VF
W (β, η, t) =

1

η

(
W β,η
t+1 −W

β,η
t

)
,


∇BPTT
s (t) =

∂L
∂sT−t

,

∇BPTT
W (t) =

∂L
∂WT−t

.
(64)

The loss L and the gradients∇BPTT
s (t) and ∇BPTT

θ (t) are defined formally in Appendix B.2.

17



Under review as a conference paper at ICLR 2020

Theorem 9 (Generalisation of the GDD Property). Let s0, s1, . . . , sT be the convergent sequence
of states and denote s∗ = sT the steady state. Further assume that there exists some step K where
0 < K ≤ T such that s∗ = sT = sT−1 = . . . sT−K . Finally, assume that the Jacobian of the
transition function at the steady state is symmetric, i.e. ∂F

∂s (s∗,W ) = ∂F
∂s (s∗,W )

>. Then, in the
limit η → 0 and β → 0, the first K updates of C-VF follow the the first K gradients of BPTT, i.e.

∀t = 0, 1, . . . ,K :

 lim
β→0

lim
η→0

∆C−VF
s (β, η, t) = −∇BPTT

s (t),

lim
β→0

lim
η→0

∆C−VF
W (β, η, t) = −∇BPTT

W (t).
(65)

A few remarks need to be made:

1. Observe that
∂F

∂s
(s,W ) = σ′(W · s) ·W>. (66)

Ignoring the factor σ′(W · s), we see that if W is symmetric then the Jacobian of F is also
symmetric, in which case the conditions of Theorem 9 are met.

2. Theorem 1 is a special case of Theorem 9. To see why, notice that if the transition function
F is of the form F (s,W ) = ∂Φ

∂s (s,W ), then

∂F

∂s
(s,W ) =

∂2Φ

∂s2
(s,W ) =

∂F

∂s
(s,W )> (67)

In this case the extra assumption in Theorem 9 is automatically satisfied.

D.3 PROOF OF THEOREM 9

Theorem 9 is a consequence of Proposition 5 (Appendix B.2), which we recall here, and Lemma 10
below.
Proposition 5 (Gradients of BPTT). The gradients ∇BPTT

s (t) and ∇BPTT
θ (t) satisfy the recurrence

relationship

∇BPTT
s (0) =

∂`

∂s
(sT , y) , (25)

∀t = 1, 2, . . . , T, ∇BPTT
s (t) =

∂F

∂s
(x, sT−t, θ)

> · ∇BPTT
s (t− 1), (26)

∀t = 1, 2, . . . , T, ∇BPTT
θ (t) =

∂F

∂θ
(x, sT−t, θ)

> · ∇BPTT
s (t− 1). (27)

Lemma 10 (Updates of C-VF). Define the neural and weight updates of C-VF in the limit η → 0
and β → 0:

∀t = 0, 1, . . . ,K :

 ∆C−VF
s (t) = lim

β→0
lim
η→0

∆C−VF
s (β, η, t),

∆C−VF
θ (t) = lim

β→0
lim
η→0

∆C−VF
θ (β, η, t).

(68)

They satisfy the recurrence relationship

∆C−VF
s (0) = −∂`

∂s
(s∗, y) , (69)

∀t ≥ 0, ∆C−VF
s (t+ 1) =

∂F

∂s
(x, s∗, θ) ·∆C−VF

s (t), (70)

∀t ≥ 0, ∆C−VF
θ (t+ 1) =

∂F

∂θ
(x, s∗, θ)

> ·∆C−VF
s (t). (71)

The proof of Lemma 10 is similar to the one provided in Ernoult et al. (2019).

18



Under review as a conference paper at ICLR 2020

E MODELS

In this section, we describe Continual Equilibrium Propagation on fully connected layered archi-
tectures, in the standard case with tied weights and with untied weights - respectively denoted as
C-EP and C-VF in Section 4. In the fully connected layered architecture model, the neurons are only
connected between two consecutive layers (no skip-layer connections and no lateral connections
within a layer). We denote neurons of the n-th layer as sn with n ∈ [0, N − 1]. Layers are labelled
in a backward fashion: n = 0 labels the output layer, n = 1 the first hidden layer starting from the
output layer, and n = N−1 the visible layer. There areN−2 hidden layers in total. Fig. 7 shows this
architecture with N = 4. Each model are presented here in a "real-time" and "discrete-time" settings
2 For each model we lay out the equations of the neuron and synapse dynamics, we demonstrate the
GDD property and we specify in which part of the main text they are used.

We present in this order:

1. EP in the discrete-time setting,

2. C-EP in the discrete-time setting,

3. C-EP in the real-time setting,

4. C-VF in the discrete-time setting,

5. C-VF in the real-time setting.

Demonstrating the Gradient Descending Dynamics (GDD) property (Theorem 1) on MNIST.
For this experiment, we consider the 784-512-. . . -512-10 network architecture, with 784 input
neurons, 10 ouput neurons, and 512 neurons per hidden layer. The activation function used is
σ(x) = tanh(x). The experiment consists of the following: we take a random MNIST sample (of
size 1× 784) and its associated target (of size 1× 10). For a given value of the time-discretization
parameter ε, we perform the first phase for T steps. Then, we perform on the one hand BPTT over K
steps (to compute the gradients ∇BPTT), on the other hand C-EP (or C-VF) over K steps for given
values of β and η (to compute the neural updates ∆C−EP or ∆C−VF) and compare the gradients and
updates provided by the two algorithms. Precise values of the hyperparameters ε, T , K, β and η are
given in Tab. E.6.

Figure 7: Fully connected layered architecture with N = 4

E.1 EP, DISCRETE-TIME

Context of use. This model is used for training experiments in Section 4.2 and Table 4.1.

Equations. We consider the layered architecture of Fig. 7, where s0 denotes the output layer, and
the feedback connections are constrained to be the transpose of the feedforward connections, i.e.
Wnn−1 = W>n−1n. In the discrete-time setting of EP, the dynamics of the first phase are defined as:

∀t ∈ [0, T ] :

{
s0
t+1 = σ

(
W01 · s1

t

)
snt+1 = σ

(
Wnn+1 · sn+1

t +W>n−1n · sn−1
t

)
∀n ∈ [1, N − 2]

2These settings were respectively referred to as the "energy-based" and the "prototypical" settings by Ernoult
et al. (2019).

19



Under review as a conference paper at ICLR 2020

In the second phase the dynamics reads:

∀t ∈ [0,K] :

{
s0,β
t+1 = σ(W01 · s1,β

t ) + β ε
(
y − s0,β

t

)
sn,βt+1 = σ(Wnn+1 · sn+1,β

t +W>n−1n · s
n−1,β
t ) ∀n ∈ [1, N − 2]

(72)

As usual, y denotes the target. According to the definition of Eq. (18), for every layer Wnn+1 and
every t ∈ [0,K]:

∆EP
Wnn+1

(β, t) =
1

β

(
sn,βt+1 · s

n+1,β>

t+1 − sn,βt · sn+1,β>

t

)
E.2 C-EP, DISCRETE-TIME

Context of use. This model is used for training experiments in Section 4.2 and Table 4.1.

Equations. Recall that we consider the layered architecture of Fig. 7, where s0 denotes the output
layer. Just like in the discrete-time setting of EP, the dynamics of the first phase are defined as:

∀t ∈ [0, T ] :

{
s0
t+1 = σ

(
W01 · s1

t

)
snt+1 = σ

(
Wnn+1 · sn+1

t +W>n−1n · sn−1
t

)
∀n ∈ [1, N − 2]

Again, as in EP, the feedback connections are constrained to be the transpose of the feedforward
connections, i.e. Wnn−1 = W>n−1n. In the second phase the dynamics reads:

∀t ∈ [0,K] :


s0,β,η
t+1 = σ(W01 · s1,β,η

t ) + β ε
(
y − s0,β,η

t

)
sn,β,ηt+1 = σ(Wnn+1 · sn+1,β,η

t +W>n−1n · s
n−1,β,η
t ) ∀n ∈ [1, N − 2],

θβ,ηt+1 = θβ,ηt + η∆C−EP
θ (β, η, t) ∀θ ∈ {Wnn+1,Wn+1n}

(73)
As usual, y denotes the target. According to the definitions of Eq. (6) and Eq. (7), for every layer
Wnn+1 and every t ∈ [0,K]:

∆C−EP
Wnn+1

(β, η, t) =
1

β

(
sn,β,ηt+1 · s

n+1,β,η>

t+1 − sn,β,ηt · sn+1,β,η>

t

)
E.3 C-EP, REAL-TIME

Context of use. This model has not been used in this work. We only introduce it for completeness
with respect to Ernoult et al. (2019).

Equations. For this model, the dynamics of the first phase are defined as:

∀t ∈ [0, T ] :

{
s0
t+1 = (1− ε)s0

t + εW01 · σ(s1
t )

snt+1 = (1− ε)snt + ε(Wnn+1 · σ
(
sn+1
t

)
+W>n−1n · σ(sn−1

t )) ∀n ∈ [1, N − 2]

Again, as in the discrete-time settings of EP and C-EP, the feedback connections are constrained to
be the transpose of the feedforward connections, i.e. Wnn−1 = W>n−1n. In the second phase:

∀t ∈ [0,K] :


s0,β,η
t+1 = (1− ε)s0,β,η

t + εW01 · σ(s1,β,η
t ) + βε(y − s0,β,η(t))

sn,β,ηt+1 = (1− ε)sn,β,ηt + ε(Wnn+1 · σ(sn+1,β,η
t ) +W>n−1n · σ(sn−1,β,η

t )) ∀n ∈ [1, N − 2],

θβ,ηt+1 = θβ,ηt + η∆C−EP
θ (β, η, t) ∀θ ∈ {Wnn+1}

(74)
where ε is a time-discretization parameter and y denotes the target. According to Eq. (6) and Eq. (7),
for all time step t ∈ [0,K] and all layer n ∈ [0, N − 2], we define:

∆C−EP
Wnn+1

(β, η, t) =
1

β

(
σ
(
sn,β,ηt+1

)
· σ
(
sn+1,β,η
t+1

)>
− σ

(
sn,β,ηt

)
· σ
(
sn+1,β,η
t

)>)
E.4 C-VF, DISCRETE-TIME

Context of use. This model is used for training experiments in Section 4.3 and Table 4.1.

20



Under review as a conference paper at ICLR 2020

Equations. Recall that we consider the layered architecture of Fig. 7, where s0 denotes the output
layer. The dynamics of the first phase in C-VF are defined as:

∀t ∈ [0, T ] :

{
s0
t+1 = σ(W01 · s1

t )
snt+1 = σ(Wnn+1 · sn+1

t +Wnn−1 · sn−1
t ) ∀n ∈ [1, N − 2]

Here, note the difference with EP and C-EP: the feedforward and feedback connections are uncon-
strained. In the second phase of C-VF:

∀t ∈ [0,K] :


s0,β,η
t+1 = σ(W01 · s1,β,η

t ) + βε(y − s0,β,η
t )

sn,β,ηt+1 = σ(Wnn+1 · sn+1,β,η
t +Wnn−1 · sn−1,β,η

t ) ∀n ∈ [1, N − 2],

θβ,ηt+1 = θβ,ηt + η∆C−EP
θ (β, η, t) ∀θ ∈ {Wnn+1,Wn+1n}

(75)
As usual y denotes the target. For all layers Wnn+1 and Wn+1n, and every t ∈ [0,K], we define:{

∆C−VF
Wnn+1

(β, η, t) = 1
β (sn,β,ηt+1 − s

n,β,η
t ) · sn+1,β,η>

t

∆C−VF
Wn+1n

(β, η, t) = 1
β (sn+1,β,η

t+1 − sn+1,β,η
t ) · sn,β,η

>

t

E.5 C-VF, REAL-TIME

Context of use. This model is used to generate Fig. 5 - see Table E.6 for precise hyperparameters.

Equations. For this model, the dynamics of the first phase are defined as:

∀t ∈ [0, T ] :

{
s0
t+1 = (1− ε)s0

t + εW01 · σ
(
s1
t

)
snt+1 = (1− ε)snt + ε

(
Wnn+1 · σ

(
sn+1
t

)
+Wnn−1 · σ

(
sn−1
t

))
∀n ∈ [1, N − 2]

where ε is the time-discretization parameter. Again, as in the discre-time version of C-VF, the
feedforward and feedback connections Wnn−1 and Wn−1n are unconstrained. In the second phase,
the dynamics reads:

∀t ∈ [0,K] :


s0,β,η
t+1 = (1− ε)s0,β,η

t + εW01 · σ
(
s1,β,η
t

)
+ βε

(
y − s0,β,η

t

)
sn,β,ηt+1 = (1− ε)sn,β,ηt + ε

(
Wnn+1 · σ

(
sn+1,β,η
t

)
+Wnn−1 · σ

(
sn−1,β,η
t

))
∀n ∈ [1, N − 2],

θβ,ηt+1 = θβ,ηt + η ∆C−VF
θ (β, η, t) ∀θ ∈ {Wnn+1,Wn+1n}

(76)
where y denotes the target, as usual. For every feedforward connection matrix Wnn+1 and every
feedback connection matrix Wn+1n, and for every time step t ∈ [0,K] in the second phase, we define

∆C−VF
Wnn+1

(β, η, t) =
1

β

(
sn,β,ηt+1 − s

n,β,η
t

)
· σ
(
sn+1,β,η
t

)>
∆C−VF
Wn+1n

(β, η, t) =
1

β

(
sn+1,β,η
t+1 − sn+1,β,η

t

)
· σ
(
sn,β,ηt

)>

21



Under review as a conference paper at ICLR 2020

E.6 FIGURES FOR THE GDD EXPERIMENTS

In the following figures, we show the effect of using continual updates with a finite learning rate in
terms of the ∆C−EP and −∇BPTT processes on different models introduced above. These figures
have been realized either in the discrete-time or continuous-time setting with the fully connected
layered architecture with one hidden layer on MNIST. Dashed an continuous lines respectively
represent the updates ∆ and the gradients ∇BPTT. Each randomly selected synapse or neuron
correspond to one color. We add an s or θ index to specify whether we analyse neuron or synapse
updates and gradients. Each C-VF simulation has been realized with an angle between forward and
backward weights of 0 degrees (i.e. Ψ(θf , θb) = 0◦). For each figure, left panels demonstrate the
GDD property with C-EP with η = 0 and the right panels show that, upon using η > 0, dashed and
continuous lines start to split appart.

Table 1: Table of hyperparameters used to demonstrate Theorem 1.
Figure Angle Ψ (◦) Activation T K β ε Learning rates

C-EP 5 0 tanh 800 80 0.01 0.08 0− 0
C-VF 5 45 tanh 800 80 0.01 0.08 0− 0
C-EP 5 0 tanh 800 80 0.01 0.08 1.510−5 − 1.510−5

C-VF 5 45 tanh 800 80 0.01 0.08 1.510−5 − 1.510−5

C-VF 14-15 0 tanh 800 80 0.005 0.08 0− 0
C-VF 14-15 0 tanh 800 80 0.005 0.08 2.10−5 − 2.10−5

C-VF 12-13 0 tanh 150 10 0.01 − 0− 0
C-VF 12-13 0 tanh 150 10 0.01 − 2.10−5 − 2.10−5

C-EP 10-11 0 tanh 800 80 0.05 0.08 0− 0
C-EP 10-11 0 tanh 800 80 0.05 0.08 2.10−5 − 2.10−5

C-EP 8-9 0 tanh 150 10 0.01 − 0− 0
C-EP 8-9 0 tanh 150 10 0.01 − 2.10−5 − 2.10−5

22



Under review as a conference paper at ICLR 2020

Figure 8: Discrete-time setting. Left: ∆C−EP
s (t) updates (η = 0) and −∇BPTT

s (t) gradients. Right:
∆C−EP
s (t) updates (η > 0) and −∇BPTT

s (t) gradients.

Figure 9: Discrete-time setting. Left: ∆C−EP
θ (t) updates (η = 0) and −∇BPTT

θ (t) gradients. Right:
∆C−EP
θ (t) updates (η > 0) and −∇BPTT

θ (t) gradients.

23



Under review as a conference paper at ICLR 2020

Figure 10: Real-time setting. Left: ∆C−EP
s (t) updates (η = 0) and −∇BPTT

s (t) gradients. Right:
∆C−EP
s (t) updates (η > 0) and −∇BPTT

s (t) gradients.

Figure 11: Real-time setting. Left: ∆C−EP
θ (t) updates (η = 0) and −∇BPTT

θ (t) gradients. Right:
∆C−EP
θ (t) updates (η > 0) and −∇BPTT

θ (t) gradients.

24



Under review as a conference paper at ICLR 2020

Figure 12: Discrete-time setting. Left: ∆C−VF
s (t) updates (η = 0) and −∇BPTT

s (t) gradients.
Right: ∆C−VF

s (t) updates (η > 0) and −∇BPTT
s (t) gradients.

Figure 13: Discrete-time setting. Left: ∆C−VF
θ (t) updates (η = 0) and −∇BPTT

θ (t) gradients.
Right: ∆C−VF

θ (t) updates (η > 0) and −∇BPTT
θ (t) gradients.

25



Under review as a conference paper at ICLR 2020

Figure 14: Real-time setting. Left: ∆C−VF
s (t) updates (η = 0) and −∇BPTT

s (t) gradients. Right:
∆C−VF
s (t) updates (η > 0) and −∇BPTT

s (t) gradients.

Figure 15: Real-time setting. Left: ∆C−VF
θ (t) updates (η = 0) and −∇BPTT

θ (t) gradients. Right:
∆C−VF
θ (t) updates (η > 0) and −∇BPTT

θ (t) gradients.

26



Under review as a conference paper at ICLR 2020

F EXPERIMENTAL DETAILS

F.1 TRAINING EXPERIMENTS (TABLE 4.1)

Simulation framework. Simulations have been carried out in Pytorch. The code has been attached
to the supplementary materials upon submitting this work on OpenReview. We have also attached a
readme.txt with a specification of all dependencies, packages, descriptions of the python files as well
as the commands to reproduce all the results presented in this paper.

Data set. Training experiments were carried out on the MNIST data set. Training set and test set
include 60000 and 10000 samples respectively.

Optimization. Optimization was performed using stochastic gradient descent with mini-batches of
size 20. For each simulation, weights were Glorot-initialized. No regularization technique was used
and we did not use the persistent trick of caching and reusing converged states for each data sample
between epochs as in Scellier and Bengio (2017).

Activation function. For training, we used the activation function

σ(x) =
1

1 + exp(−4(x− 1/2))
. (77)

Although it is a shifted and rescaled sigmoid function, we shall refer to this activation function as
‘sigmoid’.

Use of a randomized β. The option ’Random β’ appearing in the detailed table of results (Table 3)
refers to the following procedure. During training, instead of using the same β accross mini-batches,
we only keep the same absolute value of β and sample its sign from a Bernoulli distribution of
probability 1

2 at each mini-batch iteration. This procedure was hinted at by Scellier and Bengio (2017)
to improve test error, and is used in our context to improve the model convergence for Continual
Equilibrium Propagation - appearing as C-EP and C-VF in Table 4.1 - training simulations.

Tuning the angle between forward and backward weights. In Table 4.1, we investigate C-VF
initialized with different angles between the forward and backward weights - denoted as Ψ in Table 4.1.
Denoting them respectively θf and θb, the angle κ between them is defined here as:

κ(θf , θb) = cos−1

 Tr(θf · θ>b )√
Tr(θf · θ>f )

√
Tr(θb · θ>b )

 ,

where Tr denotes the trace, i.e. Tr(A) =
∑
iAii for any squared matrix A. To tune arbitrarily well

enough κ(θf , θb), the procedure is the following: starting from θb = θf , i.e. κ(θf , θb) = 0, we
can gradually increase the angle between θf and θb by flipping the sign of an arbitrary proportion
of components of θb. The more components have their sign flipped, the larger is the angle. More
formally, we write θb in the form θb = M(p)� θf and we define:

Ψ(p) = κ(θf ,M(p)� θf), (78)

where M(p) is a mask of binary random values {+1, -1} of the same dimension of θf : M(p) = −1
with probability p and M(p) = +1 with probability 1− p. Taking the cosine and the expectation of
Eq. (78), we obtain:

〈cos(Ψ(p))〉 = p×−Tr(θf · θ>f )

Tr(θf · θ>f )
+ (1− p)× Tr(θf · θ>f )

Tr(θf · θ>f )

= 1− 2p

27



Under review as a conference paper at ICLR 2020

Thus, the angle Ψ between θf and θf �M(p) can be tuned by the choice of p through:

p(Ψ) =
1

2
(1− 〈cos(Ψ)〉) (79)

Hyperparameter search for EP. We distinguish between two kinds of hyperparameters: the
recurrent hyperparameters - i.e. T , K and β - and the learning rates. A first guess of the recurrent
hyperparameters T and β is found by plotting the ∆C−EP and ∇BPTT processes associated to
synapses and neurons to see qualitatively whether the theorem is approximately satisfied, and by
conjointly computing the proportions of synapses whose ∆C−EP

W processes have the same sign as its
∇BPTT
W processes. K can also be found out of the plots as the number of steps which are required

for the gradients to converge. Morever, plotting these processes reveal that gradients are vanishing
when going away from the output layer, i.e. they lose up to 10−1 in magnitude when going from
a layer to the previous (i.e. upstream) layer. We subsequently initialized the learning rates with
increasing values going from the output layer to upstreams layers. The typical range of learning
rates is [10−3, 10−1], [10, 1000] for T , [2, 100] for K and [0.01, 1] for β. Hyperparameters where
adjusted until having a train error the closest to zero. Finally, in order to obtain minimal recurrent
hyperparameters - i.e. smallest T and K possible - we progressively decreased T and K until the
train error increases again.

Table 2: Table of hyperparameters used for training. "C" and "VF" respectively denote "continual"
and "vector-field", "-#h" stands for the number of hidden layers. The sigmoid activation is defined
by Eq. (77).

Activation T K β Random β Epochs Learning rates

EP-1h sigmoid 30 10 0.1 False 30 0.08− 0.04

EP-2h sigmoid 100 20 0.5 False 50 0.2− 0.05− 0.005

C-EP-1h sigmoid 40 15 0.2 False 100 0.0056− 0.0028

C-EP-1h sigmoid 40 15 0.2 True 100 0.0056− 0.0028

C-EP-2h sigmoid 100 20 0.5 False 150 0.01− 0.0018− 0.00018

C-VF-1h sigmoid 40 15 0.2 True 100 0.0076− 0.0038

C-VF-2h sigmoid 100 20 0.35 True 150 0.009− 0.0016− 0.00016

28



Under review as a conference paper at ICLR 2020

Table 3: Training results on MNIST with EP, C-EP and C-VF. "#h" stands for the number of hidden
layers. We indicate over five trials the mean and standard deviation for the test error, the mean error
in parenthesis for the train error. T (resp. K) is the number of iterations in the first (resp. second)
phase.

Full table of results. Since Table 4.1 does not show C-VF simulation results for all initial weight
angles, we provide below the full table of results, including those which were used to plot Fig. 5.

Initial Ψ(θf , θb) (◦) Error (%) T K Random β Epochs

Test Train

EP-1h − 2.00± 0.13 (0.20) 30 10 No 30
EP-2h − 1.95± 0.10 (0.14) 100 20 No 50

C-EP-1h − 2.85± 0.18 (0.83) 40 15 No 100
C-EP-1h − 2.28± 0.16 (0.41) 40 15 Yes 100
C-EP-2h − 2.44± 0.14 (0.31) 100 20 No 150

C-VF-1h 0 2.43± 0.08 (0.77) 40 15 Yes 100
22.5 2.38± 0.15 (0.74) 40 15 Yes 100
45 2.37± 0.06 (0.78) 40 15 Yes 100

67.5 2.48± 0.15 (0.81) 40 15 Yes 100
90 2.46± 0.18 (0.78) 40 15 Yes 100

112.5 4.51± 3.96 (2.92) 40 15 Yes 100
135 86.61± 4.27 (88.51) 40 15 Yes 100

157.5 91.08± 0.01 (90.98) 40 15 Yes 100
180 92.82± 3.47 (92.71) 40 15 Yes 100

C-VF-2h 0 2.97± 0.19 (1.58) 100 20 Yes 150
22.5 3.54± 0.75 (2.70) 100 20 Yes 150
45 3.78± 0.78 (2.86) 100 20 Yes 150

67.5 4.59± 0.92 (4.68) 100 20 Yes 150
90 5.05± 1.17 (4.81) 100 20 Yes 150

112.5 20.33± 13.03 (20.30) 100 20 Yes 150
135 59.04± 17.97 (60.53) 100 20 Yes 150

157.5 77.90± 13.49 (78.04) 100 20 Yes 150
180 74.17± 12.76 (74.05) 100 20 Yes 150

29



Under review as a conference paper at ICLR 2020

F.2 WHY C-EP DOES NOT PERFORM AS WELL AS STANDARD EP ?

We provide here further ground for the training performance degradation observed on the MNIST
task when implementing C-EP compared to standard EP. In practice, when training with C-EP, we
have to make a trade-off between:

1. having a learning rate that is small enough so that C-EP updates are subsequently close
enough to the gradients of BPTT (Theorem 1),

2. having a learning rate that is large enough to ensure convergence within a reasonable number
of epochs.

In other words, the degradation of accuracy observed in the table of Fig. 4.1 is due to using a learning
rate that is too large to observe convergence within 100 epochs. To demonstrate this, we implement
Alg. 5 which simply consists in using a very small learning rate throughout the second phase (denoted
as ηtiny), and artificially rescaling the resulting weight update by a bigger learning rate (denoted as η).
Applying Alg. 5 to a fully connected layered architecture with one hidden layer, T = 30, K = 10,
β = 0.1, yields 2.06± 0.13% test error and 0.18± 0.01% train error over 5 trials, where we indicate
mean and standard deviation. Similarly, applying Alg. 5 to a fully connected layered architecture with
two hidden layers, T = 100, K = 20, β = 0.5, yields 1.89 ± 0.22% test error and 0.02 ± 0.02%
train error. These results are exactly the same as the one provided by standard EP - see Table 3.

Algorithm 5 Debugging procedure of C-EP
Input: x, y, θ, β, η, ηtiny = 10−5η.
Output: θ.

1: s0 ← 0 . First Phase
2: ∆θ ← 0 . Temporary variable accumulating parameter updates
3: repeat
4: st+1 ← ∂Φ

∂s (x, st, θ)
5: until st = s∗
6: sβ0 ← s∗ . Second Phase
7: repeat
8: sβt+1 ← ∂Φ

∂s

(
x, sβt , θ

)
− β ∂`∂s

(
sβt , y

)
9:

10: θ ← θ +
ηtiny
β

(
∂Φ
∂θ

(
sβt+1

)
− ∂Φ

∂θ

(
sβt

))
11: ∆θ ← ∆θ +

ηtiny
β

(
∂Φ
∂θ

(
sβt+1

)
− ∂Φ

∂θ

(
sβt

))
12: until sβt and θ are converged.
13: θ ← θ −∆θ + η

ηtiny
∆θ . Rescale the total parameter update by η

ηtiny

Figure 16: Train and test error achieved on MNIST with Continual Equilibrium Propagation (C-EP).
Plain lines indicate mean, shaded zones delimiting mean plus/minus standard deviation over 5 trials.
Left: C-EP on the fully connected layered architecture with one hidden layer (784-512-10) without
beta randomization. Middle: C-EP on the fully connected layered architecture with one hidden layer
(784-512-10) with beta randomization. Right: C-EP on the fully connected layered architecture with
two hidden layers (784-512-512-10) without beta randomization.

30



Under review as a conference paper at ICLR 2020

Figure 17: Train and test error achieved on MNIST by Continual Vector Field Equilibrium Propagation
in the discrete-time setting (C-VF) with a fully connected layered architecture with one hidden layer
(784-512-10) for different initialization for the angle between forward and backward weights (Ψ).
Plain lines indicate mean, shaded zones delimiting mean plus/minus standard deviation over 5 trials.

31



Under review as a conference paper at ICLR 2020

Figure 18: Train and test error achieved on MNIST by Continual Vector Field Equilibrium Propagation
in the discrete-time setting (C-VF) with a fully connected layered architecture with two hidden layers
(784-512-512-10) for different initialization for the angle between forward and backward weights
(Ψ). Plain lines indicate mean, shaded zones delimiting mean plus/minus standard deviation over 5
trials.

32


	Introduction
	Background: Convergent RNNs and Equilibrium Propagation
	Equilibrium Propagation with Continual Weight Updates (C-EP)
	From EP to C-EP: An intuition behind continual weight updates
	Description of the C-EP algorithm
	Gradient-Descending Dynamics (GDD)

	Numerical Experiments
	C-EP and C-VF models
	C-EP training experiments
	Continual Vector Field (C-VF) training experiments

	Discussion
	Proof of Theorem 1
	A Spectrum of Four Computationally Equivalent Learning Algorithms
	Sketch of the Proof
	Equivalence of C-EP and EP

	Equivalence of BPTT and RBP
	Sketch of the Proof of Lemma 4
	Backpropagation Through Time (BPTT)
	From Backprop Through Time (BPTT) to Recurrent Backprop (RBP)
	What `Gradients' are the Gradients of RBP?

	Illustrating the equivalence of the four algorithms on an analytically tractable model
	Complement on Gradient-Descending Dynamics (GDD)
	Gradient-Descending Updates (GDU) of ernoult2019updates
	A generalisation of the GDD property
	Proof of Theorem 9

	Models
	EP, discrete-time
	C-EP, discrete-time
	C-EP, real-time
	C-VF, discrete-time
	C-VF, real-time
	Figures for the GDD experiments

	Experimental Details
	Training experiments (Table 4.1)
	Why C-EP does not perform as well as standard EP ?


