
Under review as a conference paper at ICLR 2024

STALENESS-BASED SUBGRAPH SAMPLING FOR LARGE-
SCALE GNNS TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

Training Graph Neural Networks (GNNs) on large-scale graphs is challenging. The
main difficulty is to obtain accurate node embeddings while avoiding the neighbor
explosion problem. Many of the existing solutions use historical embeddings to
tackle this challenge. Specifically, by using historical embeddings for the out-of-
batch nodes, these methods can approximate full-batch training without dropping
any input data while keeping constant GPU memory consumption. However,
it still remains nascent to specifically design a subgraph sampling method that
can benefit these historical embedding-based methods. In this paper, we first
analyze the approximation error of node embeddings caused by using historical
embeddings for out-of-batch neighbors and prove that this approximation error can
be minimized by minimizing the staleness of historical embeddings of out-of-batch
nodes. Based on the theoretical analysis, we design a simple yet effective Staleness
score-based Subgraph Sampling method (S3) to benefit these historical embedding-
based methods. The key idea is to first define the edge weight as the sum of the
staleness scores of the source and target nodes and then apply graph partitioning to
minimize edge cuts, with each resulting partition as a mini-batch during training. In
this way, we can explicitly minimize the approximation error of node embeddings.
Furthermore, to deal with the dynamic changes of staleness scores during training
and improve the efficiency of graph partitioning, we design a fast algorithm to
generate mini-batches via a local refinement heuristic. Experimental results show
that (1) our S3 sampling method can further improve historical embedding-based
methods and set the new state-of-the-art, and (2) our fast algorithm is 3x faster than
re-partitioning graph from scratch on the large-scale ogbn-products dataset with 2M
nodes. In addition, the consistent improvements on all three historical embedding-
based methods (GAS, GraphFM, and LMC) also show the generalizability of our
subgraph sampling method.

1 INTRODUCTION

Graph neural networks (GNNs) (Kipf & Welling, 2017; Velickovic et al., 2018; Xu et al., 2018;
Gasteiger et al., 2018; Corso et al., 2020; Chen et al., 2020) are powerful methods to learn both node
and graph representations for various downstream tasks, such as node property prediction (Hu et al.,
2020; 2021), link property prediction (Zhang & Chen, 2018), and graph property prediction (Gilmer
et al., 2017; Wu et al., 2018; Yang et al., 2019). However, the scalability of GNNs is often limited
due to neighbor explosion which makes the size of the node receptive field increase exponentially
with respect to the number of layers/hops. For example, given a graph with k neighbors per node
and a GNN with ℓ layers, an astounding kℓ nodes are required to learn the embedding for a single
node which is computationally costly. This problem hinders the applications of GNNs to large-scale
graphs, such as citation networks and social networks.

Existing works aiming to improve the scalability of the GNNs and the efficiency of GNN training
mainly focus on designing advanced sampling strategies. Specifically, node-wise sampling meth-
ods (Hamilton et al., 2017; Ying et al., 2018; Huang et al., 2023) recursively sample a fixed number
of neighbors for each node, while layer-wise sampling methods (Chen et al., 2018; Huang et al.,
2018; Zou et al., 2019) sample nodes in each layer independently, leading to a constant number of
nodes in each layer. Instead of sampling nodes or edges across GNN layers, subgraph sampling
methods (Zeng et al., 2019; 2021; Chiang et al., 2019) first sample subgraphs as mini-batches and

1

Under review as a conference paper at ICLR 2024

then build a full GNN on the subgraphs. Given a sampled mini-batch B, the embedding hℓ+1
u for a

target node u is obtained by aggregating information from sampled neighbors, as

hℓ+1
u = f ℓ+1

θ (hℓu, {hℓv}v∈N (u)∩B)

where hℓu is the node embedding of node u at layer l and N (u) denotes 1-hop neighbors of node
u. In this case, the information from unsampled neighbors is discarded during this training step.
To mitigate this problem, several historical embedding-based methods (Fey et al., 2021; Yu et al.,
2022; Shi et al., 2023) have been proposed to use historical embeddings of the unsampled neighbors
(i.e., out-of-batch neighbors) as an affordable approximation. The idea of historical embeddings is
originally introduced in (Chen et al., 2017) and (Cong et al., 2020). GAS (Fey et al., 2021) provides
a reliable framework to use historical embeddings and sets the state-of-the-art in various benchmarks.
As shown in Fey et al. (2021), the message passing with historical embeddings can be formulated as

hℓ+1
u = f ℓ+1

θ (hℓu, {hℓv}v∈N (u))

= f ℓ+1
θ (hℓu, {hℓv} v ∈ N (u) ∩ B︸ ︷︷ ︸

in-batch neighbors

∪ {hℓv} v ∈ N (u)\B︸ ︷︷ ︸
out-of-batch neighbors

)

≈ f ℓ+1
θ (hℓu, {hℓv}v∈N (u)∩B ∪ {h̄ℓv}v∈N (u)\B︸ ︷︷ ︸

historical embeddings

)

(1)

where h̄ℓv is the corresponding historical embedding of node v at layer ℓ. GAS shows that using
historical embeddings can lead to constant GPU memory consumption with respect to input node
size without dropping any data. GraphFM (Yu et al., 2022) and LMC (Shi et al., 2023) further
enhance GAS by reducing the staleness of historical embeddings from the algorithmic perspective
and improving the accuracy of gradient estimation, respectively. Detailed illustrations of GAS and
GraphFM are provided in Figure 3 in Appendix A.

However, there are several challenges related to the historical embedding-based methods. Intuitively,
a higher quality of the historical embeddings of out-of-batch nodes may translate to better final
node embeddings. However, it is not theoretically clear how the quality of historical embeddings
affects the quality of output node embeddings. Second, existing historical embedding-based methods
such as GAS (Fey et al., 2021), GraphFM (Yu et al., 2022), and LMC (Shi et al., 2023), directly
apply Cluster-GCN (Chiang et al., 2019) to construct subgraph mini-batches, whereas there is no
dedicated method to generate mini-batches during training that can guarantee the quality of historical
embeddings of out-of-batch neighbors. Third, since the historical embeddings dynamically change
during training, it is worth considering generating subgraph mini-batches on-the-fly, which can be
costly. How to re-sample subgraphs efficiently is another key challenge.

In this paper, we provide our solution to systematically overcome these challenges and further improve
the historical embedding-based methods. Our contributions can be summarized in three folds.

• We theoretically analyze the impact of the quality of historical embeddings on the quality
of output node embeddings. Specifically, we first leverage the path-based view (Gasteiger
et al., 2022) of GNNs with ReLU activations to decompose the aggregations among hidden
representations of in-batch nodes and historical embeddings of out-of-batch nodes. This
enables us to compute the approximation error of the learned node embeddings, which can
be upper bounded in terms of the staleness of the historical embeddings.

• We design a novel subgraph sampling method, called S3, based on the staleness scores such
that the historical embeddings of out-of-batch neighbors do not bring much information loss
compared to their up-to-date hidden representation counterparts. More specifically, we first
define the edge weight as the sum of the staleness scores of the source and target nodes.
Then we apply graph partitioning to generate mini-batches. In this way, we can explicitly
minimize the approximation error of learned node embeddings.

• To deal with the dynamic changes of staleness scores during training and improve the
efficiency of graph partitioning, we further design a fast algorithm to avoid re-partitioning
the graph from scratch. Specifically, at the t-th training epoch, instead of directly partition-
ing the graph Gt into Gt1, G

t
2, ..., G

t
M , we perform refinement on the partitioning results

Gt−1
1 , Gt−1

2 , ..., Gt−1
M at the previous epoch via a local refinement heuristic (Karypis &

Kumar, 1998b). Our refinement algorithm is 3x faster than graph partitioning from scratch
on the large-scale ogbn-products dataset with 2M nodes.

2

Under review as a conference paper at ICLR 2024

The analysis on the approximation error of node embeddings in Section 3 and experimental results in
Section 4 show that our S3 sampling method can further improve the existing historical embedding-
based methods both theoretically and empirically and set the new state-of-the-art. The consistent
improvements on all three historical embedding-based methods (GAS, GraphFM, and LMC) also
demonstrate the generalizability of our proposed subgraph sampling method.

2 BACKGROUND AND RELATED WORK

Due to the extensive number of nodes in large-scale graphs, mini-batch training is crucial for efficient
training. To enable mini-batch training on large-scale graphs, two main categories of approaches
have been proposed, namely sampling methods and pre-computing methods. In this section, we
first summarize different sampling methods and introduce the historical embedding-based methods
in Section 2.1. Note that our method aligns with this research direction. Next, we summarize
pre-computing methods and other techniques for large-scale GNNs training in Section 2.2.

2.1 SAMPLING-BASED METHODS

A main challenge for large-scale GNNs training is the neighbor explosion problem (Hamilton et al.,
2017). Specifically, for each target node that we want to get an output from a GNN, the number
of involved nodes in the computation graph grows exponentially with the number of GNN layers.
Different sampling methods have been proposed to tackle this problem.

Node-wise sampling. Instead of considering all neighbors, GraphSAGE (Hamilton et al., 2017)
and PinSAGE (Ying et al., 2018) sample a fixed number of neighbors for each node. Specifically,
GraphSAGE uniformly samples neighbors, while PinSAGE adapts based on node importance. Fol-
lowing GraphSAGE, VR-GCN (Chen et al., 2017) further reduces the number of sampled neighbors
by integrating historical embeddings to reduce the estimator variance. GraphFM-IB (Yu et al., 2022)
applies feature momentum to reduce the number of sampled neighbors while maintaining good
performance. Note that although these methods can reduce the memory cost by sampling only part of
the neighbors for each node, they still suffer from the neighbor explosion problem since the number
of incorporated nodes still grows exponentially with the number of GNN layers.

Layer-wise sampling. This type of methods samples a fixed number of nodes in each layer, and hence
the number of nodes only grows linearly with the number of layers. For example, FastGCN (Chen
et al., 2018) samples nodes independently for each layer. Huang et al. (2018) and Zou et al. (2019)
further consider between-layer correlations to improve accuracy. However, these methods may incur
computational overhead due to the expensive sampling algorithm.

Subgraph sampling. Instead of sampling nodes or edges across GNN layers, subgraph sampling
methods first sample subgraphs and then build a full GNN on the subgraphs. Therefore, it resolves the
neighbor explosion problem since the number of nodes involved in the computation graph is the same
as the subgraph size. For example, GraphSAINT (Zeng et al., 2019) provides several light-weight and
efficient samplers, including random node sampler, random edge sampler, and random walk-based
sampler, to construct subgraphs. SHADOW (Zeng et al., 2021) and IBMB (Gasteiger et al., 2022)
sample subgraphs based on PageRank scores. Cluster-GCN (Chiang et al., 2019) samples dense
subgraphs by minimizing inter-partition edges using graph partitioning algorithms. The subgraph
sampling method is also related to distributed training on large graphs (Chen et al., 2023; Peng et al.,
2022; Wan et al., 2022; Bai et al., 2023).

Scalable GNNs with historical embeddings. Building on top of sampling methods, some methods
further use historical embeddings as an affordable approximation to improve the scalability and
model performance. The main advantage of using historical embeddings is that we can approximate
full-batch training without dropping any data while keeping constant GPU memory consumption. The
idea of historical embeddings is originally introduced in (Chen et al., 2017) and (Cong et al., 2020).
GAS (Fey et al., 2021) provides a reliable framework and codebase to use historical embeddings
and sets the state-of-the-art in various benchmarks. GraphFM-OB (Yu et al., 2022) and LMC (Shi
et al., 2023) further improve GAS by using feature momentum and considering gradient estimation
respectively. However, how to construct mini-batches B has not been well studied. Here, we
design a new sampling method to construct mini-batches, which can further improve the historical
embedding-based methods.

3

Under review as a conference paper at ICLR 2024

2.2 PRE-COMPUTING METHODS AND OTHER TECHNIQUES

Pre-processing methods. On the other hand, pre-processing methods (Wu et al., 2019; Frasca et al.,
2020; Yu et al., 2020; Sun et al., 2021; Zhang et al., 2022) first compute informative features for each
node and then feed these features into subsequent models. In this case, the nodes can be treated as
independent samples, and we can easily pass the nodes in mini-batches. This technique offers an
alternative perspective for tackling the challenges of large-scale GNNs training.

Other techniques. Our method is orthogonal to many advanced techniques (Shi et al., 2020; Huang
et al., 2020; Sun et al., 2021; Chien et al., 2021; Kong et al., 2022; Zhang et al., 2021; Han et al., 2023;
Li et al., 2021; Duan et al., 2022) for large-scale GNNs training. For example, Shi et al. (2020) uses
label propagation to boost model performance. MLPInit (Han et al., 2023) accelerates the training
of GNNs by initializing the weights of GNNs with the weight of their converged PeerMLP. Graph
transformer (Ying et al., 2021; Rampášek et al., 2022) has the ability to leverage all node information.
However, the dense attention computations make it less efficient. Improving the efficiency (Poli
et al., 2023) and enabling mini-batch training (Chen et al., 2022) of graph transformers on large-scale
graphs is also an important research direction.

3 METHOD

Historical embeddings has the unique advantage of enabling approximation of full-batch training
without dropping any data while keeping constant GPU memory consumption (Fey et al., 2021).
However, the main challenge is that there is no sampling method specifically designed for these
historical embedding-based methods. For example, GAS, GraphFM, and LMC (Fey et al., 2021; Yu
et al., 2022; Shi et al., 2023) simply apply Cluster-GCN (Chiang et al., 2019) to generate mini-batches
practically. In Cluster-GCN, the unweighted graph partitioning algorithm (e.g. METIS) (Karypis &
Kumar, 1998a; Dhillon et al., 2007) is directly used to convert the input graph into several subgraphs
such that the number of inter-partition edges is minimized. However, there is lack of justification
on whether Cluster-GCN can generate informative mini-batches to harvest historical embeddings.
Indeed, in this section, we show that it is not optimal. Specifically, in Section 3.1, we first analyze
the approximation error of the learned node embeddings caused by using historical embeddings for
out-of-batch nodes. We prove that the approximation error can be minimized by minimizing the
staleness of historical embeddings. We then present our staleness score-based sampling in Section 3.2.

3.1 APPROXIMATION ERROR ANALYSIS

As shown in Equation 1, the main idea of GNNs with historical embeddings is to approximate
full-batch embedding hℓ+1

u for each node u by aggregating embeddings {hℓv}v∈N (u)∩B for in-batch
neighbors and historical embeddings {h̄ℓv}v∈N (u)\B for out-of-batch neighbors. However, there
exists an approximation error if h̄ℓv ̸= hℓv for v ∈ N (u)\B. In this section, we analyze how historical
embeddings affect the approximation error of the final node embedding h̃Lu , which motivates the
design of our new sampling method.
Theorem 1. Given a GNN with a linear, graph-dependent aggregation and ReLU activations, the
embedding approximation error, i.e., the error between the full-neighborhood propagation embedding
hLu and the actual aggregated embedding h̃Lu by using historical embeddings,

∥hLu − h̃Lu∥
can be minimized by minimizing ∑

v∈N (u)\B

L−1∑
ℓ=1

Cℓv∥hℓv − h̄ℓv∥.

Here
∑L−1
ℓ=1 C

ℓ
v∥hℓv − h̄ℓv∥ represents the overall quality of the historical embeddings at all L − 1

layers where Cℓv is a weight that depends on both graph structure and model parameters, and we
want to minimize the sum of these terms of all out-of-batch neighbors. The proof for Theorem 1 is
provided in Appendix B. Intuitively, based on Equation 1, we can see that the approximation error
depends on both the number of out-of-batch neighbors and the quality of the historical embeddings
of these out-of-batch neighbors. However, previous methods such as GAS, GraphFM, and LMC

4

Under review as a conference paper at ICLR 2024

only consider the number of out-of-batch nodes and use unweighted graph partitioning algorithms to
minimize it. Unfortunately, they do not directly consider the quality of historical embedding which
limits their performance.

3.2 STALENESS SCORE-BASED SUBGRAPH SAMPLING

Staleness scores of historical embeddings. As discussed in Section 3.1 and Theorem 1, the
embedding approximation error can be minimized by minimizing the weighted sum of ∥hℓv − h̄ℓv∥
for all out-of-batch neighbors at all ℓ = 1, · · · , L − 1 layers. Here ∥hℓv − h̄ℓv∥ is defined as the
staleness score of the historical embedding of node v at layer ℓ (Fey et al., 2021; Yu et al., 2022),
which measures the Euclidean distance between full-neighborhood propagation embedding hℓv and
historical embedding h̄ℓv . Formally, for each node v, the staleness score sℓv at layer ℓ is

sℓv = ∥hℓv − h̄ℓv∥. (2)

Optimization objective. Based on Theorem 1, to sample a mini-batch B, our optimization objective
is

argmin
B

∑
u∈B

∑
v∈N (u)\B

∑
ℓ

Cℓvs
ℓ
v. (3)

And we want to minimize the weighted sum of the staleness scores for all out-of-batch neighbors.

In subgraph sampling, we want to convert the input graph G = (V, E) to M subgraphs
G1, G2, ..., GM , and each subgraph Gi can be viewed as a mini-batch Bi during training. Note
that the number of nodes in each mini-batch should be (roughly) the same. Considering all M
mini-batches, the overall minimization objective becomes

argmin
{B1,...,BM}

∑
Bi∈{B1,...,BM}

∑
u∈Bi

∑
v∈N (u)\Bi

∑
ℓ

Cℓvs
ℓ
v

subject to V = B1 ∪ B2 ∪ ... ∪ BM
Bi ∩ Bj = ∅ for all i ̸= j, 1 ≤ i, j ≤M

(4)

Equivalence to graph partitioning objective. Note that for u ∈ Bi, v ∈ N (u)\Bi is equivalent to
v ∈ Bj such that i ̸= j and (u, v) ∈ E . Therefore, the objective in Equation 4 is equivalent to

argmin
{B1,...,BM}

∑
u∈Bi,v∈Bj ,i̸=j,(u,v)∈E

∑
ℓ

Cℓus
ℓ
u + Cℓvs

ℓ
v

subject to V = B1 ∪ B2 ∪ ... ∪ BM
Bi ∩ Bj = ∅ for all i ̸= j, 1 ≤ i, j,≤M

(5)

Then our optimization objective becomes a graph partitioning problem where we want to minimize
the edge weight euv =

∑
ℓ C

ℓ
us
ℓ
u + Cℓvs

ℓ
v for all inter-partition edges. Therefore, we can use graph

partitioning algorithms to minimize our objective and generate subgraphs (mini-batches) while
explicitly minimizing the approximation error of learned node embeddings.

Staleness score-based subgraph sampling. Our objective aligns with the Kernighan-Lin objec-
tive (Kernighan & Lin, 1970) for graph partitioning problem, where we aim to minimize the total
edge weight euv =

∑
ℓ C

ℓ
us
ℓ
u+C

ℓ
vs
ℓ
v for all inter-partition edges. Nevertheless, it is often impractical

to use the exact
∑
ℓ C

ℓ
us
ℓ
u + Cℓvs

ℓ
v as the edge weight since the computations of Cℓu, C

ℓ
v involve a

lot of path-dependent factors as shown in Appendix B. Alternatively, we drop them to simplify the
computations, i.e., euv =

∑
ℓ s
ℓ
u + sℓv. Meanwhile, multi-level approaches proposed by Karypis

& Kumar (1997); Dhillon et al. (2007) have been widely employed to efficiently solve the graph
partitioning tasks based on similar objectives. In this way, our S3 sampling works as follows. We
first define the weight of each edge (u, v) as the sum of the staleness scores of the source and target
nodes. Then we apply multi-level graph partitioning to generate mini-batches. In this way, we can
explicitly reduce the approximation error of learned node embeddings.

3.3 FAST REFINEMENT ALGORITHM

One main challenge in our S3 sampling method is that the edge weight euv =
∑
ℓ s
ℓ
u + sℓv evolves

dynamically throughout the training process. This dynamism arises from the continual updates applied

5

Under review as a conference paper at ICLR 2024

Algorithm 1 Training of GAS with staleness score-based subgraph sampling (S3 + GAS). Note that
for S3 + FM and S3 + LMC, lines 9-13 are different.

1: Input: Graph G0 = G = (V, E), node features X, number of mini-batches M , training epochs
T , GNN with learnable parameters θ, number of GNN layers L

2: Preprocess by partitioning the input graph G0 into M subgraphs G0
1, G

0
2, ..., G

0
M

3: for (t = 0; t < T ; t++) do
4: Random shuffle Gt1, G

t
2, ..., G

t
M

5: for (i = 1; i ≤M ; i++) do
6: Subgraph Gti as a mini-batch B for training
7: Pull historical embeddings h̄1v, h̄

2
v, ..., h̄

L−1
v for out-of-batch nodes v ∈ {N (u)\B|u ∈ B}

8: h̃0v = h̄0v = xv
9: for (ℓ = 0, ℓ < L, ℓ++) do

10: Forward propagation and obtain new features by
h̃ℓ+1
u = f ℓ+1

θ (h̃ℓu, {h̃ℓv}v∈N (u)∩B ∪ {h̄ℓv}v∈N (u)\B)

11: Push features h̃ℓ+1
u for all in-batch nodes u ∈ B into historical embeddings

12: end for
13: Compute gradient and update model parameters θ
14: end for
15: for (ℓ = 1, ℓ < L, ℓ++) do
16: Forward propagation to compute full-neighborhood propagation embedding hℓv
17: Compute the staleness score sℓv = ∥hℓv − h̄ℓv∥ for each node v
18: end for
19: if Re-sampling (considering re-sampling scheduler as discussed in Section 3.2 and 4.2) then
20: Define edge weight euv =

∑L−1
ℓ=1 s

ℓ
u + sℓv

21: Refinement from Gt1, G
t
2, ..., G

t
M to Gt+1

1 , Gt+1
2 , ..., Gt+1

M by local refinement heuristics
22: else
23: Set Gt+1

1 , Gt+1
2 , ..., Gt+1

M as Gt1, G
t
2, ..., G

t
M

24: end if
25: end for

to both historical embeddings and learnable parameters during training. Consequently, our problem
transcends the traditional realm of graph partitioning, evolving into the domain of partitioning for
dynamic graphs. To deal with the dynamic changes of staleness scores and improve the efficiency
of graph partitioning, we design a fast algorithm to avoid re-partitioning the graph from scratch. In
addition, we carefully design the re-sampling scheduler (frequency) based on empirical observations.

Re-sampling scheduler. To deal with the graph partitioning for dynamic graphs, one of the key factors
is the partitioning frequency (scheduler). This hyperparameter plays a pivotal role in dictating when
re-partitioning should be initiated, holding significant implications for the overall time complexity
of the partitioning process. Practically, we find that conducting re-partitioning after a fixed number
of epochs (e.g. 20 epochs) consistently yields favorable results without imposing significant time
overhead. Detailed empirical analysis on the frequency is included in Section 4.2.

Efficient refinement. In addition, instead of re-partitioning the graph from scratch, we use k-way
Kernighan–Lin refinement algorithm (Karypis & Kumar, 1998b) to do refinement, which is much
more efficient. A detailed sampling and training framework is provided in Algorithm 1. Specifically, at
the t-th training epoch, instead of directly partitioning the graph Gt into Gt1, G

t
2, ..., G

t
M , we perform

refinement on the partitioning result Gt−1
1 , Gt−1

2 , ..., Gt−1
M at the previous epoch. The refinement

is based on the gain, i.e., the reduction in the edge cuts, by moving nodes to other mini-batches.
Formally, for a node u ∈ Bi, the potential gain of moving it from subgraph Gi to Gj is

g(u)j = EW (u)j − IW (u)

=
∑

v∈N (u)∩Bj

euv −
∑

v∈N (u)∩Bi

euv. (6)

Here EW (u)j is called the external weight of node u to subgraph Gj , and IW (u) is the internal
weight of node u. g(u)j is the reduction in the edge cuts by moving node u from subgraph Gi to Gj .

6

Under review as a conference paper at ICLR 2024

Table 1: Comparison between our sampling method and other baseline methods. Results for baseline
methods are taken from Fey et al. (2021) and Shi et al. (2023). We apply our staleness score-based
sampling method to the three popular and powerful historical embedding-based methods, namely
GAS (Fey et al., 2021), GraphFM (Yu et al., 2022), and LMC (Shi et al., 2023). In the comparison
with GAS and GraphFM, we use a fixed random seed following their original papers, therefore, we
do not report standard deviation. For a fair comparison with LMC, we report the mean and standard
deviation over five random runs. The three different background colors, gray , pink , and yellow ,
correspond to the three baseline methods. – indicates there is no reported value or it is hard to
reproduce the reported value. Red indicates that our sampling method can improve the corresponding
baselines with the default sampling. The top performance scores are highlighted in bold.

Nodes 89K 230K 717K 169K 2.4M
Edges 450K 11.6M 7.9M 1.2M 61.9M
Method Flickr Reddit Yelp ogbn-arxiv ogbn-products

VR-GCN 0.482 ± 0.003 0.964 ± 0.001 0.640 ± 0.002 – –
FastGCN 0.504 ± 0.001 0.924 ± 0.001 0.265 ± 0.053 – –
GraphSAINT 0.511 ± 0.001 0.966 ± 0.001 0.653 ± 0.003 – 0.791 ± 0.002
Cluster-GCN 0.481 ± 0.005 0.954 ± 0.001 0.609 ± 0.005 – 0.790 ± 0.003
SIGN 0.514 ± 0.001 0.968 ± 0.000 0.631 ± 0.003 0.720 ± 0.001 0.776 ± 0.001
GraphSAGE 0.501 ± 0.013 0.953 ± 0.001 0.634 ± 0.006 0.715 ± 0.003 0.783 ± 0.002

GAS 0.5400 0.9545 – 0.7168 0.7666GCN S3 + GAS 0.5490 0.9548 – 0.7207 0.7715

GAS 0.5620 0.9677 0.6514 0.7300 0.7724GCNII S3 + GAS 0.5666 0.9688 0.6524 0.7330 0.7750

GAS 0.5667 0.9717 0.6440 0.7250 0.7991PNA S3 + GAS 0.5729 0.9718 0.6444 0.7303 0.8069
FM 0.5446 0.9540 – 0.7181 –GCN S3 + FM 0.5486 0.9520 – 0.7214 –

FM 0.5631 0.9680 0.6529 0.7310 0.7742GCNII S3 + FM 0.5663 0.9693 0.6516 0.7330 0.7760

FM 0.5710 0.9712 0.6450 0.7290 0.8047PNA S3 + FM 0.5738 0.9719 0.6434 0.7292 0.8024

LMC 0.5380 ± 0.0014 0.9544 ± 0.0002 – 0.7144 ± 0.0023 –GCN S3 + LMC 0.5407 ± 0.0008 0.9548 ± 0.0001 – 0.7210 ± 0.0022 –

LMC 0.5536 ± 0.0049 0.9688 ± 0.0003 – 0.7276 ± 0.0022 –GCNII S3 + LMC 0.5616 ± 0.0020 0.9693 ± 0.0002 – 0.7311 ± 0.0010 –

Therefore, node u is moved to Gk such that k = argmaxj g(u)j . In addition to decreasing edge cuts,
balancing the number of nodes in each subgraph is another constraint we need to consider during
refinement. Following Karypis & Kumar (1998b), we add another condition for moving the nodes.
That is, the node u is allowed to move from from Gi to Gj if and only if

|Bj |+ 1 ≤ Nmax, and |Bi| − 1 ≥ Nmin. (7)
Here Nmax and Nmin are the maximum and minimum number of nodes in all subgraphs. Practically,
we set Nmax as 1.03×N/M , and Nmin as 0.9×N/M following Karypis & Kumar (1998b). Here
N is the total number of nodes, and M is the number of subgraphs (mini-batches). This constraint
ensures that there is no subgraph with too many or too few nodes.

4 EXPERIMENTS

Datasets. Following previous studies, we evaluate our staleness score-based sampling method S3 on
5 large-scale datasets, including Flickr (Zeng et al., 2019), Reddit (Hamilton et al., 2017), Yelp (Zeng
et al., 2019), ogbn-arxiv (Hu et al., 2021) and ogbn-products (Hu et al., 2021). Detailed descriptions
of the datasets are provided in Table 6 in Appendix C.

Baselines. The baseline methods include VR-GCN (Chen et al., 2017), FastGCN (Chen et al.,
2018), GraphSAINT (Zeng et al., 2019), Cluster-GCN (Chiang et al., 2019), SIGN (Frasca et al.,
2020), GraphSAGE (Hamilton et al., 2017), GAS (Fey et al., 2021), GraphFM (Yu et al., 2022), and
LMC (Shi et al., 2023), covering node-wise, layer-wise, and subgraph sampling methods, historical
embedding-based methods, and pre-processing methods, as discussed in Section 2. Results for
baseline methods are directly taken from their original papers.

7

Under review as a conference paper at ICLR 2024

Software and hardware. The implementation of our sampling method is based on PyTorch (Paszke
et al., 2019), PyGAS (Fey et al., 2021), PyTorch Sparse (Fey & Lenssen, 2019), PyG (PyTorch
Geometric) (Fey & Lenssen, 2019), and METIS (Karypis & Kumar, 1997). For a fair comparison
with GAS, GraphFM, and LMC, we follow their official code and only replace their sampling method
with ours. All the experiments are conducted on one Nvidia GeForce RTX 2080 GPU.

4.1 MAIN EMPIRICAL RESULTS

Since our sampling method is specially designed for historical embedding-based methods, we
select three most recent and powerful historical embedding-based backbone methods (GAS (Fey
et al., 2021), GraphFM (Yu et al., 2022), and LMC (Shi et al., 2023)) to show the improvement
of our S3 sampling. The comparison with baseline methods is shown in Table 1. Specifically,
the results of GAS, GraphFM, and LMC are directly taken from their original papers using their
default subgraph sampling method. Table 1 shows that our new sampling method can improve the
performance of all three historical embedding-based methods (GAS, GraphFM, and LMC) on almost
all datasets. The consistent improvements indicate the great effectiveness and generalizability of our
S3 sampling method. Note that GraphFM and LMC are designed to improve GAS from different
aspects. Therefore, we show detailed comparisons with GraphFM and LMC in the following part.

Comparison with GraphFM. Compared to GAS, the main advantage of GraphFM is that it can
alleviate the staleness of historical embeddings by updating historical embeddings with a feature
momentum step, which requires an additional computational cost than GAS. In our method, we aim
to minimize the staleness scores by a new sampling strategy. From the results in Figure 1 and Table 2,
we can observe that our S3 + GAS can outperform GraphFM and perform similarly to S3 + GraphFM
on both testing accuracy and staleness scores, showing that our new sampling strategy is a more
effective way to alleviate the staleness of historical embeddings and improve model performance.

GCN GCNII PNA
0.54

0.55

0.56

0.57

Ac
cu

ra
cy

GAS
S3 + GAS
FM
S3 + FM

(a) Results on Flickr.

GCN GCNII PNA

0.720

0.725

0.730

Ac
cu

ra
cy

(b) Results on ogbn-arxiv.

Figure 1: Comparisons with GAS and GraphFM
in terms of the testing results.

Table 2: Comparisons with GAS and
GraphFM in terms of the staleness scores of
historical embeddings. We use PNA as the
GNN backbone. Hyperparameters follow the
original setting in GAS and GraphFM.

Datasets Layer GAS S3 + GAS FM S3 + FM

Flickr
1 2.2629 1.6924 1.775 1.6216
2 2.6773 2.3254 2.411 2.2041
3 3.8793 2.9235 3.2135 3.0828

ogbn-arxiv 1 3.0572 2.3210 2.6414 2.3482
2 4.1617 3.874 3.9213 3.7477

Comparison with LMC. Compared to GAS, the main advantage of LMC is that it retrieves the
discarded messages in backward passes, leading to accurate mini-batch gradients and thus accelerating
convergence. Testing results in Table 1 and efficiency analysis in Table 3 show that our new sampling
method can improve the performance of LMC without harming its efficiency and convergence.

Table 3: Comparison with LMC in terms of the number of epochs and the runtime.
Flickr & GCN Flickr & GCNII ogbn-arxiv & GCN ogbn-arxiv & GCNII

Epochs LMC 334.2 356 124.4 197.4
S3 + LMC 362 211.4 175.4 180

Runtime (s) LMC 85 475 55 178
S3 + LMC 103 304 87 175

4.2 SAMPLING SCHEDULER

In our method, we re-sample based on the dynamic graph where the edge weights change during
training. Similar to the learning rate scheduler, the re-sampling scheduler is an important hyperparam-
eter governing our sampling steps. This critical hyperparameter exerts a substantial influence on both
the testing performance and the overall efficiency of our method. We present an in-depth analysis of
the outcomes obtained with various re-sampling schedulers. As shown in Table 4, re-sampling once
is already better than not re-sampling. Re-sampling every fixed number of epochs (e.g. 20 epochs)
consistently yields favorable results without imposing significant time overhead. The re-sampling
times in Table 4 also demonstrate the efficiency of our refinement algorithm.

8

Under review as a conference paper at ICLR 2024

Table 4: Results for different sampling schedulers, and runtime for training and re-sampling. We use
PNA as the GNN backbone. The two values in the last column correspond to the re-sampling time
from scratch and the re-sampling time of our fast refinement algorithm, respectively.

S3 + GAS No Resampling Resample every a fixed number of epochs Time per Time per

resampling once 80 40 20 8 1 training epoch resampling

Flickr 0.5667 0.5683 0.5729 0.5711 0.5692 0.5715 0.5703 1s 1s / 1s
ogbn-arxiv 0.7250 0.7278 0.7291 0.7300 0.7303 0.7294 0.7292 1s 3s / 2s
ogbn-products 0.7991 0.8001 0.8030 0.8069 0.8035 – – 40s 120s / 48s

4.3 ABLATION STUDY

In our sampling method, we first define the edge weight as the sum of the staleness scores of the
two nodes. Subsequently, we partition this weighted graph into M subgraphs, corresponding to
M mini-batches, by minimizing the total edge weights of inter-partition edges. This definition of
edge weight and the associated minimization objective draw inspiration from our theoretical analysis,
which aims to minimize the approximation error arising from the use of historical embeddings. This
minimization is accomplished by reducing the sum of staleness scores for out-of-batch nodes. In this
section, we underscore the significance of our defined edge weights and minimization objective by
comparing it with different baseline approaches. The comparison results are detailed in Table 5.

Table 5: Comparison of four sampling strategies. All results
are based on the GAS baseline.

Method Flickr & PNA ogbn-arxiv & PNA

Random node sampling 0.5521 0.7104
No edge weight 0.5667 0.7250
Random edge weight 0.5671 0.7228
Staleness score-based edge weight (ours) 0.5729 0.7303

Specifically, the "random node sam-
pler" randomly partitions the input
graph, whereas the other three meth-
ods partition the input graph by min-
imizing inter-partition edges. "No
edge weight" implies that we dis-
regard the staleness scores during
sampling, employing a graph partitioning algorithm solely to generate mini-batches. This is exactly
the sampling method used in Cluster-GCN, GAS, GraphFM, and LMC. "Random edge weight"
assigns random values to the edge weights. Meanwhile, "staleness score-based edge weight" is the
approach introduced in this paper. Table 5 demonstrates that our solution surpasses all the variants,
highlighting the effectiveness of our method with its optimal optimization objective.

0 25 50 75 100 125 150 175 200
Epoch

5

10

15

20

25

Av
er

ag
ed

 st
al

en
es

s s
co

re
 o

ve
r a

ll
no

de
s layer 1

layer 2
layer 3

Figure 2: Staleness scores at
different layers (ogbn-arxiv&
GCNII).

In addition, as discussed in Section 3.2, the edge weight euv =∑L−1
ℓ=1 s

ℓ
u + sℓv is defined as the sum of the staleness scores of both

source and target nodes over all layers. But practically, we find that
it is sufficient to only use the staleness scores at layer L− 1 and set
euv = sL−1

u +sL−1
v to achieve similar results. Therefore, in our final

experiments, we only use the staleness score of layer L− 1 in our
S3 sampling method. We believe this is because the staleness score
increases monotonically across the layers due to error accumulation,
as shown in Figure 2. Therefore, only using the staleness scores at
layer L− 1 can also minimize our optimization objective. Note that
we also normalize the staleness scores before performing our S3 sampling due to the presence of
extreme values. Detailed discussion about the normalization is provided in Appendix C.

5 CONCLUSION

We focus on the task of training GNNs on large-scale graphs, where the main challenge is the neighbor
explosion problem. Many of the existing methods use historical embeddings to solve this problem.
In this paper, we first analyze the approximation error caused by using historical embeddings and
show that the approximation error can be minimized by minimizing the staleness of the historical
embeddings. We then design a staleness score-based subgraph sampling method to further benefit
these historical embedding-based methods. Experimental results show that our sampling method can
further improve historical embedding-based methods and set new state-of-the-art on various datasets.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Guangji Bai, Ziyang Yu, Zheng Chai, Yue Cheng, and Liang Zhao. Staleness-alleviated distributed
gnn training via online dynamic-embedding prediction. arXiv preprint arXiv:2308.13466, 2023.

Jianfei Chen, Jun Zhu, and Le Song. Stochastic training of graph convolutional networks with
variance reduction. arXiv preprint arXiv:1710.10568, 2017.

Jie Chen, Tengfei Ma, and Cao Xiao. FastGCN: Fast learning with graph convolutional networks via
importance sampling. In International Conference on Learning Representations, 2018.

Jingji Chen, Zhuoming Chen, and Xuehai Qian. Gnnpipe: Accelerating distributed full-graph gnn
training with pipelined model parallelism. arXiv preprint arXiv:2308.10087, 2023.

Jinsong Chen, Kaiyuan Gao, Gaichao Li, and Kun He. Nagphormer: A tokenized graph transformer
for node classification in large graphs. In The Eleventh International Conference on Learning
Representations, 2022.

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph
convolutional networks. In Proceedings of the 37th International Conference on Machine Learning,
pp. 1725–1735. PMLR, 2020.

Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-GCN: An
efficient algorithm for training deep and large graph convolutional networks. In Proceedings of the
25th ACM SIGKDD international conference on knowledge discovery & data mining, pp. 257–266,
2019.

Eli Chien, Wei-Cheng Chang, Cho-Jui Hsieh, Hsiang-Fu Yu, Jiong Zhang, Olgica Milenkovic, and
Inderjit S Dhillon. Node feature extraction by self-supervised multi-scale neighborhood prediction.
arXiv preprint arXiv:2111.00064, 2021.

Anna Choromanska, Yann LeCun, and Gérard Ben Arous. Open problem: The landscape of the loss
surfaces of multilayer networks. In Conference on Learning Theory, pp. 1756–1760. PMLR, 2015.

Weilin Cong, Rana Forsati, Mahmut Kandemir, and Mehrdad Mahdavi. Minimal variance sampling
with provable guarantees for fast training of graph neural networks. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1393–1403,
2020.

Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Veličković. Principal
neighbourhood aggregation for graph nets. Advances in Neural Information Processing Systems,
33:13260–13271, 2020.

Inderjit S Dhillon, Yuqiang Guan, and Brian Kulis. Weighted graph cuts without eigenvectors a
multilevel approach. IEEE transactions on pattern analysis and machine intelligence, 29(11):
1944–1957, 2007.

Keyu Duan, Zirui Liu, Peihao Wang, Wenqing Zheng, Kaixiong Zhou, Tianlong Chen, Xia Hu,
and Zhangyang Wang. A comprehensive study on large-scale graph training: Benchmarking and
rethinking. Advances in Neural Information Processing Systems, 35:5376–5389, 2022.

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In
ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

Matthias Fey, Jan E Lenssen, Frank Weichert, and Jure Leskovec. GNNAutoScale: Scalable and
expressive graph neural networks via historical embeddings. In International Conference on
Machine Learning, pp. 3294–3304. PMLR, 2021.

Fabrizio Frasca, Emanuele Rossi, Davide Eynard, Ben Chamberlain, Michael Bronstein, and Federico
Monti. SIGN: Scalable inception graph neural networks. arXiv preprint arXiv:2004.11198, 2020.

Johannes Gasteiger, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate: Graph
neural networks meet personalized pagerank. arXiv preprint arXiv:1810.05997, 2018.

10

Under review as a conference paper at ICLR 2024

Johannes Gasteiger, Chendi Qian, and Stephan Günnemann. Influence-based mini-batching for graph
neural networks. In Learning on Graphs Conference, pp. 9–1. PMLR, 2022.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning, pp.
1263–1272. PMLR, 2017.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

Xiaotian Han, Tong Zhao, Yozen Liu, Xia Hu, and Neil Shah. MLPInit: Embarrassingly simple
GNN training acceleration with MLP initialization. In The Eleventh International Conference on
Learning Representations, 2023.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances in
neural information processing systems, 33:22118–22133, 2020.

Weihua Hu, Matthias Fey, Hongyu Ren, Maho Nakata, Yuxiao Dong, and Jure Leskovec. OGB-LSC:
A large-scale challenge for machine learning on graphs. In Thirty-fifth Conference on Neural
Information Processing Systems Datasets and Benchmarks Track (Round 2), 2021.

Kezhao Huang, Haitian Jiang, Minjie Wang, Guangxuan Xiao, David Wipf, Xiang Song, Quan
Gan, Zengfeng Huang, Jidong Zhai, and Zheng Zhang. Refresh: Reducing memory access
from exploiting stable historical embeddings for graph neural network training. arXiv preprint
arXiv:2301.07482, 2023.

Qian Huang, Horace He, Abhay Singh, Ser-Nam Lim, and Austin R Benson. Combining label propa-
gation and simple models out-performs graph neural networks. arXiv preprint arXiv:2010.13993,
2020.

Wenbing Huang, Tong Zhang, Yu Rong, and Junzhou Huang. Adaptive sampling towards fast graph
representation learning. Advances in neural information processing systems, 31, 2018.

George Karypis and Vipin Kumar. Metis: A software package for partitioning unstructured graphs,
partitioning meshes, and computing fill-reducing orderings of sparse matrices. 1997.

George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for partitioning irregular
graphs. SIAM Journal on scientific Computing, 20(1):359–392, 1998a.

George Karypis and Vipin Kumar. Multilevelk-way partitioning scheme for irregular graphs. Journal
of Parallel and Distributed computing, 48(1):96–129, 1998b.

Brian W Kernighan and Shen Lin. An efficient heuristic procedure for partitioning graphs. The Bell
system technical journal, 49(2):291–307, 1970.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations (ICLR), 2017.

Kezhi Kong, Guohao Li, Mucong Ding, Zuxuan Wu, Chen Zhu, Bernard Ghanem, Gavin Taylor, and
Tom Goldstein. Robust optimization as data augmentation for large-scale graphs. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 60–69, 2022.

Guohao Li, Matthias Müller, Bernard Ghanem, and Vladlen Koltun. Training graph neural networks
with 1000 layers. In International conference on machine learning, pp. 6437–6449. PMLR, 2021.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. PyTorch: An imperative style,
high-performance deep learning library. Advances in Neural Information Processing Systems, 32,
2019.

Jingshu Peng, Zhao Chen, Yingxia Shao, Yanyan Shen, Lei Chen, and Jiannong Cao. Sancus:
staleness-aware communication-avoiding full-graph decentralized training in large-scale graph
neural networks. Proceedings of the VLDB Endowment, 15(9):1937–1950, 2022.

11

Under review as a conference paper at ICLR 2024

Michael Poli, Stefano Massaroli, Eric Nguyen, Daniel Y Fu, Tri Dao, Stephen Baccus, Yoshua
Bengio, Stefano Ermon, and Christopher Ré. Hyena hierarchy: Towards larger convolutional
language models. arXiv preprint arXiv:2302.10866, 2023.

Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
minique Beaini. Recipe for a general, powerful, scalable graph transformer. Advances in Neural
Information Processing Systems, 35:14501–14515, 2022.

Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong, Wenjin Wang, and Yu Sun. Masked label
prediction: Unified message passing model for semi-supervised classification. arXiv preprint
arXiv:2009.03509, 2020.

Zhihao Shi, Xize Liang, and Jie Wang. LMC: Fast training of GNNs via subgraph sampling with
provable convergence. In The Eleventh International Conference on Learning Representations,
2023.

Chuxiong Sun, Hongming Gu, and Jie Hu. Scalable and adaptive graph neural networks with
self-label-enhanced training. arXiv preprint arXiv:2104.09376, 2021.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018.

Cheng Wan, Youjie Li, Ang Li, Nam Sung Kim, and Yingyan Lin. Bns-gcn: Efficient full-graph
training of graph convolutional networks with partition-parallelism and random boundary node
sampling. Proceedings of Machine Learning and Systems, 4:673–693, 2022.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Sim-
plifying graph convolutional networks. In International conference on machine learning, pp.
6861–6871. PMLR, 2019.

Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S
Pappu, Karl Leswing, and Vijay Pande. Moleculenet: a benchmark for molecular machine learning.
Chemical science, 9(2):513–530, 2018.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

Kevin Yang, Kyle Swanson, Wengong Jin, Connor Coley, Philipp Eiden, Hua Gao, Angel Guzman-
Perez, Timothy Hopper, Brian Kelley, Miriam Mathea, et al. Analyzing learned molecular
representations for property prediction. Journal of chemical information and modeling, 59(8):
3370–3388, 2019.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
Tie-Yan Liu. Do transformers really perform badly for graph representation? Advances in Neural
Information Processing Systems, 34:28877–28888, 2021.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure Leskovec.
Graph convolutional neural networks for web-scale recommender systems. In Proceedings of the
24th ACM SIGKDD international conference on knowledge discovery & data mining, pp. 974–983,
2018.

Haiyang Yu, Limei Wang, Bokun Wang, Meng Liu, Tianbao Yang, and Shuiwang Ji. Graphfm:
Improving large-scale gnn training via feature momentum. In International Conference on Machine
Learning, pp. 25684–25701. PMLR, 2022.

Lingfan Yu, Jiajun Shen, Jinyang Li, and Adam Lerer. Scalable graph neural networks for heteroge-
neous graphs. arXiv preprint arXiv:2011.09679, 2020.

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna. Graph-
SAINT: Graph sampling based inductive learning method. arXiv preprint arXiv:1907.04931,
2019.

12

Under review as a conference paper at ICLR 2024

Hanqing Zeng, Muhan Zhang, Yinglong Xia, Ajitesh Srivastava, Andrey Malevich, Rajgopal Kannan,
Viktor Prasanna, Long Jin, and Ren Chen. Decoupling the depth and scope of graph neural
networks. Advances in Neural Information Processing Systems, 34:19665–19679, 2021.

Chenhui Zhang, Yufei He, Yukuo Cen, Zhenyu Hou, Wenzheng Feng, Yuxiao Dong, Xu Cheng,
Hongyun Cai, Feng He, and Jie Tang. Scr: Training graph neural networks with consistency
regularization. arXiv e-prints, pp. arXiv–2112, 2021.

Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. Advances in neural
information processing systems, 31, 2018.

Wentao Zhang, Ziqi Yin, Zeang Sheng, Yang Li, Wen Ouyang, Xiaosen Li, Yangyu Tao, Zhi Yang,
and Bin Cui. Graph attention multi-layer perceptron. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pp. 4560–4570, 2022.

Difan Zou, Ziniu Hu, Yewen Wang, Song Jiang, Yizhou Sun, and Quanquan Gu. Layer-dependent
importance sampling for training deep and large graph convolutional networks. Advances in neural
information processing systems, 32, 2019.

13

Under review as a conference paper at ICLR 2024

Appendix

A RELATED WORK

(b) Forward propagation in GAS

(a) Original graph

In-batch node

1-hop out-of-batch node

(c) Forward propagation in GraphFM

Other out-of-batch node

Push new embeddings into historical embeddings
Steps in GraphFM to update historical
embeddings for 1-hop out-of-batch nodes

Pull historical embeddings

Figure 3: Illustrations for GAS and GraphFM, two historical embedding-based methods.

B PROOF OF THEOREM 1

Proof. Path-based view of GNNs. We can view a graph neural network with ReLUs as a directed
acyclic computational graph and express the i-th output logit of node u via paths through this
graph (Gasteiger et al., 2022) as

hLu,i = C
∑

v∈NL
all(u)

ψ∑
p=1

ϕ∑
q=1

zv,p,i,qxv,p,i,q

L∏
ℓ=1

aℓv,pw
ℓ
i,q,

where C is a constant related to the size of the network (Choromanska et al., 2015), NL
all(u) includes

all nodes within L-hop of node u, ψ is the total number of graph-based paths, ϕ is the total number of
paths in learnable weights, zv,p,i,q ∈ {0, 1} denotes whether the path is active or inactive when any
ReLU is deactivated, xv,p,i,q is the input feature used in the path, aℓv,p denotes the graph-dependent
but feature-independent aggregation weight, and wℓi,q represents the used entry of the weight matrix
Wℓ at layer ℓ.

Aggregated embedding h̃Lu by using historical embeddings. In the historical embedding based
methods (Fey et al., 2021), the aggregated feature h̃Lu of node u is based on the input features xv
of in-batch nodes NL

in(u) within L-hop of node u, input features xv of 1-hop out-of-batch nodes
N 1
out(u), and the historical embeddings h̄v of 1-hop out-of-batch nodes N 1

out(u), denoted as

h̃Lu,i = C
∑

v∈NL
in(u)

ψin
0∑

p=1

ϕin
0∑

q=1

zv,p,i,qxv,p,i,q

L∏
ℓ=1

aℓv,pw
ℓ
i,q

+ C
∑

v∈N 1
out(u)

ψout
L−1∑
p=1

ϕout
L−1∑
q=1

zv,p,i,qh̄
L−1
v,p,i,qa

L
v,pw

L
i,q

+ C
∑

v∈N 1
out(u)

ψout
L−2∑
p=1

ϕout
L−2∑
q=1

zv,p,i,qh̄
L−2
v,p,i,q

L∏
ℓ=L−1

aℓv,pw
ℓ
i,q

14

Under review as a conference paper at ICLR 2024

+ . . .

+ C
∑

v∈N 1
out(u)

ψout
1∑
p=1

ϕout
1∑
q=1

zv,p,i,qh̄
1
v,p,i,q

L∏
ℓ=2

aℓv,pw
ℓ
i,q

+ C
∑

v∈N 1
out(u)

ψout
0∑
p=1

ϕout
0∑
q=1

zv,p,i,qxv,p,i,q

L∏
ℓ=1

aℓv,pw
ℓ
i,q.

Note that N 1
out(u) is equivalent to N (u)\B in the main text. In the appendix, we use N 1

out(u) to
simplify the notation.

Full-neighborhood propagation embedding hLu . Based on the path-based view of GNNs, the
full-neighborhood propagation embedding hLu can be formulated as

hLu,i = C
∑

v∈NL
all(u)

ψ∑
p=1

ϕ∑
q=1

zv,p,i,qxv,p,i,q

L∏
ℓ=1

aℓv,pw
ℓ
i,q

= C
∑

v∈N 1
in(u)

ψin
L−1∑
p=1

ϕin
L−1∑
q=1

zv,p,i,qh
L−1
v,p,i,qa

L
v,pw

L
i,q

+ C
∑

v∈N 1
out(u)

ψout
L−1∑
p=1

ϕout
L−1∑
q=1

zv,p,i,qh
L−1
v,p,i,qa

L
v,pw

L
i,q

= C
∑

v∈N 2
in(u)

ψin
L−2∑
p=1

ϕin
L−2∑
q=1

zv,p,i,qh
L−2
v,p,i,q

L∏
ℓ=L−1

aℓv,pw
ℓ
i,q

+ C
∑

v∈N 1
out(u)

ψout
L−2∑
p=1

ϕout
L−2∑
q=1

zv,p,i,qh
L−2
v,p,i,q

L∏
ℓ=L−1

aℓv,pw
ℓ
i,q

+ C
∑

v∈N 1
out(u)

ψout
L−1∑
p=1

ϕout
L−1∑
q=1

zv,p,i,qh
L−1
v,p,i,qa

L
v,pw

L
i,q

= C
∑

v∈NL
in(u)

ψin
0∑

p=1

ϕin
0∑

q=1

zv,p,i,qxv,p,i,q

L∏
ℓ=1

aℓv,pw
ℓ
i,q

+ C
∑

v∈N 1
out(u)

ψout
0∑
p=1

ϕout
0∑
q=1

zv,p,i,qxv,p,i,q

L∏
ℓ=1

aℓv,pw
ℓ
i,q

+ C
∑

v∈N 1
out(u)

ψout
1∑
p=1

ϕout
1∑
q=1

zv,p,i,qh
1
v,p,i,q

L∏
ℓ=2

aℓv,pw
ℓ
i,q

+ . . .

+ C
∑

v∈N 1
out(u)

ψout
L−2∑
p=1

ϕout
L−2∑
q=1

zv,p,i,qh
L−2
v,p,i,q

L∏
ℓ=L−1

aℓv,pw
ℓ
i,q

+ C
∑

v∈N 1
out(u)

ψout
L−1∑
p=1

ϕout
L−1∑
q=1

zv,p,i,qh
L−1
v,p,i,qa

L
v,pw

L
i,q.

15

Under review as a conference paper at ICLR 2024

Approximation error. Then the difference between the full-neighborhood propagation embedding
hLu,i and the actual aggregated embedding h̃Lu,i is

hLu,i − h̃Lu,i = C
∑

v∈N 1
out(u)

ψout
L−1∑
p=1

ϕout
L−1∑
q=1

zv,p,i,q(h
L−1
v,p,i,q − h̄L−1

v,p,i,q)a
L
v,pw

L
i,q

+ C
∑

v∈N 1
out(u)

ψout
L−2∑
p=1

ϕout
L−2∑
q=1

zv,p,i,q(h
L−2
v,p,i,q − h̄L−2

v,p,i,q)

L∏
ℓ=L−1

aℓv,pw
ℓ
i,q

+ . . .

+ C
∑

v∈N 1
out(u)

ψout
1∑
p=1

ϕout
1∑
q=1

zv,p,i,q(h
1
v,p,i,q − h̄1v,p,i,q)

L∏
ℓ=2

aℓv,pw
ℓ
i,q.

Then squaring both sides of the equation, we have

(hLu,i − h̃Lu,i)
2 ≤ C2

∑
v∈N 1

out(u)

ψout
L−1∑
p=1

ϕout
L−1∑
q=1

zv,p,i,q(h
L−1
v,p,i,q − h̄L−1

v,p,i,q)
2(aLv,pw

L
i,q)

2

+ C2
∑

v∈N 1
out(u)

ψout
L−1∑
p=1

ϕout
L−2∑
q=1

zv,p,i,q(h
L−2
v,p,i,q − h̄L−2

v,p,i,q)
2

L∏
ℓ=L−1

(aℓv,pw
ℓ
i,q)

2

+ . . .

+ C2
∑

v∈N 1
out(u)

ψout
1∑
p=1

ϕout
1∑
q=1

zv,p,i,q(h
1
v,p,i,q − h̄1v,p,i,q)

2
L∏
ℓ=2

(aℓv,pw
ℓ
i,q)

2.

Therefore, the approximation error can be formulated as

∥hLu − h̃Lu∥22 =
∑
i

(hLu,i − h̃Lu,i)
2

≤ C2
∑

v∈N 1
out(u)

ψout
L−1∑
p=1

ϕout
L−1∑
q=1

∑
i

zv,p,i,q(h
L−1
v,p,i,q − h̄L−1

v,p,i,q)
2(aLv,pw

L
i,q)

2

+ C2
∑

v∈N 1
out(u)

ψout
L−1∑
p=1

ϕout
L−2∑
q=1

∑
i

zv,p,i,q(h
L−2
v,p,i,q − h̄L−2

v,p,i,q)
2

L∏
ℓ=L−1

(aℓv,pw
ℓ
i,q)

2

+ . . .

+ C2
∑

v∈N 1
out(u)

ψout
1∑
p=1

ϕout
1∑
q=1

∑
i

zv,p,i,q(h
1
v,p,i,q − h̄1v,p,i,q)

2
L∏
ℓ=2

(aℓv,pw
ℓ
i,q)

2

≤
∑

v∈N 1
out(u)

CL−1
v ∥hL−1

v − h̄L−1
v ∥22

+
∑

v∈N 1
out(u)

CL−2
v ∥hL−2

v − h̄L−2
v ∥22

+ . . .

+
∑

v∈N 1
out(u)

C1
v∥h1v − h̄1v∥22

=
∑

v∈N 1
out(u)

L−1∑
ℓ=1

Cℓv∥hℓv − h̄ℓv∥22.

16

Under review as a conference paper at ICLR 2024

Here Cℓv is a weight that depends on both the graph structure and model parameters. Finally, we have

∥hLu − h̃Lu∥ ≤
L−1∑
ℓ=1

Cℓv∥hℓv − h̄ℓv∥.

The approximation error, the error (Euclidean distance) between the full-neighborhood propagation
embedding hLu and the actual aggregated embedding h̃Lu , can be upper bounded by

∑L−1
ℓ=1 C

ℓ
v∥hℓv −

h̄ℓv∥. Therefore, we can minimize the approximation error by minimizing
∑L−1
ℓ=1 C

ℓ
v∥hℓv − h̄ℓv∥.

C EXPERIMENTAL DETAILS

Datasets. Detailed descriptions of the datasets are provided in Table 6.

Table 6: Statistics of the datasets. Here “m” indicates the multi-label classification task, and “s”
indicates the single-label classification task.

Dataset # of nodes # of edges Avg. degree # of features # of classes Train/Val/Test

Flickr 89,250 899,756 10.0813 500 7(s) 0.500/0.250/0.250
Reddit 232,965 11,606,919 49.8226 602 41(s) 0.660/0.100/0.240
Yelp 716,847 6,997,410 9.7614 300 50(m) 0.750/0.150/0.100
ogbn-arxiv 169,343 1,166,243 6.8869 128 40(s) 0.537/0.176/0.287
ogbn-products 2,449,029 61,859,140 25.2586 100 47(s) 0.100/0.020/0.880

Hyperparameters. Optimal hyperparameters for S3 + GAS, S3 + FM, and S3 + LMC are provided
in Table 7. Specifically, we provide hyperparameters for sampling (e.g. resampling frequency), GNN
model (e.g. GNN layers, hidden channels), and training (e.g. learning rate, batch size). Note that we
follow the original hyperparameters of GAS, FM, and LMC, and only tune the learning rate scheduler,
number of epochs, and the resampling scheduler.

Normalization of staleness scores. During training, we observe some extreme staleness scores
which can lead to poor performance. Therefore, we normalize the staleness scores before performing
our S3 sampling. Specifically, for staleness scores larger than a fixed value x, we set them to x. We
choose x as the value that is greater than 90% of the staleness scores for all nodes.

17

Under review as a conference paper at ICLR 2024

Table 7: Optimal hyperparameters for S3 + GAS, S3 + FM, and S3 + LMC. Here # layers indicates the
number of GNN layers, and LR indicates the initial learning rate. # parts is the number of subgraphs
we generate from the given input graph, and batch size is the number of subgraphs we select to build
a mini-batch. Note that we do resampling after every fixed number of epochs, and Resampling in the
table indicates that fixed number of epochs.

layers Hidden dim LR Epoch # parts Batch size Resampling

Flickr

GCN
S3 + GAS 2 256 0.01 1000 24 12 80
S3 + FM 2 512 0.01 1000 24 12 80
S3 + LMC 2 256 0.01 400 24 12 80

GCNII
S3 + GAS 8 256 0.01 1000 24 12 80
S3 + FM 8 256 0.01 1000 24 12 80
S3 + LMC 8 256 0.01 400 24 12 20

PNA S3 + GAS 4 64 0.005 1000 24 12 80
S3 + FM 4 64 0.005 1000 24 12 20

Reddit

GCN
S3 + GAS 2 256 0.01 400 200 100 20
S3 + FM 2 256 0.05 400 200 100 40
S3 + LMC 2 256 0.01 400 200 100 80

GCNII
S3 + GAS 4 256 0.01 400 200 100 40
S3 + FM 4 256 0.01 400 200 100 20
S3 + LMC 4 256 0.01 400 200 100 40

PNA_jk S3 + GAS 3 128 0.005 400 200 100 40
S3 + FM 3 128 0.005 400 200 100 80

Yelp
GCNII S3 + GAS 2 512 0.01 500 40 5 20

S3 + FM 2 512 0.01 500 40 5 10

PNA S3 + GAS 3 512 0.005 400 40 5 20
S3 + FM 3 512 0.005 400 40 5 20

ogbn-arxiv

GCN
S3 + GAS 3 256 0.01 300 80 40 20
S3 + FM 3 256 0.01 400 80 40 20
S3 + LMC 3 256 0.01 300 80 40 10

GCNII
S3 + GAS 4 256 0.01 500 40 20 20
S3 + FM 4 256 0.01 500 40 20 40
S3 + LMC 4 256 0.01 500 40 20 40

PNA S3 + GAS 3 256 0.005 500 40 20 20
S3 + FM 3 256 0.005 300 40 20 40

ogbn-products

GCN S3 + GAS 2 256 0.005 300 7 1 20

GCNII S3 + GAS 5 128 0.001 240 150 1 40
S3 + FM 5 128 0.005 300 150 1 40

PNA S3 + GAS 3 256 0.001 150 150 1 40
S3 + FM 3 256 0.001 150 150 1 20

18

	Introduction
	Background and related work
	Sampling-based methods
	Pre-computing methods and other techniques

	Method
	Approximation error analysis
	Staleness score-based subgraph sampling
	Fast Refinement Algorithm

	Experiments
	Main empirical results
	Sampling scheduler
	Ablation study

	Conclusion
	Related work
	Proof of Theorem 1
	Experimental details

