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1. Introduction 
The opportunity to glimpse the wonders of the tiny 

world with one’s eyes has fascinated researchers for 
millennia. However, due to the physical phenomenon 
of diffraction, the optical resolution is restricted to 
approximately half the wavelength (λ) of light, which 
impedes the observation of subwavelength objects, 
typically smaller than 200 nm. This constrains its 
application in numerous scientific and industrial 
fields that aim to observe objects beyond the 
diffraction limit, such as native state coronavirus 
inspection. Fortunately, deep learning methods have 
shown remarkable potential in uncovering 
underlying patterns within data, promising to 
overcome the diffraction limit by revealing the 
mapping pattern between diffraction images and 
their corresponding ground truth images. 

In this work, we demonstrate a new universal 
technique for super-resolution imaging of arbitrary 
objects without a prior training assumption on the 
sizes and shapes of the imaging objects, achieved by 
learning fundamental geometry elements via deep 
learning analysis. 

We report an image resolution of λ/11 which is 5.5 
times beyond the classical diffraction limit. Our 
method is label-free and does not require 
photoactivation, or bleaching, opening transformative 
opportunities such as biology imaging, precision 
manufacturing, semiconductor inspection, and 
advanced materials characterization.  
 
2. Methodology 
    
2.1 Related work 
     To surpass the diffraction limit, traditional optical 
methods, such as scanning near-field optical 
microscopy[1] offer high resolution but require 
invasive near-field probes and cannot image internal 
structures. Meanwhile, fluorescent-based methods 
like [2, 3] stimulated emission depletion microscopy 
and single-molecule localization microscopy offer 
resolutions of tens of nanometers but necessitate 
invasive fluorescent labeling[4]. These limitations 
have spurred interest in AI-enhanced solutions.  
 
2.2 Methodology 
     We first make a big binary sample consisting of 
random arrangements of lines, circle segments 
shaped apertures. The white binary region is defined 
as apertures where illuminated light is fully 
transmitted, and the black region is defined as 
regions with no light transmission.  The sizes of the 
apertures vary from λ/10 to λ/2 in widths and 
diameters. We illuminate the sample with a 
diffraction-limited beam spot of diameter, D = 
1.22λ/NA, and the diffraction pattern collected by an 
NA=0.9 imaging system at a distance H = 2λ from the 
sample (Fig. 1).  
 

 

Fig. 1: Working principle: A 2D binary object consists of 
geometry shape components (line, circle, segment with 
random size and place), is illuminated by a tightly focused 
laser beam with a wavelength of 640nm and progressively 
scans along two orthogonal directions X and Y by fixed 
steps. A set of diffraction patterns is then recorded at the 
distance of 2λ from the object along the z-axis with a 
numerical aperture, NA=0.9 by fully scanning the imaging 
target.  An encoder-decoder convolutional neural network 
is trained on diffraction patterns from all the scanning 
small areas of the full imaging target, surrounded by 
random arbitrary shape objects. The trained neural 
network aims to reconstruct the image of the central part 
covered by the diffraction limit spot (without the 
surroundings) from the unseen diffraction pattern, and the 
full imaging target is reconstructed progressively image by 
the image with the neural network results. 
 

2.3 Sample fabrication and experimental setup 
We fabricate test samples using a high-precision 

dual-beam FIB system on a 130nm Au film deposited 
on glass coverslips. Two representative samples were 
produced: a calligraphic "Light" pattern featuring 
complex curved shapes and a Siemens star with 
radial periodic lines for resolution benchmarking. 
Sample imaging was conducted using a custom-built 
microscopy system with a 640nm coherent light 
source, achieving an effective pixel resolution of 
41.7nm. The setup employs a high-NA objective 
mounted on a piezoelectric stage, with diffraction 
signals detected by a high-sensitivity sCMOS camera 
in the far-field. Environmental stability is maintained 
through comprehensive vibration isolation and 
acoustic shielding to minimize mechanical drift and 
noise during high-precision measurements. 

Fig. 2. a~d: Fabricated samples and the diffraction images; 
e: High-precision microscopy for data acquisition. 

 

        

      

 

   
      

  
          

                   

                

            
        

      

          

           

        

              

                          

            

        

         
         

           

                          

      
                            

                                                                             



2.3 Image translation by deep learning 

    With the collected data, we now define our task as 
an image-to-image translation problem characterized 
by a mapping function 

𝓕𝜙: 𝑹
𝑯𝟏×𝑾𝟏×𝟏 → 𝑹𝑯×𝑾×𝟏 ( ) 

parameterized by a neural network  ϕ .This 
function  ℱ is designed to transform input diffraction 
images into outputs that approximate the 
corresponding ground truth object localization 
images. 
To optimize our image translation mapping 
function  ℱ, we define a fundamental loss function for 
training: 

ℒℱ  
 

𝑁
∑l(ℱ(𝑥𝑖), 𝑦𝑖) 

𝑁

𝑖=1

( ) 

As the ground truth  𝑦𝑖 uses binary values to indicate 
object presence at each pixel, we employ the Binary 
Cross-Entropy (BCE) loss function: 

l(ℱ(𝑥𝑖), 𝑦𝑖)  −
 

𝐻 ×𝑊
∑∑[𝑦𝑖

(ℎ,𝑤) logℱ (𝑥𝑖)
(ℎ,𝑤)

𝑊

𝑤=1

𝐻
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+ ( − 𝑦𝑖
(ℎ,𝑤)) log( − ℱ(𝑥𝑖)

(ℎ,𝑤))]  

 

where ℱ(xi)
(h,w)𝑎𝑛𝑑 𝑦𝑖

(ℎ,𝑤)denote the predicted and 
ground truth values at pixel location (h, w), 
respectively. The neural network parameterizing  ℱ 
 could be optimized using gradient-based techniques, 
such as SGD and Adam, to minimize ℒℱ over the 
training dataset. Once trained, this model is capable 
of predicting object localization images from new 
diffraction images. 
 
3. Results 
 
3.1 Imaging ability of arbitrary shape 

As a demonstration of imaging arbitrary shape and 
size objects, we image a "Light” sample with a size of 
14λ in length and 7λ in height. The sample is made up 
of non-uniform calligraphic strokes with a span of 
aperture width, that ranges from ~ λ to deeply 
subwavelength λ/64. The deep subwavelength 
features could be easily distinguished in the image 
formed by our method. We compare the image 
reconstructed with a confocal microscope, with 
equivalent illumination beam spot diameter, 
captured with the same scanning step and 
reconstructed from the averaged values from 16 
repeated captures. The image captured with a 
confocal microscope has notably decreased overall 
contrast and decreased resolution in smaller features. 

Fig. 3:  Test results of "Light" sample demonstrating 
complex curved features and arbitrary shapes. 

 
3.2 Resolution evaluation 
      To evaluate the resolution of our method, we 
image a sample of Siemens star. The Siemens star, 

composed of 72 spokes radiating from the center, 
measures 13.6λ in diameter. We evaluate the 
resolvable threshold as the half-pitch of the stokes 
gets narrower toward the center of the Siemens star 
with the visibility metric. The visibility of the image is 
defined according to the Michelson contrast formula 
= (Imax – Imin)/ (Imax + Imin), where Imax is the maximum 
intensity and Imin is the minimum intensity between 
the pitches of the Siemens stokes. We define the 
resolvable threshold with the Rayleigh criterion, at 
which the difference between the maximum intensity 
and minimum intensity is 20%, which corresponds to 
a visibility of 0.11. The resolvable threshold for our 
method is λ/11, which is 5.5 times beyond the 
classical optical resolution limit.  

Figure 4: Imaging resolution on Siemens Star 
 
4. Conclusion 
 
     We report a far-field label-free optical imaging 
technique enabled by artificial intelligence, which 
could work on arbitrary shapes with a resolution of 
λ/11. This 5.5-fold improvement beyond the classical 
diffraction limit was achieved without making prior 
assumptions on target geometry or dimensions. The 
neural network architecture successfully learned 
fundamental geometric elements from diffraction 
patterns, establishing a robust mapping that 
generalizes across diverse structural configurations. 
More importantly, our method is scalable to samples 
with different materials and for demonstration, 
offering numerous applications including non-
invasive biological specimen imaging, high-precision 
semiconductor inspection, and advanced materials 
characterization. 
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