
Under review as a conference paper at ICLR 2020

MULTI-PRECISION POLICY ENFORCED TRAINING
(MUPPET) : A PRECISION-SWITCHING STRATEGY FOR
QUANTISED FIXED-POINT TRAINING OF CNNS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large-scale convolutional neural networks (CNNs) suffer from very long training
times, spanning from hours to weeks, limiting the productivity and experimen-
tation of deep learning practitioners. As networks grow in size and complexity,
one approach of reducing training time is the use of low-precision data repre-
sentation and computations during the training stage. However, in doing so the
final accuracy suffers due to the problem of vanishing gradients. Existing state-
of-the-art methods combat this issue by means of a mixed-precision approach em-
ploying two different precision levels, FP32 (32-bit floating-point precision) and
FP16/FP8 (16-/8-bit floating-point precision), leveraging the hardware support of
recent GPU architectures for FP16 operations to obtaining performance gains.This
work pushes the boundary of quantised training by employing a multilevel opti-
misation approach that utilises multiple precisions including low-precision fixed-
point representations. The training strategy, named MuPPET, combines the use
of multiple number representation regimes together with a precision-switching
mechanism that decides at run time the transition between different precisions.
Overall, the proposed strategy tailors the training process to the hardware-level
capabilities of the utilised hardware architecture and yields improvements in train-
ing time and energy efficiency compared to state-of-the-art approaches. Apply-
ing MuPPET on the training of AlexNet, ResNet18 and GoogLeNet on Ima-
geNet (ILSVRC12) and targeting an NVIDIA Turing GPU, the proposed method
achieves the same accuracy as the standard full-precision training with an average
training-time speedup of 1.28× across the networks.

1 INTRODUCTION

Convolutional neural netwoks (CNNs) have demonstrated unprecedented accuracy in various ma-
chine learning tasks, from video understanding (Karpathy et al., 2014; Gan et al., 2015; He et al.,
2018) and action recognition (Simonyan & Zisserman, 2014; Ng et al., 2015; Varol et al., 2018)
to autonomous drone navigation (Gandhi et al., 2017; Loquercio et al., 2018; Kouris & Bouganis,
2018). To achieve such high levels of accuracy in inherently complex applications, current deep
learning methodologies employ the design of large and complex CNN models (He et al., 2016;
Szegedy et al., 2017; Huang et al., 2017) trained over large datasets (Deng et al., 2009; Geiger
et al., 2013; Lin et al., 2014). Nevertheless, the combination of large models and massive training
datasets leads to long training times. This in turn leads to long turn-around times which limits the
productivity of deep learning practitioners and prohibits wider experimentation with different model
configurations. For instance, automatic tuning and search of neural architectures (Cai et al., 2018;
Zhong et al., 2018) is a rapidly advancing area where accelerated training enables improving the
produced networks.

To counteract these long turn-around times, substantial research effort has been invested in hyperpa-
rameter tuning for training acceleration, with a particular focus on batch size and content. One line
of work maximises memory and hardware utilisation by changing the batch size, in order to perform
CNN-training-specific prefetching, scheduling and dependency improvement (Chen et al., 2019;
Rhu et al., 2016). Other works focus on altering batch size to improve the convergence rate while
maintaining high hardware utilisation (Devarakonda et al., 2017) and demonstrating up to 6.25×
training acceleration. Alternatively, works such as (Johnson & Guestrin, 2018; Katharopoulos &
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Fleuret, 2018; Peng et al., 2019; Loshchilov & Hutter, 2016) reconstruct the minibatches according
to the predicted impact of each data element to improve the rate of training convergence, resulting
in up to 1.2× overall acceleration.

A number of studies have focused on the use of reduced-precision training schemes. Reduced-
precision arithmetic involves the utilisation of data formats that have lower wordlengths than the
conventional 32-bit single-precision floating-point (FP32) representation and is an approach for co-
optimising processing speed, memory footprint and communication overhead. Existing literature
can be categorised into works that use reduced precision to accelerate only the training stage while
targeting an FP32 model, and those that target networks with quantised weights. Amongst those
that target FP32 networks, one line of work involves utilising different quantisation strategies such
as dynamic quantisation (Courbariaux et al., 2015) and stochastic rounding (Gupta et al., 2015)
as a means to combat the accuracy loss from quantisation. Nevertheless, the effectiveness of the
proposed schemes has been demonstrated on small-scale datasets such as CIFAR-10 and MNIST,
and on a limited set of networks. Furthermore, the range of quantisation levels that has been explored
varies greatly, with a number of works attacking the problem from an algorithmic level and focusing
on mild quantisation levels such as half-precision floating-point (FP16) (Micikevicius et al., 2018),
while others focus on lower precisions such as 8-bit floating-point (FP8) (Wang et al., 2018). Finally,
quantisation has also been used as a means of reducing the memory and communication overhead
in distributed training setups (De Sa et al., 2015; 2017; Alistarh et al., 2017).

At the same time, the characteristics of modern CNN workloads and the trend towards precision-
quantised models have led to an emergence of specialised hardware processors, featuring support for
low-precision arithmethic at the hardware level. Spanning from custom designs such Google’s TPUs
(Jouppi et al., 2017) and Microsoft’s FPGA-based Brainwave system (Fowers et al., 2018) to com-
modity platforms such as NVIDIA’s Turing GPUs, existing processing platforms include hardware
support for reduced precision including 16-bit half-precision floating-point (FP16), and 8-bit (INT8)
and 4-bit (INT4) fixed-point data types, thus providing increased parallelism for lower bitwidths. Al-
though these platforms have been mainly designed to target the inference stage of already-trained
networks, the reduced-precision hardware offers significant opportunities for accelerating the time-
consuming training stage. In this respect, there is an emerging need to provide training algorithms
that can leverage these existing hardware optimisations and provide higher training speed.

This work focuses on tackling the field of reduced-precision training from an algorithmic level.
Independently of the number of quantisation levels chosen, or how extreme the quantisation is, this
work proposes a metric that estimates the amount of information each new training step obtains for
a given quantisation level. This approach enables the design of a policy that can decide at run time
the most appropriate quantisation level for the training process and, due to its agnostic nature, it is
orthogonal and complementary to existing low-precision training techniques.

2 BACKGROUND AND RELATED WORK

The state-of-the-art method in training in reduced precision is mixed-precision training (Micikevi-
cius et al., 2018). The authors propose to employ low-precision FP16 computations in the training
stage of high-precision CNNs that would perform inference in FP32. Along the training phase, the
algorithm maintains a high-precision FP32 copy of the weights of the network, known as a master
copy. At each minibatch, the inputs and weights are quantised to FP16 with all computations of
the forward and backward pass performed in FP16, yielding memory footprint and runtime sav-
ings. Under this scheme, each stochastic gradient descent (SGD) update step entails accumulating
FP16 gradients into the FP32 master copy of the weights, with this process performed iteratively
throughout the training of the network. Micikevicius et al. (2018) evaluate their scheme over a set
of state-of-the-art models on ImageNet, and show that mixed-precision training with FP16 compu-
tations achieves comparable accuracy to standard FP32 training.

Wang et al. (2018) also presented a method to train an FP32 model using 8-bit floating-point (FP8).
The authors propose a hand-crafted FP8 data type, together with a chunk-based computation tech-
nique, and employ strategies such as stochastic rounding to alleviate the accuracy loss due to train-
ing at reduced precision. For AlexNet, ResNet18 and ResNet50 on ImageNet, Wang et al. (2018)
demonstrates comparable accuracy to FP32 training while performing computations in FP8.

Additionally the works presented in (Zhou et al., 2016; Chen et al., 2017) approach the problem
of reduced-precision training employing fixed-point computations. FxpNet (Chen et al., 2017) was
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only evaludated on CIFAR-10, failing to demonstrate performance on more complex datasets such
as ImageNet. DoReFa-net (Zhou et al., 2016) tested on ImageNet but only ran on AlexNet missing
out on state-of-the-art networks such as GoogLeNet and ResNet.

All related works focus on accelerating training an FP32 model through reduced-precision compu-
tations. At the hardware level, 8-bit fixed-point multiplication uses 18.5× less energy and 27.5×
less area with up to 4× lower multiplication times than FP32 (Sze et al., 2017). Consequently, this
work attempts to push the boundaries of reduced-precision training by moving to reduced-precision
fixed-point computations while updating an FP32 model.

Preliminary tests on training AlexNet and ResNet20 on CIFAR-100 using 8-bit fixed-point com-
putations to update an FP32 model demonstrated that training solely in 8-bit fixed-point results in
a significant degradation of validation accuracy compared to full FP32 training (Table 1). This
work aims to counteract this degradation by progressively increasing the precision of computations
throughout training in an online manner determined by the proposed metric inspired by gradient
diveristy (Yin et al., 2018). Additionally by operating in an online fashion, MuPPET tailors the
training process to best suit the particular network-dataset pair at each stage of the training process.

Gradient diversity was introduced by Yin et al. (2018) as a metric of measuring the dissimilarity
between sets of gradients that correspond to different minibatches. The gradient diversity of a set of
gradients is defined as

∆S(w) =

∑n
i=1 ||∇fi(w)||22

||
∑n
i=1∇fi(w)||22

=

∑n
i=1 ||∇fi(w)||22∑n

i=1 ||∇fi(w)||22 +
∑
i 6=j〈∇fi(w),∇fj(w)〉

(1)

where∇fi(w) represents the gradient of weights w for minibatch i.

Yin et al. (2018) argue that if the gradients obtained from consecutive minibatches are not diverse
enough, then the performance benefits of scaling the system to multiple processors do not scale
linearly with the number of processors and, hence, propose the use of this metric for choosing the
optimal minibatch size for a system. The key point to note in Eq. (1) is that the denominator
contains the inner product between two gradients from different minibatches. Thus, orthogonal
gradients would result in high gradient diversity, while similar gradients would result in low gradient
diversity. The proposed framework, MuPPET, enhances this concept by considering gradients across
epochs instead of minibatches and proposes the developed metric as a proxy for the amount of new
information gained in each training step. Section 3 further expands on how the idea of gradient
diversity is incorporated into the MuPPET algorithm.

3 METHODOLOGY

3.1 MULTILEVEL OPTIMISATION FOR TRAINING CNNS

Conventionally, the training process of a CNN can be expressed as in Eq. (2). Given a CNN model
f parameterised with respect to a set of weights w ∈ RD, where D is the number of weights of f ,
training involves a search for weight values that minimise the task-specific empirical loss, Loss, on
the target dataset. Typically, a fixed arithmetic precision is employed across the training algorithm
with FP32 currently being the de facto representation used by the deep learning community.

min
w(FP32)∈RD

Loss(f(w(FP32))) (2)

The proposed method follows a different approach by introducing a multilevel optimisation scheme
(Migdalas et al., 2013) that leverages the performance gains of reduced-precision arithmetic. The
single optimisation problem of Eq. (2) is transformed into a series of optimisation problems with
each one employing different precision for computations, but maintaining weights storage at FP32
precision. Under this scheme, an N -level formulation comprises N sequential optimisation prob-
lems to be solved, with each level corresponding to a “finer” model.

Overall, this formulation adds a hierarchical structure to the training stage, with an increasing arith-
metic precision across the hierarchy of optimisation problems. Starting from the N -th problem, the
inputs, weights, and activations of the CNN model f are quantised with precision qN , which is the
lowest precision in the system and represents the coarsest version of the model. Each of the N lev-
els progressively employs higher precision until the first level is reached, which corresponds to the
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original problem of Eq. (2). Formally, at the i-th level, the optimisation problem is formulated as

min
w(qi)∈V

Loss(f(w(qi))) s.t. V =
{

w(qi) ∈ RD : w(qi)
j ∈ represent. range(qi), ∀j ∈ [1, D]

}
(3)

The target CNN model f uses a set of weights quantised with precision qi and hence the solution of
this optimisation problem can be interpreted as an approximation to the original problem of Eq. (2).
To transition from one level to the next, the result of each level of optimisation is employed as a
starting point for the next level, up to the final outermost optimisation that reduces to Eq. (2).

3.2 THE MUPPET ALGORITHM

Figure 1: Precision-switching training
scheme of MuPPET.

Fig. 1 presents the process of train-
ing a CNN using the proposed al-
gorithm. Within each epoch, MuP-
PET performs mixed-precision train-
ing where the weights are stored in
an FP32 master copy and are quan-
tised to the desired fixed-point preci-
sion on-the-fly prior to execution. At
epoch j, the computations for the for-
ward and backward passes (F and B
blocks respectively) are performed at
the current quantised precision (qj)
and the activations as well as the gra-
dients obtained from each layer are
quantised by the quantiser module
before being passed on to the next
layer, or stored. At the end of each
epoch, the full-precision master copy
of the weights is updated using a quantised gradient matrix. As discussed in Section 3.1, the quan-
tisation level is gradually increased over the period of the training. In the proposed multilevel opti-
misation formulation, switching between these optimisation levels at the correct times is crucial in
order not to compromise the final validation accuracy. In this respect, MuPPET introduces a preci-
sion switching policy based on an enhanced inter-epoch gradient diversity (Yin et al., 2018) metric
that dictates when to switch to the next precision in order not to degrade the final resulting accuracy.
Details of the switching policy are presented in Section 3.3.

3.2.1 QUANTISATION STRATEGY

In order to implement quantised training, a quantisation strategy needs to be defined. The proposed
dynamic quantisation strategy utilises block floating-point arithmetic (also known as dynamic fixed-
point), where each fixed-point number is represented as a pair of an n-bit signed integer and a scale
factor s, such that the value is represented as x× 2−s.

During the forward and backward passes of the training process, the weights and feature maps are
both quantised, and the multiplication operations are performed at the same low precision. The
quantisation method employs a stochastic rounding methodology (Gupta et al., 2015). The accu-
mulation stage of the matrix-multiply operation is accumulated into a 32-bit fixed-point value to
prevent overflow on the targeted networks.1 The result of this matrix multiplication is subsequently
quantised to the desired wordlength before being passed as input to the next layer. Following the
block floating-point scheme, quantisation is performed such that each weight and feature map ma-
trix in the network has a single scale factor shared by all values within the matrix. The quantisation
configuration for the i-th level of optimisation and the full set of configurations are given by Eq. (4)
and (5) respectively.

qil =
〈

WLnet, SCweights
l , SCact

l

〉i
, ∀l ∈ [1, |L|] (4)

qi =
〈
qil | ∀l ∈ [1, |L|]

〉
(5)

where |L| is the number of layers of the target network, WLnet is the fixed wordlength across the
network, SCweights

l and SCact
l are the scaling factors for the weights and activations, respectively,

1The accumulator wordlength is large enough to accommodate the current CNN models, without overflow.
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of the l-th layer for the i-th level of optimisation. As a result, for N levels, there are N distinct
quantisation schemes; N −1 of these schemes are with varying fixed-point precisions, and the finest
level of quantisation, q1, is single-precision floating-point (FP32).

3.2.2 INFORMATION TRANSFER BETWEEN LEVELS

Employing multilevel training for CNNs requires an appropriate mechanism for transferring infor-
mation between levels. To achieve this, the proposed optimiser maintains a master copy of the
weights in full precision (FP23) throughout the optimisation levels. Similar to mixed-precision
training (Micikevicius et al., 2018), at each level the SGD update step is performed by accumulating
a fixed-point gradient value into the FP32 master copy of the weights. Starting from the coarsest
quantisation level i = N , to transfer the solution from level i to level i − 1, the master copy is
quantised using the quantisation scheme qi−1. With this approach, the weights are maintained in
FP32 and are quantised on-the-fly during run time in order to be utilised in each training step, as
w(qi−1) ← Quantise

(
w(FP32)

master , q
i−1
)

.

3.3 PRECISION SWITCHING POLICY

The metric to decide when to switch between levels of quantisation is inspired by Yin et al. (2018)
and based on the concept of gradient diversity (Eq. (1)). As discussed in Section 2, Yin et al.
(2018) compute the gradient diversity between gradients across minibatches. Instead, MuPPET
computes ∆S(w) between gradients across epochs instead of minibatches as a proxy to measure
the information that is obtained during the training process; the lower the diversity between the
gradients, the less information this level of quantisation is providing towards the training of the
model. Therefore, the proposed method comprises a novel normalised inter-epoch version of the
gradient diversity along with a run-time policy to determine the epochs to switch precision.

The following policy is employed to determine when a precision switch is to be performed. For a
network with layers L and a quantisation scheme qi that was switched into at epoch e:

1. For each epoch j and each layer l ∈ L, the last gradient,∇f jl (w), is stored.

2. After r (resolution) number of epochs, the inter-epoch gradient diversity at epoch j is

∆S(w)j =

∑
∀l∈L

∑j
k=j−r ||∇f

k
l (w)||22

||
∑j

k=j−r ∇f
k
l (w)||22

|L|
(6)

3. At an epoch j, given a set of gradient diversities S(j) =
{

∆S(w)i ∀ e ≤ i < j
}

, the

ratio p = maxS(j)
∆S(w)j is calculated.

4. An empirically determined decaying threshold T = α+βe−λj (7) is placed on the ratio p.

5. If the p violates y more than γ times, a precision switch is triggered and S(j) = ∅.

3.3.1 HYPERPARAMETERS

The hyperparameters for the proposed MuPPET algorithm are the following: 1) values of α, β, and
λ that define the decaying threshold from Eq. (7), 2) the number of threshold violations allowed
before the precision change is triggered (γ), 3) the resolution r, 4) the set of precisions at which
training is performed, and 5) the epochs at which the learning rate is changed. The values of α, β,
λ, r, and γ were set at 1, 1.5, 0.1, 3, and 2 respectively after empirical cross-validation. These were
tuned by running training on AlexNet and ResNet20 on the CIFAR-10 dataset. All MuPPET hyper-
parameters remain the same regardless of network or dataset. Regarding training hyperparameters,
batch size was increased from 128 to 256 going from CIFAR-10 to ImageNet. All other training
hyperparameters, mainly learning rate, weight decay and momentum, remained constant. The re-
maining hyperparameters such as convolutoin type, distribution approach, loss calculation, amongst
others, followed framework defaults. Analysis of generalisability and the training hyperparameters
used are presented in Section 5. The levels of quantised precisions at which training was performed
were 8-, 12-, 14- and 16-bit fixed-point. Precisions below this did not result in any progress towards
convergence for any networks.
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Overall, MuPPET introduces a policy that allows to decide at run time the best point to switch be-
tween quantisation levels. After training at 16-bit fixed-point, the rest of the training is performed at
FP32 until the desired validation accuracy is reached. Decaying the learning rate causes a finer ex-
ploration of the optimisation space as does increasing the quantisation level. Therefore, the learning
rate was kept constant during quantised training and was decayed only after switching to FP32.

4 EVALUATION OF MUPPET
4.1 PRECISION SWITCHING

To evaluate the ability of MuPPET to effectively choose an epoch to switch precision at, AlexNet
and ResNet20 were first trained using MuPPET on the CIFAR-100 dataset, and the epochs at which
the learning switched occured was recorded. The hyperparameters for MuPPET were kept the same
across all runs. Following this, AlexNet was trained using only 8-bit fixed-point computations up-
dating an FP32 master copy of weights with learning rate changes performed at the same epochs as
MuPPET, and the overall number of epochs identical to that run by MuPPET. This way, the only
hyperparameter that differed between these runs was the precision at which computations were per-
formed. Using checkpoints from this 8-bit training run, the precision was switched from 8-bit to
FP32 at epochs 10, 15, 25, 50, and 75. The zero column remains in 8-bit fixed-point for the entire
duration of training. The best validation accuracy for each of these runs is shown in Table 1. The
value in brackets next to the validation accuracy of the MuPPET run is the epoch at which MuPPET
switched out of 8-bit into 12-bit precision.

Switching Epoch (8-bit to FP32)
0 10 15 25 50 75 MuPPET

AlexNet 36.6 39.0 37.8 37.9 37.6 37.3 38.0 (19)
ResNet20 64.5 64.4 65.1 65.5 65.4 65.3 65.8 (37)

Table 1: Top-1 validation accuracy (%) on CIFAR-100 switching from
8-bit fixed-point to FP32 at epochs 10, 15, 25, 50 and 75

It is seen that not switch-
ing at all causes the lowest
validation accuracy, hence
demonstrating that a pre-
cision switching metric is
necessary when training at
precisions as low as 8-bit
fixed-point. With hind-
sight, the range of optimal
switching epochs differ be-
tween AlexNet (10-15) and ResNet20 (25-50). For ResNet20, MuPPET performs as expected and
switches out of 8-bit precision at epoch 37 which falls well within the range of optimal switching
epochs seen from hindsight. Although for AlexNet MuPPET switches later than would be expected,
in doing so it manages to exploit computational gains from reduced-precision arithmetic to a greater
extent while limiting damage to the validation accuracy.

4.2 GENERALISABILITY

The MuPPET framework was also evaluated on its applicability across epochs, networks and
datasets. Figure 2 shows the value of the metric p over the epochs in blue, and the decaying thresh-
old described in Eq. (7) in orange. The number of epochs for which training in each precision was
performed is shown by the various overlay colours. The graphs show that across various networks
and datasets, the values of p stay relatively similar, backing the choice of a universal decaying factor.
Furthermore, empirical results for CIFAR-10 indicated that changing from one fixed-point precision
to another too early in the training process had a negative impact on the final validation accuracy.
Using a decaying threshold ensures that the value of p needs to be much higher in the initial epochs
to trigger a precision change due to the volatility of p in early epochs of training.

Generalisability across epochs is obtained as p accounts for the change in information relative to the
maximum information available since the last precision change. Hence, the metric acknowledges the
presence of temporal variations in information provided by the gradients. Generalisability across
networks and datasets is maintained as p measures a ratio. Consequently, the absolute values of
gradients which could vary between networks and datasets, matter less.

5 RESULTS

5.1 PERFORMANCE EVALUATION

The accuracy results presented in this section utilised the proposed stochastic quantisation strategy.
The methodology was developed using PyTorch. As the framework does not natively support low-
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Figure 2: Demonstration of the generalisability of p over networks, datasets and epochs.

precision implementations, all quantisation and computations corresponding to 8-, 12-, 14-, and 16-
bit precisions were performed through emulation on floating-point hardware. All hyperparameters
not specified below were left as PyTorch defaults. For all networks, an SGD optimiser was used with
batch sizes 128 on CIFAR-10 or 256 on ImageNet, momentum of 0.9 and weight decay of 1e−4.

As a baseline, an FP32 model with identical hyperparameters (except for batch size) was trained.
The baseline FP32 training was performed by training for 150 epochs and reducing the learning rate
by a factor of 10 at epochs 50 and 100. In order to achieve comparable final validation accuracy to
the FP32 baseline, once MuPPET triggered a precision change out of 16-bit fixed-point, 45 training
epochs at FP32 precision were performed. The learning rate was reduced by a factor of 10 every 15
FP32 training epochs. For AlexNet, ResNet18, ResNet20, and GoogLeNet, the initial learning rate
was set to 0.01, 0.1, 0.1, and 0.001 respectively.

CIFAR-10 ImageNet
FP32 MuPPET Diff (pp) FP32 MuPPET Diff (pp)

AlexNet 75.45 74.49 -0.96 56.21 55.33 -0.88
ResNet 90.08 90.86 0.78 69.48 69.09 -0.39
GoogLeNet 89.23 89.47 0.24 59.15 63.70 4.55

Table 2: Top-1 validation accuracy (%) on CIFAR-10 and ImageNet for FP32 baseline and MuPPET

Table 2 presents the achieved Top-1 validation accuracy of the proposed method and the FP32 base-
line, together with the accuracy difference in percentage points (pp). As shown on the table, MuP-
PET is able to provide comparable Top-1 validation accuracy to standard FP32 training across both
networks and datasets. Due to a sub-optimal training setup of GoogLeNet on ImageNet, the base-
line and MuPPET training severely underperformed compared to the reported state-of-the-art works.
Nevertheless, the results demonstrate the quality of training with MuPPET using identical hyper-
parameters. As a result, MuPPET’s performance demonstrates the effectiveness of the precision
switching strategy in maintaining accuracy while allowing for increased performance by running
many epochs at lower precision.

5.2 WALL-CLOCK TIME IMPROVEMENTS

This section explores the gains in estimated wall-clock time of the proposed method with respect
to baseline FP32 training, Mixed Precision training by Micikevicius et al. (2018) and MuPPET’s
theoretical bound in acceleration that would be achieved by optimising the stochasitc rounding im-
plementation (Table 3). For all performance results, the target platform was an NVIDIA RTX 2080
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Ti GPU. At the moment, deep-learning frameworks, such as PyTorch, do not provide native support
for reduced-precision hardware. Consequently, the wall-clock times provided in Table 3 were esti-
mated using a performance model developed with NVIDIA’s CUTLASS library (Kerr et al., 2018)
for reduced-precision general matrix-multiplication (GEMM) employing the latest Turing architec-
ture GPUs. The GEMMs that were accelerated were in the convolutional and fully-connected layers
of each network. INT8 hardware was used to profile the 8-bit precision, while FP16 hardware was
used to profile 12-, 14-, and 16-bit computations as well as Mixed Precision (Micikevicius et al.,
2018) wall-clock time. CUTLASS (Kerr et al., 2018) natively implements bit-packing to capitalise
on improved memory bandwidth utilisation.

As shown on Table 3, MuPPET consistently achieves 1.25-1.32× speedup over the FP32 baseline
across the networks when targeting ImageNet on the given GPU. With respect to Mixed Precision by
Micikevicius et al. (2018), the proposed method outperforms it on AlexNet by 1.23× and delivers
comparable performance for ResNet18 and GoogLeNet. Currently, the absence of native quantisa-
tion support, and hence the necessity to emulate quantisation and the associated overheads, is the
limiting factor for MuPPET to achieve higher processing speed. In this respect, with an optimised
quantisation implementation, our method would yield 1.05× and 1.48× speedup for ResNet18 and
GoogLeNet respectively over Mixed Precision. Additionally, performing 12-, 14- and 16-bit com-
putations on precision-optimised fixed-point hardware would further amplify MuPPET’s potential
gains due to the increased parallelisation.

Similar to the analysis presented in Section 5.1, Micikevicius et al. (2018) and Wang et al. (2018)
compare their respective schemes to baseline FP32 training performed by them. The reported results
demonstrate that their methods achieve similar accuracy results to our method by lying close to the
respective FP32 training accuracy. As Wang et al. (2018) do not provide any results in terms of gains
in wall-clock times and since they use custom FP8 hardware, it could not be directly compared to
our method.

FP32
(Baseline)

Mixed Prec
(Micikevicius et al., 2018)

MuPPET MuPPET
(Theoretical Limit)

AlexNet 30:13 (1×) 29.20 (1.03×) 23:52 (1.27×) 20:25 (1.48×)
ResNet18 132:46 (1×) 97:25 (1.36×) 100:19 (1.32×) 92:43 (1.43×)
GoogLeNet 152:28 (1×) 122:51 (1.24×) 122:13 (1.25×) 82:38 (1.84×)

Table 3: Wall-clock time (in GPU hours:minutes) and relative acceleration comparison across net-
works targeting ImageNet

6 CONCLUSION

This paper proposes MuPPET, a novel low-precision CNN training scheme that combines the use
of fixed-point and floating-point representations to produce a network trained for FP32 inference.
By introducing a precision-switching mechanism that decides at run time the best transition point
between different precision regimes, the proposed framework achieves Top-1 validation accuracies
comparable to that achieved by state-of-the-art FP32 training regimes while delivering significant
speedup in terms of training time. Quantitative evaluation demonstrates that MuPPET’s training
strategy generalises across CNN architectures and datasets by adapting the training process to the
target CNN-dataset pair during run time. Overall, MuPPET enables the utilisation of the low-
precision hardware units available on modern, specialised processors for machine learning, such
as next-generation GPUs, FPGAs and TPUs, in order to yield improvement in training time and
energy efficiency without impacting the resulting accuracy.

Future work will focus on the application of the proposed framework to the training of LSTMs and
RNNs, where the training process is more sensitive to the quantisation of the gradients, as well as to
the extension of MuPPET to include the batch size and the learning rate as part of its hyperparame-
ters. Exploring the mapping of MuPPET onto FPGA systems yields a greater performance per watt
significantly reducing the power budget and consequently operational costs. Finally, investigating
improved quantisation techniques can provide training convergence for bitwidths even lower than
8-bit fixed-point.
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