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Abstract

We consider a Continuum-Armed Bandit problem with an additional monotonicity
constraint (or “markdown” constraint) on the actions selected. This problem faith-
fully models a natural revenue management problem, called “markdown pricing”,
where the objective is to adaptively reduce the price over a finite sales horizon to
maximize expected revenues. Chen ([4]) and Jia et al ([9]) recently showed a tight
T 3/4 regret bound over T rounds under minimal assumptions of unimodality and
Lipschitzness in the reward function. This bound shows that markdown pricing is
strictly harder than unconstrained dynamic pricing (i.e., without the monotonicity
constraint), which only suffers regret T 2/3 under the same assumptions ([11]).
However, in practice, demand functions are usually assumed to have certain func-
tional forms (e.g. linear or exponential), rendering the demand learning easier and
suggesting lower regret bounds. We introduce a concept, markdown dimension,
that measures the complexity of any parametric family, and present optimal regret
bounds that improve upon the previous T 3/4 bound under this framework.

1 Introduction

Dynamic pricing under unknown demand arises naturally for the sale of new products, where the
demand function is not available in advance. The seller in this case has to learn the demand function
over time and faces a learning-vs-earning trade-off. This problem is therefore usually formulated
as a Multi-Armed Bandit (MAB) problem. Although bandit problems have been well understood
theoretically, in practice, however, we rarely see retailers implement such policies. This is a largely
because some practical constraints are often overlooked by those policies. For example, price
increases can potentially create a manipulative image of the retailer and negatively impact their
ratings. For example, for online menu prices, “on average, a 1% price increase leads to 3-5% decrease
in online ratings” ([13]). Therefore, retailers may sometimes implicitly face a monotonicity constraint
(which we call “markdown constraint”), which requires that the prices selected be non-increasing. A
pricing policy that satisfies such a constraint is usually referred to as markdown pricing policy.

Thus motivated, in this work, we consider the markdown pricing problem with unknown demand,
under various assumptions. Although unconstrained dynamic pricing under unknown demand has
been extensively studied, little is known about markdown pricing under unknown demand. Recently,
[4] and [9] independently showed that unimodality and Lipschitzness in revenue function (defined
as the price times the mean demand) are necessary to achieve sublinear regret. In this setting, any
reasonable policy must reduce the price at a moderate rate and stop only when there is sufficient
evidence for overshooting the optimal price. By selecting suitable parameters, [4, 9] showed that the
above policy is indeed optimal, achieving a tight T 3/4 regret bound.

However, in practice, it is usually assumed that the demand function has certain parametric forms,
such as linear, exponential or logit form, allowing faster demand learning and suggesting lower regret
bounds. This motivates our first question:

Q1) Can we strengthen the T 3/4 regret bound for markdown pricing in this setting?
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Noticeably, the tight T 3/4 regret bound in [4, 9] this bound is asymptotically higher than T 2/3, the
known regret bound for unconstrained pricing ([11]), highlighting the extra complexity caused by
monotonicity constraint. Thus, we naturally arrive at our second question.

Q2) Is markdown pricing still harder than unconstrained pricing under parametric assumptions?

Or, more precisely, can we still show a separation between markdown and unconstrained pricing,
under various parametric assumptions? While one may answer these two questions for specific
parametric families, it is tempting to find a unified framework that captures the hardness of demand
learning for a given parametric family. This motivates the following question.

Q3) Can we find a general framework to unify the regret bounds for different categories of families,
rather than specific results for specific families?

In this work, we propose such a framework by introducing a concept called markdown dimension.
We provide efficient markdown policies for each markdown dimension, which we also show to be
best possible, thereby completely settling the problem of markdown pricing under unknown demand.

1.1 Our Contributions.

In this work, we make the following contributions.

1. New Complexity Measure for Demand Learning: We introduce a new concept called
markdown dimension, which captures the complexity of performing markdown pricing on
a family, answering Q3). Within this framework, we provide a complete settlement of the
problem as specified below.

2. Markdown Policies with Theoretical Guarantees: For each finite markdown dimension
d ≥ 0, we present a efficient markdown pricing policy. Our policies proceed in phases, in
which the seller learns the demand by selecting prices at a suitable spacing to estimate the
true parameter, and then makes conservative decisions. We show that for d = 0 and d ≥ 1,
our policies achieve regret O(log2 T ) and Õ(T

d
d+1 ) respectively, settling Q1).

3. Tight Minimax Lower Bounds: We complement our upper bounds with a matching lower
bound for each markdown dimension d. More precisely, we show that Ω(log2 T ) regret
is tight for d = 0, which separates it from the known O(log T ) regret bound without this
monotonicity constraint (see [3]). For finite d ≥ 1, we show an Ω(T d/(d+1)) lower bound,
which not only matches our upper bound but is also asymptoticly higher than the tight
Θ̃(T 1/2) upper bound (see [3, 10]) without markdown constraint, settling Q2).

4. Impact of Smoothness: We go further to refine our bounds and investigate the impact of
smoothness of reward function around the optimal price. We consider a sensitivity parameter
s, which essentially says that an ε distance away from the optimal price incurs O(εs) regret,
and can be verified to be at least 2 assuming the demand function is twice-differentiable.
For both finite and infinite d, we extend our upper bounds to incorporate s. Moreover, for
d = ∞, our tight T

2s+1
3s+1 regret bound is asymptoticly higher than that for unconstrained

pricing, whose optimal regret is known to be T
s+1
2s+1 ([2]).

We highlight our results for s = 2 in red in Table 1, where Θ denotes tight upper and lower bounds.

Markdown Dimension Markdown Pricing Unconstr. Pricing
d = 0 Θ(log2 T ) Θ(log T ) [3]
1 ≤ d <∞ Θ̃(T d/(d+1)) Θ̃(

√
T ) [3]

d =∞ Θ̃(T 3/4) [4, 9] Θ̃(T 2/3) [11]
Table 1: Regret bounds for s = 2.

1.2 Related Work

In the Multi-Armed Bandit (MAB) problem, the player is offered a finite set of arms, with each arm
providing a random revenue from an unknown probability distribution specific to that arm. The
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objective of the player is to maximize the total revenue earned by pulling a sequence of arms (e.g. [12]).
Our pricing problem generalizes this framework by using an infinite action space [0, 1] with each
price p corresponding to an action whose revenue is drawn from an unknown distribution with mean
R(p). In the Lipschitz Bandit problem (see, e.g., [1]), it is assumed that each x ∈ [0, 1] corresponds to
an arm with mean reward µ(x), and µ satisfies the Lipschitz condition, i.e. |µ(x)−µ(y)| ≤ L|x− y|
for some constant L > 0. For for one-dimensional Lipschitz Bandits, there is a known Θ̃(T 2/3)
regret bound ([11]).

Recently there is an emerging line of work on bandits with monotonicity constraint. [4] and [9]
recently independently considered the markdown pricing problem under unknown demand function
and proved a tight T 3/4 regret bound under the minimal assumptions – Lipschitzness and unimodality
on the revenue functions. Motivated by fairness constraints, [8] and [15] considered a general online
convex optimization problem where the action sequence is required to be monotone.

Other requirements on the arm sequence motivated by practical problems are also considered in
the literature. For example, [5, 14] and [16] are motivated by a similar concern in dynamic pricing:
customers are hostile to frequent price changes. They propose algorithms that have a limited number
of switches and study the impact on the regret. Motivated by Phase I clinical trials, [6] study the best
arm identification problem when the reward of the arms are monotone and the goal is to identify the
arm closest to a threshold.

2 Model and Assumptions

We begin by formally stating our model. In this work we assume an unlimited supply of a single
product. Given a discrete time horizon of T rounds, in each round t, the policy (representing the
“seller”) selects a price pt (the particular interval [0, 1] is without loss of generality, by scaling). The
demand Dt in this round is then independently drawn from a fixed distribution with unknown mean
D(pt), and the policy receives revenue (or reward, which we will use interchangeably) pt for each
unit sold, and hence a total of pt · Dt revenue in this round. The only constraint the policy must
satisfy is the markdown constraint: p1 ≥ · · · ≥ pT with probability 1.

The function D(p) which maps each price p to the mean demand at this price is known as the demand
function. For any policy1 π and demand function D(·), we use r(π,D) to denote the expected
total reward of π under D. Rather than evaluating policies directly in terms of r(π,D), it is more
informative (and ubiquitous in the literature on MAB) to measure performance using the notion of
regret with respect to a certain idealized benchmark. Specifically, since we assumed unlimited supply,
when the true reward function is known, the seller simply always selects a revenue-maximizing
price p∗D = arg maxp∈[0,1] p · D(p) at each round, and we denote this maximal reward rate to be
r∗D = maxp∈[0,1] p ·D(p). The regret of a policy is then defined with respect to this quantity, and we
seek to bound the worst-case value over a given family of demand functions.
Definition 1 (Regret). For any policy π and demand function D, define the regret of policy π under
D to be Reg(π,D) := r∗D ·T −r(π,D). For any given family F of demand functions, the worst-case
regret (or simply regret) of policy π for family F is Reg(π,F) := supD∈F Reg(π,D).

2.1 Basic Assumptions

Now we state the common assumptions that all of our results rely on. A demand function D(·) is
naturally associated with a revenue function (or, reward function) R(p) = p ·D(p). Sometimes it
will be convenient to work directly with the revenue functions, in which cases we write r(π,R) as
the regret of under reward function is R.
Definition 2 (Optimal Price Mapping). Let F be a set of functions defined on some set S ⊆ R. For
any function R : S → R, let M(R) be the subset of its global maxima on S. The optimal price
mapping p∗ : F → S is defined as p∗(R) = inf M(R).

By elementary topology, if the domain S is compact, then M(R) is also compact, so the infimum
of M(R) can be attained, and hence p∗(R) is also a global maximum of R. We first introduce a
standard assumption (see e.g. [3]), which assumes the derivative of R vanishes at p∗(R).

1Formally, a policy is a sequence π = (πt)t∈[T ] of mappings where πt : [0, 1]t−1 × Rt−1
≥0 → [0, 1]

corresponds to the decision made at time t, based on the realized demands and prices selected up till time t− 1.
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Assumption 1 (Vanishing Derivative). We assume that every reward function R is differentiable on
its domain, and moreover, R′(p∗(R)) = 0.

Under Assumption 1, if, in addition, R is twice differentiable, then by Taylor expansion around p∗,

|R (p∗)−R (p∗ + ε) | = 1

2
R′′(p∗) · ε2 + o(ε2),

for small ε. Thus, if a policy overshoots the optimal price by ε, then only an O(ε2) loss is incurred in
each round. We next introduce a distributional assumption.

Definition 3 (Subgaussian Random Variable). The subgaussian norm of a random variable X is

‖X‖ψ2
:= inf{c > 0 : E[eX

2/c2 ] ≤ 2},

and X is said to be subgaussian if ‖X‖ψ2 <∞.

Assumption 2 (Subgaussian noise). There exists a constantCsg > 0 such that under any true demand
function and any price p, the random demand X at price p satisfies ‖X‖ψ2

≤ Csg .

2.2 Warm-up: Markdown Pricing on Linear Demand

Before introducing our concept of markdown dimension, we first consider linear demand as a warm
up. Let D(x; θ) = θ1 − θ2x for x ∈ [ 1

2 , 1]. Consider the following natural markdown policy for
F = {D(x; θ) : θ1, θ2 ∈ [ 1

2 , 1]}. Choose two sample prices p1, p2 close to 1 and collect sufficiently
many samples at each, say with empirical mean demands d̄1, d̄2. Then, compute the unique θ̂
satisfying D(pi; θ̂) = d̄i for i = 1, 2. Finally, select the optimal price of D(·; θ̂) in remaining rounds.

This policy is “robust” in the following sense. Suppose d̄i deviate from di := D(pi) by ∼ δ, then
the estimation error in (a, b) is ∼ δ

|p1−p2| , i.e., proportional to δ and inverse proportional to the gap
between the two sample prices.

Our markdown dimension generalizes the above idea. Informally, a family, say parametrized by θ,
has markdown dimension d if the estimation of θ errs by O

(
δ
hd

)
on a set of sample prices spaced at

distance h apart. We next introduce the formal definition.

2.3 Identifiability and Robust Parametrization

Intuitively, the exploration-exploitation trade-off for markdown pricing becomes harder to manage as
the given family becomes more complex. Consider, for example, linear demand functions. If each
function takes the form D(p; c) = 1− cp where only c ∈ (0, 1) is unknown and p ∈ [0, 1], then the
seller simply needs to estimate the (negative) slope c by sampling sufficiently many times at p = 1.

In contrast, if each function takes the form D(p; a, b) = a − bp where both parameters a, b are
unknown, then sampling at one price would not suffice. Rather, one needs to select (at least) two
distinct prices to estimate a, b, thereby facing the following dilemma. Suppose the two prices p < p′

selected are far apart. Then, p may be far away from the optimal price p∗ since p∗ may be close to p′,
resulting in high regret. Otherwise, when those prices are close by, the demand learning requires a
high volume of samples, which potentially also leads to a high regret.

Thus we reach a natural question: can we introduce a complexity index to measure the difficulty of
performing markdown pricing on a given family, and then provide tight regret bounds in terms of this
complexity index? In this work, we propose a complexity index, called markdown dimension, and
provide nearly-optimal regret bounds in terms of the markdown dimension of the given family of
demand functions. The formal definition relies on other two concepts, the identifiability of a family,
and the robustness of a parametrization, which we introduce in the next two subsections.

Identifiability Our notion of identifiability generalizes a key property of single-variable polynomi-
als, that every degree-d polynomial can be uniquely determined by its values at any (d+ 1) points.
To present the formal definition, we first introduce a mapping which, for a fixed subset of prices,
assigns each demand function a profile based on its values at those prices.
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Definition 4 (Profile Mapping). Consider a set F of real-valued functions defined on A ⊆ R. For
any fixed p = (p0, p1, ..., pd) ∈ Ad+1, the profile-mapping with respect to p is defined as

Φp : F → Rd,
D 7→ (D(p0), D(p1), ..., D(pd)) .

We may subsequently call Φp(D) the profile of function D with respect to p. In words, the above
says that every function in F be assigned a unique profile at any (d+ 1) distinct points (“prices”).

Definition 5 (Identifiability). The family F is d-identifiable, if for any distinct p0, p1..., pd ∈ S, the
profile mapping Φp0,...,pd is injective, i.e. distinct functions in F are mapped to distinct profiles.

In particular, if a family is d-identifiable, then for any distinct p0, p1..., pd the inverse profile-mapping
Φ−1

p : Rp → F exists, whereRp is the range of the mapping Φp.

Robust Parametrization We first formally define a parametrization.

Definition 6 (Parametrization). An order-m parametrization for a family F of functions is any
one-to-one mapping from a compact set Θ ⊆ Rm to F . Moreover, each θ ∈ Θ is called a parameter.

By abuse of notations, we may use D(p; θ) to denote the function D(p) that parameter θ corresponds
to. As a standard assumption (see e.g. [3]), we also assume that the parameter set Θ to be compact,
which leads to many favorable properties.

Assumption 3 (Compact Domain). The domain Θ of the parametrization is compact.

Under this assumption, the demand functions in F are bounded, and thus we may without loss of
generality also scale the range (i.e. target space) of those functions to be [0, 1].

Assumption 4 (Smoothness). The mapping D : [0, 1]×Θ→ R is twice-differentiable and admits
continuous second partial derivative. In particular, since [0, 1] × Θ is compact, under the above
assumption, there exist constants C(j) > 0 such that the j-th derivative satisfies |D(j)(p, θ)| ≤ C(j)

for any (p, θ) ∈ [0, 1]×Θ and j = 0, 1, 2.

Recall that we previously defined the optimal price mapping p∗ from F to the domain, [0, 1], of the
reward functions. Now that we introduced a parametrization, by abuse of notation we may view
the mapping p∗ as being defined on Θ ⊆ Rm. Formally, let M(θ) be the set of global maxima of
R(x; θ), then p∗(θ) = inf R(x; θ). The following assumption allows us to “propagate” the error of
parameter estimation to optimal price estimation.

Assumption 5 (Lipschitz Optimal Price Mapping). The optimal price mapping p∗ : Θ→ [0, 1] is
C∗-Lipschitz for some constant C∗ > 0.

This assumption has appeared in the previous literature on parametric demand learning, see e.g.
Assumption 1(c) of [3]. Moreover, it is satisfied by many commonly used demand functions such
as linear, exponential and logit demand. For instance, let D(p; c) = 1− cp where p, c ∈ [0, 1], then
p∗(c) = min{ 1

2c , 1}, which is 1-Lipschitz. Nonetheless, this assumption is somewhat unnatural as it
is not made on the parametrization directly. We leave it open whether it can be made more directly.

The final ingredient for robust parametrization is motivated by the following robustness of the natural
parametrization D(p; θ) =

∑d
j=0 θjp

j for polynomials. Consider any distinct prices p0, p1, ..., pd,
and any d+ 1 real numbers y0, y1, ..., yd representing, for example, the mean reward at each pi. We
may then uniquely determine a degree-d polynomial by solving the linear equation

Vpθ = y

where θ = (θ0, θ1..., θd)
T , y = (y0, y1, ..., yd)

T and Vp := V (p0, ..., pd) is the Vandermonde matrix.
One can easily verify that when pi’s are distinct, Vp is invertible, and hence θ = V −1

p y. Next consider
the effect of a perturbation on y, in terms of the following separability parameter.

Definition 7 (Separability). For any p = (p0, ..., pd) ∈ Rd+1, define h(p) := mini 6=j |pi − pj |.

To motivate the notion of robust parametrization, first consider a result specific to polynomial demand.
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Proposition 1 (Robustness of Polynomial Parametrization). There exist constants C1, C2 > 0 such
that for any p ∈ [0, 1]d+1 with 0 < h(p) ≤ C1, any ε ≤ C1, and y, ŷ ∈ Rp with ‖y − ŷ‖∞ ≤ C1,
it holds that

‖V −1
p y − V −1

p ŷ‖∞ ≤ C2 · ‖y − ŷ‖∞ · h(p)−d. (1)

More concretely, let D(p; θ) be the underlying polynomial demand function, then y = Vp · θ are the
mean demands at the prices in p. Suppose a learner observes empirical mean demands ŷ at p, then a
natural estimator for θ is simply V −1

p · ŷ. Our Proposition 1 can then be viewed as an upper bound
on the error of this estimator, in terms of h(p) and y − ŷ.

In order to achieve sublinear regret, the value h = h(p) must be chosen to be o(1) as T goes to
infinity. Thus, the dependence on h crucially affects our regret bounds. Proposition 1 establishes a
nice property for polynomials, that the estimation error increases in the order of ( 1

h )d, as h→ 0+.
We introduce robust parametrization by generalizing this property beyond polynomials. Loosely, an
order-d parametrization is robust, if it admits a similar error bound to (1).
Definition 8 (Robust Parametrization). An order-d parametrization θ : Θ→ F is robust, if
(1) it satisfies Assumptions 3, 4 and 5, and
(2) there exist constants C1, C2 > 0 such that for any p ∈ Rd+1 with 0 < h(p) ≤ C1 and any
y, y′ ∈ Rp with ‖y − y′‖∞ ≤ C1, it holds that

‖Φ−1
p (y)− Φ−1

p (y′)‖∞ ≤ C2 · ‖y − y′‖∞ · h(p)−d. (2)

In particular, when d = 0, inequality (2) simply says Φ−1
p is C2-Lipschitz.

2.4 Markdown Dimension

Now we are ready to define the markdown dimension.
Definition 9 (Markdown Dimension). The markdown dimension (or simply dimension) for a family
F of functions, denoted d(F), is the minimum integer d ≥ 0 such that F is (i) d-identifiable, and (ii)
admits a robust order-d parametrization. If no finite d satisfies the above conditions, then d(F) =∞.

We further illustrate our definition by considering the dimensions of some commonly used families.
As the simplest family, one may verify that our definition of 0-dimensional family (under our
assumptions) is equivalent to the separable family as defined in Section 4 of [3]. We provide more
concrete examples below, whose proof can found in Appendix A.

Proposition 2. Suppose D(x; θ) =
∑d
j=0 θjx

j and F = {D(x; θ) : θ ∈ Θ} satisfies Assumptions
3, 4 and 5. Then, d(F) = d.
Proposition 3 (0-Dimensional Families). The following families F1,F2 and F3 are 0-dimensional.
(1) [Single-Parameter Linear Demand] Let Da(x) = 1 − ax for x ∈ [ 1

2 , 1] and F1 = {Da(x) :

a ∈
[

1
2 , 1
]
}.

(2) [Exponential Demand] Let Da(x) = e1−ax for x ∈ [ 1
2 , 1] and F2 =

{
Da(x) : a ∈

[
1
2 ,

3
4

]}
.

(3) [Logit Demand] Let Da(x) = e1−ax

1+e1−ax for x ∈
[

1
2 , 1
]

and F3 =
{
Da(x) : a ∈

[
1
2 , 1
]}

.

Finally, we observe that by our definition, if a family of functions is not d-identifiable for any d. For
example, for any d distinct prices, there exists multiple (more precisely, infinitely many) Lipschitz
functions having the same values on these d prices.
Proposition 4. Let F be the set of all 1-Lipschitz functions on [0, 1], then d(F) =∞.

2.5 Sensitivity

Consider the Taylor expansion of a reward function R(x) around an optimal price p∗:

R(p) = R(p∗) + 0 +
1

2!
R′′(p∗)(p− p∗)2 +

1

3!
R(3)(p∗)(p− p∗)3 + ...

Suppose the first nonzero derivative is R(k)(p∗). Then, the higher k, the less the revenue is sensitive
to overshooting (i.e. p < p∗). Our notion of sensitivity measures how fast the revenue function
changes at the optimum.
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Definition 10 (Sensitivity). A reward function R is s-sensitive if it is (s + 1)-differentiable with
R(1) (p∗(R)) = ... = R(s−1) (p∗(R)) = 0 and R(s) (p∗(R)) < 0. A family F of reward functions
is called s-sensitive if
(a) every R ∈ F is s-sensitive,
(b) it admits a parametrization R(x; θ) satisfying Assumptions 3 to 5, and
(c) there is a constant C6 > 0 such that R(s) (p∗(R)) ≤ −C6 < 0 for any R ∈ F ,
(d) for j = 0, 1, ..., s, there exists a constant Cj s.t. |R(j)(x; θ)| ≤ Cj for all x ∈ [0, 1] and θ ∈ Θ.

For example, let R(x; θ) = θ − | 12 − x|
s for x ∈ [0, 1] and any θ ∈ R, then {R(x; θ) : θ ∈ [ 1

2 , 1]} is
an s-sensitive family. Note that by Taylor’s Theorem, |R(p∗ + ε)−R(p∗)| ≤ Cs

s! |ε|
s. Consequently,

if a policy overshoots or undershoots the optimal price by ε, the regret per round is only O(εs), which
is asymptoticly lower than the per-round regret O(ε2) without the sensitivity assumption. We address
a natural question: how does the regret bounds for markdown pricing change as s increases?

3 Zero-Dimensional Family

We start with the simplest case, 0-dimensional demand functions. As opposed to the optimism in
the face of uncertainty in UCB policies, our Cautious Myopic policy adopts conservatism in the
face of uncertainty. More precisely, we partition the time horizon so that the phase j consists of
tj := d9j log T e rounds, and thus in total there are K = O(log T − log log T ) phases. In each
phase, the policy estimates the true parameter θ∗ using the observations from the last phase, and
builds a confidence interval around θ∗, which depends on the number of length of this phase and
also the constant Csg as defined in Assumption 2. Then, in the next phase, the policy selects the
largest optimal price of any parameter θ in the confidence interval. We write t(j) :=

∑j
k=0 tk and

for convenience t(0) = 0, and formally state this policy in Algorithm 1.

Algorithm 1 Cautious Myopic (CM) Policy.
1: Input: a family F of demand functions and time horizon T .
2: p1 ← 1 % Initialization
3: for j = 1, ...,K do
4: for t = t(j−1) + 1, ..., t(j−1) + tj do
5: xt ← pj % Select pj for tj times in phase j
6: Observe realized demand Dt

7: end for
8: d̄j = 1

tj

∑tj
τ=1Dt(j−1)+τ % Empirical mean demand in phase j

9: θ̂j ← Φ−1
pj (d̄j) % Estimate parameter

10: wj ← 4C2 · Csg
√

log T
tj

% Width of the confidence interval

11: p̃j+1 ← max{p∗(θ) : |θ − θ̂j | ≤ wj}} % Conservative estimation of the optimal price
12: pj+1 ← min{p̃j+1, pj} % Ensure monotonicity
13: end for

Theorem 1 (Zero-dimensional Upper Bound). Let F be any 0-dimensional, s-sensitive family of
demand functions. Then the Cautious Myopic (CM) Policy has regret

Reg(CM,F) =

{
O(log2 T ), if s = 2,

O(log T ), if s > 2.

It is worth noting that this bound is asymptotically higher than the O(log T ) upper bound for
unconstrained pricing ([3]). Intuitively, this is because the CM policy purposely keeps a distance from
the estimated optimal price. But can we achieve o(log2 T ) regret by taking more risk or being more
conservative? We answer this question negatively by showing that CM is indeed optimal, providing a
separation unconstrainted and markdown pricing for 0-dimensional demand families.

Theorem 2 (Zero-Dimensional Lower Bound). There exists a 0-dimensional 2-sensitive family F
such that for any policy π, we have Reg(π,F) = Ω(log2 T ).
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4 Finite-Dimensional Family

For dimension d, the learner needs d+ 1 distinct sample prices, as opposed to just one price when
d = 0. This, however, incurs extra regret, since the optimal price may lie between these sample prices.
Intuitively, a reasonable policy trades off between the overshooting risk and the learning rate. If the
gap is large, the policy may learn the parameter efficiently, but there is potentially a higher regret due
to overshooting, in case the true optimal price lies between the sample prices. On the other extreme,
if the gap is small, there is less risk of overshooting but a slower rate of learning.

We introduce our Iterative Cautious Myopic (ICM) Policy (Algorithm 2) that strikes such balance
nearly optimally, as we will soon see. The policy consists of m phases. In phase j ∈ [m], the policy
selects d sample prices evenly spaced at distance h, each for Tj times. It then computes an estimated
the optimal price p̂j along with a confidence interval [Lj , Uj ], based on the observed demands.

To determine the initial price pj+1 in the next phase, the policy considers three cases. Recall that the
last price that the policy selects in phase j is pj − dh. We say a good event occurs, if pj − dh > Uj ,
in which case we set pj+1 = Uj . In the dangerous event, the current price pj − dh is within the
confidence interval, and we may have already overshot the optimal price. Thus, the policy needs to
behave conservatively to prevent from overshooting further, so it selects pj+1 = pj − dh. Finally in
the overshooting event, the current price is already lower than Lj , and hence with high probability the
policy has overshot. In this case, it immediately exits the exploration phase (i.e. the outer for-loop)
and enters the exploitation phase, wherein it selects the current price in all remaining rounds.

Algorithm 2 Iterative Cautious Myopic (ICM) Policy.
1: Input: F ,m, {Tj}j∈[m], T
2: p1 ← 1, L0 ← 0, U0 ← 1 Initialization
3: for j = 1, 2, ...m do
4: for k = 0, 1, ..., d do
5: Select price pj − kh for Tj times and observe D1, ..., DTj

6: D̄k ← 1
Tj

∑Tj
i=1Di % Mean demand at pj − kh

7: end for
8: θ̂ ← Φ−1

pj ,...,pj−dh(D̄0, ..., D̄d) % Estimate Parameter

9: wj ← 2h−d · C2 · Csg
√

d log T
Tj

% Width of confidence interval

10: Lj ← min{p∗(θ) : ‖θ − p∗(θ̂)‖2 ≤ wj} % Lower confidence bound
11: Uj ← max{p∗(θ) : ‖θ − p∗(θ̂)‖2 ≤ wj} % Upper confidence bound
12: if Uj ≤ pj − dh then
13: pj+1 ← Uj % Good event
14: end if
15: if Uj > pj − dh ≥ Lj then
16: pj+1 ← pj − dh
17: end if
18: if pj − dh < Lj then
19: Break % Overshooting event
20: end if
21: end for
22: Select the current price in every future roundExploitation

Theorem 3 (Upper Bound for Finite d ≥ 1). Suppose s = 2, then for h = T
m

m(d+1)+1 , Tj =

T
md+j

m(d+1)+1 and m = log T , we have Reg (ICM,F) = Õ
(
T

d
d+1

)
. More generally, for any s ≥ 2

and m = Õ(1), there exists T1 < ... < Tm such that Reg(ICM,F) = Õ
(
T ρ(m,s,d)

)
where

ρ(m, s, d) =
1 +

(
1 + s

2 + ...+ ( s2 )m−1
)
d(

s
2

)m
+
(
1 + s

2 + ...+ ( s2 )m−1
)
· (d+ 1)

.

We complement the upper bound with an nearly tight lower bound for s = 2, stated below.
Theorem 4 (Lower Bound for Finite d ≥ 1). For any d ≥ 2, there exists a d-dimensional family F
of demand functions on [0, 1] such that for any markdown policy π, we have Reg(π,F) = Ω(T

d
d+1 ).
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In our proof, for each d ≥ 1 we construct a sub-family of (d + 1)-degree decreasing polynomial
demand functions – which is also d-dimensional – on which any policy suffers regret Ω(T

d
d+1 ).

At first glance, when d ≥ 4 this lower bound seems to contradict the T 3/4 upper bound for unimodal,
Lipschitz reward family ([4, 9]). This is because the unimodality assumption no longer holds. In fact,
in general a degree-d polynomial with d ≥ 4 is d-dimensional but in general not unimodal. Another
interesting case is d = 1. In this case, a degree-d polynomial (i.e. linear) demand corresponds to
a unimodal (in fact, quadratic) reward function, hence the T 3/4 upper bound from [4, 9] applies.
Theorem 3 shows that this bound can be improved to T 1/2.

We conclude the section by pointing out a limitation of our results. For each d ≥ 1, our regret bounds
is tight in the exponent of T , however, the constants in the big-O have different dependence on d. In
fact, the upper and lower bound become exponentially higher and lower in d respectively as d grows.

5 Infinite Dimensional Family

When d =∞, it is more convenient to work with the reward function R(x) := x ·D(x) instead of
the demand function. In contrast to unconstrained pricing, there is no markdown policy that achieves
o(T ) regret on the family of Lipschitz reward functions ([4, 9]), since the reward function may have
multiple local maxima. Nonetheless, [4] and [9] showed that if in addition we assume the reward
function to be unimodal (which is satisfied by many commonly used families), then a tight Θ̃(T 3/4)
regret is achievable. In this setting, the problem boils down to finding the unique local optimum
p∗ of the true revenue function. Specifically, the lower bound is established by considering reward
functions where the reward rate may change abruptly at p∗. We next show that the regret bound can
be improved if we assume that the reward functions change smoothly.

Algorithm 3 Uniform Elimination Policy (UEm,∆).
1: Input: T,∆,m > 0

2: Initialize: Lmax ← 0, w ← 2Csg

√
log T
m

3: for j = 0, 1, 2, ..., d∆−1e do
4: xj ← 1− j∆
5: Select price xj for the next m rounds and observe rewards Zj1 , ..., Z

j
m

6: µ̄j ← 1
m

∑m
i=1 Z

j
i % Compute mean rewards

7: [Lj , Uj ]← [µ̄j − w, µ̄+ w] Compute confidence interval for reward at current price
8: if Lj > Lmax then
9: Lmax ← Lj % Keep track of the highest Lj

10: end if
11: if Uj < LmaxExploration phase ends then
12: h← j % Define the halting price
13: Break
14: end if
15: end for
16: Select price xh in all remaining rounds. % Exploitation phase

Theorem 5 (Upper Bound for Infinite-Dimensional Family). Let FUs be the family of unimodal
and s-sensitive reward functions. For any s ≥ 2, there exists suitable choices of m and ∆ such that
Reg(UEm,∆,FUs ) = O(T

2s+1
3s+1 ).

We complement the above theorem with a lower bound in terms of both s and T , that matches the
upper bound in Theorem 5 for every s ≥ 2.
Theorem 6 (Lower Bound for s-Sensitive Family). For any s ≥ 2, there is a family F of s-sensitive
unimodal revenue curves such that any markdown policy π satisfies Reg(π,F) = Ω(T

2s+1
3s+1 ).

As a final remark, we observe that all our results assume that d is given. If instead the learner only
has partial information, for example an upper bound dmax on d, then she may simply choose the
policy for dmax and obtain the corresponding guarantee dmax.
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A Omitted Proofs in Section 2

A.1 Proof of Propositions 1 and 2

The infinite norm of a matrix is simply the maximum absolute row sum of the matrix.
Definition 11 (Matrix L∞-Norm). For any A ∈ Rn×n, define ‖A‖∞ = maxi∈[n]

∑
j∈[n] |aij |.

We will need the following forklore inequality (see e.g. [17]).
Lemma 1. For any A ∈ Rn×n and v ∈ Rn, it holds ‖Av‖∞ ≤ ‖A‖∞ · ‖v‖∞.

The inverse of Vandermonde matrix admits a (somewhat complicated) closed-form expression, which
leads to the following upper bound on its norm.
Theorem 7 (Gautschi [7]). Let x1, .., xd be distinct real numbers and V = V (x1, ..., xd) be the
corresponding Vandermonde matrix, then

‖V −1‖∞ ≤ max
i∈[n]

∏
j 6=i

1 + |xj |
|xj − xi|

.

Recall that for any p = (p0, p1, ..., pd), we have defined h(p) = mini 6=j{|pi−pj |}. From Theorem 7,
we immediately obtain the following bound on ‖V −1

p ‖∞ in terms of h(p).

Corollary 1. For any p = (p0, p1, ..., pd) ∈ [0, 1]d+1 with distinct entries, it holds that

‖V −1
p ‖∞ ≤

2d

h(p)d
.

Proof. Fix any i ∈ [n]. Since 0 ≤ pj ≤ 1 for any j ∈ [n], we have 1 + |xj | ≤ 2, and thus∏
j=1,j 6=i

1 + |xj |
|xj − xi|

≤ 2d

h(p)d
,

and the proof completes by noticing that i is arbitrary.

Proof of Proposition 1 and 2. For any p = (p0, p1, ..., pd) ∈ [0, 1]d+1 with distinct entries. Let
y, y′ ∈ R(Vp), then

‖V −1
p y′ − V −1

p y‖∞ ≤ ‖V −1
p ‖∞ · ‖y′ − y‖∞ ≤

2d

h(p)d
· ‖y′ − y‖∞,

where the first inequality follows from by Lemma 1 and the second follows from Corollary 1. The
proof completes by selecting the constant C2 to be 2d, and Proposition 1 follows. Proposition 2
also follows immediately since we have just shown that the natural parametrization of polynomial is
indeed robust.

A.2 Proof of Proposition 3 (a)

We first observe that F1 is 0-identifiable, i.e., for any fixed x ∈ [ 1
2 , 1], D(x; a) is injective in a. In

fact, for any a, a′ ∈ [ 1
2 , 1], D(x; a) = D(x; a′) amounts to x · (a− a′) = 0, which implies a = a′

since x 6= 0.

It remains to show that the order-0 parametrization a 7→ D(·; a) is robust. This splits into the
following steps, as required in Definition 8:
(1) [Lipschitz Optimal Price Mapping] By simple calculation, one can verify that for any a ∈ [ 1

2 , 1],
the reward function R(x; a) = a · (1 − ax) admits a unique optimal price p∗(a) = 1

2a , which is
2-Lipschitz.
(2) [Robust Under Perturbation] For any fixed price x ∈ [ 1

2 , 1], by definition of the profile mapping
Φ, we have Φx(a) = 1− ax. For any y ∈ R(Φx), where we recall thatR(·) denotes the range of a
mapping, we have Φ−1

x (y) = 1−y
x . Thus, for any y, y′ ∈ R(Φx),∣∣Φ−1

x (y)− Φ−1
x (y′)

∣∣ =

∣∣∣∣1− yx − 1− y′

x

∣∣∣∣ =
|y − y′|
x

≤ 2 · |y − y′|.

Therefore, the order-0 parametrization a 7→ D(·; a) is robust, and thus F1 is 0-dimensional.
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A.3 Proof of Proposition 3 (b)

Write D(x; a) = e1−ax. The following will be useful for (b) and (c), whose proof follows directly
from the definition of identifiability.

Lemma 2. Let {D(x; θ) : θ ∈ Θ} be a 0-identifiable family, and g : R→ R be strictly monotone,
then {g(D(x; θ)) : θ ∈ Θ} is also 0-identifiable.

Recalling that F1 is 0-identifiable, and g(z) = ez is strictly increasing, by Lemma 2 we deduce that
F2 is also 0-identifiable. It remains to show that a 7→ D(·; a) is robust for F2. This splits into the
following steps, as required in Definition 8:
(1) [Lipschitz Optimal Price Mapping] For any a, the corresponding reward function is R(x; a) =
a · e1−ax. A price x is then local optimum iff the derivative of R′(x; a) = (1− ax)e1−ax = 0, i.e.,
x = 1

2a , which has just been verified to be Lipschitz in the proof for (a).
(2) [Robust Under Perturbation] For any fixed price x ∈ [ 1

2 , 1], we have Φx(a) = e1−ax, and
therefore for any y ∈ R(Φx), we have Φ−1

x (y) = 1−ln y
x . Thus, for any y, y′ ∈ R(Φx),∣∣Φ−1

x (y)− Φ−1
x (y′)

∣∣ =

∣∣∣∣1− ln y

x
− 1− ln y′

x

∣∣∣∣ =
| ln y − ln y′|

x
. (3)

Finally, to bound the above, note that e
1
4 ≤ e1−ax ≤ e

3
4 for any x ∈

[
1
2 , 1
]

and a ∈
[

1
2 ,

3
4

]
, i.e.,

R(Φx) ⊆
[
e

1
4 , e

3
4

]
. Thus, for any x ∈ [ 1

2 , 1],

(3) ≤
maxt∈R(Φx) ln′ t

x
· |y − y′| = 2e−

1
4 · |y − y′| .

Therefore the order-0 parametrization a 7→ D(·; a) is robust, and hence F2 is 0-dimensional.

A.4 Proof of Proposition 3 (c)

The 0-identifiability again follows from Lemma 2. In fact, one can easily verify that the g(t) = et

1+et

is strictly monotone, and since F1 is 0-identifiable, so is F2. It remains to show that a 7→ D(·; a) is
robust.
(1) [Lipschitz Optimal Price Mapping] By calculation, we have R′a(x) = e(eax(1−ax)+e)

(ex+e)2
, and thus

R′a(x) = 0 iff eax(1−ax)+e = 0, i.e.,−(1−ax) = e1−ax. Letting t = 1−ax, the above becomes

−t = et. (4)

Note that RHS is increasing in t, while LHS is decreasing and surjective, so (4) admits a unique
solution, say t0. Recalling x = 1−t

a , we obtain p∗(a) = 1−t0
a . Thus, the p∗ function is 2-Lipschitz

since a ≥ 1
2 .

(2) [Robust Under Perturbation] For any fixed x ∈ [ 1
2 , 1], we have Φx(a) = D(x; a) = e1−ax

1+e1−ax .
By calculation, for any y ∈ R(Φx) we have

Φ−1
x (y) =

1

x

(
1 + ln

1− y
y

)
,

and hence for any y, y′ ∈ R(Φx),∣∣Φ−1
x (y)− Φ−1

x (y′)
∣∣ =

1

x
·
∣∣∣∣(1 + ln

1− y
y

)
−
(

1 + ln
1− y′

y′

)∣∣∣∣
=

1

x
|ln y − ln y′ + ln(1− y)− ln(1− y′)|

≤ 1

x

(
max

s∈R(Φx)

1

s
· |y − y′|+ max

t∈R(Φx)

1

1− t
· |y − y′|

)
≤ |y − y

′|
x

·
(

max
s∈R(Φx)

1

s
+ max
t∈R(Φx)

1

1− t

)
, (5)
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where the first inequality follows from the Lagrange Mean Value Theorem. Note that for any
a ∈ [ 1

2 , 1] and x ∈ [ 1
2 , 1], we have

1

2
≤ Φx(a) ≤ e

3
4

1 + e
3
4

<
7

10
,

soR(Φx) ⊂
[

1
2 ,

7
10

]
. Therefore,

(5) ≤ 2 · |y − y′| ·
(

2 +
10

3

)
=

32

3
· |y − y′|,

and the proof completes.

A.5 Proof of Proposition 4

For any given d, consider f(x) = sin(dπx)
dπ and g(x) = sin(2dπx)

2dπ and p = (pi) = (0, 1
d , ...,

d
d ).

Observe that both f and g are 1-Lipschitz, and moreover, f(pi) = g(pi) = 0 for any i. Therefore,
Φp is not injective, and hence F is not d-identifiable.

B Proofs of Upper Bounds

In this section, we prove the following tight regret bounds for the markdown version. To highlight
the technical challenges, we first rephrase the known tight regret bound for non-markdown version.
Theorem 8 ([3]). For any zero-dimensional demand family F , there is an algorithm with regret
O(log T ). Moreover, there exists a zero-dimensional demand family F on which any algorithm has
regret Ω(log T ).

Most of our upper bounds rely on the following standard concentration bound for subgaussian random
variables (see e.g. [17]).
Theorem 9 (Hoeffding’s inequality). Suppose X1, .., Xn are independent subgaussian random
variables, then for any δ > 0,

P

[
n∑
i=1

(Xi − EXi) ≥ δ

]
≤ exp

(
− δ2

2
∑n
i=1 ‖Xi‖2ψ2

)
.

We will also use a folklore result from Calculus.
Theorem 10 (Taylor’s Theorem with Lagrange Remainder). Let f : R → R be (m + 1) times
differentiable on an open interval (a, b). Then for any x, x′ ∈ (a, b), there exists some ξ with
(x− ξ) · (x′ − ξ) ≤ 0 such that

f(x′) = f(x) +
1

1!
f ′(x)(x′ − x) + ...+

1

m!
f (m)(x)(x′ − x)s +

1

(m+ 1)!
f (m+1)(ξ)(x′ − x)s+1.

Theorem 10 implies a key property for any s-sensitive reward functions. Suppose R is s-sensitive,
then for any ε > 0, we have

R(p∗ + ε) = R(p∗) +
R(s)(ξ)

s!
εs

where ξ ∈ [p∗, p∗+ε]. Since Θ is compact, there exists some constantCs > 0 such that |R(s)(x, θ)| ≤
Cs for any x ∈ [0, 1] and θ ∈ Θ. Thus,

|R(p∗ + ε)−R(p∗)| ≤ Cs
s!
|ε|s.

Consequently, if a policy overshoots or undershoots the optimal price by ε, the regret per round
is only O(εs), which is asymptoticly lower than the per-round regret O(ε2) without the sensitivity
assumption.

They considered a simple policy that estimates the true parameter using maximum likelihood estimator
(MLE), and then selects the optimal price of the estimated demand function. To bound the expected
regret in round t, they showed that the mean squared error (MSE) of the estimated price is at most
1/t, and hence the expected total regret is

∑T
t=1

1
t ∼ log T .
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B.1 Zero-Dimensional Family

While Theorem 8 is established by bounding the Mean Square Error (MSE), due to the monotonicity
constraint for markdown pricing, it no longer suffices to consider the mean error. Rather, we need
an error bound which (i) holds with high probability, so that we can make conservative decision by
selecting a price that is extremely unlikely to overshoot the optimal price, and (ii) is sufficiently low,
so that the total regret is also low. The following lemma can be obtained as a direct consequence of
Hoeffding’s inequality (Theorem 9).
Lemma 3. Let Z1, .., Zm be a i.i.d. samples from a distribution D with subgaussian norm C. Let B
be the event that

∣∣E[D]− 1
m

∑
j=1 Zj

∣∣ ≤ 2C ·
√

log T
m , then P[B] ≤ T−2.

Proof. By the Hoeffding inequality (Theorem 9), we have

P

∣∣∣E[D]− 1

m

m∑
j=1

Zj

∣∣∣ > 2C

√
log T

m

 ≤ exp

(
−

(2C
√
tj log T )2

2tj · C2

)
= T−2,

and the proof follows.

Recall that Csg is the upper bound on the subgaussian norm of the demand distributions at any price,
as formalized in Assumption 2, and d̄j is the empirical mean demand in phase j ∈ [K].

Definition 12 (Good and Bad Events). For every j ∈ [K], let Ej be the event that
∣∣D(pj ; θ

∗)− d̄j
∣∣ ≤

2Csg

√
log T
tj

. We call E =
⋂K
j=1 Ej be the good event and its complement Ec the bad event.

As a standard step in regret analysis, we first show that the bad event occurs with low probability.
Lemma 4 (Bad Event is Unlikely). P[Ec] ≥ 1− T−1.

Proof. Fix any j ∈ [m]. Since {Dj : j = t(j−1) + 1, ..., t(j)} is an i.i.d. sample from a subgaussian
distribution with mean D(pj ; θ

∗) and subgaussian norm at most Csg , by Lemma 3 we have P[Ej ] ≤
T−2. By the union bound, we have P[Ec] ≤ T−2 · log T ≤ T−1.

Since the expected regret per round is at most [0, 1], we can condition on E by losing only an O(1)
term in the regret.

Lemma 5. Conditional on E , we have ‖θ̂j − θ∗‖2 ≤ 2C2 · Csg
√

log T
tj

for each j ∈ [K].

Proof. Unless stated otherwise, we denote ‖ · ‖ = ‖ · ‖∞. By definition robust parametrization,

‖θ̂j − θ∗‖ = ‖Φ−1
pj (d̄j)− Φ−1

pj

(
Φpj (θ∗)

)
‖ ≤ C2 · ‖d̄j − Φpj (θ

∗)‖ ≤ 2C2 · Csg

√
log T

tj
,

where the last inequality follows since Φpj (θ
∗) = D(pj , θ

∗) and the assumption that E occurs.

We next show that the prices are guaranteed to be non-increasing conditional on the good event. To
this aim, we introduce the following confidence intervals on the parameter space, centered at the
estimated parameter θ̂j .

Definition 13 (Confidence Interval for θ∗). Let wj = 4C2 · Csg
√

log T
tj

. Define Lj = θ̂j − wj ,

Rj = θ̂j + wj , and Ij = [Lj , Rj ].

In our analysis of price monotonicity, we will show that Ij’s form a nested sequence. To this aim, we
need to ensure that θ∗ not only lies within Ij , but is also “far” from the boundary, in the sense that it
lies between the first and third quantile of the interval. We formalize this notion as follows.
Definition 14 (Far-From-the-Boundary). Given a finite interval [a, b] and x ∈ [a, b], we say x is
Far-From-the-Boundary (FFB) in [a, b] if 3

4a+ 1
4b ≤ x ≤

1
4a+ 3

4b.
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Note that in Definition 13, we intentionally selected the radius to be twice as large as (rather than
equal to) the bound given in Lemma 5, so that θ∗ is FFB in Ij , conditional on the good event. This
fact will be play a crucial role in the following analysis of monotonicity. We first observe that it
suffices to show that Ij’s form a nested sequence.

Lemma 6 (Nested Sequence of Intervals). For each j, we have Ij+1 ⊆ Ij .

Proof. By symmetry, this is equivalent to that the right endpoints satisfyRj+1 ≤ Rj . Recall that θ∗ is
FFB in Ij , so Rj ≥ θ∗+ 1

2wj . Similarly, since θ∗ is also FFB in Ij+1, we have Rj+1 ≤ 3
2wj+1 + θ∗.

Combining, we have

Rj+1 ≤
3

2
wj+1 +Rj −

1

2
wj . (6)

Finally, to bound the above by Rj and hence complete the proof, it suffices to show wj+1 ≤ 1
3wj .

This is in fact straightforward from the choice of wj . In fact, recall that wj = 4C2 · Csg
√

log T
tj

and

tj = 9j log T , so

wj+1

wj
=

√
tj
tj+1

=

√
9j log T

9j+1 log T
=

1

3
,

and thus by (6), Rj+1 ≤ Rj , and the proof completes.

Recall that in Algorithm 1, to prevent the price from going up, in each phase j we select pj+1 =

min{pj , p̃j+1}, where p̃j+1 = max{p∗(θ) : |θ − θ̂j | ≤ wj} is called the raw price. We next show
that such a truncation is almost “redundant”, in the sense that under the good event the selected price
pj is always the raw price.

Proposition 5 (Just Select the Raw Price). Conditional on E , we have pj+1 = p̃j for every j.

Proof. We show by induction that for any j, we have (i) pj = max{p∗(θ) : |θ − θ̂j | ≤ wj} and (ii)
p̃j+1 ≤ pj . Note that (ii) implies that the policy selects pj+1 = p̃j+1, and the proof follows.

For j = 0 this is trivially true. Now assume this holds for some j ≥ 1, it then suffices to show that
p̃j+1 ≤ pj . By Lemma 6, we have

max{p∗(θ) : θ ∈ Ij+1} ≤ max{p∗(θ) : θ ∈ Ij}.

Further, note that by definition, we have p̃j+1 = max{p∗(θ) : θ ∈ Ij+1} and by induction hypothesis,
we have pj = max{p∗(θ) : θ ∈ Ij}. Combining, we obtain p̃j+1 ≤ pj .

Proof of Theorem 1. As discussed earlier, since the bad event Ec occurs with O(T−1) probability,
we may preform the regret analysis assuming E occurs, by losing only an additive O(1) term in the
regret.

Since Φ is a robust parametrization, by definition we have

‖θ̂j − θ∗‖2 = ‖Φ−1
pj (d̄j)− Φ−1

pj

(
Φpj (θ

∗)
)
‖

≤ C2 · ‖d̄j − Φpj (θ
∗)‖

= C2 · ‖d̄j −D(pj ; θ
∗)‖ ≤ 2C2 · Csg

√
log T

tj
.

We next analyze |pj+1 − p∗(θ∗)|. Note that by Proposition 5, pj = p̃j = max{p∗(θ) : θ ∈ Ij}. By
Assumption 5, the mapping p∗ is C∗-Lipschitz for some constant C∗ > 0, so the price pj+1 selected
in the (j + 1)-st phase satisfies

|pj+1 − p∗(θ∗)| ≤ C∗‖θ̂j − θ∗‖2 ≤ 2C2 · C∗ · Csg

√
log T

tj
.
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Since the length of phase j + 1 is tj+1, the regret incurred in this phase is at most

Cs

(
2C∗ · C2 · Csg

√
log T
tj

)s
·tj+1 in expectation. Note that there are in totalK ≤ log T − log log T

phases, so we can bound the cumulative regret as

Reg(CM,F) ≤
K∑
j=1

Cs

(
2C∗ · C2 · Csg

√
log T

tj

)s
· tj+1

= Cs

(
2C∗ · C2 · Csg

√
log T

)s
·
K∑
j=0

tj+1

t
s/2
j

(7)

We substitute tj with d9j log T e and simplify the above for s = 2 and s > 2 separately. When s = 2,

(7) = Cs

(
2C∗ · C2 · Csg

√
log T

)2

·
K∑
j=0

tj+1

tj

≤ Cs (2C∗ · C2 · Csg)2 · log T · 9(log T − log log T )

= O(log2 T ).

Now suppose s > 2. Then,

(7) = Cs

(
2C∗ · C2 · Csg

√
log T

)s
·
K∑
j=0

9j+1 log T

9j·
s
2 logs/2 T

≤ Cs (2C∗ · C2 · Csg)s · log T ·
K∑
j=0

9(1− s2 )j+1

≤ 2Cs · (2C2 · C∗ · Csg)s · log T ·
∫ K

0

9(1− s2 )xdx

= 2Cs · (2C∗ · C2 · Csg)s · log T · 2

(s− 2) · ln 9

= O(log T ).

Theorem 1 follows by combining the analyses for s = 2 and s > 2.

B.2 Finite-Dimensional Family

In this section we first analyze the regret of the ICM policy and prove Theorem 3, and then complement
this upper bound with an almost matching lower bound. Recall that the ICM policy is specified by two
types of parameters: the gap h between neighboring sampling prices in each phase, and the number
Tj of rounds to stay at each sampling price in phase j. To prove Theorem 3, we first present the
following upper bound on the regret of ICM for arbitrary choice of parameters h and Tj’s, and then
optimize the choice of parameters (up to polylogarithmic factors in T ) by solving a linear program.
Proposition 6. Let F be a d-dimensional, s-sensitive (s ≥ 2) family of demand functions. Suppose
h > 0 and 0 < T1 < ... < Tm where Tm = o(T ). Denote ICM = ICM(T1, ..., Tm, h). Then,

Reg(ICM,F) ≤ T1+Cs

(
2C∗Csgh

−d
√
C5d log T

)s
·

m−1∑
j=1

T
−s/2
j−1 · Tj + T−s/2m · T

+Cs (mdh)
s
T.

We briefly explain the intuition behind the above result before proceeding with finding the optimal
parameters. As the name suggests, the Iterative Cautious Myopic policy iteratively computes a confi-
dence interval [Lj , Uj ] around the true optimal price, and conservatively moves to the right endpoint
of this interval. As a simplistic view, in phase j (assuming it ever takes place) the estimation error is
∼ h−dT−1/2

j−1 , and by definition of s-sensitivity, the regret incurred in phase j is ∼ (h−dT
−1/2
j−1 )sTj .

To understand the final term, observe that when h is sufficiently small compared to Uj − Lj , there is
little risk of overshooting at the right endpoint Uj . However, when one selects larger h (for faster
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learning rate), it may happen that the last sample price pj − dh in this phase overshoots the optimal
price, thereby incurring a regret term, as captured by the last term in the above bound.

Nonetheless, the actual proof involves carefully analyzing each of the three events (good, dangerous
and overshooting) that can possibly occur at the end of each phase, as formally defined in Algorithm 2.
Informally, each of these three events corresponds to the scenario where the price at the end of this
phase lies (1) on the right, (2) inside, or (3) on the left of the confidence interval of the estimated
optimal price.
Lemma 7. For each phase j = 1, ...,m, let Ej be the event that p∗(θ∗) ∈ [Lj , Uj ]. Then, P(Ej) ≥
1− dT−2.

Proof. By the Hoeffding inequality (Theorem 9) and the subgaussian assumption (Assumption 5),
for each k = 0, ..., d, it holds with probability at least 1− T−2 that

|D(pi − kh; θ∗)− d̄| ≤ 2Csg

√
log T

Tj
.

For simplicity we write Φ = Φpi,pi−h,...,pi−dh and d̄ = (d̄0, ..., d̄d). Since for any v ∈ Rd it holds
‖v‖2 ≤

√
d · ‖v‖∞, it holds with probability 1− (d+ 1)T−2 that

‖Φ(θ∗)− d̄‖2 ≤ 2Csg

√
log T

Tj
·
√
d.

Thus by definition of dimension, for sufficiently large Tj (hence sufficiently small ‖Φ(θ∗)− d̄‖2),

‖θ∗ − θ̂‖2 = ‖Φ−1(d̄)− Φ−1(Φ(θ∗))‖2
≤ C2h

−d · ‖Φ(θ∗)− d̄‖2

≤ C2h
−d · Csg2

√
log T

Tj
·
√
d = wj ,

and θ∗ ∈ [Lj , Uj ] follows immediately from the definition of Lj and Uj .

Proof of Proposition 6. We first show that with high probability, our confidence interval forms a
nested sequence of intervals containing the true parameter θ∗. Recall that

Lj = min{p∗(θ) : ‖θ − p∗(θ̂)‖2 ≤ wj} and Uj = max{p∗(θ) : ‖θ − p∗(θ̂)‖2 ≤ wj}.

This lemma immediately implies a (high-probability) upper bound for the estimation error of the
optimal price. Recall that pj = max{p∗(θ) : ‖θ − p∗(θ̂)‖2 ≤ wj}. By Lemma 7 and Assumption 5,
we deduce that conditional on Ej , for any p ∈ [Lj , Uj ] it holds

|p− p∗(θ∗)| ≤ C∗‖θ∗ − θ̂‖2 ≤ C∗wj .

We will repeatedly apply this bound in the following regret analysis.

Proof of Proposition 6. By Lemma 7,

P(

m⋃
i=1

Ei) ≤
m∑
i=1

P(Ei) ≤ dT−2 ·m ≤ T−1.

Thus, we may subsequently assume
⋂m
i=1 Ei occurs by losing only an O

(
1
T

)
-factor in regret.

We split our proof into two cases depending on whether the overshooting event ever occurs in any
phase.

Case (1). Suppose the overshooting event never occurs, i.e. in each j = 1, ...,m, we always have
pj −dh ≥ Lj ≥ Lj−1. Since pj ≤ Uj−1, we deduce that pj −kh ∈ [Lj−1, Uj−1] for all k = 0, .., d.
On the other hand, since we have conditioned on

⋃m
i=1 Ei, we have p∗(θ∗) ∈ [Lj−1, Uj−1], hence

|(pj − kh)− p∗| ≤ Uj−1−Lj−1 ≤ C∗wj for 0 ≤ k ≤ d. Thus the regret incurred in this phase is at
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Lj Uj

pj

pj − dh

pj+1

pj+1 − dh

Figure 1: Illustration of case 2.

most Cs ·(Uj−1 − Lj−1)
s
Tj ≤ Cs (C∗wj)

s
Tj . Similarly, since the exploitation price p̃ := pm−dh

satisfies |p̃ − p∗(θ∗)| ≤ C∗wm, the expected regret per round in the exploitation phase is at most
(C∗wm)

s. Therefore, we may bound the cumulative regret as

Reg(ICM,F) ≤ T1 + Cs (C∗w1)
s
T2 + ...+ Cs (C∗wm−1)

s
Tm + Cs (C∗wm)

s
T

≤ T1 +

m∑
j=2

Cs

(
C∗ · 2Csgh−d

√
C5d log T

Tj−1

)s
Tj + Cs

(
C∗ · 2Csgh−d

√
C5d log T

Tm

)s
T

= T1 + Cs

(
2C∗Csgh

−d
√
C5d log T

)s
·

m−1∑
j=1

T
−s/2
j−1 · Tj + T−s/2m · T

 .

Case (2). Now suppose the overshooting event first occurs in some phase ` where 1 ≤ ` ≤ m,
formally

` = min{s : ps − dh < Lj}.
As in case (1), the expected regret in phase j = 1, ..., `− 1 can be bounded by Cs · (C∗wj−1)

s
Tj .

Thus it remains to bound the expected regret in the `-th and the exploitation phase as Õ ((mdh)sT ) .
Suppose the last phase that good event occurred is phase j (as illustrated in Fig 1). There are two
sub-cases.

i) Suppose j = `−1. Then, by definition of good event, we have pj−dh ≥ Uj . Thus, the ICM
policy sets the next price to be pj+1 = Uj . Since p∗(θ∗) ∈ [Lj , Uj ] and p` = pj+1 = Uj ,
the exploitation price p` − dh satisfies

|p` − dh− p∗(θ∗)| ≤ |p` − dh− Uj | = |p` − dh− p`| = dh.

Thus, the future regret is at most Cs(dh)sT .

ii) Now suppose j ≤ `− 2. Then, the dangerous event must have occurred in phases j + 1, j +
2, ...`− 1, so

pj+s+1 = pj+s − dh, ∀s = 1, ..., `− j − 1.

In particular,
p` = pj+1 − (`− j − 1) · dh.

On the other side, by definition of the overshooting event, it holds

p` − dh ≤ Lj+1 ≤ p∗(θ∗) ≤ Uj+1 ≤ Uj = pj+1,

i.e. p` − dh ≤ p∗(θ∗) ≤ pj+1. Thus,

|p` − dh− p∗(θ∗)| ≤ (`− j − 1) dh.

Therefore, the regret in the exploitation phase is bounded by Cs|p` − dh − p∗|sT ≤
Cs(mdh)sT .

The proof completes by combining the analyses for the above cases.

We now determine the parameters to minimize the upper bound in Proposition 6.

Proof of Theorem 3. Write Ti = T zi , h = T−y . Then for any j ≤ m− 1,

(h−dT
−1/2
j )sTj+1 = T sdy−

s
2 zj+zj+1 .
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To find the optimal parameters, consider

LP(d) : min
x,y,z

T x

subject to T z1 ≤ T x, Regret in phase 1

T 2sdy+z2− s2 z1 ≤ T x, Regret in phase 2
...

T sdy+1− s2 zm ≤ T x, Regret in exploitation

T 1−sy ≤ T x, Regret for overshooting
x, y, z ≥ 0,z ≤ 1

Taking logarithm with base T on both sides, the above becomes

min
x,y,z

x

s.t.



−1 0 1 0 0 0 ... 0
−1 sd − s2 1 0 0 ... 0
−1 sd 0 − s2 1 0 ... 0
−1 sd 0 0 − s2 1 ... 0

......
−1 sd 0 0 0 ... − s2 1
−1 sd 0 0 0 0 ... − s2
−1 −s 0 0 0 0 ... 0





x
y
z1

z2

...
zm−1

zm


≤



0
0
...
0
−1
−1


x, y, z ≥ 0, z ≤ 1

Note that the above LP consists of m+ 2 variables and m+ 2 inequality constraints, so the minimum
is attained when all inequalities become identities. In this case, we have

z1 = x (8)

z2 −
s

2
z1 = x− sdy

z3 −
s

2
z2 = x− sdy

...

zm −
s

2
zm−1 = x− sdy

1− s

2
zm = x− sdy

1− sy = x (9)

By telescoping sum, we have

1−
(s

2

)m
z1 =

(
1 +

s

2
+ ...+

(s
2

)m−1
)
· (x− dsy) .

Combining the above with (8) and (9), we have

1 +

(
1 +

s

2
+ ...+

(s
2

)m−1
)
d(1− x) =

(
1 +

s

2
+ ...+

(s
2

)m)
x.

Rearranging, we obtain

x =
1 +

(
1 + s

2 + ...+ ( s2 )m−1
)
d(

1 + s
2 + ...+ ( s2 )m−1

)
· (d+ 1) +

(
s
2

)m .
In particular, for s = 2, the above becomes

x =
md+ 1

m(d+ 1) + 1
=

d

d+ 1
+

1

m(d+ 1)2
.

Choosing m = log T , we have T x = Õ(T
d
d+1 ).
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B.3 Infinite-Dimensional Family

In this section we first present a general regret upper bound for policy UE∆,w, which immediately
implies Theorem 5. To this aim, we need to introduce another constant η, as motivated by the the
following result. For notational convenience, we abbreviate ∂k

∂xk
R(x; θ) as R(k)(x; θ) for any k ≥ 0.

Lemma 8. Let F = {R(x, θ) : θ ∈ Θ} be a family of s-sensitive reward functions. Then, there
exists a constant η > 0 such that for any θ ∈ Θ and x ∈ [p∗(θ)− η, p∗(θ)] , it holds R(s)(x; θ) < 0
and

2R(s)(p∗(θ); θ) ≤ R(s)(x; θ) ≤ 1

2
R(s)(p∗(θ); θ).

Proof. First consider any fixed θ ∈ Θ. By definition of sensitivity, we have R(1)(p∗(θ), θ) = ... =
R(s−1)(p∗(θ), θ) = 0 and R(s)(p∗(θ), θ) < 0. Define

g(θ) = sup

{
γ ≥ 0 | 2R(s)(p∗(θ); θ) ≤ R(s)(x; θ) ≤ 1

2
R(s)(p∗(θ); θ), ∀x ∈ [p∗(θ)− γ, p∗(θ)]

}
.

By continuity of R(s) in x, we have g(θ) > 0 for any θ ∈ Θ. We complete the proof by showing
that η := supθ∈Θ g(θ) > 0. Recall that Θ is compact, and R(s) is continuous in θ, we know that η
can be attained, i.e., there exists some θ ∈ Θ with g(θ) = η. Moreover, note that for any θ we have
g(θ) > 0, therefore η > 0, and the proof completes.

We are now ready to state the main result in this section. Note that by choosing ∆ = T−1/(3s+1) and
w = T−2/(3s+1), we immediately obtain Theorem 5.

Proposition 7 (Upper Bound). Let F be any s-sensitive family for some s ≥ 2. Suppose ∆ ≤
Cs

8s!C(1) η
s and m ≥ 4, then

Reg (UE∆,m,F) = O
(
∆−1w−2 log T + (w + ∆s)T

)
where we recall that w = 2Csg

√
log T
m .

Our analysis proceeds by conditioning on the following the notion of clean event, which occurs with
high probability as we will show soon.

Definition 15 (Clean event). Let Ej be the event that
∣∣R(xj) − µ̄j

∣∣ ≤ 2Csg

√
log T
m , and E =⋂d∆−1e

j=1 Ej .

Note that by our choice of Lj , Uj , we know that E is simply the event that R(xj) ∈ [Lj , Uj ] for all
1 ≤ j ≤ ∆−1. We next show that E occurs with high probability, and hence we may perform the
analysis conditional on E .

Lemma 9. P(E) ≤ T−1.

Proof. Let R be the true reward function. Recall that Zji for i = t(j−1) + 1, ..., t(j) are i.i.d. samples
from a subgaussian distribution with mean R(xj), and that Assumption 2 the sugaussian norm of this
distribution is at most Csg . Thus by Lemma 3, we have P[Ej ] ≤ T−2. By the union bound, we have
P[E ] ≥ 1− T−2 · log T ≥ 1− T−1.

In the rest of this section we will fix a true reward function R(x; θ) and write x∗ = p∗(θ) and
R(x) = R(x; θ).

Definition 16. Define x` be the closest sample price to x∗, i.e. ` := arg min0≤j≤∆−1{|xj − x∗|}.

We first show that conditional on E , the policy will stop reducing the price and enter the exploitation
phase before reaching x∗ − η.
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Lemma 10. Suppose E occurs. For any m ≥
(

4s!·8·Csg
Cs

)2

· η−2s log T and ∆ ≤ Cs
8s!C(1) η

s, we have
xh ≥ x∗ − η.

Proof. Recall that x is said to be a sample price if x = 1 − j∆ for some integer j. Consider the
smallest sample price x̃ above x∗ − η, then |x∗ − η − x̃| ≤ ∆. By Assumption 4, the first derivatives
are bounded by C(1) and hence R is C(1)-Lipschitz, so

|R(x̃)−R(x∗ − η)| ≤ C(1)|x∗ − η − x̃| ≤ C(1)∆ and |R(x`)−R(x∗)| ≤ C(1)∆.

Moreover, by Theorem 10, and since R(1)(x∗) = ... = R(s−1)(x∗) = 0,

|R(x∗ − η)−R(x∗)| =
∣∣∣∣R(s)(ξ)

s!
ηs
∣∣∣∣ (10)

for some ξ ∈ (x∗ − η, x∗). By Lemma 8, |R(s)(ξ)| ≥ 1
2 · |R

(s)(x∗)|, so

|R(x∗ − η)−R(x∗)| ≥ |R
(s)(x∗)|
2s!

ηs. (11)

By combining the inequalities (10) and (11), we have

R(x̃) ≤ R(x`)−
(
|R(s)(x∗)|

2s!
ηs − 2C(1)∆

)
.

Recall that |R(s)(x∗)| ≥ Cs, so for any ∆ ≤ Cs
8s!C(1) η

s, we have

|R(s)(x∗)|
2s!

ηs − 2C(1)∆ ≥ |R
(s)(x∗)|
4s!

ηs. (12)

Hence, suppose m ≥
(

4s!·8·Csg
Cs

)2

· η−2s log T , then 4w ≤ Cs
4s!η

s ≤ |R
(s)(x∗)|
4s! ηs, and by (12)

R(x̃) < R(x`)− 4w. (13)

Since E occurs, we have |U(x̃)−R(x̃)| ≤ w and |L(x`)−R(x`)| ≤ w. Combining with (13), we
obtain U(x̃) < L(x`), and thus the halting criterion is satisfied at x̃, so xh ≥ x∗ − η.

Lemma 11. Suppose xk+` ≥ x∗ − η. Then,

|R(xk+`)−R(x∗)| ≥ R(s)(x∗)

2s!
((k − 1) ∆)

s
.

Proof. By Theorem 10, |R(xk+`)−R(x∗)| =
∣∣ 1
s!R

(s)(ξ) · (xk+` − x∗)s
∣∣ ≥ 1

2s! |R
(s)(x∗)| · |xk+`−

x∗|s. By definition of x`, we have |x`−x∗| ≤ ∆, so |x∗−xk+`| ≥ |x`−xk+`|−|x∗−x`| ≥ (k−1)∆.
Thus, |R(xk+`)−R(x∗)| ≥ 1

2s! |R
(s)(x∗)| · ((k − 1) ∆)

s
.

Lemma 12. Suppose E occurs and i := arg max0≤j≤∆−1{Lj}. Then,

|R(xi)−R(x`)| ≤ max{2w, 2R(s)(x∗)

s!
∆s}.

Proof. Since |x`− x∗| ≤ ∆ ≤ η, by Theorem 10, it holds that R(x`) ≥ R(x∗)− 2R(s)

s! |x
∗− x`|s ≥

R(xi) − 2R(s)

s! |x
∗ − x`|s, and thus R(xi) − R(x`) ≤ 2R(s)

s! |x
∗ − x`|s ≤ 2R(s)

s! ∆s. On the other
hand, by definition of i, we have L` ≤ Li. Since E occurs, we also have |Li − R(xi)| ≤ w and
|L` −R(x`)| ≤ w, and therefore R(x`)−R(xi) ≤ 2w, and the proof follows.

Lemma 13. Suppose E occurs and ∆ ≤ η. Then for any k ≥ 3 with xk+` ≥ x∗ − η,

|R(x`+k)−R(xi)| ≥
Cs
2ss!

(k∆)s − 2w.
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Figure 2: Illustration of Lemma 14

Proof. By Lemma 11, 12 and the triangle inequality,
|R(x`+k)−R(xi)| ≥ |R(x`+k)−R(x∗)| − |R(x∗)−R(x`)| − |R(xi)−R(x`)|

≥ C

s!
· ((k − 1) ∆)

s − Cs
s!

∆s − 4w +
Cs
s!

∆s

≥ Cs
s!

∆s ((k − 1)s − 1)− 4w

≥ Cs
2ss!

(k∆)s − 4w,

and the proof follows.

The crux for proving our lower bound lies in analyzing the regret in the exploitation phase. To this
aim, we use the above lemma to bound the per-round regret in the exploitation phase, formally stated
below, and illustrated in Figure 2. Recall that xh is the halting price, which is selected in every round
in the exploitation phase.

Lemma 14. Suppose E occurs, then R(xh)−R(x∗) ≤ 3ss!·4w
Cs

+ max{3s, Cs} ·∆s.

Proof. Consider two cases regarding h and `.

Case 1. Suppose h ≥ ` − 2, i.e. xh ≥ x` − 2∆. Since |x` − x∗| ≤ ∆, we have |xh − x∗| ≤
|x` − xh| + |x∗ − x`| ≤ 2∆ + ∆ = 3∆. Thus by definition of sensitivity, when |xh − x∗| ≤ η it
holds |R(x∗)−R(xh)| ≤ Cs · |xh − x∗|s ≤ Cs · 3s∆s.

Case 2. Now suppose h ≤ `−3, i.e. xh ≤ x`−3∆. Let k = h−`−1, so that x`+k is the last sample
price that the UE policy selected before halting at xh. Then by definition of xh, the halting criterion is
not satisfied at the x`+k, i.e. [L(xi), U(xi)]∩ [L(x`+k), U(x`+k)] 6= ∅, so |R(xi)−R(x`+k)| ≤ 4w.
Combining with Lemma 13, we have 2w ≥ |R(xi)−R(x`+k)| ≥ Cs

2ss! (k∆)s − 2w, i.e.,

(k∆)s ≤ 2ss! · 4w
Cs

. (14)

Note that |xh − x∗| ≤ (k + 1)∆, and recall that conditional on E , we have xh ≥ x∗ − η, it follows
that

|R(xh)−R(x∗)| ≤ Cs · ((k + 1)∆)
s by Theorem 10

≤ Cs ·
(

3

2
k∆

)s
since k = h− `− 1 ≥ 2

≤ 4w · 3ss!
Cs

=
4 · 3ss! · w

Cs
, by (14)

and the proof is complete.
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Proof of Proposition 7. Fix any R ∈ F . Suppose E does not occur, then the regret is at most T .
Suppose E occurs, then by Lemma 14, the regret incurred in the exploitation phase is bounded by(

6·Cs·3ss!
C6

· w + max{3s, Cs} ·∆s
)
T .

On the other side, recall that each sample price is selected for at most m times, so the cumulative
regret incurred in the exploration phase is bounded by mT . Moreover, there are at most d∆−1e
sample prices. Recalling that w = 2Csg

√
log T
m , i.e. m = 4C2

sgw
−2 log T , we can bound the total

regret as

Reg(UE∆,w, R)

≤ P[E ] · T + P[E ] ·
(

4C2
sgw
−2∆−1 log T +

(
6 · Cs · 3ss!

C6
· w + max{3s, Cs} ·∆s

)
· T
)

≤ T−1 · T +

(
4C2

sgw
−2∆−1 log T +

(
6 · Cs · 3ss!

C6
· w + max{3s, Cs} ·∆s

))
· T

= O
(
∆−1w−2 log T + (∆s + w)T

)
,

and Proposition 7 follows.

C Proofs of Lower Bounds

C.1 Preliminaries

We now turn to proving our lower bound, which establishes minimax optimality. Our proof considers
Bernoulli reward distribution at each price and employs the following alternate view of a policy as
binary decision trees, which we will make precise in this section.

Definition 17 (Prefix). Let {0, 1}∗ =
⋃∞
n=1{0, 1}n ∪ {null} be the set of all finite-length binary

vectors, where null denotes the empty binary vector. For any v ∈ {0, 1}∗ and k ∈ Z, the k-prefix of v
is defined as vk = (v1, ..., vk).

We will consider probability spaces on sets containing the prefixes of every element.

Definition 18 (Downward Closed Sets). For any v, w ∈ {0, 1}∗, we define w ≺ v if there exists
k ∈ Z such that vk = w. A set Ω ∈ {0, 1}∗ is downward closed, if for any v ∈ Ω and w ≺ v, we
have w ∈ Ω.

A decision tree is specified by a downward closed set equipped with a real-valued function.

Definition 19 (Decision Tree). A binary decision tree is a tuple (Ω, x) where Ω ⊆ {0, 1}∗ is
downward closed and x : Ω→ R is a mapping. Moreover, each v ∈ Ω is called a node.

Intuitively, for each node v = (v1, ..., vk), the value x(v) is just the price that the policy selects upon
observing demands v1, ..., vk at prices x(v1), ..., x(vk). Recalling that we have normalized the price
space to be [0, 1], so we will subsequently consider only decision trees (Ω, x) with 0 ≤ x(v) ≤ 1 for
all v ∈ Ω. For notational convenience, we suppress the notation x(v) simply as xv .

We next introduce an equivalent definition of markdown policy, using the language of decision tree.

Definition 20 (Markdown Policy, Equivalent Definition). A markdown policy is a decision tree (Ω, x)
such that it holds that x(v1) ≥ x(v2) ≥ ... ≥ x(vk) for any v = (v1, ..., vk) ∈ Ω.

We next introduce some standard terminologies for decision trees, in case the reader is not familiar
with graph theory.

Definition 21 (Decision Tree Basics). Let A = (Ω, x) be a decision tree and v, w ∈ Ω.

i). We say v is a leaf if there does not exist w ∈ Ω with v ≺ w.

ii). The depth d(v) of v is defined to be the length of binary vector v. Denote L(Ω) ⊆ Ω the
subset of all leaves. Each node in Ω\L(Ω) is called an internal node.
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iii). We say w is an ancestor of v if w ≺ v. If in addition, d(v) = d(w) + 1, then we say w is
the parent of v and denote w = par(v), and say v is a child of w.

iv). A decision tree is binary if every internal has exactly two children.

Given a binary decision tree, every reward function induces a natural probability measure over the
leaves. In fact, consider a random walk from the root to a random leaf, where at each internal node
v, the walk moves to each of the two children with probability R(xv) and 1− R(xv) respectively,
corresponding to whether there is a unit demand in this round. We formally define this probability
measure below.

Definition 22 (Probability Measure on Leaves). Let (Ω, x) be a decision tree and R : [0, 1]→ [0, 1].
Write L = L(Ω). For each ` = (`1, ..., `d) ∈ L, define

pR(`) =

d∏
j=1

R
(
x(`j)

)`j · (1−R (x(`j)
))1−`j

The probability measure PR on (L, 2L) is then given by PR(S) =
∑
`∈S pR(`) for each S ⊆ L. We

also define ER to be the expectation under the probability measure PR.

All of our lower bounds rely upon the following lower bound of the sample complexity for distin-
guishing between two demand models using an adaptive classifier, due to Wald and Wolfowitz [18].
Intuitively, an adaptive classifier is an algorithm that adaptively collects samples at possibly different
prices from a fixed but unknown demand model, until certain stopping criterion is satisfied, wherein
the algorithm returns one demand model from a set of two candidates R and B (referred to as “red”
and “blue”). We first formally define the confidence of a classifier.

Definition 23 (Adaptive Classifier). Consider functions R,B : [0, 1] → [0, 1]. Let (Ω, x) be a
decision tree and f : L(Ω)→ {R,B} be a mapping. The tuple (Ω, x, f) is then called an adaptive
classifier for R and B. Moreover, given α, β ∈ [0, 1], an adaptive classifier (Ω, x, f) is called
(α, β)-confident if PR

(
f−1(R)

)
≥ α and PB

(
f−1(R)

)
≤ β.

We may also refer to PR
(
f−1(B)

)
and PB

(
f−1(R)

)
as the type I and type II error. Then, an

adaptive classifier is (α, β)-confident if and only if the type I and type II errors are at most 1− α and
β respectively.

The following key result states that any adaptive classifier achieving a given confidence level must
query at least a certain number of samples in expectation.

Theorem 11 ([18]). Consider R,B : [0, 1] → [0, 1] and an (α, β)-confident adaptive classifier
(Ω, x, f). Denote ∆(R,B) = maxv∈Ω KL

(
R(xv), B(xv)

)
and let D(`) be the depth of leaf ` ∈

L(Ω). Then,

ER[D] ≥
α log α

β + (1− α) log 1−α
1−β

∆(R,B)
and EB [D] ≥

β log β
α + (1− β) log 1−β

1−α
∆(B,R)

. (15)

For example, when α = 3
4 , β = 1

4 , the above becomes 1
∆(R,B) and 1

∆(B,R) respectively, and the
lower bounds scale inverse proportionally to the KL-divergence.

C.2 Zero-Dimensional Family

We will use the contrapositive of Theorem 11.

Corollary 2. Let R,B : [0, 1]→ [0, 1], α, β ∈ [0, 1] be constants. Suppose (Ω, x, f) be an (α′, β′)-
confident adaptive classifier for R and B with β′ ≤ β, such that at least one of the following holds:

(i) ER[D] <
α log α

β+(1−α) log 1−α
1−β

∆(R,B) ,

(ii) EB [D] <
β log β

α+(1−β) log 1−β
1−α

∆(B,R) .
Then, α′ ≤ α.
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In particular, we will choose α = 3
4 and β = Õ(T−1/2) on a suitably constructed adaptive classifier.

In this case, the above corollary says that if an adaptive classifier has type II error Õ(T−1/2) and, in
addition, at least one of ER[D] and EB [D] is O(

√
T ), then the type I error is at least 1

4 which, as we
will soon see, leads to high regret.

Consider the family of linear demand function F = {D(p; θ) : θ ∈ [1, 2]} where D(p; θ) = 1− θp
for any p ∈ [0, 1]. We leave it to the reader to verify that d(F) = 1. We will apply Corollary 2 on the
following pairs of demand functions. LetR(p) = 1−p, whose optimal price is p∗R = 1

2 . We construct

a blue demand function for each fixed t ∈ [T ]. Let ∆t =
√

log T
t and define Bt(p) = 1− (1−2∆t)p.

Then, the optimal price of Bt is

p∗Bt =
1

2(1− 2∆t)
=

1

2
+ (1 + o (1)) ·∆t,

where the second equality follows since 1
1−ε = 1 + ε+ o(ε) as ε→ 0. It is straightforward then to

verify that the following.

Observation 1. If log T ≤ t <
√
T , then p∗R + ∆t ≤ p∗Bt ≤ p

∗
R + 2∆t.

The following lemma says that the KL-divergence from R(p) to B(p) is small at every price p, and
hence it is hard to distinguish between R and Bt.

Lemma 15. Let ∆(R,B) = maxp∈[0,1] KL (R(p), Bt(p)). Then, ∆(R,B) ≤ 16∆2
t .

Proof. Note that if X,Y are Bernoulli random variables with means q and q + δ respectively,
then KL(X,Y ) ≤

(
1
q + 1

1−q

)
· δ2. Note that by our construction, for any p ∈ [0, 1] we have

Bt(p), R(p) ≥ 1
2 and

Bt(p)−R(p) = (1− (1− 2∆t)p) = 2∆t · p− (1− p) ≤ 2∆t,

so KL (R(p), Bt(p)) ≤ 4 · (2∆t)
2 = 16∆2

t , and the proof is complete.

Subsequently, we will fix some t ∈ [log T,
√
T ) and denote B = Bt for simplicity. To apply

Corollary 2, consider the following adaptive classifier (Ωt, xt, ft). Let π = (Ω, x) be any markdown
policy where we recall that Ω are all the nodes of π when viewed as a decision tree, and x : Ω→ [0, 1]
represents the price selected at each node. Define Ωt to be the nodes in Ω with depth at most
t, and define xt = x|Ωt , i.e., the mapping x : Ω → [0, 1] restricted to Ωt. Moreover, define
ft : L(Ωt)→ {R,B} where

ft(`) =

{
B, if x(`) > p∗R + ∆t

2 ,

R, else.

For simplicity we will also denote f = ft. To apply Corollary 2, with some foresight we choose
α′ = PR[f−1(B)], β′ = PB [f−1(R)], α = 3

4 and β = T−1/2 log T .

Lemma 16. β′ ≤ β.

Proof. Suppose the true demand function isB and consider ` ∈ f−1(R). By definition of f , we know
that π selects a price lower than p∗B−∆t/2. Then, due to the markdown constraint, and by Observation
1, an Ω(∆2

t ) regret is incurred in each future round and hence the cumulative regret is Ω(β′∆2
tT ).

Thus, if π has O(log2 T ) regret, then β′∆2
tT ≤ log2 T, i.e., β′ ≤ t log T

T = T−1/2 log T = β.

Proof of Theorem 2. Suppose Reg(π;F) ≤ log2 T . To apply Corollary 2, we choose α′ =
PR[f−1(B)], β′ = PB [f−1(R)], α = 3

4 and β = T−1/2 log T . Then,

α log α
β + (1− α) log 1−α

1−β

∆(R,B)
=

16 log T

∆(R,B)
.
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Recall that in the adaptive classifier (Ωt, xt, ft), the depth D of every leaf is exactly t, so ER[D] = t.
Since t <

√
T , by Lemma 15 we obtain

ER[D] = t <
log T

∆2
t

≤ 16 log T

∆(R,B)
.

Moreover, by Lemma 16, we deduce that β′ ≤ β. Therefore by Corollary 2, we have α′ ≤ α, i.e.,
1− α′ ≥ 1− α = 1

4 . In other words,

PR[f−1(B)] = PR[xt ≥ p∗R +
∆t

2
] ≥ 1

4
.

We conclude the proof by analyzing the regret in round t. Observe that by definition of R, for
any p ≥ p∗R +

∆2
t

2 we have R(p) ≤ R(p∗R) −∆2
t . Hence, the expected regret in round t is at least

1
4 ·∆

2
t = log T

4t . Finally, note that the above argument holds for all t ∈ [log T, T 1/2), we have

Reg(π,R) ≥

√
T−1∑

t=log T

log T

4t

=
log T

4
·

√T−1∑
t=1

1

t
−

log T∑
t=1

1

t


= Ω(log2 T )−O(log T · log log T ) = Ω(log2 T ),

and the proof is complete.

C.3 Finite-Dimensional Family

We first describe intuition behind the proof (see Figure 3). For each d we construct a pair of demand
functions Db, Dr on price space [0, 1] with Db(1) = Dr(1). Moreover, price 1 is the unique optimal
price of Db and suboptimal for Dr. Since the gap between these two demand functions is very small
near price 1, to distinguish between them the policy has to reduce explore prices sufficiently lower
than 1. However, if it reduces the price by too much, a high regret is incurred under Db since its
optimal price is at 1.

Figure 3: Illustration of Lemma 17.

We now sketch the proof at a high level before presenting the details. Consider a policy π. Choosing
a suitable small number h > 0, we convert π into an adaptive classifier for Dr and Db, based on
whether the price in round T

4 is higher than 1− h. We first argue that if π admits low regret, then this
adaptive classifier must be (Ω(1), O(1))-confident, otherwise an Ω(h2T ) regret is incurred. Then
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by Theorem 11, to distinguish between Dr and Db, π has to select prices in [1− h, h] for Ω(h−2d)
rounds in expectation, incurring Ω(h−2d · T ) regret under Rr.

Now we formalize the above ideas. We first explicitly construct a pair of degree-d polynomial demand
functions that are hard to distinguish between.

Lemma 17. For any d ≥ 1, there exists a pair Dr, Db of degree-d polynomial demand functions
satisfying the following properties.
(1) Monotonicity: Both are non-increasing on [ 1

2 , 1],
(2) First-Order Optimality: Denote Ri(x) = x · Di(x) for i ∈ {r,b}. Then, the maximum of
Rb(x) is attained at x = 1. Moreover, R′b(1) = 0,
(3) Interior Optimal Price: The function Rr is maximized at some price x ∈ [0, 1

2 ],
(4) Hardness of Testing: Let Gap(h) = maxx∈[1−h,1]{|Dr(x)−Db(x)|}, then Gap(h) ≤ O(hd)

as h→ 0+. In particular, this implies that Rb(1) = Rr(1).

Proof. The proof involves explicit construction of the desired families of demand functions. In the
next two subsections, we consider the case d = 1 and d ≥ 2 separately.

Step 1. Suppose d = 1. Let pmin = 1
2 , pmax = 1. Consider the demand functions

Db(1− h) = 1 + h, Dr(1− h) = 1 + 5h.

Equivalently, substituting x = 1− h, we have

Db(x) = 2− x, Dr(x) = 6− 5x.

Let us verify each of the four conditions in Lemma 17:
(1) both curves are clearly strictly decreasing.
(2) R0(x) = x(2 − x), so R′0(x) = 2 − 2x. So its unique local maximum is attained at x = 1.
Moreover, R′′0 (1) = −2 < 0.
(3) R′1(x) = 6− 10x, so R1 attains maximum at x = 3

5 .
(4) |Db(1− h)−Dr(1− h)| = 4− 4h = O(h).

Step 2. Suppose d ≥ 2. In this case, consider the following two demand functions:

Db(M − h) = 1 + h+ bhd, Dr(M − h) = 1 + h+ rhd,

defined on the interval [0,M ] where M will be chosen to be some large number soon. The proof then
follows by replacing h with Mh, hence re-scaling the domain to [0, 1].

We first verify some trivial properties. Note that Db(1− h)−Dr(1− h) = (r − b)hd, so the gap
between these two demand functions around price M is on the order of O(hd), and hence the last
condition is satisfied.

We next verify that when b = M−d, the function Rb(x) attains maximum at x = M , formally, for
any d ≥ 2, it holds R̄b(h) ≤M for any h ∈ [0,M ]. To show this, observe that

R̄b(h) ≤M ⇐⇒ M − 1

M
h2 +

(
h

M

)d
(M − h) ≤M

⇐⇒
(
h

M

)d
(M − h) ≤ 1

M
h2

⇐⇒
(
h

M

)d−1

(M − h) < h.

To show the above holds for all h ∈ [0,M ], we rescale h by setting h = ρM , where ρ ∈ [0, 1]. Then,
the above becomes (

ρM

M

)d−1

(M − ρM) < ρM,

i.e. ρd−2(1− ρ) < 1, which clearly holds for all ρ ∈ [0, 1] when d ≥ 2.

We finally verify that maximum of Rr(x) is attained in the interior of [0,M ]. First note that
Rr(0) = 0 and Rr(M) = 1, so it suffices to show that maxx∈[0,M ]Rr(x) > 1. To this aim, note that
Rr(M − h)−Rb(M − h) = (r − b)hd, and the proof follows.
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It will be convenient for the proof to only consider policies represented by trees where the node prices
never change after T2 .

Lemma 18 ([9]). For any markdown policy A, there is a policy B which makes no price change after
T
2 such that Reg(B, R) ≤ 2 · Reg(A, R) for any Lipschitz reward function R.

Thus by losing a constant factor in regret, we may consider only policies with no price changes
after T2 . We first construct an adaptive classifier (Ω′, x′, f ′) as follows. With some foresight choose
h = T−

1
2d+2 . Let Ω′ = {v ∈ Ω : d(v) ≤ T

4 , and x(v) ≥ 1 − h}, and x′ = x|Ω′ . Define
f : Ω′ → {R,B} as

f ′(`) =

{
B, if x(`) > 1− h,
R, else.

Recall that (Ω′, x′, f ′) is (α, β)-confident if Pb(f−1(R)) ≤ α and Pr(f
−1(B)) ≥ β. We first show

that if π has the target regret, then (Ω′, x′, f ′) has to be ( 1
3 ,

2
3 )-confident. Formally, we have the

following lemma.

Lemma 19. If Reg(π,F) ≤ 1
4T

d
d+1 , then (Ω′, x′, f ′) is ( 1

3 ,
2
3 )-confident.

Proof. For contradiction, suppose (Ω′, x′, f ′) is not ( 1
3 ,

2
3 )-confident. Then there are two cases. Let

N(a, b) be the number of rounds the policy selects prices from the interval [a, b].

• First suppose PR[f−1(B)] = PR[x
(
T
4

)
> 1 − h] > 1

3 , then Reg(π,R) ≥ T
4 ·

1
3 = T

12 >
1
4T

d
d+1 , a contradiction.

• Now suppose PB [f(L) = R] = PB [x
(
T
4

)
≤ 1− h] > 1

3 . Note that R′B(1) = 0, so at least
h2 regret is incurred in each remaining round. Since there are T

4 rounds remaining, the total
regret in this case is at least h2 · T4 = 1

4T
d
d+1 , a contradiction.

By Theorem 11 and noting that KL(Rr(x), Rb(x)) ≤ h2d, we immediately obtain the following.
Recall that D(`) is the level of a leaf ` ∈ L(Ω′).

Lemma 20. Suppose (Ω′, x′, f ′) is ( 1
3 ,

2
3 )-confident, then ER[D] = Ω(h−2d).

Note that the regret per round in [1 − h, 1] under Dr is Ω(1), thus for any policy π with O(T
d
d+1 )

regret, by Lemma 19 and 20,

Reg(π,R) ≥ ER[N(1− h, h)] · Ω(1) ≥ h−2d · Ω(1) = Ω(T
d
d+1 ),

and Theorem 4 follows.

C.4 Infinite-Dimensional Family

We next show Theorem 6. The proof uses similar idea as in the lower bound proof in [9]. However,
for each s ≥ 2 we need to construct an s-sensitive family of demand functions.

We consider the following s-sensitive family of unimodal reward curves. With some foresight, choose
h = T−

1
3s+1 and for simplicity assume m := 1

h is an even integral. Consider the following S-shaped
curves (or S curves) and bow-shaped curves (or B curves) as defined as follows. First Define a
decreasing sequence xi = 1− (2i− 1)h for i = 1, ..., m2 . Each pair of curves Bi, Si are defined in
the interval [xi − h, xi + h] (see Figure 4) such that

Bi(xi + ξ) = yi − |ξ|s, ∀ξ ∈ [−h, h],

and

Si(xi + ξ) =

{
yi + |ξ|s, if ξ ∈ [−h, 0],

yi − |ξ|s, if ξ ∈ [0, h],
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xi − h xi + hxi

Figure 4: Bow-shaped (blue) and S-shaped (red) reward curves

where yi = 1
2 + 2ihs.

Now we construct the reward function Ri using these gadgets. Loosely, for i = 1, ..., m2 , Ri is
a concatenation of (i − 1) consecutive S-curves from right to left, followed by one B curve, and
finally a curve extending downwards the left portion of B until reaching the x-axis. Formally for any
i = 1, ..., m2 ,

Ri(x) =


Sj(x), if x ∈ [xj − h, xj + h] for j ≤ i− 1,

Bi(x), if x ∈ [xi − h, xi + h],

shs−1x+
(
yi − hs − shs−1 (xi − h)

)
if x ≤ xi − h.

Finally, we need a special reward function R0, that consists only of S-curves on [ 1
2 , 1], and extends

upwards when the prices moves below 1
2 , analogous to the construction to the roof curves in the lower

bound proof in [9]. Formally,

R0(x) =

{
Rm

2
(x), if x ≥ 1/2,

ym
2

+ (xm
2
− x)s, if x ∈ [0, 1/2].

The lower bound is again showed using Theorem 11. Our proof is similar to that of Theorem 3 in
[9] and we will only sketch the proof. Fix an arbitrary i ∈ [m] and consider Ri We first show that if
π has O(T

2s+1
3s+1 ) regret, then π is able to distinguish between R0 and Ri with constant confidence

level (more precisely, a suitable adaptive classifier is (Ω(1), O(1))-confident). Suppose Ri is the
true reward function and π has an Ω(1) probability of mistakenly returning R0 as the true curve. In
other words, with Ω(1) probability, reduces the price below xi − h, incurring an Ω(hs) regret in each
remaining round. This leads to an Ω(hsT ) = Ω(T

2s+1
3s+1 ) cumulative regret, a contradiction.

We next show that the expected number of rounds in [xi − h, xi + h] is Ω(h−2s). Note that R0 and
Ri are identical on [xi, 1], where no progress can be made towards distinguishing between Ri and
R0. Since the maximum KL divergence on [xi − h, xi + h] is O(h2s), by Theorem 11, Ω(h−2s)
samples are necessary in expectation assuming the policy π is able to distinguish between these two
reward functions.

Finally, since the above argument holds for every i ∈ [m], we have

Reg(π,R0) ≥ Ω(h−2s) ·m = Ω(h−1−2s) = T
2s+1
3s+1 ,

and the proof follows.
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