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Spatial attention patterns in ViT
representations

To further investigate the spatial attention behavior of Vi-
sion Transformers in fine-grained scenarios, we visualize
attention weights from the class token to all patch tokens
in the final layer of ViT-B-16. As shown in Figure 1, each
column displays a Navon character stimulus, composed of re-
peated micro-letters forming a larger shape, alongside its cor-
responding class token attention heatmap. Across all stimuli,
the attention patterns appear diffuse and low in magnitude,
exhibiting minimal spatial concentration regardless of the
global structure or orientation of the input. This suggests that
the class token fails to selectively attend to spatially localized
regions, even at the final representational stage.

Notably, the attention maps show little to no alignment
with the local textures (i.e., repeated local letters), indicating
a lack of spatial hierarchy or part-whole awareness. This rein-
forces a core architectural limitation of ViTs: in the absence
of convolutional priors or hierarchical design, the model
struggles to capture localized visual regularities critical for
compositional or fine-grained recognition. The uniformly
low attention responses and absence of discriminative peaks
imply that final predictions are not grounded in spatially fo-
cused evidence, but are instead distributed across the image,
consistent with prior observations of ViT’s weak inductive
bias toward locality.

These visualizations corroborate the quantitative perfor-
mance drop observed in zero-shot generalization to novel
classes, particularly in tasks where fine-grained, local texture
features are essential. They further motivate the develop-
ment of training strategies or architectural modifications that
promote spatial selectivity and more interpretable attention
dynamics in ViT-based models.

Methodology

Due to the significant computational resources and time re-
quired, researchers and practitioners prefer to use pre-trained
ViT models and fine-tune them on specific tasks or smaller
datasets. This approach is generally more feasible and still
leverages the powerful representational capabilities of ViT
models. Our methodology adheres to this established practice,
using pre-trained ViT models for all experiments detailed in
the approach section. We fine-tune these models on selected

datasets and directly assess the effects of diverse data aug-
mentation techniques on model performance when testing on
the ImageNet dataset. This approach efficiently facilitates the
quick determination of the impact that varying training objec-
tives have on ViT performance with fewer training epochs.

Base-to-novel generalization

In the case of the Navon dataset, we generate three distinct
training splits. Each split includes a random sampling of
16 instances from each image category. We divide the total
categories into two equal parts, designated as base classes
and novel classes. The model’s performance is then assessed
using the respective validation splits for each category. We
present the accuracies for both base and novel classes, along
with their harmonic mean (HM), averaged across three itera-
tions. To guarantee a balanced comparison between the two
architectures in the base-to-novel generalization experiment,
identical hyperparameters are selected. The ResNet-50 and
ViT-B-16 models underwent training over 10 epochs, each
with a consistent learning rate of le-4.

Learning experiments

Dataset considerations Each dataset used in our study has
limitations in accurately representing texture. For instance,
in the GST dataset, human subjects struggled with the style
classification task (achieving an average accuracy of 14.2%
against a chance level of 6.25%) (Geirhos et al. 2019a), based
on data from a human experiment with texture-biased in-
structions (originally shown in Fig 10b of plotted by shape
class (Geirhos et al. 2019a); data sourced from (Geirhos
et al. 2019b)). Additionally, variability arises from the perfor-
mance of the style transfer algorithm on individual images,
and the reliance of style transfer on ImageNet-trained CNN
features means that the dataset isn’t entirely independent of
the models under evaluation. Furthermore, the noise textures
in ImageNet-C are perhaps the least representative of typical
textures as generally understood. We anticipate that present-
ing results across all three datasets will mitigate any unique
quirks of each dataset. In our upcoming research endeavors,
we aim to develop new datasets that merge the manipulability
of Navon stimuli with the realistic qualities of the GST and
ImageNet-C datasets.
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Figure 1: Attention maps from the final layer of ViT-B/16 on Navon stimuli. Each pair shows a composite character image (left),
where a large letter is formed from repeated small letters, and the corresponding attention heatmap (right). The maps show
diffuse, low-magnitude responses with no strong spatial selectivity or alignment to global or local structure. This illustrates the
model’s limited inductive bias for hierarchical or localized visual patterns, contributing to poor generalization in fine-grained

tasks.

Dataset splits Geirhos Style-Transfer (GST) dataset. We
generate five cross-validation splits for the dataset, applying
each split to both classification tasks. In creating a split, we
reserve one exemplar each for shape and texture, ensuring that
no entire shape or texture classes are omitted. Consequently,
during the texture task, a model has to generalize across
different exemplars of the same texture, and similarly, for the
shape task, it needs to generalize across different exemplars
of the same shape. The average validation set size across these
splits is 483 items, accounting for approximately 40.3% of
the total data. It’s important to note that the dataset includes
80 images where shape and texture coincide. Following the
precedent set by (Geirhos et al. 2019a), which excludes these
images in calculating shape and texture biases, we also omit
them from our analysis.

Navon dataset. In the case of the Navon dataset, we inde-
pendently establish five cross-validation (cv) splits for each

specific task. In the shape task, we exclude three texture
classes (such as the letters “W”, “D”, “K”), while for the
texture task, three shape classes are set aside. The size of the
validation set for each split was 375 items, which represents
11.5% of the total dataset.

ImageNet-C dataset. For each version of the dataset, we
conduct separate splits for both shape and texture tasks. In
the shape task, we exclude two texture classes (like “bright-
ness” and “saturate”), while in the texture task, two shape
classes are omitted (for example, brightness’s “n03014705”
and “n02098286”). This resulted in a validation set com-
prising 9,500 items, which constitutes 10.5% of the entire

dataset.

Training For both training and validation images, we apply
preprocessing by adjusting the pixel values according to the
mean and standard deviation of the training data subset. In the
case of the GST and ImageNet-C datasets, each training im-
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Figure 2: Visual representations of the data augmentation techniques examined in the study. Each augmentation method
stochastically alters data using specific internal parameters, such as the degree of rotation or the level of noise.

age is subjected to random horizontal flips with a probability
of 0.5 during the training phase.

When subsampling the training data, we ensure that every
shape and texture class is represented at least once. Specifi-
cally for the GST dataset, we reserve one exemplar from each
texture and shape category in every split. For other datasets,
shape classes are excluded in the texture training and vice
versa.

Evaluation of shape bias, shape match, and texture
match

For assessing shape and texture match, as well as shape bias
in models trained on ImageNet, we follow (Geirhos et al.
2019a) where models are shown complete, non-cropped im-
ages from the GST dataset. We then collect the class proba-
bilities generated by the model and aggregate them into 16
superclasses by summing the probabilities of the ImageNet
classes within each superclass (Geirhos et al. 2019a). The



shape match metric is calculated as the frequency with which
a model accurately identifies the shapes of the probe items.
Texture match refers to the model’s accuracy in predicting the
textures of these items, and shape bias is determined as the
proportion of instances where the model correctly identifies
shape in cases where either shape or texture prediction is
correct.

Data augmentation and self-supervised
representation experiments

For experiments detailed in Section 3.3 (Tables 3 and 4),
random-flip augmentation is employed. Furthermore, we ex-
plore the impact of various other augmentations, including
color distortion (comprising 80% probability of color jitter
and 20% probability of color drop), rotation, cutout, Gaussian
noise, Gaussian blur (with a kernel size amounting to 10%
of the image’s width/height), and Sobel filtering, as outlined
in the study by (Chen et al. 2020). Except where specifically
indicated, these augmentations are applied to roughly half of
the examples (50% probability) in each mini-batch. Figure 2
features visual examples of these augmentations.

For experiments in Section 3.4 (Tables 5), all classifiers in
our study are accompanied by data augmentation techniques
that include random flipping and cropping. For the cropping,
images were first resized to have their shortest side be 256
pixels, followed by cropping out regions of 224 x 224 pixels.
This milder approach to cropping has been employed in prior
research for training classifiers on self-supervised represen-
tations (Gidaris, Singh, and Komodakis 2018; Kolesnikov,
Zhai, and Beyer 2019; Donahue and Simonyan 2019), and
we find it crucial for replicating their results.

Texture bias across ViT-based pre-trained models

ViT-based pre-trained models are fine-tuned using the
AdamW optimizer with an initial learning rate of le-4 and a
weight decay of 0.05 to mitigate overfitting. Training is con-
ducted for 10 epochs on input images uniformly resized to
224x224. We employ standard data augmentation techniques,
including random cropping and horizontal flipping.

Broader Impact

The core contribution of our work is the theoretical and em-
pirical demonstration that Vision Transformers (ViTs) lack
an inductive bias for local texture features. This insight ex-
plains their limitations in fine-grained texture recognition
and underscores the need to embed biases such as locality
and translation equivariance into their design. By analyzing
texture bias and its causes, we aim to guide the development
of ViT architectures and training strategies that address these
shortcomings.

Incorporating such biases would significantly improve ViT
performance in fine-grained tasks, especially in data-scarce
settings where capturing local detail is critical. Better un-
derstanding of training objectives, data augmentation, and
architectural adaptations can enable ViTs to generalize more
effectively, which is vital for real-world applications like
medical diagnosis, where missing fine textures can affect

outcomes. Enhanced texture recognition also benefits indus-
tries such as manufacturing and surveillance, where improved
precision reduces costs and boosts automation.

Ultimately, tackling texture bias in ViTs has broader im-
plications for advancing general Al, promoting fairness by
reducing model biases, and increasing economic efficiency
in Al-driven systems. Our findings highlight the importance
of continued research to make ViT-based foundation models
more robust, interpretable, and suited for high-stakes deploy-
ment.
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