
Under review as a conference paper at ICLR 2024

TANGO: TIME-REVERSAL LATENT GRAPHODE FOR
MULTI-AGENT DYNAMICAL SYSTEMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Learning complex multi-agent system dynamics from data is crucial across many
domains, such as in physical simulations and material modeling. Extended from
purely data-driven approaches, existing physics-informed approaches such as
Hamiltonian Neural Network strictly follow energy conservation law to introduce
inductive bias, making their learning more sample efficiently. However, many
real-world systems do not strictly conserve energy, such as spring systems with
frictions. Recognizing this, we turn our attention to a broader physical principle:
Time-Reversal Symmetry, which depicts that the dynamics of a system shall re-
main invariant when traversed back over time. It still helps to preserve energies
for conservative systems and in the meanwhile, serves as a strong inductive bias
for non-conservative, reversible systems. To inject such inductive bias, in this pa-
per, we propose a simple-yet-effective self-supervised regularization term as a soft
constraint that aligns the forward and backward trajectories predicted by a contin-
uous graph neural network-based ordinary differential equation (GraphODE). It
effectively imposes time-reversal symmetry to enable more accurate model pre-
dictions across a wider range of dynamical systems under classical mechanics. In
addition, we further provide theoretical analysis to show that our regularization
essentially minimizes higher-order Taylor expansion terms during the ODE inte-
gration steps, which enables our model to be more noise-tolerant and even applica-
ble to irreversible systems. Experimental results on a variety of physical systems
demonstrate the effectiveness of our proposed method. Particularly, it achieves an
MSE improvement of 11.5 % on a challenging chaotic triple-pendulum systems1.

1 INTRODUCTION

Multi-agent dynamical systems, spanning applications from physical simulations (Battaglia et al.,
2016; Kipf et al., 2018; Wang et al., 2020) to robotic control (Li et al., 2022; Gu et al., 2017), are
challenging to model due to intricate and dynamic inter-agent interactions. Traditional simulators
can be very time-consuming and require domain knowledge of the underlying dynamics, which
are often unknown (Sanchez-Gonzalez et al., 2020; Pfaff et al., 2021). Therefore, directly learning
a neural simulator from the observational data becomes an attractive alternative. A popular line
of research involves using GraphODEs (Huang et al., 2020; Luo et al., 2023; Zang & Wang, 2020),
where Graph Neural Networks (GNNs) serve to learn the time integration of the ordinary differential
equations(ODEs), for continuous pairwise interactions among agents. Compared with discrete GNN
methods (Kipf et al., 2018; Sanchez-Gonzalez et al., 2020), GraphODEs show superior performance
in long-range predictions and can handle irregular and partial observations (Jiang et al., 2023).

However, the intricate nature of multi-agent systems often necessitates vast amounts of training data.
Vanilla data-driven neural simulators trained on limited datasets tend to be less generalizable, and
can violate physical properties of a system such as energy conservation. As depicted in Figure 1
(a.1), the learned energy curve of a baseline model (LG-ODE) (Huang et al., 2020) is prone to ex-
plosion, even though the ground-truth energy remains constant. One promising strategy to mitigate
this data dependency is to incorporate physical inductive biases (Raissi et al., 2019; Cranmer et al.,
2020). Existing works like Hamiltonian- Neural Nets and ODE (Greydanus et al., 2019; Sanchez-
Gonzalez et al., 2019) strictly enforce the energy conservation law, leading to more accurate pre-

1Code implementation can be found at here.

1

https://anonymous.4open.science/r/TANGO-FF33/

Under review as a conference paper at ICLR 2024

(a.1) Simple Spring

𝑑𝑅(𝑧)
𝑑𝑡

= −𝐹(𝑅 𝑧)

𝑡

backward
forward

𝑧 = 𝑞, 𝑝

𝑅 𝑧 = (𝑞,−𝑝)Identical
positions (𝑞)

Time-Reversible

Dynamical Systems under
Classical Mechanics

Energy-Conservative

(b.1) Dynamical System Properties

(b.2) Time-Reversal Symmetry

𝑑𝑞!
𝑑𝑡

=
𝑝!
𝑚

𝑑𝑝!
𝑑𝑡

= .
"∈$!

−𝑘(𝑞! − 𝑞")

Conservative, Reversible

(a.3) Damped Spring

Non-conservative, Irreversible

(a.2) Forced Spring

Non-conservative, Reversible

𝑑𝑞!
𝑑𝑡

=
𝑝!
𝑚

𝑑𝑝!
𝑑𝑡

= −𝑘% cos𝜔 𝑡
−∑"∈$! 𝑘&(𝑞! − 𝑞")

Periodic Force

𝑑𝑞!
𝑑𝑡

=
𝑝!
𝑚

𝑑𝑝!
𝑑𝑡

= −𝛾
𝑝!
𝑚

−∑"∈$! 𝑘(𝑞! − 𝑞")

Friction

Figure 1: (a) Three n-body spring systems characterized by their energy conservation and time
reversal properties. p, q,m denote momentum, position and mass, respectively. Proof of energy
conservation and time reversal for these systems can be found in Appendix B (b) Classification of
classical mechanical systems based on (Tolman, 1938; Lamb & Roberts, 1998)

dictions for some systems under classical mechanics, especially in data-scarce situations. However,
not all real-world systems adhere to strict energy conservation, especially those that have interac-
tion with external environments, i.e. non-isolated systems, such as n-body spring systems with
periodic external forces or frictions shown in Figure 1 (a.2) and (a.3). For these systems, applying
strict energy conservation constraint proposed by Greydanus et al. (2019); Sanchez-Gonzalez et al.
(2019) could lead to inferior performance. As shown in Figure 1(b.1), for classical and determinis-
tic mechanics such as Newtonian mechanics, energy-conservative systems also obey time-reversal
symmetry (Tolman, 1938). On the other hand, we note that the time-reversible systems also include
non-conservative systems such as Stokes flow (Pozrikidis, 2001), which also has vital applications
in the real world (Kim & Karrila, 2013). Therefore, by ensuring that the system’s dynamics is ap-
proximately invariant under time reversal, we can enforce neural simulators to generate dynamical
systems that are more realistic, paving the way for more efficient and physically coherent dynami-
cal system modeling. In light of these observations, we pivot towards a broader physical principle:
Time-Reversal Symmetry, which posits that a system’s dynamics should remain invariant when time
is reversed (Lamb & Roberts, 1998).

To incorporate such time-reversal inductive bias, we propose a simple-yet-effective self-supervised
regularization term as a soft constraint that aligns forward and backward trajectories predicted by
our model, which has GraphODE as its backbone. We name our model TANGO: Time-Reversal
Latent Graph ODE, which learns the system dynamics in the latent space. This time-reversal loss
does not need additional labels beyond ground-truth observations, while effectively imposing time-
reversal symmetry to enable more accurate model predictions across a wider range of systems under
classical mechanics. Besides its physical implication on benefiting learning reversible systems, we
also empirically observe that the time-reversal loss in general helps to learn irreversible systems.
Through theoretical analysis, we prove that from the numerical aspect, the time-reversal loss actually
minimizes higher-order Taylor expansion terms during the ODE integration steps, which enables our
model to be more noise-tolerable and even applicable to irreversible systems. Therefore, TANGO
has the flexibility to be applied to a wide range of dynamical systems without requiring the systems
to be strictly energy-conservative or time-reversible. We conducted systematic experiments over
four simulated datasets. Experimental results verify the effectiveness of TANGO in learning system
dynamics more accurately with less observational data.

The primary contributions of this paper can be summarized as follows:

• We propose TANGO, a GraphODE model that incorporates time-reversal symmetry as a
soft constraint and adeptly handles both energy-conservative and non-conservative systems.

• We theoretically explain why the proposed time-reversal symmetry loss could in general
help learn more fine-grained and long-context system dynamics from the numerical aspect.

• Our method achieves state-of-the-art results in multi-agent physical simulations. Particu-
larly, it achieves an MSE improvement of 11.5 % on trajectory predictions on a challenging
chaotic triple-pendulum system.

2

Under review as a conference paper at ICLR 2024

A THEORETICAL ANALYSIS

A.1 PROOF OF LEMMA 1

Proof. The definition of time-reversal symmetry is given by:

R ◦ ϕt = ϕ−t ◦R = ϕ−1
t ◦R (11)

Here, R is an involution operator, which means R ◦R = id.

First, we apply the time evolution operator ϕt to both sides of Eqn. equation 11:

ϕt ◦R ◦ ϕt = ϕt ◦ ϕ−1
t ◦R (12)

Simplifying, we obtain:
ϕt ◦R ◦ ϕt = R (13)

Next, we apply the involution operator R to both sides of the equation:

R ◦ ϕt ◦R ◦ ϕt = R ◦R (14)

Since R ◦R = I, we finally arrive at:

R ◦ ϕt ◦R ◦ ϕt = I (15)

which means the trajectories can overlap when evolving backward from the final state.

A.2 PROOF OF THEOREM 1

Let ∆t denote the integration step size in an ODE solver and T be the prediction length. The time
stamps of the ODE solver are {tj}Tj=0, where tj+1 − tj = ∆t for j = 0, · · · , T (T > 1). Next
suppose during the forward evolution, the updates go through states zfwd(tj) = (qfwd(tj),p

fwd(tj))
for j = 0, · · · , T , where qfwd(tj) is position, pfwd(tj) is momentum, while during the reverse
evolution they go through states zrev(tj) = (qrev(tj),p

rev(tj)) for j = 0, · · · , T , in reverse order.
The ground truth trajectory is zgt(tj) = (qgt(tj),p

gt(tj)) for j = 0, · · · , T .

For the sake of brevity in the ensuing proof, we denote zgt(tj) by zgt
j , zfwd(tj) by zfwd

j and zrev(tj)
by zrev

j , and we will use Mathematical Induction to prove the theorem.

A.2.1 RECONSTRUCTION LOSS (Lpred) ANALYSIS.

First, we bound the forward loss
∑T

j=0 ‖zfwd
j −zgt

j ‖22. Since our method models the momentum and
position of the system, we can write the following Taylor expansion of the forward process, where
for any 0 ≤ j < T :

qfwd
j+1 = qfwd

j + (pfwd
j /m)∆t+ (ṗfwd

j /2m)∆t2 +O(∆t3), (16a)

pfwd
j+1 = pfwd

j + ṗfwd
j ∆t+O(∆t2), (16b)

ṗfwd
j+1 = ṗfwd

j +O(∆t), (16c)

and for the ground truth process, we also have from Taylor expansion that
qgt
j+1 = qgt

j + (pgt
j /m)∆t+ (ṗgt

j /2m)∆t2 +O(∆t3), (17a)

pgt
j+1 = pgt

j + ṗgt
j ∆t+O(∆t2), (17b)

ṗgt
j+1 = ṗgt

j +O(∆t). (17c)

With these, we aim to prove that for any k = 0, 1, · · · , T , the following hold :{
‖qfwd

k − qgt
k ‖2 ≤ C fwd

2 k2∆t2, (18a)

‖pfwd
k − pgt

k ‖2 ≤ C fwd
1 k∆t, (18b)

where C fwd
1 and C fwd

2 are constants.

13

Under review as a conference paper at ICLR 2024

Base Case k = 0: Based on the initialization rules, it is obvious that
∥∥qfwd

0 − qgt
0

∥∥
2
= 0 and∥∥pfwd

0 − pgt
0

∥∥
2
= 0, thus (18a) and (18b) both hold for k = 0.

Inductive Hypothesis: Assume (18a) and (18b) hold for k = j, which means:{
‖qfwd

j − qgt
j ‖2 ≤ C fwd

2 j2∆t2, (19a)

‖pfwd
j − pgt

j ‖2 ≤ C fwd
1 j∆t, (19b)

Inductive Proof: We need to prove (18a) and (18b) hold for k = j + 1.

First, using (16c) and (17c), we have∥∥ṗfwd
j+1 − ṗgt

j+1

∥∥
2
=
∥∥ṗfwd

j − ṗgt
j

∥∥
2
+O(∆t) =

∥∥ṗfwd
0 − ṗgt

0

∥∥
2
+O

(
(j + 1)∆t

)
= O(1), (20)

where we iterate through j, j − 1, · · · , 0 in the second equality. Then using (17b) and (16b), we get
for j + 1 that ∥∥pfwd

j+1 − pgt
j+1

∥∥
2
=
∥∥(pfwd

j + ṗfwd
j ∆t

)
−
(
pgt
j + ṗgt

j ∆t
)
+O(∆t2)‖2

≤
∥∥pfwd

j − pgt
j

∥∥
2
+
∥∥ṗfwd

j − ṗgt
j

∥∥
2
∆t+O(∆t2)

≤
[
C fwd

1 j +O(1)
]
∆t,

where the first inequality uses the triangle inequality, and in the second inequality we use (19b) as
well as (20). We can see there exists C fwd

1 such that the final expression above is upper bounded by
C fwd

1 (j + 1)∆t, with which the claim holds for j + 1.

Next for (18a), using (17a) and (16a), we get for any j that∥∥qfwd
j+1 − qgt

j+1

∥∥
2
=
∥∥(qfwd

j + (pfwd
j /m)∆t+ (ṗfwd

j /2m)∆t2)

−
(
qgt
j + (pgt

j /m)∆t+ (ṗgt
j /2m)∆t2

)
+O(∆t3)‖2

≤
∥∥qfwd

j − qgt
j

∥∥
2
+

1

m

∥∥pfwd
j − pgt

j

∥∥
2
∆t+

1

2m

∥∥ṗfwd
j − ṗgt

j

∥∥
2
∆t2 +O(∆t3)

≤
[
C fwd

2 j2 +
C fwd

1

m
j +O(1)

]
∆t2,

where the first inequality uses the triangle inequality, and in the second inequality we use (19a) and
(19b) as well as (20). Thus with an appropriate C fwd

2 , we have the final expression above is upper
bounded by C fwd

2 (j + 1)2∆t2, and so the claim holds for j + 1.

Since both the base case and the inductive step have been proven, by the principle of mathematical
induction, (18a) and (18b) holds for all k = 0, 1, · · · , T .

With this, we finish the forward proof by plugging (18a) and (18b) into the loss function:
T∑

j=0

‖zfwd
j − zgt

j ‖
2
2 =

T∑
j=0

‖pfwd
j − pgt

j ‖
2
2 +

T∑
j=0

‖qfwd
j − qgt

j ‖
2
2

≤
(
C fwd

1

)2 T∑
j=0

j2∆t2 +
(
C fwd

2

)2 T∑
j=0

j4∆t4

= O(T 3∆t2).

A.2.2 REVERSAL LOSS (Lreverse) ANALYSIS.

Next we analyze the reversal loss
∑T

j=0 ‖R(zrev
j) − zfwd

j ‖22. For this, we need to refine the Taylor
expansion residual terms for a more in-depth analysis.

First reconsider the forward process. Since the process is generated from the learned network, we
may assume that for some constants c1, c2, and c3, the states satisfy the following for any 0 ≤ j < T :

qfwd
j = qfwd

j+1 − (pfwd
j+1/m)∆t+ (ṗfwd

j+1/2m)∆t2 + remfwd,3
j , (21a)

pfwd
j = pfwd

j+1 − ṗfwd
j+1∆t+ remfwd,2

j , (21b)

ṗfwd
j = ṗfwd

j+1 + remfwd,1
j , (21c)

14

Under review as a conference paper at ICLR 2024

where the remaining terms
∥∥remfwd,i

j

∥∥
2
≤ ci∆ti for i = 1, 2, 3. Similarly, we have approximate

Taylor expansions for the reverse process:
qrev
j = qrev

j+1 + (prev
j+1/m)∆t+ (ṗrev

j+1/2m)∆t2 + remrev,3
j , (22a)

prev
j = prev

j+1 + ṗrev
j+1∆t+ remrev,2

j , (22b)

ṗrev
j = ṗrev

j+1 + remrev,1
j , (22c)

where
∥∥remrev,i

j

∥∥
2
≤ ci∆ti for i = 1, 2, 3.

We will prove via induction that for k = T, T − 1, · · · , 0,
‖R(qrev

k)− qfwd
k ‖2 ≤ C rev

3 (T − k)3∆t3, (23a)

‖R(prev
k)− pfwd

k ‖2 ≤ C rev
2 (T − k)2∆t2, (23b)

‖R(ṗrev
k)− ṗfwd

k ‖2 ≤ C rev
1 (T − k)∆t, (23c)

where C rev
1 , C rev

2 and C rev
3 are constants.

The entire proof process is analogous to the previous analysis of Reconstruction Loss.

Base Case k = T : Since the reverse process is initialized by the forward process variables at k = T ,
it is obvious that

∥∥qfwd
T − qev

T

∥∥
2
=
∥∥pfwd

T − prev
T

∥∥
2
=
∥∥ṗfwd

T − ṗrev
T

∥∥
2
= 0. Thus (23a), (23b) and

(23c) all hold for k = 0.

Inductive Hypothesis: Assume the inequalities (23b), (23a) and (23c) hold for k = j + 1, which
means:

‖R(qrev
j+1)− qfwd

j+1‖2 ≤ C rev
3 (T − (j + 1))3∆t3, (24a)

‖R(prev
j+1)− pfwd

j+1‖2 ≤ C rev
2 (T − (j + 1))2∆t2, (24b)

‖R(ṗrev
j+1)− ṗfwd

j+1‖2 ≤ C rev
1 (T − (j + 1))∆t, (24c)

Inductive Proof: We need to prove (23b) (23a) and (23c) holds for k = j.

First, for (23c), using (21c) and (22c), we get for any j that∥∥R(ṗrev
j)− ṗfwd

j

∥∥
2
=
∥∥(ṗrev

j+1 + remrev,1
j)− (ṗfwd

j+1 + remfwd,1
j)

∥∥
2

≤
∥∥R(ṗrev

j+1)− ṗfwd
j+1

∥∥
2
+ ‖remrev,1

j ‖2 + ‖remfwd,1
j ‖2

≤ C rev
1 (T − j − 1)∆t+ 2c1∆t,

where the first inequality uses the triangle inequality, and the second inequality plugs in (24c). Thus
taking C rev

1 = 2c1, the above is upped bounded by C rev
1 (T − j)∆t, and (23b) holds for j.

Second, for (24b), using (21b) and (22b), we get∥∥R(prev
j)− pfwd

j

∥∥
2
=
∥∥− (prev

j+1 + ṗrev
j+1∆t+ remrev,2

j

)
−
(
pfwd
j+1 − ṗfwd

j+1∆t+ remfwd,2
j

)
‖2

≤
∥∥R(prev

j+1)− pfwd
j+1

∥∥
2
+
∥∥R(ṗrev

j+1)− ṗfwd
j+1

∥∥
2
∆t

+ ‖remrev,2
j ‖2 + ‖remfwd,2

j ‖2
≤
[
C rev

2 (T − j − 1)2 + C rev
1 (T − j − 1) + 2c2

]
∆t2,

where the first inequality uses the triangle inequality, and in the second inequality we use (24a) and
(24b). Thus taking C rev

2 = max{C rev
1 /2, 2c2}, we have the final expression above is upper bounded

by C rev
2 (T − j)2∆t2, and so the claim holds for j.

Finally, for (24a), we use (21a) and (22a) to get∥∥R(qrev
j)− qfwd

j

∥∥
2
=
∥∥(qrev

j+1 + (prev
j+1/m)∆t+ (ṗrev

j+1/2m)∆t2 + remrev,3
j

)
−
(
qfwd
j+1 − (pfwd

j+1/m)∆t+ (ṗfwd
j+1/2m)∆t2 + remfwd,3

j

)
‖2

≤
∥∥R(qrev

j+1)− qfwd
j+1

∥∥
2
+

1

m

∥∥R(prev
j+1)− pfwd

j+1

∥∥
2
∆t

+
1

2m

∥∥R(ṗrev
j+1)− ṗfwd

j+1

∥∥
2
∆t2 + ‖remrev,3

j ‖2 + ‖remfwd,3
j ‖2

≤
[
C rev

3 (T − j − 1)3 +
C rev

2

m
(T − j − 1)2 +

C rev
1

2m
(T − j − 1) + 2c3

]
∆t3,

15

Under review as a conference paper at ICLR 2024

where the first inequality uses the triangle inequality, and in the second inequality we use (24a),
(24b) and (24c). Thus taking C rev

3 = max{C rev
2 /3m,C rev

1 /6m, 2c3}, we have the final expression
above is upper bounded by C rev

3 (T − j)3∆t3, and so the claim holds for j.

Since both the base case and the inductive step have been proven, by the principle of mathematical
induction, (23b), (23a) and (23c) hold for all k = T, T − 1, · · · , 0.

With this we finish the proof by plugging (23b) and (23a) into the loss function:

T∑
j=0

‖R(zrev
j)− zfwd

j ‖22 =

T∑
j=0

‖R(prev
j)− pfwd

j ‖22 +
T∑

j=0

‖R(qrev
j)− qfwd

j ‖22

≤
(
C rev

2

)2 T∑
j=0

(T − j)4∆t4 +
(
C rev

3

)2 T∑
j=0

(T − j)6∆t6

= O(T 5∆t4).

A.3 ANALYSIS ON IMPLEMENTATIONS OF REVERSAL LOSS

Figure 7: Comparison between two reversal loss implementation

Our time-reversal loss implementation builts upon Lemma1 where the backward trajectory origi-
nates from the last state of the forward trajectory. One could also implement the reversal loss based
on Eqn 5 which is adopted in TRS-ODEN (Huh et al., 2020). We illustrated the comparison between
the two implementation in Figure 7.

Here, we provide the following Lemma to show their difference:
Lemma 2. Comparing our reversal loss implementation against the implementation following
Eqn.(5), when the reconstruction loss defined in Eqn.(7) and the time-reversal loss defined in Eqn.
(9) both have the same value between the two methods, the maximum error between the reversal
and ground truth trajectory, i.e. MaxErrorgt_rev = maxj∈[T] ‖y(j)− ŷrev(T − j)‖2 made by our
method is smaller than that in the second method.

Lemma 2 suggests that our implementation of time-reversal symmetry is numerically better than the
implementation used in (Huh et al., 2020). We give the detailed proof below.

We expect an ideal model to align both the predicted forward and reverse trajectories with the ground
truth. As shown in Figure 7, we integrate one step from the initial state ŷfwd(0) (which is the same
as y(0)) and reach the state ŷfwd(1).

The first reverse loss implementation (ours) follows lemma (1) as R ◦ Φt ◦ R ◦ Φt = id, which
means when we evolve forward and reach the state ŷfwd(1) we reverse it into ŷrev1(−1) and go back
to reach ŷrev1(0), then reverse it to get R(ŷrev1(0)), which ideally should be the same as ŷfwd(0).

The second reverse loss implementation follows Eqn.(5) as R◦Φt = Φ−t ◦R, which means we first
reverse the initial state as ŷrev2(0) = R(y(0)), then evolve the reverse trajectory in the opposite di-

16

Under review as a conference paper at ICLR 2024

rection to reach ŷrev2(−1), and then perform a time-symmetric operation to reach ŷrev2(1), aligning
it with the forward trajectory.

We assume the two reconstruction losses Lpred = ‖ŷfwd(1) − y(1)‖22 := a are the same. For the
time-reversal losses:

Lreverse1 = ‖R(ŷrev1(0))− ŷfwd(0)‖22 + ‖R(ŷrev1(−1))− ŷfwd(1)‖22 = ‖R(ŷrev1(0))− ŷfwd(0)‖22 := b,

Lreverse2 = ‖ŷrev2(0)− ŷfwd(0)‖22 + ‖ŷrev2(1)− ŷfwd(1)‖22 = ‖ŷrev2(1)− ŷfwd(1)‖22 := b,

we also assume they have reached the same value b.

As shown in Figure.7 where we illustrate the worse case scenario, we can see that:

MaxErrorgt_rev1 = max
{∥∥R(ŷrev1(0))− y(0)

∥∥
2
,
∥∥R(ŷrev1(−1))− y(1)

∥∥
2

}
= max

{
a, b
}
,

MaxErrorgt_rev2 =
∥∥ŷrev2(1)− ŷfwd(1)

∥∥
2
+
∥∥ŷfwd(1)− y(1)

∥∥
2
= a+ b,

This means our model achieves a smaller error of the maximum distance between the reversal and
ground truth trajectory.

B EXAMPLE OF VARYING DYNAMICAL SYSTEMS

We illustrate the energy conservation and time reversal of the three n-body spring systems in Fig-
ure 1(a). We use the Hamiltonian formalism of systems under classical mechanics to describe their
dynamics and verify their energy conservation and time-reversibility characteristics.

The scalar function that describes a systems motion is called the Hamiltonian, H, and is typically
equal to the total energy of the system, that is, the potential energy plus the kinetic energy (North,
2021). It describes the phase space equations of motion by following two first-order ODEs called
Hamilton’s equations:

dq

dt
=

∂H(q,p)

∂p
,
dp

dt
= −∂H(q,p)

∂q
, (25)

where q ∈ Rn,p ∈ Rn, and H : R2n 7→ R are positions, momenta, and Hamiltonian of the system.

Under this formalism, energy conservative is defined by dH/dt = 0, and the time-reversal symmetry
is defined by H(q, p, t) = H(q,−p,−t) (Lamb & Roberts, 1998).

B.1 CONSERVATIVE AND REVERSIBLE SYSTEMS.

A simple example is the isolated n-body spring system, which can be described by :

dqi

dt
=

pi

m
dpi

dt
=
∑
j∈Ni

−k(qi − qj),
(26)

where q = (q1,q2, · · · ,qN) is a set of positions of each object , p = (p1,p2, · · · ,pN) is a set of
momenta of each object, mi is mass of each object, k is spring constant.

The Hamilton’s equations are:

∂H(q,p)

∂pi
=

dqi

dt
=

pi

m

∂H(q,p)

∂qi
= −dpi

dt
=
∑
j∈Ni

k(qi − qj),
(27)

Hence, we can obtain the Hamiltonian through the integration of the above equation.

H(q,p) =

N∑
i=1

pi
2

2mi
+

1

2

N∑
i=1

N∑
j∈Ni

1

2
k(qi − qj)

2
, (28)

17

Under review as a conference paper at ICLR 2024

Verify the systems’ energy conservation
dH
(
q,p)

dt
=

1

dt
(

N∑
i=1

pi
2

2mi

)
+

1

dt

(1
2

N∑
i=1

N∑
j∈Ni

1

2
k(qi − qj)

2)
= 0, (29)

So it is conservative.

Verify the systems’ time-reversal symmetry We do the transformation R : (q,p, t) 7→
(q,−p,−t).

H(q,p) =

N∑
i=1

pi
2

2mi
+

1

2

N∑
i=1

N∑
j∈Ni

1

2
k(qi − qj)

2
,

H(q,−p) =

N∑
i=1

(−pi)
2

2mi
+

1

2

N∑
i=1

N∑
j∈Ni

1

2
k(qi − qj)

2
,

(30)

It is obvious H(q,p) = H(q,−p), so it is reversible

B.2 NON-CONSERVATIVE AND REVERSIBLE SYSTEMS.

A simple example is a n-body spring system with periodical external force, which can be described
by:

dqi

dt
=

∂H(q,p)

∂(pi)
=

pi

m

dpi

dt
= −∂H(q,p)

∂(qi)
=

N∑
j∈Ni

−k(qi − qj)− k1 cosωt,

(31)

The Hamilton’s equations are:
∂H(q,p)

∂pi
=

dqi

dt
=

pi

m

∂H(q,p)

∂qi
= −dpi

dt
=
∑
j∈Ni

k(qi − qj) + k1 cosωt,
(32)

Hence, we can obtain the Hamiltonian through the integration of the above equation:

H(q,p) =

N∑
i=1

pi
2

2mi
+

1

2

N∑
i=1

N∑
j∈Ni

1

2
k(qi − qj)

2
+

N∑
i=1

qi ∗ k1 cosωt, (33)

Verify the systems’ energy conservation

dH
(
q,p)

dt
=

1

dt
(

N∑
i=1

pi
2

2mi

)
+

1

dt

(1
2

N∑
i=1

N∑
j∈Ni

1

2
k(qi − qj)

2)
+

1

dt

(N∑
i=1

qi ∗ k1 cosωt
)

=0 +
1

dt

(N∑
i=1

qik1 cosωt
)

=
(N∑
i=1

−ωqik1 sinωt
)
6= 0

(34)

So it is non-conservative.

Verify the systems’ time-reversal symmetry We do the transformation R : (q,p, t) 7→
(q,−p,−t).

H(q,p) =

N∑
i=1

pi
2

2mi
+

1

2

N∑
i=1

N∑
j∈Ni

1

2
k(qi − qj)

2
+

N∑
i=1

qi ∗ k1 cosωt,

H(q,−p) =

N∑
i=1

(−pi)
2

2mi
+

1

2

N∑
i=1

N∑
j∈Ni

1

2
k(qi − qj)

2
+

N∑
i=1

qi ∗ k1 cosω(−t),

(35)

It is obvious H(q,p, t) = H(q,−p, t), so it is reversible

18

Under review as a conference paper at ICLR 2024

B.3 NON-CONSERVATIVE AND IRREVERSIBLE SYSTEMS.

A simple example is an n-body spring system with frictions proportional to its velocity,γ is the
coefficient of friction, which can be described by:

dqi

dt
=

∂H(q,p)

∂pi
=

pi

m

dpi

dt
= −∂H(q,p)

∂qi
= −k0qi − γ

pi

m

(36)

The Hamilton’s equations are:

∂H(q,p)

∂pi
=

dqi

dt
=

pi

m

∂H(q,p)

∂qi
= −dpi

dt
=
∑
j∈Ni

k(qi − qj) + γ
pi

m

(37)

Hence, we can obtain the Hamiltonian through the integration of the above equation:

H(q,p) =

N∑
i=1

pi
2

2mi
+

1

2

N∑
i=1

N∑
j∈Ni

1

2
k(qi − qj)

2
+

N∑
i=1

γ

m

∫ t

0

pi
2

m
dt, (38)

Verify the systems’ energy conservation

dH
(
q,p)

dt

=
1

dt
(

N∑
i=1

pi
2

2mi

)
+

1

dt

(1
2

N∑
i=1

N∑
j∈Ni

1

2
k(qi − qj)

2)
+

1

dt

(N∑
i=1

γ

m

∫ t

0

pi
2

m
dt)

=0 +
1

dt

(N∑
i=1

γ

m

∫ t

0

pi
2

m
dt)

=
(N∑
i=1

γ

m

pi
2

m
) 6= 0

(39)

So it is non-conservative.

Verify the systems’ time-reversal symmetry We do the transformation R : (q,p, t) 7→
(q,−p,−t).

H(q,p) =

N∑
i=1

pi
2

2mi
+

1

2

N∑
i=1

N∑
j∈Ni

1

2
k(qi − qj)

2
+

N∑
i=1

γ

m

∫ t

0

pi
2

m
dt,

H(q,−p) =

N∑
i=1

(−pi)
2

2mi
+

1

2

N∑
i=1

N∑
j∈Ni

1

2
k(qi − qj)

2
+

N∑
i=1

γ

m

∫ (−t)

0

pi
2

m
d(−t),

(40)

It is obvious H(q,p, t) 6= H(q,−p, t), so it is irreversible

C DATASET

In our experiments, all datasets are synthesized from ground-truth physical law via sumulation.
We generate four simulated datasets: three n-body spring systems under damping, periodic, or no
external force, and one chaotic tripe pendulum dataset with three sequentially connected stiff sticks
that form. We name the first three as Sipmle Spring, Forced Spring, and Damped Spring respectively.
All n-body spring systems contain 5 interacting balls, with varying connectivities. Each Pendulum
system contains 3 connected stiff sticks.

For the n-body spring system, we randomly sample whether a pair of objects are connected, and
model their interaction via forces defined by Hookes law. In the Damped spring, the objects have

19

Under review as a conference paper at ICLR 2024

an additional friction force that is opposite to their moving direction and whose magnitude is pro-
portional to their speed. In the Forced spring, all objects have the same external force that changes
direction periodically. We show in Figure 1(a), the energy variation in both of the Damped spring
and Forced spring is significant.

For the chaotic triple Pendulum , the equations governing the motion are inherently nonlinear. Al-
though this system is deterministic, it is also highly sensitive to the initial condition and numerical
errors (Shinbrot et al., 1992; Awrejcewicz et al., 2008; Stachowiak & Okada, 2006). This prop-
erty is often referred to as the "butterfly effect", as depicted in Fig 8. Unlike for n-body spring
systems, where the forces and equations of motion can be easily articulated, for the Pendulum, the
explicit forces cannot be directly defined, and the motion of objects can only be described through
Lagrangian formulations North (2021), making the modeling highly complex and raising challenges
for accurate learning.

0 100 200 300 400 500 600 700
Time steps

10

0

10

20

30

40

Jo
in

t

Original initial condition: 0
w/ 1e-3 perturbation: 0
w/ 1e-2 perturbation: 0

1
1
1

2
2
2

Figure 8: Illustration to show the pendulum is highly-sensitive to initial states

We simulate the trajectories by using Euler’s method for n-body spring systems and using the 4th
order Runge-Kutta (RK4) method for the Pendulum. We integrate with a fixed step size and sub-
sample every 100 steps. For training, we use a total of 6000 forward steps. To generate irregularly
sampled partial observations, we follow Huang et al. (2020) and sample the number of observations
n from a uniform distribution U(40, 52) and draw the n observations uniformly for each object.
For testing, we additionally sample 40 observations following the same procedure from PDE steps
[6000, 12000], besides generating observations from steps [1, 6000]. The above sampling proce-
dure is conducted independently for each object. We generate 20k training samples and 5k testing
samples for each dataset. The features (position/velocity) are normalized to the maximum absolute
value of 1 across training and testing datasets.

In the following subsections, we show the dynamical equations of each dataset in detail.

C.1 SPRING

C.1.1 SIMPLE SPRING

The dynamical equations of simple spring are as follows:
dqi

dt
=

pi

m

dpi

dt
=

N∑
j∈Ni

−k(qi − qj)
(41)

where where q = (q1,q2, · · · ,qN) is a set of positions of each object , p = (p1,p2, · · · ,pN) is a
set of momenta of each object. We set the mass of each object m = 1, the spring constantk = 0.1.

20

Under review as a conference paper at ICLR 2024

C.1.2 DAMPED SPRING

The dynamical equations of damped spring are as follows:

dqi

dt
=

pi

m
dpi

dt
=
∑
j∈Ni

−k(qi − qj)− γ
pi

m

(42)

where where q = (q1,q2, · · · ,qN) is a set of positions of each object, p = (p1,p2, · · · ,pN) is a
set of momenta of each object, We set the mass of each object m = 1, the spring constantk = 0.1,
the coefficient of friction γ = 10.

C.1.3 FORCED SPRING

The dynamical equations of forced spring system are as follows:

dqi

dt
=

pi

m

dpi

dt
=

N∑
j∈Ni

−k(qi − qj)− k1 cosωt,
(43)

where where q = (q1,q2, · · · ,qN) is a set of positions of each object , p = (p1,p2, · · · ,pN) is a
set of momenta of each object. We set the mass of each object m = 1 , the spring constantk = 0.1,
the external strength k1 = 10 and the frequency of variation ω = 1

We simulate the positions and momentums of three spring systems by using Euler methods as fol-
lows:

qi(t+ 1) = qi(t) +
dqi

dt
∆t

pi(t+ 1) = pi(t) +
dpi

dt
∆t

(44)

where dqi

dt and dpi

dt were defined as above for each datasets, and ∆t = 0.001 is the integration steps.

C.2 CHAOTIC PENDULUM

In this section, we demonstrate how to derive the dynamics equations for a chaotic triple pendulum
using the Lagrangian formalism.

The moment of inertia of each stick about the centroid is

I =
1

12
ml2 (45)

The position of the center of gravity of each stick is as follows:

x1 =
l

2
sin θ1, y1 = − l

2
cos θ1

x2 = l(sin θ1 +
1

2
sin θ2), y2 = −l(cos θ1 +

1

2
cos θ2)

x3 = l(sin θ1 + sin θ2 +
1

2
sin θ3), y3 = −l(cos θ1 + cos θ2 +

1

2
cos θ3)

(46)

The change in the center of gravity of each stick is:

ẋ1 =
l

2
cos θ1 · θ̇1, ẏ1 =

l

2
sin θ1 · θ̇1

ẋ2 = l(cos θ1 · θ̇1 +
1

2
cos θ2 · θ̇2), ẏ2 = l(sin θ1 · θ̇1 +

1

2
sin θ2 · θ̇2)

ẋ3 = l(cos θ1 · θ̇1 + cos θ2 · θ̇2 +
1

2
cos θ3 · θ̇3), ẏ3 = l(sin θ1 · θ̇1 + sin θ2 · θ̇2 +

1

2
sin θ3 · θ̇3)

(47)

21

Under review as a conference paper at ICLR 2024

The Lagrangian L of this triple pendulum system is:

L =T − V

=
1

2
m(ẋ1

2 + ẋ2
2 + ẋ3

2 + ẏ1
2 + ẏ2

2 + ẏ3
2) +

1

2
I(θ̇1

2
+ θ̇2

2
+ θ̇3

2
)−mg(y1 + y2 + y3)

=
1

6
ml(9θ̇2θ̇1l cos(θ1 − θ2) + 3θ̇3θ̇1l cos (θ1 − θ3) + 3θ̇2θ̇3l cos (θ2 − θ3) + 7θ̇21l + 4θ̇22l + θ̇23l

+ 15g cos (θ1) + 9g cos (θ2) + 3g cos (θ3))

(48)

The Lagrangian equation is defined as follows:

d

dt

∂L
∂θ̇

− ∂L
∂θ

= 0 (49)

and we also have:
∂L
∂θ̇

=
∂T

∂θ̇
= p

ṗ =
d

dt

∂L
∂θ̇

=
∂L
∂θ

(50)

where p is the Angular Momentum.
We can list the equations for each of the three sticks separately:

p1 =
∂L
∂θ̇1

ṗ1 =
∂L
∂θ1

p2 =
∂L
∂θ̇2

ṗ2 =
∂L
∂θ2

p3 =
∂L
∂θ̇3

ṗ3 =
∂L
∂θ3

(51)

Finally, we have :

θ̇1 = 6(9p1 cos(2(θ2−θ3))+27p2 cos(θ1−θ2)−9p2 cos(θ1+θ2−2θ3)+21p3 cos(θ1−θ3)−27p3 cos(θ1−2θ2+θ3)−23p1)
ml2(81 cos(2(θ1−θ2))−9 cos(2(θ1−θ3))+45 cos(2(θ2−θ3))−169)

θ̇2 = 6(27p1 cos(θ1−θ2)−9p1 cos(θ1+θ2−2θ3)+9p2 cos(2(θ1−θ3))−27p3 cos(2θ1−θ2−θ3)+57p3 cos(θ2−θ3)−47p2)
ml2(81 cos(2(θ1−θ2))−9 cos(2(θ1−θ3))+45 cos(2(θ2−θ3))−169)

θ̇3 = 6(21p1 cos(θ1−θ3)−27p1 cos(θ1−2θ2+θ3)−27p2 cos(2θ1−θ2−θ3)+57p2 cos(θ2−θ3)+81p3 cos(2(θ1−θ2))−143p3)
ml2(81 cos(2(θ1−θ2))−9 cos(2(θ1−θ3))+45 cos(2(θ2−θ3))−169)

ṗ1 = − 1
2ml

(
3θ̇2θ̇1l sin (θ1 − θ2) + θ̇1θ̇3l sin (θ1 − θ3) + 5g sin (θ1)

)
ṗ1 = − 1

2ml
(
−3θ̇1θ̇2l sin (θ1 − θ2) + θ̇2θ̇3l sin (θ2 − θ3) + 3g sin (θ2)

)
ṗ1 = − 1

2ml
(
θ̇1θ̇3l sin (θ1 − θ3) + θ̇2θ̇3l sin (θ2 − θ3)− g sin (θ3)

)
(52)

We simulate the angular of the three sticks by using the Runge-Kutta 4th Order Method as follows:

∆θ1(t) = θ̇(t,θ(t)) ·∆t

∆θ2(t) = θ̇(t+
∆t

2
,θ(t) +

∆θ1(t)

2
) ·∆t

∆θ3(t) = θ̇(t+
∆t

2
,θ(t) +

∆θ2(t)

2
) ·∆t

∆θ4(t) = θ̇(t+∆t,θ(t) + ∆θ3(t)) ·∆t

∆θ(t) =
1

6
(∆θ1(t) + ∆θ2(t) + ∆θ3(t) + ∆θ4(t))

θ(t+ 1) = θ(t) + ∆θ(t)

(53)

where θ̇ was defined as above , and ∆t = 0.0001 is the integration steps.

D MODEL DETAILS

In the following we introduce in details how we implement our model and each baseline.

22

Under review as a conference paper at ICLR 2024

D.1 INITIAL STATE ENCODER

The initial state encoder computes the latent node initial states zi(t) for all agents simultaneously
considering their mutual interaction. Specifically, it first fuses all observations into a temporal
graph and conducts dynamic node representation through a spatial-temporal GNN as in Huang et al.
(2020):

hl+1
j(t) = hl

j(t) + σ

 ∑
i(t′)∈Nj(t)

αl
i(t′)→j(t) ×Wvĥ

l−1
i(t′)

αl
i(t′)→j(t) =

(
Wkĥ

l−1
i(t′)

)T (
Wqh

l−1
j(t)

)
· 1√

d
, ĥl−1

i(t′) = hl−1
i(t′) + TE(t′ − t)

TE(∆t)2i = sin

(
∆t

100002i/d

)
, TE(∆t)2i+1 = cos

(
∆t

100002i/d

)
,

(54)

where || denotes concatenation; σ(·) is a non-linear activation function; d is the dimension of node
embeddings. The node representation is computed as a weighted summation over its neighbors
plus residual connection where the attention score is a transformer-based Vaswani et al. (2017) dot-
product of node representations by the use of value, key, query projection matrices Wv,Wk,Wq .
Here hl

j(t) is the representation of agent j at time t in the l-th layer. i(t′) is the general index for
neighbors connected by temporal edges (where t′ 6= t) and spatial edges (where t = t′ and i 6= j).
The temporal encoding Hu et al. (2020) is added to a neighborhood node representation in order
to distinguish its message delivered via spatial and temporal edges. Then, we stack L layers to get
the final representation for each observation node: ht

i = hL
i(t). Finally, we employ a self-attention

mechanism to generate the sequence representation ui for each agent as their latent initial states:

ui =
1

K

∑
t

σ
(
aT
i ĥ

t
iĥ

t
i

)
, ai = tanh

((
1

K

∑
t

ĥt
i

)
Wa

)
, (55)

where ai is the average of observation representations with a nonlinear transformation Wa and
ĥt
i = ht

i + TE(t). K is the number of observations for each trajectory. Compared with recurrent
models such as RNN, LSTM Sepp & Jürgen (1997), it offers better parallelization for accelerating
training speed and in the meanwhile alleviates the vanishing/exploding gradient problem brought by
long sequences.

Given the latent initial states, the dynamics of the whole system are determined by the ODE function
g which we parametrize as a GNN as in Huang et al. (2020) to capture the continuous interaction
among agents. We then employ Multilayer Perceptron (MLP) as a decoder to predict the trajectories
ŷi(t) from the latent states zi(t).

zi(t), zi(1), zi(2) · · · zi(T) = ODEsolver(g, [z1(0), z2(0) · · · zN (0)], (t0, t1T))

ŷi(t) = fdec(zi(t))
(56)

D.2 IMPLEMENTATION DETAILS

TANGO

Our implementation of TANGO follows GraphODE pipeline. We implement the initial state en-
coder using a 2-layer GNN with a hidden dimension of 64 across all datasets. We use ReLU for
nonlinear activation. For the sequence self-attention module, we set the output dimension to 128.
The encoder’s output dimension is set to 16, and we add 64 additional dimensions initialized with
all zeros to the latent states zi(t) to stabilize the training processes as in Huang et al. (2021). The
GNN ODE function is implemented with a single-layer GNN from Kipf et al. (2018) with hidden
dimension 128. To compute trajectories, we use the Runge-Kutta method from torchdiffeq python
package s(Chen et al., 2021) as the ODE solver and a one-layer MLP as the decoder.

We implement our model in pytorch. Encoder, generative model, and the decoder parameters are
jointly optimized with AdamW optimizer (Loshchilov & Hutter, 2019) using a learning rate of
0.0001 for spring datasets and 0.00001 for Pendulum. The batch size for all datasets is set to 512.

23

Under review as a conference paper at ICLR 2024

TANGOgt-rev and TANGOrev2 share the same architecture and hyparameters as TANGO, with dif-
ferent implementations of the loss function. In TANGOgt-rev, instead of comparing forward and
reverse trajectories, we look at the L2 distance between the ground truth and reverse trajectories
when computing the reversal loss.

For TANGOrev2, we implement the reversal loss following Huh et al. (2020) with one difference: we
do not apply the reverse operation to the momentum portion of the initial state to the ODE function.
This is because the initial hidden state is an output of the encoder that mixes position and momentum
information. Note that we also remove the additional dimensions to the latent state that TANGO has.

LatentODE

We implement the Latent ODE sequence to sequence model as specified in Rubanova et al. (2019).
We use a 4-layer ODE function in the recognition ODE, and a 2-layer ODE function in the generative
ODE. The recognition and generative ODEs use Euler and Dopri5 as solvers (Chen et al., 2021),
respectively. The number of units per layer is 1000 in the ODE functions and 50 in GRU update
networks. The dimension of the recognition model is set to 100. The model is trained with a learning
rate of 0.001 with an exponential decay rate of 0.999 across different experiments. Note that since
latentODE is a single-agent model, we compute the trajectory of each object independently when
applying it to multi-agent systems.

HODEN

To adapt HODEN, which requires full initial states of all objects, to systems with partial observa-
tions, we compute each objects initial state via linear spline interpolation if it is missing. Following
the setup in Huh et al. (2020), we have two 2-layer linear networks with Tanh activation in between
as ODE functions, in order to model both positions and momenta. Each network has a 1000-unit
layer followed by a single-unit layer. The model is trained with a learning rate of 0.00001 using a
cosine scheduler.

TRS-ODEN

Similar to HODEN, we compute each objects initial state via linear spline interpolation if it is
missing. As in Huh et al. (2020), we use a 2-layer linear network with Tanh activation in between
as the ODE functions, and the Leapfrog method for solving ODEs. The network has 1000 hidden
units and is trained with a learning rate of 0.00001 using a cosine scheduler.

TRS-ODENGNN

For TRSODENGNN, we substitute the ODE function in TRS-ODEN with a GraphODE network.
The GraphODE generative model is implemented with a single-layer GNN with hidden dimension
128. As in HODEN and TRS-ODEN, we compute each objects missing initial state via linear spline
interpolation and the Leapfrog method for solving ODE. For all datasets, we use 0.5 as the coefficient
for the reversal loss in Huh et al. (2020), and 0.0002 as the learning rate under cosine scheduling.

LGODE

Our implementation follows Huang et al. (2020) except we remove the Variational Autoencoder
(VAE) from the initial state encoder. Instead of using the output from the encoder GNN as the mean
and std of the VAE, we directly use it as the latent initial state. We use the same architecture as in
TANGO and train the model using an AdamW optimizer with a learning rate of 0.0001 across all
datasets.

E LIMITATIONS

Currently TANGO only incorporates inductive bias from the temporal aspect, while there are still
many important properties in the spatial aspect such as translation and rotation equivariance Satorras
et al. (2021). Future endeavors that combine biases from both temporal and spatial dimensions could
unveil a new frontier in dynamical systems modeling.

24

Under review as a conference paper at ICLR 2024

6 ETHICS STATEMENT

TANGO is trained upon physical simulation data (e.g., , spring and pendulum) and implemented by
public libraries in PyTorch. During the modeling, we neither introduces any social/ethical bias nor
amplify any bias in the data. We do not foresee any direct social consequences or ethical issues.

7 REPRODUCIBILITY

To reproduce our model’s results, we provide our code implementation link here. Dataset details
can be found in Appendix C and we also provide simulator codes for public use. We also show the
implemenmtation details of TANGO and baselines in Apendix D.2.

REFERENCES

Jan Awrejcewicz, Grzegorz Kudra, and Grzegorz Wasilewski. Chaotic zones in triple pendulum
dynamics observed experimentally and numerically. Applied Mechanics and Materials, pp. 1–17,
2008.

Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, and koray kavukcuoglu.
Interaction networks for learning about objects, relations and physics. In Advances in Neural
Information Processing Systems. 2016.

Ricky T. Q. Chen, Brandon Amos, and Maximilian Nickel. Learning neural event functions for
ordinary differential equations. International Conference on Learning Representations, 2021.

Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural ordinary differential
equations. In Advances in Neural Information Processing Systems, 2018.

Miles Cranmer, Sam Greydanus, Stephan Hoyer, Peter Battaglia, David Spergel, and Shirley Ho.
Lagrangian neural networks. arXiv preprint arXiv:2003.04630, 2020.

David F. Mayers Endre Süli. An Introduction to Numerical Analysis. Cambridge University Press,
2003.

Samuel Greydanus, Misko Dzamba, and Jason Yosinski. Hamiltonian neural networks. Advances
in Neural Information Processing Systems, 2019.

Shixiang Gu, Ethan Holly, Timothy Lillicrap, and Sergey Levine. Deep reinforcement learning for
robotic manipulation with asynchronous off-policy updates. In IEEE international conference on
robotics and automation (ICRA), 2017.

Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. Heterogeneous graph transformer. In
Proceedings of the 2020 World Wide Web Conference, 2020.

Zijie Huang, Yizhou Sun, and Wei Wang. Learning continuous system dynamics from irregularly-
sampled partial observations. In Advances in Neural Information Processing Systems, 2020.

Zijie Huang, Yizhou Sun, and Wei Wang. Coupled graph ode for learning interacting system dy-
namics. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery Data
Mining, 2021.

In Huh, Eunho Yang, Sung Ju Hwang, and Jinwoo Shin. Time-reversal symmetric ode network. In
Advances in Neural Information Processing Systems, 2020.

Song Jiang, Zijie Huang, Xiao Luo, and Yizhou Sun. Cf-gode: Continuous-time causal inference
for multi-agent dynamical systems. In Proceedings of the 29th ACM SIGKDD Conference on
Knowledge Discovery & Data Mining, 2023.

Sangtae Kim and Seppo J Karrila. Microhydrodynamics: principles and selected applications.
Courier Corporation, 2013.

10

https://anonymous.4open.science/r/TANGO-FF33/

Under review as a conference paper at ICLR 2024

Thomas Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, and Richard Zemel. Neural relational
inference for interacting systems. arXiv preprint arXiv:1802.04687, 2018.

Jeroen SW Lamb and John AG Roberts. Time-reversal symmetry in dynamical systems: a survey.
Physica D: Nonlinear Phenomena, pp. 1–39, 1998.

Chengshu Li, Fei Xia, Roberto Martín-Martín, Michael Lingelbach, Sanjana Srivastava, Bokui Shen,
Kent Elliott Vainio, Cem Gokmen, Gokul Dharan, Tanish Jain, Andrey Kurenkov, Karen Liu, Hy-
owon Gweon, Jiajun Wu, Li Fei-Fei, and Silvio Savarese. igibson 2.0: Object-centric simulation
for robot learning of everyday household tasks. In Proceedings of the 5th Conference on Robot
Learning, 2022.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In The International
Conference on Learning Representations, 2019.

Xiao Luo, Jingyang Yuan, Zijie Huang, Huiyu Jiang, Yifang Qin, Wei Ju, Ming Zhang, and Yizhou
Sun. HOPE: High-order graph ODE for modeling interacting dynamics. In Proceedings of the
40th International Conference on Machine Learning, 2023.

Emmy Noether. Invariant variation problems. Transport theory and statistical physics, 1(3):186–
207, 1971.

Jill North. Formulations of classical mechanics. Forthcoming in A companion to the philosophy of
physics. Routledge, 2021.

Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter Battaglia. Learning mesh-based
simulation with graph networks. In International Conference on Learning Representations, 2021.

Michael Poli, Stefano Massaroli, Junyoung Park, Atsushi Yamashita, Hajime Asama, and Jinkyoo
Park. Graph neural ordinary differential equations. arXiv preprint arXiv:1911.07532, 2019.

Costas Pozrikidis. Interfacial dynamics for stokes flow. Journal of Computational Physics, 169(2):
250–301, 2001.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686–707, 2019.

John AG Roberts and GRW1173588 Quispel. Chaos and time-reversal symmetry. order and chaos
in reversible dynamical systems. Physics Reports, 216(2-3):63–177, 1992.

Yulia Rubanova, Ricky TQ Chen, and David K Duvenaud. Latent ordinary differential equations for
irregularly-sampled time series. In Advances in Neural Information Processing Systems, 2019.

Alvaro Sanchez-Gonzalez, Victor Bapst, Kyle Cranmer, and Peter Battaglia. Hamiltonian graph
networks with ode integrators. In Advances in Neural Information Processing Systems, 2019.

Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Peter W.
Battaglia. Learning to simulate complex physics with graph networks. In Proceedings of the 37th
International Conference on Machine Learning, 2020.

Vıctor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E (n) equivariant graph neural net-
works. In International conference on machine learning, pp. 9323–9332. PMLR, 2021.

Michael Schober, Simo Särkkä, and Philipp Hennig. A probabilistic model for the numerical solu-
tion of initial value problems. In Statistics and Computing, pp. 99–122. 2019.

Hochreiter Sepp and Schmidhuber Jürgen. Long short-term memory. Neural computation, 1997.

Troy Shinbrot, Celso Grebogi, Jack Wisdom, and James A Yorke. Chaos in a double pendulum.
American Journal of Physics, (6):491–499, 1992.

Tomasz Stachowiak and Toshio Okada. A numerical analysis of chaos in the double pendulum.
Chaos, Solitons & Fractals, (2):417–422, 2006.

11

Under review as a conference paper at ICLR 2024

E. C. Tolman. The determiners of behavior at a choice point. Psychological Review, 45(1):1–41,
1938.

Riccardo Valperga, Kevin Webster, Dmitry Turaev, Victoria Klein, and Jeroen Lamb. Learning
reversible symplectic dynamics. In Proceedings of The 4th Annual Learning for Dynamics and
Control Conference, 2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems. 2017.

Rui Wang, Karthik Kashinath, Mustafa Mustafa, Adrian Albert, and Rose Yu. Towards physics-
informed deep learning for turbulent flow prediction. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, 2020.

Song Wen, Hao Wang, and Dimitris Metaxas. Social ode: Multi-agent trajectory forecasting with
neural ordinary differential equations. In European Conference on Computer Vision, 2022.

Chengxi Zang and Fei Wang. Neural dynamics on complex networks. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2020.

12

