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Figure 1: We propose the Atlas Gaussians representation for 3D generation. Our method supports both
unconditional (left) and conditional (middle) generation with great diversity. With Atlas Gaussians,
we can generate a sufficiently large, and theoretically infinite, number of 3D Gaussian points. To
demonstrate this, 100K Gaussian points generated by our method are shown (right). Additionally, we
iteratively sample 32 patches of the shape, displaying each set in one of four sub-figures (right).

ABSTRACT

Using the latent diffusion model has proven effective in developing novel 3D
generation techniques. To harness the latent diffusion model, a key challenge is
designing a high-fidelity and efficient representation that links the latent space and
the 3D space. In this paper, we introduce Atlas Gaussians, a novel representation
for feed-forward native 3D generation. Atlas Gaussians represent a shape as the
union of local patches, and each patch can decode 3D Gaussians. We parameter-
ize a patch as a sequence of feature vectors and design a learnable function to
decode 3D Gaussians from the feature vectors. In this process, we incorporate
UV-based sampling, enabling the generation of a sufficiently large, and theoreti-
cally infinite, number of 3D Gaussian points. The large amount of 3D Gaussians
enables the generation of high-quality details. Moreover, due to local awareness
of the representation, the transformer-based decoding procedure operates on a
patch level, ensuring efficiency. We train a variational autoencoder to learn the
Atlas Gaussians representation, and then apply a latent diffusion model on its
latent space for learning 3D Generation. Experiments show that our approach
outperforms the prior arts of feed-forward native 3D generation. Project page:
https://yanghtr.github.io/projects/atlas_gaussians.

1 INTRODUCTION

3D generation has become increasingly important in various domains, including virtual reality,
gaming, and film production. Recent advances in diffusion models (Ho et al., 2020; Song et al., 2020)
have improved the quality of 3D generation, offering superior performance over previous methods,
such as variational autoencoders (VAEs) (Kingma & Welling, 2013; Mo et al., 2019) and generative
adversarial networks (GANs)(Goodfellow et al., 2014; Gao et al., 2022).
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Despite progress, the effectiveness of 3D generation still falls short compared to 2D generation
models. The robust performance in 2D generation is largely due to the effective integration of
VAEs with latent diffusion models (LDMs) (Rombach et al., 2022). A primary challenge hindering
the complete success of this paradigm in 3D generation is the development of a high-fidelity 3D
representation that can be efficiently embedded into a low-dimensional latent space. Pioneering efforts
have applied diffusion models to various traditional 3D representations, such as point clouds (Zeng
et al., 2022; Zhou et al., 2021; Luo & Hu, 2021), meshes (Liu et al., 2023e), occupancy fields (Zheng
et al., 2023; Zhang et al., 2023a) and signed distance functions (Cheng et al., 2023; Li et al., 2023b;
Zhang et al., 2024). However, these approaches often focus solely on modeling geometry without
considering the appearance attributes. More recently, a notable attempt (Lan et al., 2024) has designed
a VAE that uses volume rendering techniques (Mildenhall et al., 2020) to incorporate appearance
modeling. However, volume rendering presents inherent limitations, including slow rendering speeds
and constrained rendering resolutions. To overcome these limitations, we have developed a VAE that
leverages the latest 3D Gaussian representation (Kerbl et al., 2023), which significantly improves
both the quality and speed of rendering.

Designing a VAE based on 3D Gaussians presents considerable challenges. The first challenge lies in
creating an efficient decoder capable of mapping low-dimensional latents to 3D Gaussians. Existing
methods for 3D Gaussian decoding focus predominantly on reconstruction tasks and typically lack
an information bottleneck design (Tang et al., 2024; Yinghao et al., 2024), thus failing to provide low-
dimensional latent directly. Alternatively, they often require multiple complex and interdependent
components (Xu et al., 2024a; Zou et al., 2023). The second challenge involves generating a
sufficiently large number of 3D Gaussians efficiently, since high-quality rendering necessitates an
adequate quantity of these Gaussians. Some current methods (Xu et al., 2024a; Zou et al., 2023)
address this by employing additional complex point-upsampling networks to increase the number
of 3D Gaussians, which inherently limits the number of Gaussians that can be generated. Other
techniques (Tang et al., 2024; Yinghao et al., 2024) utilize image representations to generate a large
number of 3D Gaussians. However, for all these methods, more network parameters are usually
required as the number of 3D Gaussians increases.

To address the challenges of designing VAEs for 3D Gaussians, we propose Atlas Gaussians, a new
representation for 3D generation. This representation is inspired by surface parameterization (Floater
& Hormann, 2005), a foundation technique in many graphics applications where surface attributes
are sampled and stored in a 2D texture map. Specifically, Atlas Gaussians model the shape as a union
of local patches, with each patch decoding 3D Gaussians via UV-based sampling. By parameterizing
3D Gaussians in the UV space, we can easily generate a sufficiently large, and theoretically infinite,
number of 3D Gaussians. Unlike traditional surface parameterization approaches, the UV mapping in
Atlas Gaussians is learned end-to-end. A significant advantage of Atlas Gaussians is that the sampling
process does not require additional network parameters as the number of 3D Gaussians increases.

We design a transformer-based decoder to map low-dimensional latents to Atlas Gaussians. This
decoder is specifically structured to disentangle geometry and appearance features, facilitating faster
convergence and improved representation capabilities. Using the local awareness of Atlas Gaussians,
we also reduce computational complexity by decomposing the self-attention layers. Finally, the latent
space learned by our VAE can be applied to existing latent diffusion models efficiently.

Note that in contrast to the main approach in 3D generation that uses the multi-view representa-
tion (Wang & Shi, 2023; Long et al., 2023; Liu et al., 2023d; Shi et al., 2023b), our approach is
inherently 3D-based. Therefore, a key advantage is that we do not need to address the challenging
multi-view consistency issue associated with the multi-view representation. Moreover, the rendering
module of Atlas Gaussians allows representation learning from images.

In summary, we make the following contributions.
• We propose Atlas Gaussians, a new 3D representation that can efficiently decode a sufficiently

large and theoretically infinite number of 3D Gaussians for high-quality 3D generation.
• We design a new transformer-based decoder to efficiently map low-dimensional latents to Atlas

Gaussians, using separate branches to disentangle geometry and appearance features.
• We pioneer the integration of 3D Gaussians into the VAE + LDM paradigm, demonstrating

superior performance on standard 3D generation benchmarks.
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2 RELATED WORK

3D representation. 3D reconstruction and generation benefit from different 3D representations by
leveraging their unique properties. These representations include explicit representations (Wu et al.,
2016; Mittal et al., 2022; Ren et al., 2024; Zeng et al., 2022; Zhou et al., 2021; Luo & Hu, 2021;
Sun et al., 2020a; Xie et al., 2021; Yang et al., 2019; Sun et al., 2020b; Achlioptas et al., 2018; Fan
et al., 2017; Liu et al., 2023e; Nash et al., 2020; Siddiqui et al., 2023; Groueix et al., 2018; Chen
et al., 2020; Kerbl et al., 2023; Tang et al., 2024; Yinghao et al., 2024; Zou et al., 2023; Szymanowicz
et al., 2024) and implicit representations (Park et al., 2019; Chen & Zhang, 2019; Mescheder et al.,
2019; Li et al., 2023b; Zheng et al., 2022; Shue et al., 2023; Jiang et al., 2022; Hui et al., 2022; Yan
et al., 2022; Mildenhall et al., 2020; Zhang et al., 2022; Chan et al., 2022; Gu et al., 2023; Chen
et al., 2023a; Cao et al., 2024; Müller et al., 2023; Watson et al., 2023). In this paper, we focus on 3D
Gaussians (Kerbl et al., 2023; Tang et al., 2024; Yinghao et al., 2024; Zou et al., 2023; Szymanowicz
et al., 2024; He et al., 2024), which possess high-quality rendering procedures that allow learning
from image supervisions. However, existing results mainly focus on reconstructing 3D Gaussians.
Our goal is to push the state-of-the-art in generative 3D Gaussians.

Our method is also related to the Atlas representation initially proposed by AtlasNet (Groueix et al.,
2018) and its subsequent extensions (Deprelle et al., 2019; Liu et al., 2019; Feng et al., 2022).
AtlasNet models the shape as a union of independent MLPs, thus limiting the number of patches
to a few dozen. In contrast, our proposed Atlas Gaussians model each patch using a patch center
and patch features. This efficient encoding allows us to generate a significantly larger number of
patches, providing stronger representation capabilities. Additionally, we use a transformer to learn
this representation instead of an MLP, resulting in better scalability.

Diffusion models. Diffusion models (Sohl-Dickstein et al., 2015; Song et al., 2021; 2020) have
been dominant for diverse generation tasks, including image (Ho & Salimans, 2022; Zhang et al.,
2023b; Podell et al., 2023; Rombach et al., 2022), video (Ho et al., 2022b;a; Blattmann et al., 2023),
audio (Huang et al., 2023; Kong et al., 2020; Liu et al., 2023a) and text (Li et al., 2022; Gong et al.,
2022; Lin et al., 2023b). The success of these models typically follows the VAE + LDM paradigm.
Although pioneering efforts (Zeng et al., 2022; Zhou et al., 2021; Luo & Hu, 2021; Liu et al., 2023e;
Zheng et al., 2023; Zhang et al., 2023a; Cheng et al., 2023; Li et al., 2023b; Jun & Nichol, 2023)
have attempted to apply this paradigm to 3D, the problem remains unsolved and has not achieved
the same level of success. We argue that one of the main reasons is the need for an efficient VAE to
represent high-quality 3D content, which is the key contribution of this paper.

3D generation. 3D generation methods can be classified into two genres. The first is optimization-
based methods (Jain et al., 2022; Sun et al., 2023; Wang et al., 2023; Lin et al., 2023a; Wang
et al., 2024; Chen et al., 2023b), which are time-consuming due to per-shape optimization. For
example, DreamField (Jain et al., 2022) uses CLIP guidance. DreamFusion (Poole et al., 2022) and
SJC (Wang et al., 2023) introduce 2D diffusion priors in different formats. Magic3D (Lin et al.,
2023a) employs a coarse-to-fine pipeline to improve convergence speed. Prolificdreamer (Wang
et al., 2024) uses variational score distillation to enhance generation fidelity. Fantasia3D (Chen et al.,
2023b) disentangles geometry and texture to achieve higher quality generation.

The second genre involves training a generalizable feed-forward network to output 3D content, which
allows for fast 3D generation but often with less details. One direction is to apply existing generative
modeling techniques (VAE, GAN, normalizing flow (Rezende & Mohamed, 2015), autoregressive
model (Bengio et al., 2000; Graves, 2013) and diffusion model) directly on various 3D representations.
Another direction (Xu et al., 2024b; Liu et al., 2024; 2023b;c; Shi et al., 2023a; Hong et al., 2024;
Tang et al., 2024) uses 2D as intermediate representation, integrating 2D diffusion models (Ho et al.,
2022a; Shi et al., 2023b). For example, Instant3D (Li et al., 2023a) trains a diffusion model to
generate sparse multi-view images and uses a reconstruction model to derive the 3D shapes from the
2D images. VFusion3D (Han et al., 2024) and V3D (Chen et al., 2024) use video diffusion models to
improve consistency between generated images. However, these methods rely on 2D representations
and often suffer from multi-view consistency issues. In this paper, we push the state-of-the-art in the
first direction by developing a novel representation of Atlas Gaussians. Our representation is efficient
and allows for learning 3D generative models from images.
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Figure 2: (Left) Atlas Gaussians A model the shape as a union of patches, where each patch can
decode 3D Gaussians. (Right) Each patch ai is parameterized by patch center xi and patch features
f i and hi. The 3D Gaussians are decoded via the UV-based sampling.

3 METHOD

In this section, we first introduce our Atlas Gaussians representation (Sec. 3.1). Then we introduce
how we learn a VAE to connect the 3D space with the latent space (Sec. 3.2). Finally, we introduce
how we learn the generative model using latent diffusion in the learned latent space (Sec. 3.3).

3.1 ATLAS GAUSSIANS REPRESENTATION

In 3D Gaussian Splatting (Kerbl et al., 2023), each 3D Gaussian g can be parameterized with a center
µ ∈ R3, scale s ∈ R3, rotation quaternion r ∈ R4, opacity o ∈ R and color c ∈ R3. To achieve
high-quality rendering results, typically a sufficiently large number of 3D Gaussians are required.

The key idea of Atlas Gaussians is to represent the shape as a union of M local patches A = {ai}Mi=1,
where each patch ai can decode 3D Gaussians through UV-based sampling. As shown in Figure 2, we
parameterize each local patch ai := (xi,f i,hi) with patch center xi ∈ R3, the geometry features
f i ∈ R4×d and the appearance features hi ∈ R4×d. More specifically, we parameterize the geometry
and appearance features as the features at the four corners of the local patch in the UV space. We
denote f i = (f i1,f i2,f i3,f i4) and hi = (hi1,hi2,hi3,hi4). This type of feature disentanglement
can facilitate more effective learning (Gao et al., 2022; Zou et al., 2023; Xu et al., 2024a). We use the
feature f i to decode Gaussian positions while using hi to decode the rest of Gaussian attributes. We
also assign a 2D coordinate uij ∈ R2 to each feature vector f ij and hij as a positional embedding,
where ui1 = (0, 0), ui2 = (1, 0), ui3 = (1, 1), ui4 = (0, 1), ∀i.
Note that this representation is motivated by the concept of UV-map, in which the four corners
describe the corners of the rectangular parameter domain. As we shall discuss later, the features
f i and hi are learned end-to-end with 3D Gaussians. This approach takes advantage of end-to-end
learning, while the specific network design promotes learning better features.

For generation, we randomly sample query points in the predefined unit square UV space for each
patch ai. Each point is then decoded into a 3D Gaussian. Given a query point qij ∈ [0, 1]

2, we map
the 2D coordinate qij to the center of 3D Gaussians as:

µij = ϕ(qij ,ui,f i), (1)

where ϕ is the mapping function, which takes the query point location qij , the predefined location of
patch feature vectors ui, and the geometry features f i as inputs. We implement the mapping function
using interpolation in the 2D space:

µij = MLP(
4∑

k=1

w(qij ,uik,f ik) · f ik) + xi, (2)

where w is the weight function of the four corners and we use an MLP to decode the residual between
the Gaussian location and the patch center xi

One design choice for w is the bilinear interpolation weight function, which has been widely used in
feature decoding (Müller et al., 2022). However, these linear weights purely based on coordinates
have limited representation ability. Inspired by (Zhang et al., 2023a), we design a more powerful
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Figure 3: The proposed VAE architecture. CA denotes the cross-attention layer. For simplicity, the
variational component of the VAE is omitted. The latent z0 is used for latent diffusion.

weight function defined on both coordinates and features:

w(qij ,uik,f ik) =
w̃(qij ,uik,f ik)∑4
l=1 w̃(qij ,uil,f il)

, (3)

and w̃(qij ,uil,f il) = eω2(qij)
T (f il+ω2(uil))/

√
d, (4)

where ω2 : R2 7→ Rd is the sinusoidal positional encoding function with MLP projection.

Similarly, the remaining Gaussian attributes are decoded by the function ψ:

(sij , rij , oij , cij) = ψ(qij ,ui,hi) = MLP(
4∑

k=1

w(qij ,uik,hik) · hik), (5)

The benefits of Atlas Gaussians representation are three-fold. First, through UV-based sampling
in a unit square, Atlas Gaussians enable easy generation of a sufficiently large number of 3D
Gaussians. They also possess the potential to generate a variable and theoretically infinite number
of 3D Gaussians. Second, Atlas Gaussians utilize a non-linear learnable weight function based on
the MLP projection of the positional encoding, which has a stronger representation ability than
the existing linear interpolation weight. Third, Atlas Gaussians are computation efficient with low
memory overhead. Another important property of Atlas Gaussians is that they do not require extra
network parameters when scaling up the number of generated 3D Gaussians. We also provide an
ablation study in Section 4.4 to validate the nice properties of Atlas Gaussians.

3.2 STAGE 1: VAE

We design a VAE to link the latent space and the 3D space. The overall pipeline is shown in Figure 3.

Encoder. Following the latent set representation in (Zhang et al., 2023a), the encoder takes shape
information as input and outputs a latent set z0 ∈ Rn×d0 , where n is the size of the set in the
latent set representation and d0 is the latent dimension. The shape information includes point
cloud P = {pi ∈ R3} and sparse view RGB images I = {Ii ∈ RH×W×3}. We encode the
location of points into positional embeddings, resulting in features in R|P|×d. Meanwhile, a ViT
network (Dosovitskiy et al., 2021; Oquab et al., 2024) embeds each image into features of shape
Rh×w×d, resulting in the features of all images in R(|I|×h×w)×d. We then initialize the latent features
z̄ ∈ Rn×d as the encoding of the points sampled using the farthest point sampling (Zhang et al.,
2023a) and use transformers with cross-attention to aggregate input shape information. After feature
aggregation, we use an MLP to map the features to a lower-dimensional space Rn×d → Rn×d0 ,
facilitating efficient latent diffusion. The process is summarized as follows:

z′ = CrossAttn(z̄,P), z′′ = CrossAttn(z′, I), z′′′ = SelfAttn(z′′), z0 = MLP(z′′′). (6)

In this notation, we omit the feed forward MLP of the transformers for simplicity. Intuitively, the
query z̄ is updated by aggregating the input point features and image features.

Note that attention is invariant to the permutation of features. We also avoid pose-dependent opera-
tions (Jiang et al., 2024; Jun & Nichol, 2023) in our design to enhance generality and extendability.
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Decoder. The decoder recovers patch features A = {(xi,f i,hi)}Mi=1 from the latent code z0. In the
decoder, we upsample the latent code, decode the patch centers {xi}Mi=1, and then decode the patch
geometry and appearance features {(f i,hi)}Mi=1.

The upsampling module is designed to increase both the length and the feature dimension of the
latent code, from z0 ∈ Rn×d0 to zl ∈ RM×d. In detail, we first use a learnable query y to aggregate
information from the latent code z0 using transformers with cross-attention. Then, we increase its
channel dimension to d using self-attention transformers, leading to the characteristic z1 ∈ Rn×d.
We then use an MLP to increase the feature dimension of z1 into M

n d, leading to latent features in
Rn×M

n d. We reshape the features into z2 ∈ RM×d, which is a pixel shuffle process (Shi et al., 2016;
Xu et al., 2024a). We then use another set of transformers with self-attention to obtain the output
latent features zl. This process is summarized as follows:

z1 = SelfAttn(CrossAttn(y, z0)), z2 = PixelShuffle(MLP(z1)), zl = SelfAttn(z2), (7)
where y is initialized using a Gaussian distribution. Again, we omit the feed-forward MLP in the
transformers for simplicity. We then decode the patch centers using transformers with self-attention:

{xi}Mi=1 = SelfAttn(zl). (8)

We use a two-branch module to decode geometry and appearance features {(f i,hi)}Mi=1 from
upsampled latent code zl. We demonstrate its architecture in Figure 4. Take the branch for decoding
the geometry features {f i}Mi=1 as an example. We use another upsampling module to map zl ∈ RM×d

to zf ∈ RM×β×d, where β = 4, corresponding to the geometry features of the four corners for each
patch. We then use transformers with self-attention to refine the upsampled features to get f i.

Specifically, we apply computational decomposition to the self-attention layers, as naive self-attention
leads to a O(β2M2d) complexity due to the long sequence length of Mβ. We apply local self-
attention to the features that belong to each local patch, reducing the complexity to O(β2Md). The
features of different local patches are updated independently. This design ensures local awareness of
Atlas Gaussians decoding. To further ensure global awareness, we repeat and add the global features
to the local patch features.
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Figure 4: In the patch feature
decoder, global features are
broadcast and added to the lo-
cal features. SA denotes the
self-attention layers.

After obtaining the Atlas Gaussians A = {(xi,f i,hi)}Mi=1 from the
VAE, we can decode 3D Gaussians following Eq. 2 and Eq. 5.

Training. Similar to existing methods (Lan et al., 2024; Xu et al.,
2024a; Zou et al., 2023), we utilize a 3D dataset for supervision. We
first regularize the patch center to adhere to the 3D surface geometry:

Lcenter = LCD({xi}Mi=1,PGT) + LEMD({xi}Mi=1,PGT), (9)
where PGT is the ground truth surface point cloud, LCD and LEMD are
Chamfer Distance (CD) and Earth Mover’s Distance (EMD), respec-
tively. Similarly, we also supervise the centers of all 3D Gaussians
with
Lµ(S) = LCD({µij}

M,S
i=1,j=1,PGT) + LEMD({µij}

M,S
i=1,j=1,PGT),

(10)
where {µij}

M,S
i=1,j=1 represents the generated point cloud by sampling

S points in each of the M patches. When computing the loss for
supervision, we can generate point clouds with different resolutions by
varying S, thanks to Atlas Gaussians’ ability to dynamically generate
a variable number of 3D Gaussians. Note that patches may overlap,
similar to AtlasNet. Lcenter and Lµ(S) encourage the patches to
distribute more uniformly across the surface, thereby making better use of the 3D Gaussians.

While surface points are independent samples of the continuous geometry, 3D Gaussians are interde-
pendent because one 3D Gaussian can affect the attributes of its neighbors during alpha blending. To
ensure consistency and achieve deterministic results, during rendering we employ a uniform α× α
grid sampling in the UV space instead of random sampling, resulting in N = α2M 3D Gaussians.
We use the differentiable renderer from (Kerbl et al., 2023) to render V views of RGB, alpha, and
depth images, which is supervised by mean square error:

Lrender = LMSE(Î rgb, I rgb) + LMSE(Îalpha, Ialpha) + LMSE(Îdepth, Idepth), (11)
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where Î rgb, Îalpha, and Îdepth are the predictions, I rgb, Ialpha, and Idepth are the ground truths. To
improve the visual fidelity, we also employ the LPIPS loss (Zhang et al., 2018; Tang et al., 2024)
LLPIPS(Î rgb, I rgb). The total loss function for the VAE is:

Ltotal = Lcenter +
∑

S={1,4}

Lµ(S) + λr (Lrender + LLPIPS) + λKLLKL(z), (12)

where LKL is the Kullback–Leibler divergence, λr and λKL are the loss weights.

3.3 STAGE 2: LATENT DIFFUSION MODEL

The proposed VAE provides a low-dimensional latent code that can be mapped to Atlas Gaussians.
We employ EDM (Karras et al., 2022) for latent diffusion. Our denoising network follows the same
architecture as (Zhang et al., 2023a), which consists of a series of transformer blocks:

z(i) = CrossAttn
(

SelfAttn(z(i−1)), C
)
, i = 1, . . . , l (13)

where z(0) = z0 is the initial input to the network, l is the number of blocks. In unconditional
generation, we designate C as a learnable parameter. For text-conditioned generation, C is set as the
CLIP embedding (Radford et al., 2021) of the input text prompts. Since the LDM network design is
not our main contribution, we provide the implementation details in Appendix A.3.

4 EXPERIMENTS

We first introduce our experimental setup, and then show the results for both unconditional and
conditional generation.

4.1 EXPERIMENTAL SETUP

Following most existing methods (Gao et al., 2022; Müller et al., 2023; Chen et al., 2023a; Lan et al.,
2024), we benchmark unconditional single-category 3D generation on ShapeNet (Chang et al., 2015).
We use the training split from SRN (Sitzmann et al., 2019), which comprises 4612, 2151, and 3033
shapes in the categories Chair, Car, and Plane, respectively. We render 76 views for each shape using
Blender (Community, 2018) with the same intrinsic matrix as (Cao et al., 2024; Lan et al., 2024).
Fréchet Inception Distance (FID@50K) and Kernel Inception Distance (KID@50K) are used for
evaluation. In addition, we experiment with text-conditioned 3D generation on Objaverse (Deitke
et al., 2022). We use the renderings from G-buffer Objaverse (Qiu et al., 2023) and the captions from
Cap3D (Luo et al., 2023). Due to limited computational resources, we select a high-quality subset
with around 18K 3D shapes. We use CLIP score (Radford et al., 2021; Hessel et al., 2021), FID and
KID for evaluation. Please refer to Appendix A.1 for more implementation details.

4.2 UNCONDITIONAL 3D GENERATION

Table 1 presents the quantitative comparison between our method and baseline approaches. Our
method outperforms all baseline approaches, including EG3D (Chan et al., 2022), GET3D (Gao et al.,
2022), DiffRF (Müller et al., 2023), RenderDiffusion (Anciukevičius et al., 2023), SSDNeRF (Chen
et al., 2023a) and LN3Diff (Lan et al., 2024). We also include the qualitative comparison with
LN3Diff in Figure 5. Our results demonstrate significant improvements over LN3Diff, particularly in
the ShapeNet Chair category, which features greater geometric, structural, and textural complexity.
The results highlight the robustness and efficacy of our approach.

4.3 CONDITIONAL 3D GENERATION

We evaluate our method and baseline approaches (He et al., 2024; Lan et al., 2024; Tang et al.,
2024; Jun & Nichol, 2023) on text-conditioned 3D generation using Objaverse. The qualitative
results are presented in 6, where all text prompts are sourced from the original baseline papers. As
shown in Figure 6, the image-based generalizable 3D reconstruction method (Tang et al., 2024)
sometimes produces shapes with significant artifacts, primarily due to its reliance on a multi-view
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Figure 5: The comparison between LN3Diff and our method on three ShapeNet categories.

Table 1: Evaluation of single-category unconditional generation on ShapeNet.

Method Chair Car Plane

FID@50K KID@50K(%) FID@50K KID@50K(%) FID@50K KID@50K(%)

EG3D (Chan et al., 2022) 26.09 1.1 33.33 1.4 14.47 0.5
GET3D (Gao et al., 2022) 35.33 1.5 41.41 1.8 26.80 1.7
DiffRF (Müller et al., 2023) 99.37 4.9 75.09 5.1 101.79 6.5
RenderDiffusion (Anciukevičius et al., 2023) 53.30 6.4 46.50 4.1 43.50 5.9
SSDNeRF (Chen et al., 2023a) 65.04 3.0 47.72 2.8 21.01 1.0
LN3Diff (Lan et al., 2024) 16.90 0.47 17.60 0.49 8.84 0.36

Ours 9.90 0.35 12.15 0.45 8.09 0.21

generation network, which frequently suffers from multi-view inconsistency. In contrast, our method
learns directly from 3D data, enabling the generation of consistent novel views. Additionally, our
method produces higher-quality 3D shapes compared to Shap-E and LN3Diff, both of which use
the VAE + LDM paradigm. However, these methods depend on volume rendering during training,
which is typically restricted to low resolution. Our approach instead leverages the more efficient 3D
Gaussian representation. Compared to GVGEN, our generated shapes exhibit finer details, owing
to the proposed Atlas Gaussians representation, which is capable of decoding a significantly larger
number of 3D Gaussians. Quantitative results are provided in Table 2, where our method achieves the
best performance across all metrics and has the shortest inference time. This improvement is due to
our efficient decoder design, which effectively links the low-dimensional latent space with 3D space.
Additional results can be found in Appendix B.

In Figure 7, we provide a detailed analysis of our method. In Figure 7 (Left), we present text-
conditioned generation results with different random seeds, demonstrating that our method produces
highly diverse outputs. In Figure 7 (Right), we show that our model can be robustly controlled
using different text prompts. The generated results are also significantly different from their nearest
neighbors in the training dataset, highlighting the model’s ability to generate novel content.

Table 2: Evaluation of text-conditioned 3D generation on Objaverse.

GVGEN (He et al., 2024) LN3Diff (Lan et al., 2024) LGM (Tang et al., 2024) Shap-E (Jun & Nichol, 2023) Ours

CLIP Score (ViT-B/32) ↑ 27.33 27.21 29.62 30.22 30.66
FID@6K ↓ 132.4 123.8 117.0 114.5 109.5
KID@6K (%) ↓ 6.04 4.53 4.68 4.38 4.04
Inference Time (GPU) ↓ 28 s (V100) 7.5 s (V100) 6 s (TITAN V) 33 s (TITAN V) 4 s (TITAN V)

8



Published as a conference paper at ICLR 2025

a wooden stool with seat and legs.

A blue plastic chair.

A wooden worktable.

a wooden bedside side table.

A gray sectional sofa with pillows and wooden legs.

a light purple teddy bear.

a goldfish.

A white and red Lego toy chicken.

a cruise ship.

Pixelated model of a wooden ship with sails.

A wooden ship with mast.

White scooter model.

a yellow and black forklift truck.

A Yellow Chevrolet Camaro sports car.

A red, white, and blue Lego airplane with wheels.

A Space War Tie Fighter.

GVGEN LN3Diff LGM Shap-E Ours GVGEN LN3Diff LGM Shap-E Ours

Figure 6: Comparison of text-conditioned 3D generation on Objaverse. From left to right: GV-
GEN (He et al., 2024), LN3Diff (Lan et al., 2024), LGM (Tang et al., 2024), Shap-E (Jun & Nichol,
2023), and our method. All text prompts are sourced from the original baseline papers.

a wooden child's bed 
with blue sheets.

a wooden child's bed 
with red sheets.

a wooden child's bed 
with green sheets.

a wooden child's bed 
with white sheets.

a wooden child's bed 
with black sheets.

cartoon character 
resembling a cat.

cartoon character 
resembling a donkey.

cartoon character 
resembling a hippo.

cartoon character 
resembling a horse.

cartoon character 
resembling a cow.

a wooden chair.

a wooden wagon with wheels.

A modern upholstered chair.

pixelated model of a cow with a horn on its 
head, resembling a deer with horns.

G
en
er
at
io
n

N
N

G
en
er
at
io
n

N
N

Figure 7: (Left) Our generated results demonstrate significant diversity. (Right) Our generated results
align closely with the text prompts, allowing for strong controllability. In the second row of each
group, we present the nearest neighbors (NN) from the training dataset.
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Table 3: Ablation study on the number of 3DGS and the
number of patches on Objaverse. (LPIPS↓ / MEM↓)

#patches #3DGS≈8K #3DGS≈32K #3DGS≈100K

512 – – 0.068 / 1.2G
1024 – – 0.060 / 1.3G
2048 0.072 / 1.3G 0.063 / 1.4G 0.058 / 1.7G
4096 – 0.061 / 2.0G 0.057 / 2.3G

Table 4: Ablation study on network design
evaluated on ShapeNet with PSNR.

Atlas Gaussians (Full) 26.56

(a) linear weights 26.13
(b) no disentangle 25.77
(c) no global feature 26.18
(d) decode s,r,o from f i 26.55

4.4 ABLATION STUDY

This section presents an ablation study on different components of our network.

Number of 3D Gaussians and number of patches. In Table 3, we analyze the effects of both the
number of patches and the total number of 3D Gaussians on LPIPS and memory usage (MEM, which
represents the additional GPU memory required for each unit increase in batch size). The results
indicate that increasing either the number of patches or the number of 3D Gaussians improves LPIPS.
When the number of 3D Gaussians is fixed (32k or 100k), increasing the number of patches from 2,048
to 4,096 results in a 0.1-0.2 improvement in LPIPS. However, when the number of patches is fixed
(2,048 or 4,096), increasing the number of 3D Gaussians from 32k to 100k leads to a more significant
improvement in LPIPS while requiring less additional GPU memory. Importantly, the network
parameters remain unchanged despite the increase in 3D Gaussians. This comparison demonstrates
that increasing the number of 3D Gaussians through Atlas Gaussians decoding is more efficient
and effective than increasing the number of patches. Notably, the Atlas Gaussians representation
combines explicit patch generation with implicit interpolation to generate 3D Gaussians, offering a
balanced trade-off between compact implicit and fast explicit representations.

Learned weights for feature decoding. In Table 4, we ablate the VAE network design on the
ShapeNet validation set using the PSNR metric. The table shows that replacing our learned weight
function with bilinear interpolation weights leads to a performance drop for the VAE. This indicates
that our learned nonlinear weights have stronger representation capabilities than linear weights.

Disentangle geometry and texture features. Atlas Gaussians use separate branches to learn
geometry and appearance features. To validate the effectiveness of this design, we experimented
with an alternative network version where a single set of features is shared for both geometry and
appearance. As shown in Table 4, performance decreases considerably with this shared feature
approach. This shows that our design facilitates more effective learning. Note that both the geometry
and appearance features are generated from the shared latent z0, and disentanglement is performed
during feature generation rather than in the latent space.

Using global features. As shown in Table 4, removing the global feature from zl in the patch
feature decoder leads to a performance drop. This outcome is expected, as the global features provide
essential context that complements the local features.

Parameter decoding scheme. In Gaussian Splatting, opacity, scale, and rotation also influence the
geometry. We experimented with decoding opacity, scale, and rotation from the geometry features
and found that the performance is nearly identical to when these attributes are decoded from the
appearance features. This result indicates that the key factor is decoding the Gaussian centers and
RGB colors using distinct, separate branches.

5 CONCLUSION

This paper introduces Atlas Gaussians, a new representation for feed-forward 3D generation. Atlas
Gaussians enable the efficient generation of a sufficiently large and theoretically infinite number
of 3D Gaussians, which is crucial for high-quality 3D generation. We also designed a transformer-
based decoder to link the low-dimensional latent space with the 3D space. With these innovations,
we pioneer the integration of 3D Gaussians into the VAE + LDM paradigm, achieving superior
performance and producing high-fidelity 3D content.
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A IMPLEMENTATION DETAILS

A.1 ADDITIONAL DETAILS OF THE DATASET

We adapted the training setup from LN3Diff (Lan et al., 2024), which initially used a subset of
35K shapes. These shapes cover three general categories: Transportation, Furniture, and Animals,
derived from the G-buffer Objaverse (Qiu et al., 2023). Due to limited computational resources, we
cleaned the dataset by filtering out duplicate and low-quality shapes (e.g., those with flat ground
or poor geometry), resulting in a final subset of approximately 18K shapes for training. Given the
relatively small size of our dataset, we manually align the 3D shapes to establish a consistent canonical
orientation across each category, facilitating easier learning. It is important to note that baselines like
LN3Diff utilize additional data from other categories, which provides them an advantage.

We randomly selected 250 text prompts for evaluation, ensuring that each testing prompt differs from
the training data. For each object, we rendered 24 views uniformly, following the G-buffer Objaverse
protocol, resulting in a total of 6K images. FID and KID are computed based on the 2D image feature
space.

A.2 ADDITIONAL DETAILS OF VAE

The VAE training consists of two stages. In the first stage, λr in Eq. 12 is set to 0. Rendering occurs
only in the second stage with λr set to 1. In both stages, λKL maintains 1e−4. As shown in Eq. 12,
all other loss weights are set to 1 for simplicity. Our method is robust to hyperparameters; doubling
or halving λr in Eq. 12 results in almost identical loss curves.

We utilize a sparse point cloud of 2048 points and 4 input views, each of size 224× 224. M = 2048
patches are used in all experiments. For the latent, n = 512, d = 512. We set d0 to 4 for ShapeNet
and d0 to 16 in Objaverse. In ShapeNet, α is set to 4, resulting in N = 32768 3D Gaussians. In
Objaverse, α = 7. Due to the real-time rendering capabilities of the 3D Gaussians, we are able to
produce an output image of size 512× 512. We use the EMD implementation from (Liu et al., 2019),
which supports fast and efficient computation even with up to 8192 points. All networks are trained
on 8 Tesla V100 GPUs for 1000 epochs using the AdamW optimizer (Loshchilov & Hutter, 2019)

The authors recently scaled up their model with more data, and we use this updated version for comparison.
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with the one-cycle policy. Our VAE is trained using mixed precision (fp16) and supports a batch size
of 8 per GPU. For instance, when trained on the ShapeNet dataset, it requires approximately 22GB of
memory per GPU, making it accessible to a wide range of laboratories. Notably, the model does not
require the latest A100 GPUs for training. Furthermore, the training process is completed in less than
30 hours. For Objaverse, the VAE training takes about 6 days.

In terms of network parameters, our model increases the number of Gaussians without adding extra
network parameters. Specifically, for Objaverse, our model requires only 142M network parameters
to generate 100K Gaussians, while LGM (Tang et al., 2024) requires 415M parameters for generating
64K Gaussians. This demonstrates that our representation is more efficient than purely explicit
representations like LGM, offering a nice trade-off between compact implicit and fast explicit
representations.

A.3 ADDITIONAL DETAILS OF LDM

We adopt the EDM (Karras et al., 2022) framework for latent diffusion. EDM aims to learn a denoising
network Dθ(z;σ, C) to convert the Gaussian distribution to the empirical distribution pdata defined
by z, where θ is the network parameters, σ is the noise level sampled from a predefined distribution
ptrain, and C denotes the optional condition. Dθ(z;σ, C) is parameterized using a σ-dependent skip
connection:

Dθ(z;σ, C) = cskip(σ)z + cout(σ)Fθ (cin(σ)z; cnoise(σ), C) , (14)
where Fθ is the network to be trained. The training objective is

Eσ,z,nλ(σ)||Dθ(z;σ, C)− z||2, (15)

where σ ∼ ptrain, z ∼ pdata,n ∼ N (0, σ2I). Readers interested in details on cskip(σ), cout(σ), cin(σ),
cnoise(σ), and parameterization of the weight function λ(σ) may refer to EDM (Karras et al., 2022).

For the latent diffusion model, we set l = 12 for ShapeNet and l = 24 for Objaverse. The final latents
are obtained via 40 denoising steps. For text-conditioned 3D generation, we use CLIP to encode the
input text prompts. In addition, we adopt classifier-free guidance. We randomly drop the conditioning
signal with a probability of 10% and set the guidance scale to 3.5 during sampling. Note that more
advanced architectures (Peebles & Xie, 2022) could also be employed for the denoising network.

B ADDITIONAL RESULTS

In Figure 8, we present additional results of text-conditioned 3D generation using our method.

Figure 9 shows the results of real-image-conditioned 3D generation. In this experiment, we simply
replace the CLIP text encoder with the CLIP image encoder and train the latent diffusion model using
the same dataset. Given a real image, we first apply an off-the-shelf tool to remove the background
and then use the processed image as the conditional input for 3D generation. The results demonstrate
that our method can still produce reasonable outcomes.

C DISCUSSION ON CONCURRENT WORK

We discuss several concurrent works that utilize the VAE + LDM paradigm for feed-forward 3D
generation. GaussianAnything (Lan et al., 2025) was concurrently developed and introduces an
explicit 3D latent space to enhance interactivity. L3DG (Roessle et al., 2024) and DiffGS (Zhou et al.,
2024) both design a VAE that takes 3D Gaussians as input and outputs 3D Gaussians. However, both
require per-shape optimization before training the VAE, which limits scalability.

D LIMITATIONS AND FUTURE WORK

Our method uses the vanilla 3D Gaussian representation, which is known to be challenging for
extracting highly accurate geometry. Incorporating recent advancements (Huang et al., 2024; Yu
et al., 2024; Guédon & Lepetit, 2023) in 3D Gaussian techniques can benefit both geometry and
appearance.
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A four wheeled armored vehicle.

An 18th century cannon.

T-34-85 green tank

An UFO Space Aircraft.

A small camouflaged helicopter.

A blue toy airplane with propellers.

NASA Space Shuttle 3D Model

Black and white gaming chair

a Yellow Vespa 125 scooter.

a colorful fish with blue and white paint.

a cute Totoro character.

a white goat

a raccoon character.

a wooden desk with drawers.

a wooden bench with a white, concrete, 
and marble top options.

A wooden boat with oars.

Figure 8: Additional results of text-conditioned 3D generation using our method.

Figure 9: Image-conditioned 3D generation using our method.
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