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The appendix describes the computation procedure of Sinkhorn-Knopp, the details of ELIM, the
additional qualitative experimental results, and the pseudo-code, which were not covered by the main
paper.

1 Details about Sinkhorn-Knopp

This section deals with the background and details of Sinkhorn-Knopp [2]. In general, optimal
transport (OT) problem is regarded as a linear program (LP) and its solution is found through the
interior point method. However, this interior point method, which involves factorization of KKT
matrix, requires near-cubic complexity [1]. Thus, we modify the optimization method by adding an
entropy constraint to the OT problem as follows:

X∗ := min
X

∑
i,j

Ci,jXi,j − εH(X), (1)

where ε ∈ [0,+∞] andH(X) is the entropy of X . Eq. 1 is called an entropy-regularized OT (EOT)
problem, and its solution can be also found through Sinkhorn-Knopp [2] based on iterative updates of
vectors. The following Lemma 1 guarantees the convergence of Eq. 1 and the uniqueness of X [10].
Lemma 1 [2]. Let’s define two non-negative vectors as u and v, respectively. The flow matrix X
calculated through iterative updates of u and v is unique: X = diag(u)Kdiag(v). Here, the scaled
cost matrix K is defined by the element-wise exponential of −C/η, and η is the balancing factor.
diag(·) is a diagonalization operation.

Eq. 1 is theoretically guaranteed to have a unique solution according to Lemma 1. X of Eq. 1 is
efficiently computed using Sinkhorn-Knopp’s fixed point iteration as follows:

(u,v)← (a./Kv, b./KTu), (2)

where ./ stands for the element-wise division. Given K and the relevance weights a and b, the
solution X∗ of Eq. 1 is obtained by iterating Eq. 2 enough times to converge. This process of updating
u and v alternately can be simplified to a single step: u← a./K(b./KTu). Furthermore, when all
elements of a are positive, this single step can be further simplified as follows [2]:

u← 1./(K̃(b./KTu)), (3)

where K̃ = diag(1./a)K. The overall flow of Sinkhorn-Knopp is described by Algorithm 1:

2 Details of Model Design

ELIM mainly consists of a backbone (fϕ) and a projector (fθ). We considered three kinds of backbone
network: AlexNet [7], ResNet18 [4], and Mlp-Mixer [11]. The backbone receives facial images,

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



Algorithm 1 Entropy-regularized OT problem via Sinkhorn-Knopp
Require: Cost matrix C, weights a, b
Require: Balancing factor η = 5, counting value t = 0, max count T = 5

1: Initialize K = e−C/η , K̃ = diag(1./a)K, uold = 1n/n
2: while u changes or t is less than T do
3: u← 1./(K̃(b./KTuold))
4: uold = u
5: t← t+ 1
6: end while
7: Get optimal value u∗ = u
8: v∗ = b./KTu∗

9: Output optimal flow matrix X∗ = diag(u∗)Kdiag(v∗)

extracts feature maps, and encodes feature vectors through the so-called ‘flatten’ operation. Then,
the projector designed using fully-connect (FC) layers with bias maps the feature vectors into a
two-dimensional (2D) VA space. The parameter sizes of AlexNet, ResNet18, and Mlp-Mixer are
2.5M, 11M, and 59M, respectively. And the parameter size of the projector is about 88K.

3 Details of Metrics

RMSE, SAGR, PCC, and CCC were employed as performance metrics to evaluate ELIM in this paper.
Given a ground-truth (GT) label set Y , a predicted label set Ŷ , and their corresponding mean and
standard deviation, i.e., (ρY , χY ) and (ρŶ , χŶ ), respectively, the metrics are defined as follows:

• Root mean-squared error (RMSE) measures the point-wise difference:

RMSE(Y, Ŷ ) =

√
E((Y − Ŷ )2).

• Sign agreement (SAGR) measures the overall positive and negative degree of emotion:

SAGR(Y, Ŷ ) =
1

nte

nte∑
i=1

Γ (sign (yi) , sign (ŷi)) ,

where nte represents the number of samples in the test dataset. Γ is an indicator function that outputs
1 if two values have the same sign, and 0 otherwise. In order to overcome the disadvantage of the
previous metrics that cannot measure the correlation between two values, the following metrics were
additionally adopted for evaluation purpose.

• Pearson correlation coefficient (PCC) measures the correlation between predictions and GT values:

PCC(Y, Ŷ ) =
E[(Y − ρY )(Ŷ − ρŶ )]

χY χŶ

.

• Concordance correlation coefficient (CCC) includes PCC and measures the agreement of two inputs
by additionally considering the difference between their means:

CCC(Y, Ŷ ) =
2χY χŶ PCC(Y, Ŷ )

χ2
Y + χ2

Ŷ
+ (ρY − ρŶ )

2
.

Next, the total regression loss for the training phase, i.e., Ltotal is defined as:

Ltotal(Y, Ŷ ) = Lmain(Y, Ŷ ) + Lva(Y, Ŷ ) + 0.5
(
LPCC(Y, Ŷ ) + LCCC(Y, Ŷ )

)
,

where Lva = MSEval(Y, Ŷ ) + MSEaro(Y, Ŷ ), LPCC = 1 − PCCval(Y,Ŷ )+PCCaro(Y,Ŷ )
2 , and

LCCC = 1− CCCval(Y,Ŷ )+CCCaro(Y,Ŷ )
2 .

2



4 Additional Experimental Results

This section further verifies the identity-invariant FER capability of ELIM through experimental
results that were not shown in the main paper. Note that as in the main paper, all experiments were
performed using the AFEW-VA dataset and AL-tuned configurations.

4.1 Analysis of Inconsistency Cases

First, Figs. 1 and 2 provide additional experimental results for identity shift cases. In the case of
neutral expression examples where GT is located close to the origin of VA space, not only ELIM but
also CAF and baseline show consistent prediction results (see Fig. 1(b)). On the other hand, in an
example of sad emotion, only ELIM accurately estimates GT (see Fig. 1(c)). Looking at the example
of (strong) angry emotion in Fig. 1(d), only ELIM estimates GT relatively accurately. However,
we can observe some failure cases where all methods including ELIM have failed (see Figs. 2(f)
and 2(g)). This limitation occurs because all the methods including ELIM whose loss was designed
based on static images cannot track the emotional change of previous frames inherently. Considering
that most wild FER databases such as AFEW-VA consist of video clips, utilizing even temporal
information may bring out further performance improvement.

Figure 1: Results of identity shift when p•(y|z) = p+(y|z) but p•(z) ̸= p+(z). Predictions of the
two images are located in VA space as • and +, respectively. Best viewed in color.

Figure 2: Additional results of identity shift. Dotted magenta box corresponds to failure cases.
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Figure 3: The learned feature distributions of ELIM and CAF. Samples were color-coded with valence
values. Here, black lines indicate valence differences. The larger the difference, the thicker the line.
Ten IDs randomly sampled from the test set were used for this experiment.

4.2 Visualization of ID-invariant Representation Ability

We visualized feature distributions of ELIM and CAF through t-SNE [12]. Fig. 3 compares the
distance between a specific expression sample and two different expression samples with the same
ID. In the case of ELIM, samples with different IDs but similar expressions are located closer in the
feature space (see 1⃝- 2⃝ and 4⃝- 5⃝ in Fig. 3(a)). Meanwhile, in CAF, samples with the same ID tend
to be located close to each other (see 2⃝- 3⃝ and 5⃝- 6⃝ in Fig. 3(b)).

4.3 Comparing with Cross-attention Network

We implemented a cross-attention network that learns the similarity between ID samples from a
part of the transformer encoder [13]. In detail, different ID feature sets of size d × n and d ×m,
respectively, are passed through the multi-head attention (MHA) layer (self-attention). Then, the
outputs are used together as inputs of another MHA layer (cross-attention). Next, the feature set of
size d×m obtained through the cross-attention is passed through the FC layer with a one-dimensional
output to generate an attention weight of size m. As a result, the ID shift of Eq. 3 of the main body is
replaced by this weight. The experimental results for AFEW-VA are shown in Table 1.

This transformer encoder showed meaningful performance improvement in terms of RMSE (V)
and CCC (V), which reflect the degree of positive and negative emotions, despite having small
parameters of less than 100K. This results support the fact that the weights generated by the cross-
attention mechanism are compatible with the inter-ID matching process. Even though somewhat weak
performance was observed in the arousal axis, which reflects the degree of emotional activation, this
attention method will be very useful for matching samples showing different emotional expressions
between IDs.

Table 1: Validation experiment of cross-attention network on the AFEW-VA.

Methods RMSE (V) CCC (V) RMSE (A) CCC (A)

ELIM-Sinkhorn 0.186 0.602 0.198 0.581
ELIM-Attention 0.182 0.656 0.217 0.552

4.4 Expression Tendency according to Demographics

The proposed method assumes that the main cause of facial expression change is ID shift. On the
other hand, depending on changes in age, gender, race, etc., the expression tendency may shift. In
order to analyze the effect of shift caused by the demographics on FER performance, we newly
designed ELIM-Age. ELIM-Age classifies samples by age group as domain instead of ID. Except
for this process, ELIM-Age is the same as ELIM. The annotation and details of age labels were used
as it is in [9]. Table 2 shows the experimental result of ELIM-Age on the AffectNet. Surprisingly,
ELIM-Age showed better RMSE and CCC performance than all techniques including CAF. This
results suggest the following two facts: 1) It is meaningful to deal with the shift in expression tendency
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due to demographics such as age group as well as ID. 2) The optimal matching of ELIM is also
effective in matching between age groups.

Table 2: Experimental results on the AffectNet.

Methods RMSE (V) CCC (V) RMSE (A) CCC (A)

Baseline [8] 0.37 0.60 0.41 0.34
Kossaifi et al. [6] 0.35 0.71 0.32 0.63
Hasani et al. [3] 0.267 0.74 0.248 0.85
CAF (AL) [5] 0.222 0.80 0.192 0.85
CAF (R18) [5] 0.219 0.83 0.187 0.84

ELIM-Age (AL) 0.221 0.821 0.187 0.856
ELIM-Age (R18) 0.209 0.835 0.174 0.866

5 Algorithms

The PyTorch-style pseudo-code for the overall learning process of ELIM is as follows.

Algorithm 2 PyTorch-style pseudo-code for ID Grouping
# input: feat (b, d), label (b, 2)
# Note: mini-batch size (b), feature dimension (d)

IDfeat={}, IDlabel={} # Initialize dictionary
for i in range(N):

indexes = ID-path(i)
IDfeat[i], IDlabel[i] = feat[indexes], label[indexes]

return IDfeat, IDlabel

Algorithm 3 PyTorch-style pseudo-code for Gumbel Sampling
# input: IDfeat {N,n,d}, IDlabel {N,n,2}
# Note: number of samples for each ID (n); Varies by ID.

for i in range(N):
pi = norm(IDlabel[i], dim=1) # skip detailed process for convenience
g = gumbel-softmax(pi.log())
indexes = topk(g) # indexes is a list of k items (k≤n)
IDfeat[i], IDlabel[i] = IDfeat[i][indexes], IDlabel[i][indexes]

return IDfeat, IDlabel
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