
Under review as a conference paper at ICLR 2020

ROBUST DOMAIN RANDOMIZATION FOR REINFORCE-
MENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Producing agents that can generalize to a wide range of environments is a signif-
icant challenge in reinforcement learning. One method for overcoming this issue
is domain randomization, whereby at the start of each training episode some pa-
rameters of the environment are randomized so that the agent is exposed to many
possible variations. However, domain randomization is highly inefficient and may
lead to policies with high variance across domains. In this work, we formalize the
domain randomization problem, and show that minimizing the policy’s Lipschitz
constant with respect to the randomization parameters leads to low variance in the
learned policies. We propose a method where the agent only needs to be trained
on one variation of the environment, and its learned state representations are reg-
ularized during training to minimize this constant. We conduct experiments that
demonstrate that our technique leads to more efficient and robust learning than
standard domain randomization, while achieving equal generalization scores.

1 INTRODUCTION

Deep Reinforcement Learning (RL) has proven very successful on complex high-dimensional prob-
lems ranging from games like Go (Silver et al., 2017) and Atari games (Mnih et al., 2015) to robot
control tasks (Levine et al., 2016). However, one prominent issue is that of overfitting, illustrated in
figure 1: agents trained on one domain fail to generalize to other domains that differ only in small
ways from the original domain (Sutton, 1996; Cobbe et al., 2018; Zhang et al., 2018b; Packer et al.,
2018; Zhang et al., 2018a; Witty et al., 2018; Farebrother et al., 2018). Good generalization is es-
sential for problems such as robotics and autonomous vehicles, where the agent is often trained in
a simulator and is then deployed in the real world where novel conditions will certainly be encoun-
tered. Transfer from such simulated training environments to the real world is known as crossing
the reality gap in robotics, and is well known to be difficult, thus providing an important motivation
for studying generalization.

To close the reality gap in reinforcement learning, prior work has studied both domain adaptation
and domain randomization. Domain adaptation techniques aim to update the data distribution in
simulation to match the real distribution through some form of canonical mapping or using regu-
larization methods (James et al., 2018; Bousmalis et al., 2017; Gamrian & Goldberg, 2018). Al-
ternatively, domain randomization (DR), in which the visual and physical properties of the training
domains are randomized at the start of each episode during training, has also been shown to lead to
improved generalization and transfer to the real world (Tobin et al., 2017; Sadeghi & Levine, 2016;
Antonova et al., 2017; Peng et al., 2017; Mordatch et al., 2015; Rajeswaran et al., 2016; OpenAI,
2018). Domain randomization relies on the expectation that the agent will perceive the difference
between the train and test domains as just another variation of the train domain. However, domain
randomization has been empirically shown to often lead to suboptimal policies with high variance
in performance over different randomizations (Mehta et al., 2019). This issue can cause the learned
policy to underperform in any given target domain.

We propose a method for learning policies that are robust to changes in the randomization space,
producing agents that ignore irrelevant aspects of the environment. Our work combines aspects from
both domain adaptation and domain randomization, in that we maintain the notion of randomized
environments but use a regularization method to achieve good generalization over the randomization
space. Our contributions are the following:
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• We formalize the domain randomization problem, and show that the Lipschitz constant
of the agent’s policy over the randomization parameters provides an upper bound on the
agent’s robustness to variations in the environment.

• We propose an algorithm whereby the agent is only trained on one variation of the en-
vironment but its learned representations are regularized so that the Lipschitz constant is
minimized.

• We experimentally show that our method is more efficient and leads to lower-variance
policies than standard domain randomization, while achieving equal or better returns and
generalization ability.

This paper is structured as follows. We first review other work related to ours, formalize the domain
randomization problem, and present our theory contributions. We then describe our regularization
method, and illustrate its application to a toy gridworld problem. Finally, we compare our method
with standard domain randomization in complex visual environments.

Figure 1: Illustration of the generalization challenge in reinforcement learning. In this visual cart-
pole domain, the agent must learn to keep the pole upright. However, changes in the background
color can completely throw off a trained agent.

2 RELATED WORK

2.1 GENERALIZATION IN DEEP REINFORCEMENT LEARNING

Generalization to novel samples is well studied in supervised learning, where evaluating generaliza-
tion through train/test splits is ubiquitous. However, evaluating for generalization to novel conditions
through such train/test splits is not common practice in Deep RL. Zhang et al. (2018b) study over-
fitting of Deep RL in discrete maze tasks. Testing environments are generated with the same maze
configuration but different initial positions from training. Deep RL algorithms are shown to suffer
from overfitting to training configurations and to memorize training scenarios. Packer et al. (2018)
study performance under train-test domain shift by modifying environmental parameters such as
robot mass and length to generate new domains. Farebrother et al. (2018) propose using different
game modes of Atari 2600 games to measure generalization. They turn to supervised learning for
inspiration, finding that both L2 regularization and dropout can help agents learn more generalizable
features. These works all show that standard Deep RL algorithms tend to overfit to the environment
used during training, hence the urgent need for designing agents that can generalize better. Domain
randomized training has been shown to be a promising way of addressing this challenge.

2.2 DOMAIN RANDOMIZATION

We distinguish between two types of domain randomization: visual randomization, in which the
variability between domains should not affect the agent’s policy, and dynamics randomization, in
which the agent should learn to adjust its behavior to achieve its goal. Visual domain randomization
has been successfully used to directly transfer RL agents from simulation to the real world without
requiring any real images (Tobin et al., 2017; Sadeghi & Levine, 2016; Kang et al., 2019). These
approaches used low fidelity rendering and randomized scene properties such as lighting, textures,
camera position, and colors, which led to improved generalization. Dynamics randomization has
been successfully used to develop agents that are more robust to uncertainty in the system’s dynamics
(Antonova et al., 2017; Peng et al., 2017; Mordatch et al., 2015; Rajeswaran et al., 2016; OpenAI,
2018). In this paper, we focus on the visual domain randomization setting.
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The work most reminiscent to our proposed method combine domain randomization and domain
adaptation techniques (James et al., 2018; Chebotar et al., 2018; Gamrian & Goldberg, 2018). The
main idea of these approaches is to both randomize the simulated environment and penalize the gap
between the trajectories in the simulations and the real world, either by adding a term to the loss, or
learning a mapping between the states of the simulation and the real world. This approach requires
a large number of samples of real world trajectories, which can be expensive to collect.

Prior work has, however, noted the inefficiency of Domain Randomization. Mehta et al. (2019)
show that domain randomization may lead to suboptimal policies that vary a lot between domains,
due to uniform sampling of the environment’s parameters. They propose a method to guide domain
randomization, by predicting the most informative environment variations within the given random-
ization ranges. Zakharov et al. (2019) also guide the domain randomization procedure by training
a DeceptionNet, that learns which randomizations are actually useful to bridge the domain gap for
image classification tasks.

2.3 LEARNING DOMAIN-INVARIANT FEATURES AND DOMAIN ADAPTATION

Learning domain-invariant features has emerged as a promising approach of taking advantage of
the commonalities between domains. This is usually done by minimizing some measure of distance
between the source and target domains. In the semi-supervised learning context, there is a large body
of work relating to learning domain-invariant features. For instance, Bachman et al. (2014); Sajjadi
et al. (2016); Coors et al. (2018); Miyato et al. (2018); Xie et al. (2019) enforce that predictions
of their networks be similar for original and augmented data points, with the objective of reducing
the required amount of labelled data for training. Our work extends such methods to reinforcement
learning.

In the reinforcement learning context, several other papers have also explored this topic. Tzeng et al.
(2015) and Gupta et al. (2017) add constraints to encourage networks to learn similar embeddings
for samples from both a simulated and a target domain. Daftry et al. (2016) apply a similar approach
to transfer policies for controlling aerial vehicles to different environments. Bousmalis et al. (2017)
compare different domain adaptation methods in a robot grasping task, and show that they improve
generalization. Wulfmeier et al. (2017) use an adversarial loss to train RL agents in such a way
that similar policies are learned in both a simulated domain and the target domain. While promising,
these methods are designed for cases when simulated and target domains are both known, and cannot
straightforwardly be applied when the target domain is only known to be within a distribution of
domains.

3 PROBLEM FORMULATION

We consider Markov decision processes (MDP) defined by (S,A, R, T, γ), where S is the state
space, A the action space, R : S ×A → R the reward function, T : S ×A → Pr(S) the transition
dynamics, and γ the discount factor. In reinforcement learning, an agent’s objective is to find a
policy π that maps states to distributions over actions such that the cumulative discounted reward
yielded by its interactions with the environment is optimized.

3.1 DOMAIN RANDOMIZATION

Domain randomization requires a set ofN simulation parameters to randomize, and a randomization
space Ξ ⊂ RN from which these parameters are sampled. When a configuration ξ ∈ Ξ is passed to
a simulator, it generates a new MDP Mξ with a potentially new set of states and transitions indexed
by ξ. At the start of each episode, the parameters are sampled from the chosen randomization
space, and the generated MDP is used to train the agent during this episode. Denoting J(π, ξ)
the cumulative returns of a policy π, the goal is thus to solve the optimization problem defined by
J(π∗) = maxπ Eξ[J(π, ξ)]. When the randomization parameters affect the transitions in the MDP,
we refer to dynamics randomization. When the randomization parameters affect only the states, we
refer to visual randomization.

Domain randomization empirically produce policies with strongly varying performance over dif-
ferent regions of the randomization space, as demonstrated by Mehta et al. (2019) for the case of
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dynamics randomization. Our own experiments, which we discuss later in this paper, also corrob-
orate this observation for visual randomization. This high variance can cause the learned policy to
underperform in any given target domain.

To yield insight into the robustness of policies learned by domain randomization, we start by formal-
izing the notion of a randomized MDP. Although domain randomization may perturb any element
of the underlying MDP such as rewards or transitions, in this work we only consider the case where
we modify the state space S. This is often used to close the visual gap between simulation and
reality, for example by randomizing colors or textures during the training in simulation. Contrary
to dynamics randomization, such randomizations don’t change the transition or reward functions of
the underlying MDP.

Definition 1 Let M = (S,A, R, T, γ) be an MDP. A randomizer function of M is a mapping
φ : S → S ′ where S ′ is a new set of states. The Randomized MDP Mφ = (Sφ,Aφ, Rφ, Tφ, γφ) is
defined as, for s, s′ ∈ S, a ∈ A :

Sφ = φ(S), Aφ = A, Tφ(φ(s′)|φ(s), a) = T (s′|s, a), Rφ(φ(s), a) = R(s, a), γφ = γ

Given a policy π on MDP M and a randomization Mφ, we also define the agent’s policy on Mφ as
πφ(·|s) = π(·|φ(s)).

Despite all randomized MDPs sharing the same underlying rewards and transitions, the agent’s
policy can vary between domains. For example, in policy-based algorithms (Williams, 1992), if there
are several optimal policies then the agent may adopt different policies for different φ. Furthermore,
for value-based algorithms such as DQN (Mnih et al., 2015), two scenarios can lead to there being
different policies for different φ. First, the (unique) optimal Q-function may correspond to several
possible policies. Second, imperfect function approximation can lead to different value estimates
for different randomizations and thus to different policies. To compare the ways in which policies
can differ between randomized domains, we introduce the notion of Lipschitz continuity of a policy
over a set of randomizations.

Definition 2 We assume the state space is equipped with a distance metric. A policy π is Lipschitz
continuous over a set of randomizations {φ} if for all randomizations φ1 and φ2 in {φ},

Kπ = sup
φ1,φ2∈{φ}

sup
s∈S

DTV (π(·|φ1(s))‖π(·|φ2(s)))

|φ1(s)− φ2(s)|

is finite. Here, DTV (P‖Q) is the total variation distance between distributions (given by
1
2

∑
a∈A |P (a)−Q(a)| when the action space is discrete).

The following inequality shows that this Lipschitz constant is crucial in quantifying the robustness
of RL agents over a randomization space. The smaller the Lipschitz constant, the less a policy is
affected by different randomization parameters. Informally, if a policy is Lipschitz continuous over
randomized MDPs, then in the visual domain randomization context this implies for example that
small changes in the background color in an environment will have a small impact on the policy.

Proposition 1 We consider an MDP M and a set of randomizations {φ} of this MDP. Let π be a
K-Lipschitz policy over {φ}. Suppose the rewards are bounded by rmax such that ∀a ∈ A, s ∈
S, |r(s, a)| ≤ rmax. Then for all φ1 and φ2 in {φ}, the following inequalities hold :

|η1 − η2| ≤ 2rmax

∞∑
t

γt min(1, (t+ 1)Kπ‖φ1 − φ2‖∞) ≤ 2rmaxKπ

(1− γ)2
‖φ1 − φ2‖∞ (1)

Where ηi is the expected cumulative return of policy πφi on MDP Mφi , for i ∈ {1, 2}, and |φ1 −
φ2‖∞ = sups∈S |φ1(s)− φ2(s)|.

Proof. See appendix.

These inequalities shows that the smaller the Lipschitz constant, the smaller the maximum variations
of the policy over the randomization space can be. In the following, we present a regularization tech-
nique that produces low-variance policies over the randomization space by minimizing the Lipschitz
constant of the policy.
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4 PROPOSED REGULARIZATION

We propose a simple regularization method to produce an agent with policies that vary little over
randomized environments, despite being trained on only one environment. We start by choosing
one variation of the environment on which to train an agent with a policy π parameterized by θ, and
during training we minimize the loss

L(θ) = LRL(θ) + λ E
s∼π

E
φ
‖fθ(s)− fθ(φ(s))‖22 (2)

where λ is a regularization parameter, LRL is the loss corresponding to the chosen reinforcement
learning algorithm, the first expectation is taken over the distribution of states visited by the current
policy which we assume to be fixed when optimizing this loss, and fθ is a feature-extractor used
by the agent’s policy. In our experiments, we choose the output of the last hidden layer of the
value or policy network as our feature extractor; we note that other choices could also be made.
Minimizing the second term in this loss function minimizes the Lipschitz constant as defined above
over the states visited by the agent, and causes the agent to learn representations of states that ignore
variations caused by the randomization.

Our method can be applied to many RL algorithms, since it involves simply adding an additional
term to the learning loss. In the following, we experimentally demonstrate applications to both
value-based and policy-based reinforcement learning algorithms. Implementation details can be
found in the appendix, and the code will be made available online.

5 EXPERIMENTS

5.1 ILLUSTRATION ON A GRIDWORLD

We first conduct experiments on a simple gridworld to illustrate the theory described above.

Agent Same path
probability

Randomized 86%
Regularized 100%

(ours)

Figure 2: Left: a simple gridworld, in which the agent must make its way to the goal while avoiding
the fire. Center: empirical differences between regularized agents’ policies on two randomizations
of the gridworld compared to our theoretical bound (the dashed line), shown for 20 training seeds
per value of λ. Right: probability that different agents will choose the same path for different
randomizations of this domain. Our regularization method leads to more consistent behavior.

The environment we use is the 3 × 3 gridworld shown in figure 2, in which two optimal policies
exist. The agent starts in the bottom left of the grid and must reach the goal while avoiding the fire.
The agent can move either up or right, and in addition to the rewards shown in figure 2 receives -1
reward for invalid actions that would case it to leave the grid. We set a time limit of 10 steps and
γ = 1. We introduce randomization into this environment by describing the state of the agent as
a tuple (x, y, ξ), where (x, y) is the agent’s position and ξ is a randomization parameter with no
impact on the underlying MDP. For this toy problem, we consider only two possible values for ξ:
+5 and −5. The agents we consider use the REINFORCE algorithm (Sutton et al., 2000) with a
baseline (see appendix), and a multi-layer perceptron as the policy network.

First, we observe that even in a simple environment such as this one, a randomized agent regularly
learns different paths for different randomizations (figure 2). An agent trained only on ξ = 5
and regularized with our technique, however, consistently learns the same path regardless of ξ.
Although both agents easily solve the problem, the variance of the randomized agent’s policy can be
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problematic in more complex environments in which identifying similarities between domains and
ignoring irrelevant differences is important.

Next, we compare the empirical difference between the policies learned by regularized agents on
the two domains to the smallest of our theoretical bounds in equation 1, which in this simple envi-
ronment can be directly calculated. Our results for different values of λ are shown in figure 2. We
observe that increasing λ does lead to decreases in both the empirical difference in returns and in
the theoretical bound.

5.2 VISUAL CARTPOLE WITH DQN

We compare standard domain randomization to our regularization method on a more challenging
visual environment, in terms of 1) training stability, 2) returns and variance of the learned policies,
and 3) state representations learned by the agents.

5.2.1 EXPERIMENTAL SETTING

To run domain randomization experiments, we use a visual Cartpole environment shown in figure
1, where the states consist of raw pixels of the images. The agent must keep a pole upright as long
as possible on a cart that can move left or right. The episode terminates either after 200 time steps,
if the cart leaves the track, or if the pole falls over. The randomization consists of changing the
color of the background. Each randomized domain ξ ∈ Ξ corresponds to a color (r, g, b), where
0 ≤ r, g, b ≤ 1. Our implementation of this environment is based on the OpenAI Gym (Brockman
et al., 2016).

For training, we use the DQN algorithm with a CNN architecture similar to that used by Mnih
et al. (2015). In principle, such a value-based algorithm should learn a unique value function in-
dependently of the randomization parameters we consider. This is in contrast to the policy-based
algorithm used in our previous experiment, in which there is no unique optimal policy. However,
as we will show function approximation errors cause different value functions to be learned for
different background colors.

We compare the performance of three agents. The Normal agent is trained on only one domain (with
a white background). The Randomized agent is trained on a chosen randomization space Ξ. The
Regularized agent is trained on a white background using our regularization method with respect
to randomization space Ξ. The training of all three agents is done using the same hyperparameters,
and over the same number of steps.

5.2.2 PERFORMANCE DURING TRAINING

Figure 3: Training curves over randomization spaces Ξsmall (left) and Ξbig (right). Shaded areas
indicate the 95% confidence interval of the mean, obtained over 10 training seeds.

We first compare the performance of our agents during training. We train all three agents over two
randomization spaces (environments with different background colors), having the following sizes :

• Ξsmall = {(r, g, b), 0.5 ≤ r, g, b ≤ 1.} = [0.5, 1]3 : 1
8 of the unit cube.

• Ξbig = [0, 1]× [0.5, 1]× [0, 1] : half the unit cube.

We obtain the training curves shown in figure 3. We find that the normal and regularized agents
have similar training curves and are not affected by the size of the randomization space. However,
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the randomized agent learns more slowly on the small randomization space Ξsmall (left), and also
achieves worse performance on the bigger randomization space Ξbig (right). In high-dimensional
problems, we would like to pick the randomization space Ξ to be as large as possible to increase
the chances of transferring to the target domain. We find that standard domain randomization scales
poorly with the size of the randomization space Ξ, whereas our regularization method is more robust
to a larger randomization space.

5.2.3 GENERALIZATION AND VARIANCE

Figure 4: Comparison of the average scores of different agents over different domains. The scores
are calculated over a plane of the (r,g,b) cube in Ξbig , where g = 1 is fixed, averaged over 1000
steps. The training domain for both the regularized and normal agents is located at the top right.
The regularized agent learns more stable policies than the randomized agent over these domains.

We compare the returns of the policies learned by the different agents in different domains within the
randomization space. We select a plane within Ξbig obtained by varying only the R and B channels
but keeping G fixed. We plot the scores obtained on this plane in figure 4. We see that despite having
only been trained on one domain, the regularized agent achieves consistently high scores on the
other domains. On the other hand, the randomized agent’s policy exhibits returns with high variance
between domains, which indicates that different policies were learned for different domains. We
also observe that the regularized agent has much smaller variance and generally higher scores that
the randomized agent.

5.2.4 REPRESENTATIONS LEARNED BY THE AGENTS

Agent Standard
Deviations

Normal 10.1
Randomized 6.2

Regularized (ours) 3.7

Figure 5: Left: Visualization of the representations learned by the agents for pink and green back-
ground colors and for the same set of states. We observe that the randomized agent learns different
representations for the two domains. Right: Standard deviation of estimated value functions over
randomized domains, averaged over 10 training seeds.

To understand what causes this difference in behavior between the two agents, we study the represen-
tations learned by the agents by analyzing the activations of the final hidden layer. We consider the
agents trained on Ξbig , and a sample of states obtained by performing a greedy rollout on a white
background (which is included in Ξbig). For each of these states, we calculate the representation
corresponding to that state for another background color in Ξbig . We then visualize these represen-
tations using t-SNE plots, where each color corresponds to a domain. A representative example of
such a plot is shown in figure 5. We see that the regularized agent learns a similar representation
for both backgrounds, whereas the randomized agent clearly separates them. This result indicates
that the regularized agent learns to ignore the background color, whereas the randomized agent is
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likely to learn a different policy for a different background color. Further experiments comparing
the representations of both agents can be found in the appendix.

To further study the effect of our regularization method on the representations learned by the agents,
we compare the variations in the estimated value function for both agents over Ξbig . Figure 5 shows
the standard deviation of the estimated value function over different background colors, averaged
over 10 training seeds and a sample of states obtained by the same procedure as described above. We
observe that our regularization technique successfully reduces the variance of the value function over
the randomization domain. This can be seen as a consequence of the fact that the representations
learned by the agent vary less between domains, and also explains the lower variance of agents
trained with our method.

5.3 CAR RACING WITH PPO

Figure 6: Left: frames from the original and randomized CarRacing environment. Right: training
curves of our agents, averaged over 5 seeds. Shaded areas indicate the 95% confidence interval of
the mean.

To demonstrate the applicability of our regularization method to other domains and algorithms,
we also perform experiments with the PPO algorithm (Schulman et al., 2017) on the CarRacing
environment (Brockman et al., 2016), in which an agent must drive a car around a racetrack. An
example state from this environment and a randomized version in which part of the background
changes color are shown in figure 6. We train 4 agents on this domain: a normal agent on the
original background, a randomized agent, and two regularized agents for two different values of λ.
Randomization in this experiment occurs over the entire RGB cube.

Agent Return (original) Return (all colors)
Normal 554± 68 60± 53
Regularized λ = 10 622± 81 324± 51
Regularized λ = 50 640± 40 553± 80

Table 1: Average returns on the original environment and its randomizations over all colors, with
95% confidence intervals calculated from 5 training seeds.

Training curves are shown in figure 6. Training curves for both regularized agents are very similar, so
only the curve for λ = 50 is shown here. We see that the randomized agent fails to learn a successful
policy, whereas the other agents successfully learn. We also compare the generalization ability of
the other agents to other background colors, with our results shown in table 1. These results confirm
that our regularization leads to agents that are both successful in training and successfully generalize
to a wide range of backgrounds. Moreover, a larger value of λ yields higher generalization scores.

6 CONCLUSION

In this paper we studied domain randomization in deep reinforcement learning. We formalized the
problem, illustrated the inefficiencies of standard domain randomization, and proposed a theoret-
ically grounded method that leads to robust, low-variance policies that are domain invariant. We
conducted several experiments in different environments of differing complexities using both on-
policy and off-policy algorithms to support our claims.
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A PROOF OF PROPOSITION 1

The proof presented in the following applies to MDPs with a discrete action space. However, it can
straightforwardly be generalized to continuous action spaces by replacing sums over actions with
integrals over actions.

The proof uses the following lemma :

Lemma 1 For two distributions p(x, y) = p(x)p(y|x) and q(x, y) = q(x)q(y|x), we can bound the
total variation distance of the joint distribution :

DTV (p(·, ·)‖q(·, ·)) ≤ DTV (p(·)‖q(·))
+ max

x
DTV (p(·|x)‖q(·|x))

Proof of the Lemma.

We have that :

DTV (p(·, ·)‖q(·, ·)) =
1

2

∑
x,y

|p(x, y)− q(x, y)|

=
1

2

∑
x,y

|p(x)p(y|x)− q(x)q(y|x)|

=
1

2

∑
x,y

|p(x)p(y|x)− p(x)q(y|x)

+ (p(x)− q(x))q(y|x)|

≤ 1

2

∑
x,y

p(x)|p(y|x)− q(y|x)|

+ |p(x)− q(x)|q(y|x)

≤ max
x

DTV (p(·|x)‖q(·|x))

+DTV (p(·)‖q(·))

Proof of the proposition.

Let ptφi(s, a) be the probability of being in state φi(s) at time t, and executing action a, for
i = 1, 2. Since both MDPs have the same reward function, we have by definition that ηi =∑
s,a

∑
t γ

tptφi(s, a)rt(s, a), so we can write :

|η1 − η2| ≤
∑
s,a

∑
t

γt|ptφ1
(s, a)− ptφ2

(s, a)|rt(s, a)

≤ rmax

∑
s,a

∑
t

γt|ptφ1
(s, a)− ptφ2

(s, a)|

= 2rmax

∑
t

γtDTV (ptφ1
(·, ·)‖ptφ2

(·, ·)) (3)

But ptφ1
(s, a) = ptφ1

(s)πφ1(a|s) and ptφ2
(s, a) = ptφ2

(s)πφ2(a|s), Thus (Lemma 1) :

DTV (ptφ1
(·, ·)‖ptφ2

(·, ·)) ≤ DTV (ptφ1
(·)‖ptφ2

(·))
+ max

s
DTV (πφ1(·|s)‖πφ2(·|s))

≤ DTV (ptφ1
(·)‖ptφ2

(·))
+Kπ‖φ1 − φ2‖∞ (4)
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We still have to bound DTV (ptφ1
(·)‖ptφ2

(·)). For s ∈ S we have that :

|ptφ1
(s)− ptφ2

(s)| ≤
∑
s′

|pφ1
(st = s|s′)pt−1φ1

(s′)

− pφ2
(st = s|s′)pt−1φ2

(s′)|

=
∑
s′

|pφ1(st = s|s′)pt−1φ1
(s′)

− pφ2
(st = s|s′)pt−1φ1

(s′)

+ pφ2
(st = s|s′)pt−1φ1

(s′)

− pφ2(st = s|s′)pt−1φ2
(s′)|

≤
∑
s′

pt−1φ1
(s′)|pφ1

(s|s′)− pφ2
(s|s′)|

+ pφ2
(s|s′)|pt−1φ1

(s′)− pt−1φ2
(s′)|

Summing over s we have that

DTV (ptφ1
(·)||ptφ2

(·)) ≤ 1

2

∑
s

Es′∼pt−1
φ1

[|pφ1
(s|s′)

− pφ2(s|s′)|]
+DTV (pt−1φ1

(·)||pt−1φ2
(·))

But by marginalizing over actions : pφ1
(s|s′) =

∑
a π

φ1(a|s′)pφ1
(s|a, s′), and using the fact that

pφ1
(s|a, s′) = Tφ1

(s|a, s′) = Tφ2
(s|a, s′) = pφ2

(s|a, s′) := p(s|a, s′), we have that

|pφ1
(s|s′)− pφ2

(s|s′)| = |
∑
a

p(s|a, s′)(πφ1(a|s′)

− πφ2(a|s′))|

≤
∑
a

p(s|a, s′)|πφ1(a|s′)

− πφ2(a|s′)|
And using

∑
s p(s|a, s′) = 1 we have that :

1

2

∑
s

Es′∼pt−1
φ1

[|pφ1(s|s′)− pφ2(s|s′)|]

≤ 1

2
Es′∼pt−1

φ1

∑
a

[
∑
s

p(s|a, s′)]|πφ1(a|s′)− πφ2(a|s′)|

≤ max
s′

DTV (πφ1(·|s)‖πφ2(·|s))

≤ Kπ‖φ1 − φ2‖∞
Thus, by induction, and assuming DTV (p0φ1

(·)||p0φ2
(·)) = 0 :

DTV (ptφ1
(·)||ptφ2

(·)) ≤ tKπ‖φ1 − φ2‖∞
Plugging this into inequality 4, we get

DTV (ptφ1
(·, ·)‖ptφ2

(·, ·)) ≤ (t+ 1)Kπ‖φ1 − φ2‖∞
We also note that the total variation distance takes values between 0 and 1, so we have

DTV (ptφ1
(·, ·)‖ptφ2

(·, ·)) ≤ min(1, (t+ 1)Kπ‖φ1 − φ2‖∞)

Plugging this into inequality 3 leads to our first bound,

|η1 − η2| ≤ 2rmax

∑
t

γt min(1, (t+ 1)Kπ‖φ1 − φ2‖∞)
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Our second, looser bound can now be achieved as follows,

|η1 − η2| ≤ 2rmax

∑
t

γt(t+ 1)Kπ‖φ1 − φ2‖∞

|η1 − η2| ≤
2rmax

(1− γ)2
Kπ‖φ1 − φ2‖∞

B EXPERIMENTAL DETAILS

All code used for our experiments will be made available online.

B.1 STATE PREPROCESSING

For our implementation of the visual cartpole environment, each image consists of 84 × 84 pixels
with RGB channels. To include momentum information in our state description, we stack k = 3
frames, so the shape of the state that is sent to the agent is 84× 84× 9.

In CarRacing, each state consists of 96×96 pixels with RGB channels. We introduce frame skipping
as is often done for Atari games (Mnih et al. (2015)), with a skip parameter of 5. This restricts
the length of an episode to 200 action choices. We then stack 2 frames to include momentum
information into the state description. The shape of the state that is sent to the agent is thus 96 ×
96× 6.

B.2 VISUAL CARTPOLE

B.2.1 EXTRAPOLATION

Figure 7: Generalization scores, with 95% confidence intervals obtained over 10 training seeds. The
normal agent is trained on white (1, 1, 1), corresponding to a distance to train= 0. The rest of the
domains correspond to (x, x, x), for x = 0.9, 0.8, . . . , 0.

Given that regularized agents are stronger in interpolation over their training domain, it is natural to
wonder what the performance of these agents is in extrapolation to colors not within the range of
colors sampled within training. For this purpose, we consider randomized and regularized agents
trained on Ξbig , and test them on the set {(x, x, x), 0 ≤ x ≤ 1}. None of these agents was ever
exposed to x ≤ 0.5 during training.

Our results are shown in figure 7. We find that although the regularized agent consistently outper-
forms the randomized agent in interpolation, both agents fail to extrapolate well outside the train
domain. Since we only regularize with respect to the training space, there is indeed no guarantee
that our regularization method can produce an agent that extrapolates well. Since the objective of
domain randomization often is to achieve good transfer to an a priori unknown target domain, this
result suggests that it is important that the target domain lie within the randomization space, and that
the randomization space be made as large as possible during training.
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B.2.2 FURTHER STUDY OF THE REPRESENTATIONS LEARNED BY DIFFERENT AGENTS

We perform further experiments to demonstrate that the randomized agent learns different repre-
sentations for different domains, whereas the regularized agent learns similar representations. We
consider agents trained on Ξsplit = [0, 0.2]3∪[0.8, 1]3, the union of darker, and lighter backgrounds.
We then rollout each agent on a single episode of the domain with a white background and, for each
state in this episode, calculate the representations learned by the agent for other background colors.
We visualize these representations using the t-SNE plot shown in figure 8. We observe that the
randomized agent clearly separates the two training domains, whereas the regularized agent learns
similar representations for both domains.

Figure 8: t-SNE of the representations over Ξsplit of the Regularized (Left) and Randomized (Right)
agents. Each color corresponds to a domain. The randomized agent learns very different represen-
tations for [0, 0.2]3 and [0.8, 1]3.

We are interested in how robust our agents are to unseen values ξ 6∈ Ξsplit. To visualize this, we
rollout both agents in domains having different background colors : {(x, x, x), 0 ≤ x ≤ 1}, i.e
ranging from black to white, and collect their features over an episode. We then plot the t-SNEs of
these features for both agents in figure 9, where each color corresponds to a domain.

Figure 9: t-SNE of the features of the Regularized (Left) and Randomized (Right) agents. Each
color corresponds to a domain.

We observe once again that the regularized agent has much lower variance over unseen domains,
whereas the randomized agent learns different features for different domains. This shows that the
regularized agent is more robust to domain shifts than the randomized agent.

C FURTHER RELATED WORK: LIPSCHITZ CONTINUITY AND
GENERALIZATION IN DEEP LEARNING

Lipschitz-sensitive bounds on the generalization abilities of neural networks have a long history
(Bartlett (1997); Anthony & Bartlett (2009); Neyshabur et al. (2015)). Recently, Bartlett et al.
(2017) proved a generalization bound in terms of the norms of each layer, which is proportional to
the Lipschitz constant of the network. Oberman & Calder (2018) studied generalization through a
general empirical risk minimization procedure with Lipschitz regularization, and provides general-
ization bounds. Similarly, we show that the Lipschitz constant of the network with respect to the
randomization parameters plays an important role in achieving zero-shot transfer to a target domain.
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D ALGORITHMS

Algorithm 1 Deep Q-learning with our regularization method

Initialize replay memory D to capacity N
Initialize action-value function Q with random weights θ
Initialize the randomization space Ξ, and a reference MDP Mφref to train on.
Initialize a regularization parameter λ
Define a feature extractor fθ
for episode = 1,M do

Sample a randomizer function φsampled uniformly from Ξ.
for t = 1, T do

With probability ε select a random action at
otherwise select at = arg maxaQ(φref (st), a; θ)
Execute action at in Mφref and observe reward rt and both the reference and randomized
states : φref (st+1), φsampled(st+1)
Store transition (φref (st), φ

sampled(st), at, rt, φ
ref (st+1), φsampled(st+1)) in D

Sample random minibatch of transitions (φrefj , φsampledj , aj , rj , φ
ref
j+1, φ

sampled
j+1 ) from D

Set yj =


rjfor terminal φrefj+1.

rj + γmaxa′ Q(φrefj+1, a
′, θ)

otherwise.

Perform a gradient descent step on (yj −Q(φrefj , aj ; θ))
2 + λ‖fθ(φrefj )− fθ(φsampledj )‖22

end for
end for
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Algorithm 2 Policy Gradient with a baseline using our regularization method

Initialize policy network function πθ with random weights θ, baseline bθ
Initialize the randomization space Ξ, and a reference MDP Mφref to train on.
Initialize a regularization parameter λ
Define a feature extractor fθ
for episode = 1,M do

Sample a randomizer function φsampled uniformly from Ξ.
Collect a set of trajectories (s0, a0, r1, . . . , sT−1,
aT−1, rT ) by executing πθ on Mφref .
for t = 1, T in each trajectory do

Compute the return Rt =
∑T−1
t′=t γ

t′−trt′

Estimate the advantage Ât = Rt − bθ(φref (st))
end for
Perform a gradient descent step on

T∑
t=0

[
− Ât log πθ(at|φref (st))

+ ‖Rt − bθ(φref (st))‖22
+ λ‖fθ(φref (st))− fθ(φsampled(st))‖22

]
end for

Note that algorithm 2 can be straightforwardly adapted to several state of the art policy gradient
algorithms such as PPO.

E A DYNAMICS RANDOMIZATION EXPERIMENT

Figure 10: Training curves of the agents on the Cartpole domain, averaged over 100 seeds.

We also perform an experiment to demonstrate that learning domain-invariant features can be helpful
not only for visual randomization, but also for some instances of dynamics randomization. We
consider once again the Cartpole domain, where this time we randomize some physical dynamics
of the environment. Specifically, we choose to randomize the pole length l, and the gravity g. The
state for our reinforcement learning agent is the 6-dimensional vector (x, ẋ, θ, θ̇, l, g), where x is
the position of the cart, ẋ its velocity, θ the angle between the pole and the horizontal plane, and θ̇
the angular velocity. We train all three agents (Normal, Regularized, Randomized) using only two
randomized domains : l = 0.5, g = 9.8 and l = 1, g = 50. We use the DQN algorithm with a
Multi-Layer Perceptron architecture for this experiment.
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We first compare the training speed of the agents. The training curves averaged over 100 seeds are
plotted in figure 10. We observe once again that the randomized agent is significantly slower than
the regularized one, and is more unstable.

Figure 11: Generalization scores averaged over 5 training seeds and 4 test episodes per seed. Red
dots correspond to training environments

Next, we examine the agents’ generalization ability. We test the agents on environments having
values of pole length l and gravity g unseen during training. We plot their scores in figure 11. The
randomized agent clearly specializes on the two different training domains, corresponding to the
two clearly distinguishable regions where high scores are achieved, whereas the regularized agents
achieves more consistent scores across domain. This result can be understood as follows. Although
the different dynamics between the two domains lead to there being different sets of optimal policies,
our regularization method forces the agent to only learn policies that do not depend on the specific
values of the randomized dynamics parameters. These policies are therefore more likely to also
work when those dynamics are different.

E.1 REPRESENTATIONS LEARNED BY THE AGENT

We analyze the representations learned by each agent in our dynamics randomization experiment.
Once the agents are trained, we rollout their policies in both randomized environments with an ε-
greedy strategy, where we use ε = 0.2 to reach a larger number of states of the MDP, over 10000
steps. We collect the representations (the activations of the last hidden layer) corresponding to the
visited states. These features are 100-dimensional, so in order to visualize them, we use the t-SNE
plots shown in figure 12. We emphasize that although this figure corresponds to a single training
seed, the general aspect of these results is repeatable.

Figure 12: t-sne of the representations learned by the regularized and randomized agents on the two
training environments.

The randomized agent learns completely different representations for the two randomized environ-
ments. This explains its high variance during the training, since it tries to learn a different strategy
for each domain. On the other hand, our regularized agent has the same representation for both
domains, which allows it to learn much faster, and to learn policies that are robust to changes in the
environment’s dynamics.
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