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A  METAL-RL ENVIRONMENTS DESCRIPTION
In this Appendix, we detail the environments considered in this work.

A.1 MuJoCo - LocoOMOTION TASKS

This benchmark is a set of locomotion tasks on the MuJoCo (Todorov et al., 2012) environment.
It comprises different bodies, and each environment provides different tasks with different learning
goals. These locomotion tasks are previously introduced by |Finn et al.| (2017)) and Rothfuss et al.
(2018)). We considered 3 different environments.

e AntDir: This environment has an ant body, and the goal is to move forward or backward.
Hence, it presents these 2 tasks.

* HalfCheetahDir: This environment has a half cheetah body, and the goal is to move for-
ward or backward. Hence, it presents these 2 tasks.

» HalfCheetal Vel: This environment also has a half cheetah body, and the goal is to achieve
a target velocity running forward. This target velocity comes from a continuous uniform
distribution.

These locomotion task families require adaptation across reward functions.

A.2 METAWORLD

The MetaWorld (Yu et al., | 2021) benchmark contains a diverse set of manipulation tasks designed
for multi-task RL and meta-RL settings. MetaWorld presents a variety of evaluation modes. Here,
we describe the two modes used in this work. For more detailed description of the benchmark, we
refer to|Yu et al.| (2021)).

* ML1: This scenario considers a single robotic manipulation task but varies the goal. The
meta-training “tasks” corresponds to 50 random initial object and goal positions, and meta-
testing on 50 heldout positions.

* MLA4S5: With the objective of testing generalization to new manipulation tasks, the bench-
mark provides 45 training tasks and holds out 5 meta-testing tasks.

These robotic manipulation task families require adaptation across reward functions and dynamics.
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B MuJoCo: META-TRAINING EVALUATION

In this Appendix, we supplement the meta-training evaluation with the results on MuJoCo locomo-
tion tasks. Figure |§| shows the average return over train tasks (on top) and test tasks (on bottom)
for AntDir, HalfCheetahVel, and HalfCheetahDir, respectively. While PEARL failed to explore and
learn in robotic manipulation tasks, it presented better results on locomotion tasks, especially in
sample efficiency. This is because of its off-policy nature: it efficiently reuses trajectories sampled
from previous policy versions, reducing the number of training steps needed. TrMRL achieved the
same test task performance in AntDir and HalfCheetahVel as PEARL, also keeping the metric stable
over the training. When comparing with other on-policy methods, TrMRL significantly improved
performance and sample efficiency.
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Figure 8: Meta-Training results for MuJoCo locomotion benchmarks. The plots on top represent
performance on training tasks, while the plots on bottom represent the test tasks.
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C WORKING MEMORIES LATENT VISUALIZATION

Figure 0| presents a 3-D view of the working memories from the HalfCheetahVel environment. We
sampled some tasks (target velocities) and collected working memories during the meta-test setting.
We observe that this embedding space learns a representation of each MDP as a distribution over
the working memories, as suggested in Section ] In this visualization, we can draw planes that
approximately distinguish these tasks. Working memories that cross this boundary represent the
ambiguity between two tasks. Furthermore, this representation also learns the similarity of tasks:
for example, the cluster of working memories for target velocity v = 1.0 is between the clusters for
v = 0.5 and v = 1.5. This property induces knowledge sharing among all the tasks, which suggests
the sample efficiency behind TrMRL meta-training.
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Figure 9: 3-D Latent visualization of the working memories for the HalfCheetahVel environment.
We plotted the 3 most relevant components from PCA. TrMRL learns a representation of each MDP
as a distribution over the working memories. This representation distinguishes the tasks and approx-
imates similar tasks, which helps knowledge sharing among them.
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D ABLATION STUDY

In this section, we present an ablation study regarding the main components of TrMRL to iden-
tify how they affect the performance of the learned agents. For all the scenarios, we considered
one environment for each benchmark to represent both locomotion (HalfCheetahVel) and dexterous
manipulation (MetaWorld-ML1-Reach-v2). We evaluated the meta-training phase so that we could
analyze both sample efficiency and asymptotic performance.

D.1 T-Fixup

In this work, we employed T-Fixup to address the instability from the early stages of transformer
training, given the reasons described in Section In RL, the early stages of training are also the
moment when the learning policies are more exploratory to cover the state and action spaces better
and discover rewards, preventing the convergence to sub-optimal policies. Hence, it is crucial for
RL that the transformer policy learns appropriately since the beginning to drive exploration.

This section evaluated how T-Fixup becomes essential for environments where the learned behav-
iors must guide exploration to prevent poor policies. For this, we present T-Fixup ablation (Figure
[I0) for two settings: MetaWorld-ML1-Reach-v2 and HalfCheetahVel. For the reach environment,
we compute the reward distribution using the distance between the gripper and the target location.
Hence, it is always a dense and informative signal: even a random policy can easily explore the
environment, and T-Fixup does not interfere with the learning curve. On the other side, HalfChee-
tahVel requires a functional locomotion gate to drive exploration; otherwise, it can get stuck with
low rewards (e.g., cheetah is exploring while fallen). In this scenario, T-Fixup becomes crucial to
prevent unstable learning updates that could collapse the learning policy to poor behaviors.

Ablation Study: T-Fixup

MetaWorld-ML1-Reach-v2 HalfCheetahVel

0
0 \/\/R/\/'\—/*/

Lt —
M:,ﬂ (A (Ll A

-100
0.8

-200

o
o

Success Rate
Average Return

—-300

o
>

0.2 -400

0.0 -500

0 1 2 3 4 5 6 0.0 0.2 0.4 0.6 0.8 1.0
timesteps 1le6 timesteps le7

—— enabled disabled

Figure 10: Ablation results for the T-Fixup component.

D.2 WORKING MEMORY SEQUENCE LENGTH

A meta-RL agent requires a sequence of interactions to identify the running task and act accordingly.
The length of this sequence N should be large enough to address the ambiguity associated with the
set of tasks, but not too long to make the transformer optimization harder and less sample efficient.
In this ablation, we study two environments that present different levels of ambiguity and show that
they also require different lengths to achieve optimal sample efficiency.

We first analyze MetaWorld-ML1-Reach-v2. The environment defines each target location in the
3D space as a task. The associated reward is the distance between the gripper and this target. Hence,
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at each timestep, the reward is ambiguous for all the tasks located on the sphere’s surface with the
center in the gripper position. This suggests that the agent will benefit from long sequences. Figure
[TT] (left) confirms this hypothesis, as the sample efficiency improves until sequences with several
timesteps (N = 50).

The HalfCheetahVel environment defines each forward velocity as a different task. The associated
reward depends on the difference between the current cheetah velocity and this target. Hence, at
each timestep, the emitted reward is ambiguous only for two possible tasks. To identify the current
task, the agent needs to estimate its velocity (which requires a few timesteps) and then disambiguate
between these two tasks. This suggests that the agent will not benefit from very long sequences.
Figure [TT] (right) confirms this hypothesis: there is an improvement from N = 1 to N = 5, but the
performance decreases for longer sequences as the training becomes harder.

Ablation Study: Working Memory Sequence Length
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Figure 11: Ablation results for the working memory sequence length.

D.3 NUMBER OF LAYERS

Another important component is the network depth. In Section[d} we hypothesized that more layers
would help to recursively build a more meaningful version of the episodic memory since we interact
with output memories from the past layer and mitigates the bias effect from the task representations.
Figure [12] shows how TrMRL behaves according to the number of layers. We observe a similar
pattern to the previous ablation case. For Reach-v2, more layers improved the performance by
reducing the effect of ambiguity and biased task representations. For HalfCheetaVel, we can see
an improvement from a single layer to 4 or 8 layers, but for 12 layers, sample efficiency starts to
decrease. On the other hand, we highlight that even for a deep network with 12 layers, we have a
stable optimization procedure, showing the effectiveness of the T-Fixup initialization.

D.4 NUMBER OF ATTENTION HEADS

The last ablation case relates to the number of attention heads in each MHSA block. We hypoth-
esized that multiples heads would diversify working memory representation and improve network
expressivity. Nevertheless, Figure [[3| shows that more heads slightly increased the performance in
HalfCheetahVel and did not interfere in Reach-v2 significantly.
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Ablation Study: Number of Layers
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Figure 12: Ablation study for the number of transformer layers.
Ablation Study: Number of Attention Heads
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Figure 13: Ablation study for the number of attention heads.
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E PROOF OF THEOREM [I]

Theorem 1. Let S' = (e},...,ely) ~ p(e|S!,0)) be a set of normalized episodic memory rep-
resentations sampled from the posterior distribution p(e|S', 8;) induced by the transformer layer
l, parameterized by 0y. Let K, Q, V be the Key, Query, and Value vector spaces in the self-
attention mechanism. Then, the self-attention in the layer |+ 1 computes a consensus representation
L _ S el exp (e 9.l )
N SN exp (e @er ™)
ity) lower bounds the Minimum Bayes Risk (MBR) predicted from the set of candidate samples S'
projected onto the V space.

whose associated Bayes risk (in terms of negative cosine similar-

Proof. Let us define S%, as the set containing the projection of the elements in S! onto the V' space:
SLo=(efv,..., el](,V), where eV = Wy, - e! (Wy is the projection matrix). The Bayes risk of
selecting €'V as representation, BR(é"""), under a loss function £, is defined by:

BR(e") = Epelst, on[L(e, €)] @)

The MBR predictor selects the episodic memory €V € S}, that minimizes the Bayes Risk among
the set of candidates: 65(4‘/3 p = argming, sL BR(é). Employing negative cosine similarity as loss

function, we can represent MBR prediction as:

1, ;
eMVBR = arg gllax Ep(e|slv,el)[<67 é)] ®)
ec

v
The memory representation outputted from a self-attention operation in layer [ + 1 is given by:

N LV LQ LK N
_,e  -exp(e; 7, e; ,
R o
t=1

N 1
> oieq exp (e Q, e

+1 __
EN —

The attention weights o, define a probability distribution over the samples in & L, which approxi-
mates the posterior distribution p(e|S!,, ;). Hence, we can represent Equation E] as an expectation:
et = Ep(els!, 0, [€]- Finally, we compute the Bayer risk for it:

BR(ei\Jfrl) = ]Ep(e\si/,el)[(e’ é%rlﬂ

=Eye1s,.0) (€ Epesst, 0,)[€])]

= <EP(€3@791)[6}’EP(65@791)[6}>

<]Ep(eslv,el)[<ea é)l, é>
=E, 151, 00)[(€; )], Vé € Sy, (10)

v

21



Under review as a conference paper at ICLR 2022

F PSEUDOCODE

In this section, we present a pseudocode for TrMRL’s agent during its interaction with an arbitrary
MDP.

Algorithm 1 TrMRL — Forward Pass
Require: MDP M ~ p(M)
Require: Working Memory Sequence Length N
Require: Parameterized function ¢(s, a,r,n)
Require: Transformer network with L layers {f1,..., fr}
Require: Policy Head 7
Initialize Buffer with N — 1 PAD transitions: B = {(Spap,@paD,"PAD:NPAD)i},i €
{1,...,.N -1}
t<0
Snext < S0
while episode not done do
Retrieve the N — 1 most recent transitions (s, @, r, ) from B to create the ordered subset D
D < DU(Snext, @PAD;TPAD, IPAD)
Compute working memories:
bi = ¢(8i,ai,7i,mi), V{8i,ai,ri,miy € D
Setel,...,e% < ¢1,..., 0N
foreach/ c1,...,Ldo

Refine episodic memories:

-1 -1
e, el fileTh eyt

end for
Sample a; ~ 7(-lek)
Collect (syy1, 7, 7:) interacting with M applying action a;
Snext < St+1
B« BU(st,ai,me,m)
t+—t+1
end while
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