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ABSTRACT

In sparse optimization, enforcing hard constraints using the ℓ0 pseudo-norm of-
fers advantages like controlled sparsity compared to convex relaxations. However,
many real-world applications (e.g., portfolio optimization) demand not only spar-
sity constraints but also some extra constraint (such as limit of budget). While
prior algorithms have been developed to address this complex scenario with
mixed combinatorial and convex constraints, they typically require the closed
form projection onto the mixed constraints which might not exist, and/or only
provide local guarantees of convergence which is different from the global guar-
antees commonly sought in sparse optimization. To fill this gap, in this paper,
we study the problem of sparse optimization with extra support-preserving con-
straints commonly encountered in the literature. We present a new variant of
iterative hard-thresholding algorithm equipped with a two-step consecutive pro-
jection operator customized for these mixed constraints, serving as a simple al-
ternative to the Euclidean projection onto the mixed constraint. By introducing a
novel trade-off between sparsity relaxation and sub-optimality, we provide global
guarantees in objective value for the output of our algorithm, in the determinis-
tic, stochastic, and zeroth-order settings, under the conventional restricted strong-
convexity/smoothness assumptions. As a fundamental contribution in proof tech-
niques, we develop a novel extension of the classic three-point lemma to the con-
sidered two-step non-convex projection operator, which allows us to analyze the
convergence in objective value in an elegant way that has not been possible with
existing techniques. Finally, we illustrate the applicability of our method on sev-
eral sparse learning tasks.

1 INTRODUCTION

In sparse optimization, directly enforcing sparsity with the ℓ0 pseudo-norm has several advantages
over its convex relaxation counterpart. In compressive sensing for instance (Foucart & Rauhut,
2013), one may seek to recover an unknown vector, which sparsity level is known to be at most
k. Similarly, in portfolio optimization, due to transaction costs, one may seek to ensure hard con-
straints on the maximum number of assets invested in (Brodie et al., 2009; DeMiguel et al., 2009).
However, in several use cases, one may also seek to enforce additional constraints, such as, for in-
stance, a budget constraint in the case of portfolio optimization, which can be enforced through an
extra ℓ1 constraint, as in Takeda et al. (2013). As another example, in sparse non-negative matrix
factorization, when estimating the hidden components, one seeks to enforce at the same time a norm
constraint and a sparsity constraint Hoyer (2002). The problem of ℓ0 empirical risk minimization
(ERM) with additional constraints can be formulated as follows, where R is an empirical risk func-
tion, Γ ⊆ Rd denotes a convex constraint set, and ∥ · ∥0 denotes the ℓ0 pseudo-norm (number of
non-zero components of a vector):

min
w∈Rp

R(w), s.t. ∥w∥0 ≤ k and w ∈ Γ. (1)

In the literature, several algorithms have been developed to address such a problem with mixed con-
straints, but they typically require the existence of a closed form for the projection onto the mixed
constraint, and/or their convergence guarantees are only local, which makes it difficult to estimate
the sub-optimality of the output of the algorithm. More precisely, on one hand, some works provide
convergence analyses for variants of a (non-convex) projected gradient descent, explicitly for mixed
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sparse constraints (Metel, 2023; Pan et al., 2017; Lu, 2015; Beck & Hallak, 2016), or for general
proximal terms (which encompasses our mixed constraints) (Frankel et al. (2014); Xu et al. (2019b);
Attouch et al. (2013); De Marchi & Themelis (2022); Yang & Yu (2020); Gu et al. (2018); Yang &
Li (2023); Bolte et al. (2014); Boţ et al. (2016); Xu et al. (2019a); Li & Lin (2015)), but such anal-
yses are only local. On the other hand, several existing works on Iterative Hard Thresholding (IHT)
provide global guarantees on sub-optimality gap (Jain et al., 2014; Nguyen et al., 2017; Li et al.,
2016; Shen & Li, 2017; de Vazelhes et al., 2022), but they do not apply to the mixed constraint
case we consider. In between the two approaches, one can also find Barber & Ha (2018) andLiu &
Foygel Barber (2020) which give global guarantees for general non-convex constraints or projection
operators, but which do not provide explicit convergence guarantees for the particular mixed con-
straint setting that we consider: their rates depend on some constants (the relative concavity or the
local concavity constant) for which, up to our knowledge, an explicit form is still unknown for the
mixed constraints we consider. We present a more detailed review of related works in Appendix B,
and an overview of them in Table 1. To fill this gap, we focus on solving problem 1 in the case
where Γ belongs to a general family of support-preserving sets, which encompasses many usual
sets encountered in the literature. As will be described in more detail in Section 2, such sets are
convex sets for which the projection of a k-sparse vector onto them gets its support preserved, such
as for instance ℓp norm balls (for p ≥ 1), or a broader family of sign–free convex sets described for
instance in Lu (2015); Beck & Hallak (2016).

Adapted to the properties of such constraints, we propose a new variant of IHT, with a two-step
projection operator, which, as a first step, identifies the set S of coordinates of the top k components
of a given vector and sets the other components to 0 (hard-thresholding), and as a second step
projects the resulting vector onto Γ. This two-step projection can offer a simpler alternative to
Euclidean projection onto the mixed constraint in the cases where there is a closed form for the
latter projection, and handle the cases where there is not. We then provide global sub-optimality
guarantees without system error for the objective value, for such an algorithm as well as its stochastic
and zeroth-order variants, under the restricted strong-convexity (RSC) and restricted smoothness
(RSS) assumptions, in Theorems 1, 2, and 3. Key to our analysis is a novel extension of the three-
point lemma to such non-convex setting with mixed constraints, which also allows, as a byproduct,
to simplify existing proofs of convergence in objective value for IHT and its variants. In the zeroth-
order case, such technique also allows to obtain, up to our knowledge, the first convergence in
risk result without system error for a zeroth-order hard-thresholding algorithm. Additionally, our
results highlight a compromise between sparsity and sub-optimality gap specific to the additional
constraints setting: through a free parameter ρ, one can obtain smaller upper bounds in terms of risk
but at the cost of relaxing further the sparsity level of the iterates, or, alternatively, enforce sparser
iterates but at the cost of a larger upper bound on the risk.

Finally, we illustrate the applicability of our method on several sparse learning tasks, namely index
tracking for portfolio selection, multiclass logistic regression, and adversarial attacks.

Contributions: We summarize the main contributions of our paper as follows:

1. We present a variant of IHT to solve hard sparsity problems with additional support-
preserving constraints, using a novel two-step projection operator.

2. We describe a novel extension of the three-point lemma to such constraint which allows to
simplify existing proofs for IHT and to provide global convergence guarantees in objective
value without system error for the algorithm above, in the RSC/RSS setting, highlighting
a novel trade-off between sparsity of iterates and sub-optimality gap in such mixed con-
straints setting.

3. We extend the above algorithm to the stochastic and zeroth-order optimization settings,
obtaining similar global convergence guarantees in objective value (without system error)
for such mixed constraints setting. In the zeroth-order case, this also provides, up to our
knowledge, the first convergence result in objective value without system error for a zeroth-
order hard-thresholding algorithm (with or without extra constraints).
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Table 1: Comparison of results for Iterative Hard Thresholding with/without additional constraints.
1 S: symmetric convex sets being sign-free or non-negative (Lu, 2015), A: sets verifying Assumption 3. 2 If a
paper reports both ∥w− w̄∥ and R(w)−R(w̄), we report only the latter. T̂ : time index of the w returned by
the method (e.g. T̂ = argmint∈[T ] R(wt) ). w̄: k̄-sparse vector in Γ. ∆: System error (term which depends
on the gradient at optimality (e.g. Ei∥∇Ri(w̄)∥, (see corresponding references))). 4: κs = Ls

νs
and κs′ =

Ls′
νs

(cf. corresponding refs. for defs. of s and s′). 3 SM: Lipschitz-smooth, D: Deterministic. S: Stochastic, Z:
Zeroth-Order, L: Lipschitz continuous.

Reference Γ1 Convergence2 k Setting3

Jain et al. (2014) Rd R(wT̂ ) ≤ R(w̄) + ε Ω(κ2
sk̄)

D, RSS,
RSC

Nguyen et al.
(2017) Rd E∥wT̂ − w̄∥ ≤ ε+O (∆) Ω(κ2

sk̄)
S, RSS,

RSC

Li et al. (2016) Rd ER(wT̂ ) ≤ R(w̄) + ε+O(∆) Ω(κ2
sk̄)

S, RSS,
RSC

Zhou et al. (2018) Rd ER(wT̂ ) ≤ R(w̄) + ε Ω(κ2
sk̄)

S, RSS,
RSC

de Vazelhes et al.
(2022) Rd E∥wT̂ − w̄∥ ≤ ε+O (∆) +O(µ) Ω(κ4

s′ k̄)
S, Z,
RSS’,
RSC

Lu (2015), Beck &
Hallak (2016) Γ ∈ S local convergence - D, SM

Metel (2023) ℓ∞ ball
around 0

local convergence - S, Z, L

IHT-TSP (Thm. 1) Γ ∈ A ⊃
S R

(
wT̂

)
≤ (1 + 2ρ)R(w̄) + ε Ω

(
κ2
sk̄
ρ2

) D, RSS,
RSC

HSG-HT-TSP
(Thm. 2)

Γ ∈ A ⊃
S ER(wT̂ ) ≤ (1 + 2ρ)R(w̄) + ε Ω

(
κ2
sk̄
ρ2

) S, RSS,
RSC

HZO-HT-TSP
(Thm. 3)

Γ ∈ A ⊃
S ER(wT̂ ) ≤ (1 + 2ρ)R(w̄)+ε+O(µ) Ω

(
κ2
s′ k̄

ρ2

) Z, RSS’,
RSC

HZO-HT (Thm. 6
in App. E.3.2) Rd E[R(wT̂ )−R(w̄)] ≤ ε+O(µ) Ω(κ2

s′ k̄)
Z, RSS’,

RSC

2 PRELIMINARIES

Throughout this paper, we adopt the following notations. For any w ∈ Rd, ΠΓ(w) denotes a
Euclidean projection of w onto Γ, that is ΠΓ(w) ∈ argminz∈Γ ∥w − z∥2, and wi denotes the i-th
component of w. B0(k) denotes the ℓ0 pseudo-ball of radius k, i.e. B0(k) = {w ∈ Rd : ∥w∥0 ≤ k},
with ∥ · ∥0 the ℓ0 pseudo-norm (i.e. the number of nonzero components of a vector). Hk denotes the
Euclidean projection onto B0(k), also known as the hard-thresholding operator (which keeps the k
largest (in magnitude) components of a vector, and sets the others to 0 (if there are ties, we can break
them e.g. lexicographically)). ∥ · ∥p denotes the ℓp norm for p ∈ [1,+∞), and ∥ · ∥ the ℓ2 norm
(unless otherwise specified). [n] denotes the set {1, ..., n} for n ∈ N∗. For any S ⊆ [d], |S| denotes
its number of elements. For any w ∈ Rd, supp(w) denotes its support, i.e. the set of coordinates of
its non-zero components. We will also need the following assumptions on R.
Assumption 1 ((νs, s)-RSC, Jain et al. (2014); Negahban et al. (2009); Loh & Wainwright (2013);
Yuan et al. (2017); Li et al. (2016); Shen & Li (2017); Nguyen et al. (2017)). R is νs restricted
strongly convex with sparsity parameter s, i.e. it is differentiable, and there exists a generic constant
νs such that for all (x,y) ∈ Rd with ∥x− y∥0 ≤ s:

R(y) ≥ R(x) + ⟨∇R(x),y − x⟩+ νs
2
∥x− y∥2

Assumption 2 ((Ls, s)-RSS, Jain et al. (2014); Li et al. (2016); Yuan et al. (2017)). R is Ls re-
stricted smooth with sparsity level s, i.e. it is differentiable, and there exists a generic constant Ls

such that for all (x,y) ∈ Rd with ∥x− y∥0 ≤ s:

R(y) ≤ R(x) + ⟨∇R(x),y − x⟩+ Ls

2
∥x− y∥2
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We then define the notion of support-preserving set that we will use throughout the paper. It essen-
tially requires that projecting any k-sparse vector w onto Γ preserves its support. That is, the convex
constraint Γ should be compatible to the sparsity level constraint ∥w∥0 ≤ k.
Assumption 3 (k-support-preserving set). Γ ⊆ Rd is k-support-preserving , i.e. it is convex and for
any w ∈ Rd such that ∥w∥0 ≤ k, supp(ΠΓ(w)) ⊆ supp(w).
Remark 1. Below we present some examples of usual sets that also verify Assumption 3 (see Ap-
pendix C for a proof of such statements):

• Elementwise decomposable constraints, such as box constraints of the form {w ∈ Rd :
∀i ∈ [d], li ≤ wi ≤ ui}.

• Group-wise separable constraints where the constraint on each group is k-support-
preserving (such as our constraints in Section 5 for the index tracking problem).

• Sign-free convex sets (Lu, 2015; Beck & Hallak, 2016) (def. in App. C), e.g. ℓq norm-balls.

3 DETERMINISTIC CASE

3.1 ALGORITHM

Γ

×w

×
Π̄k

Γ(w)
×Hk(w)

Figure 1: Support-preserving set and
two-step projection (d = 2, k = 1).

Two-step projection In all the algorithms of this pa-
per, we will make use of a two-step projection operator
(TSP), which is different in general from the usual Eu-
clidean projection (EP), in order to obtain, from an arbi-
trary vector w ∈ Rd, a vector in w ∈ B0(k)∩Γ. We con-
sider such a TSP instead of EP since it enables the deriva-
tion a variant of three-point lemma (Lemma 1) which can
handle our specific non-convex mixed constraints, and is
key to obtaining the convergence analyses we present in
Sections 3 and 4. In addition, the TSP can be more intu-
itive and efficient to implement than EP (see App. F.2 for
more discussions about TSP vs EP). The TSP procedure,
which we denote by Π̄k

Γ, is as follows: we first project w
onto B0(k) through the hard-thresholding operator Hk,
to obtain a k-sparse vector vk = Hk(w). Then, we
project vk onto Γ , to obtain a final vector wS = ΠΓ(vk),
where S = supp(vk). Note that consequently, the ob-
tained wS is not necessarily the EP of w onto B0(k) ∩ Γ, that is, we do not necessarily have
wS = ΠB0(k)∩Γ(w). However, when Assumption 3 is verified, we have wS ∈ B0(k) ∩ Γ (since,
because of Assumption 3, supp(wS) ⊆ supp(vk) and hence ∥wS∥0 ≤ ∥vk∥0 ≤ k), therefore each
iteration remains feasible in the constraint. We illustrate such a two-step projection on Figure 1.

We now present our full algorithm in the case where R is a deterministic function without further
knowledge of its structure. It is similar to the usual (non-convex) projected gradient descent algo-
rithm, that is, a gradient update step followed by a projection step, except that instead of projecting
onto Γ ∩ B0(k) using the Euclidean projection, we obtain a vector wk ∈ Γ ∩ B0(k) through the
two-step projection method described above. We describe the algorithm in Algorithm 1 below.

Algorithm 1: Deterministic IHT with extra constraints (IHT-TSP)
Input: w0: initial value, η: learning rate, T : number of iterations
for t = 1 to T do

wt ← Π̄k
Γ(wt−1 − η∇R(wt−1));

end
Output: wT

Remark 2. In the case where Γ is a symmetric sign-free convex set (we refer to Lu (2015) for the
definition of such sets, which include for instance any ℓp norm constraint set for p ∈ [1,+∞) ),
then the two-step projection is the closed form of an Euclidean projection onto the mixed constraint
Γ ∩ B0(k) (see Theorem 2.1 from Lu (2015)). Therefore, in such cases, Algorithm 1 is identical to
a vanilla (non-convex) projected gradient descent algorithm (for which up to now there was still no
global convergence guarantees in such a mixed constraints setting in the literature).
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3.2 CONVERGENCE ANALYSIS

Before proceeding with the convergence analysis, we first present below a variant of the usual three-
point lemma, which plays a key role in the proof. The three-point lemma is usually used in the proofs
for projected gradient descent in the convex setting. However, due to the non-convexity of the ℓ0
pseudo-ball, such proofs cannot apply, and to provide convergence in risk, some complex work-
arounds are often taken via careful consideration of the sizes of the support of the iterates, such as in
the proofs of Jain et al. (2014) or Zhou et al. (2018). However, such a modified three-point lemma
below allows to obtain simpler proofs in such non-convex setting, remaining very close to usual
convex optimization proofs, while also being able to take into account the additional constraint,
which is important in our problem setting. More specifically, the common three-point lemma for a
projection onto a convex set E relates the distance between a point w ∈ Rd, its projection ΠE(w),
and any vector w̄ from the set E , through the relation ∥w−w̄∥2 ≥ ∥ΠE(w)−w∥2+∥ΠE(w)−w̄∥2.
However, in our case, our lemma relates together the four points involved in the two step projection
(w ∈ Rd, Hk(w), Π̄k

Γ(w), and w̄ ∈ Γ ∩ B0(k) ), and additionally, it contains a constant β which
takes into account the sparsity level k enforced in the algorithm and the sparsity k̄ (< k) of a
reference point w̄ (see e.g. Liu & Foygel Barber (2020) for a discussion regarding k and k̄).
Lemma 1 (Constrained ℓ0-Three-Point, proof in App. D.1). Suppose that Assumption 3 holds. Con-
sider w, w̄ ∈ Rp with ∥w̄∥0 ≤ k̄ and w̄ ∈ Γ. Then the following holds for any k > k̄, with β := k̄

k :

∥Π̄k
Γ (w)−w∥2 ≤ ∥w − w̄∥2 − ∥Π̄k

Γ (w)− w̄∥2 +
√

β∥Hk(w)− w̄∥2.

In the case where Γ = Rd, we have Π̄k
Γ (w) = Hk(w), and we can observe that if k ≫ k̄,

β tends to 0, and therefore we approach the usual three-point lemma from convex optimization.
This is coherent with the literature on IHT, in which relaxing the sparsity degree (i.e. considering
some k ≫ k̄) is known to make the problem easier to solve (we refer the reader to references in
Appendix B.2 for more details). Equipped with such lemma, we can now present the convergence
analysis of Algorithm 1 below, using the assumptions from Section 2, and we will describe how
the results give rise to a trade-off between the sparsity of the iterates and the tightness of the sub-
optimality bound, specific to our mixed constraints setting.
Theorem 1 (Proof in App. D.2). Suppose that Assumption 1, 2, and 3 hold, and that R is non-
negative (without loss of generality). Let s = 2k, η = 1

Ls
, and w̄ be an arbitrary k̄-sparse vector.

Let ρ ∈ (0, 1
2 ] be an arbitrary scalar. Suppose that k ≥ 4(1−ρ)2L2

s

ρ2ν2
s

k̄. Then for any ε > 0, for

T ≥
⌈
Ls

νs
log
(

(Ls−νs)∥w0−w̄∥2

2ε(1−ρ)

)⌉
+ 1 = O(κs log(

1
ε )), the iterates of IHT-TSP satisfy

min
t∈[T ]

R (wt) ≤ (1 + 2ρ)R(w̄) + ε.

Further, if w̄ is a global minimizer of R over B0(k) := {w : ∥w∥0 ≤ k}, then, with ρ = 0.5 in the
expressions of k and T above: mint∈[T ] R (wt) ≤ R(w̄) + ε.

Proof Sketch. Our proof starts by deriving a novel convergence proof for IHT in the case where
Γ = Rd (Theorem 4 in Appendix), greatly simplifying the one from Jain et al. (2014) (Proof of Thm.
1 in App. B.1), and much closer to usual constrained convex optimization proofs. Using the Ls-RSS
of R and some algebraic manipulations, and denoting gt = ∇R(wt) and vt := Hk(wt−1− 1

Ls
gt−1)

(= wt when Γ = Rd), we have:

R(vt) ≤ R(wt−1) +
Ls

2
∥vt −wt−1 +

1

Ls
gt−1∥2 −

1

2Ls
∥∇R(wt−1)∥2

(a)

≤R(wt−1) +
Ls

2
∥w̄ −wt−1 +

1

Ls
gt−1∥2 −

Ls

2
(1−

√
β)∥vt − w̄∥2 − 1

2Ls
∥∇R(wt−1)∥2

(b)

≤R(w̄) +
Ls − νs

2
∥wt−1 − w̄∥2 − Ls

2
(1−

√
β)∥vt − w̄∥2, (2)

where in (a) we used our new ℓ0-three-point lemma (Lemma 3 in App. D.1.1), and in (b) we used
the RSC of R with some rearrangements. At that stage, the proof for Theorem 4 can be concluded
with telescopic sum arguments. To obtain the proof for general Γ (i.e. Theorem 1), we reiterate the
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above process but instead of Lemma 3 we use our more general Lemma 1, adapted to general Γ and
to our two-step projection technique, to obtain:

R(wt) ≤ R(w̄) +
Ls − νs

2
∥wt−1 − w̄∥2 − Ls

2
∥wt − w̄∥2 + Ls

2

√
β∥vt − w̄∥2. (3)

Finally, taking a convex combination of equations 2 ( ×ρ) and 3 (×(1 − ρ)) for ρ ∈ (0, 0.5], using
the bound ∥wt− w̄∥2 ≤ ∥vt− w̄∥2 (non-expansiveness of convex projection onto Γ), and carefully
tuning k depending on ρ (resulting in our final trade-off between sparsity and optimality), we can
fall back to a telescopic sum and conclude the proof.

Remark 3. Theorem 1 therefore provides a global convergence guarantee in objective value. How-
ever, contrary to usual guarantees for IHT algorithms under RSS/RSC conditions (which are bounds
of the form R(wt) ≤ R(w̄)+ ε for some t) , our bound is of the form R (wt) ≤ (1+ 2ρ)R(w̄)+ ε.
There is a trade-off about the choice of ρ ∈ (0, 0.5]. On one hand, ρ→ 0 is preferred in view of the
RHS of above bound. On the other hand, the sparsity-level relaxation condition k ≥ 4(1−ρ)2L2

s

ρ2ν2
s

k̄

prefers ρ→ 0.5. We illustrate such a trade-off on some synthetic experiments in Section F.5.

4 EXTENSIONS: STOCHASTIC AND ZEROTH-ORDER CASES

In this section, we provide extensions of Algorithm 1 to the stochastic and zeroth-order sparse opti-
mization problems, and provide the corresponding convergence guarantees in objective value with-
out system error.

4.1 STOCHASTIC OPTIMIZATION

In this section, we consider the previous risk minimization problem, in a finite-sum setting, i.e.
where R(w) = 1

n

∑n
i=1 Ri(w), similarly to Zhou et al. (2018); Nguyen et al. (2017): in such case,

stochastic algorithms allow to deal more easily with large-scale datasets where estimating the full
∇R(w) is expensive.

4.1.1 ALGORITHM

We describe the stochastic variant of our previous Algorithm 1 in Algorithm 2 below, which is an
extension of the algorithm from Zhou et al. (2018), to the considered mixed constraints problem
setting, using our two-step projection. More precisely, we approximate the gradient of R by a mini-
batch stochastic gradient with a batch-size increasing exponentially along training, and following
the gradient step, we apply our two-step projection operator.

Algorithm 2: Hybrid Stochastic IHT with Extra Constraints (HSG-HT-TSP)
Input: w0: initial point, η: learning rate, T : number of iterations, {st}: mini-batch sizes.
for t = 1 to T do

Uniformly sample st indices St from [n] without replacement ;
Compute the approximate gradient gt−1 = 1

st−1

∑
it∈St

∇Rit(wt−1)

wt = Π̄k
Γ(wt−1 − ηgt−1);

end
Output: ŵT = argminw∈{w1,...,wT } R(w).

4.1.2 CONVERGENCE ANALYSIS

Before proceeding with the convergence analysis, we make an additional assumption on the popula-
tion variance of the stochastic gradients, similar to the one in Mishchenko et al. (2020).
Assumption 4 (Bounded stochastic gradient variance). For any w, the population variance of the
gradient estimator is bounded by B:

1

n

n∑
i=1

∥∇Ri(w)−∇R(w)∥2 ≤ B.
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We now present our convergence analysis below:

Theorem 2 (Proof in App. E.1). Suppose that Assumptions 1 2, 3 and 4 hold, and that R is non-
negative (without loss of generality). Let s = 2k. Let w̄ be an arbitrary k̄-sparse vector. Let C
be an arbitrary positive constant. Assume that we run HSG-HT-TSP (Algorithm 2) for T timesteps,
with η = 1

Ls+C , and denote α := C
Ls

+ 1 and κs := Ls

νs
. Suppose that k ≥ 4α2 1

ρ2κ
2
sk̄ for some

ρ ∈ (0, 1). Finally, assume that we take the following batch-size: st :=
⌈

τ
ωt

⌉
with ω := 1− 1

4α 1
ρκs

and τ := ηB
C . Then, we have the following convergence rate:

E min
t∈[T ]

R (wt)− (1 + 2ρ)R(w̄) ≤ 2
α2

ρ(1− ρ)
Lsκsω

T

(
∥w̄ −w0∥2 +

4

3

)
.

Further, if w̄ is a global minimizer of R over B0(k) := {w : ∥w∥0 ≤ k}, then, with ρ = 0.5:

E min
t∈[T ]

R (wt)−R(w̄) ≤ 8α2Lsκsω
T

(
∥w̄ −w0∥2 +

4

3

)
.

Corollary 1 (Proof in App. E.2.). Therefore, the number of calls to a gradient∇Ri (#IFO), and the
number of hard thresholding operations (#HT) such that the left-hand sides in Theorem 2 above are
smaller than some ε > 0, are respectively: #HT = O(κs log(

1
ε )) and #IFO = O

(
κs

νsε

)
.

4.2 ZEROTH-ORDER OPTIMIZATION

We now consider the zeroth-order (ZO) case (Nesterov & Spokoiny, 2017), in which one does not
have access to the gradient ∇R(w), but only to function values R(w), which arises for instance
when the dataset is private as in distributed learning (Gratton et al., 2021; Zhang et al., 2021) or the
model is private as in black-box adversarial attacks Liu et al. (2018), or when computing∇R(w) is
too expensive such as in certain graphical modeling tasks Wainwright et al. (2008). The idea is then
to approximate∇R(w) using finite differences. We refer the reader to Berahas et al. (2021) and Liu
et al. (2020) for an overview of ZO methods.

4.2.1 ALGORITHM

In this section, we describe the ZO version of our algorithm. At its core, it uses the ZO estimator
from de Vazelhes et al. (2022). We present the full algorithm in Algorithm 3, whereDs2 is a uniform
probability distribution on the following set B, which is the set of unit spheres supported on supports
of size s2 ≤ d: B = {w ∈ Rd : ∥w∥0 ≤ s2, ∥w∥2 ≤ 1}. We can sample from this set by first
sampling a random support of size s2, and then sampling from the unit sphere on that support. Note
that if we choose s2 := d, this estimator simply becomes the vanilla ZO estimator with unit-sphere
smoothing (Liu et al., 2020). Choosing s2 < d allows to avoid the full-smoothness assumption
and can reduce memory consumption by allowing to sample random vectors of size s2 instead of d.
We refer to de Vazelhes et al. (2022) for more details on such a ZO estimator. The difference with
de Vazelhes et al. (2022) (in addition to the mixed constraint setting and the use of the TSP) is that
in our case we sample an exponentially increasing number of random directions, which allows us to
obtain convergence in risk without system error (except the system error due to the smoothing µ).

Algorithm 3: Hybrid ZO IHT with Extra Constraints (HZO-HT-TSP)
Input: w0: initial point, η: learning rate, T : number of iterations, s2: size of the random

supports, {qt}: number of random directions.
for t = 1 to T do

Uniformly sample qt−1 i.i.d. random directions {ui}qt−1

i=1 ∼ Ds2 ;
Compute the approximate gradient gt = 1

qt−1

∑qt−1

i=1
d
µ (R(wt−1 + µui)−R(wt−1))ui

wt = Π̄k
Γ(wt−1 − ηgt−1);

end
Output: ŵT = argminw∈{w1,...,wT } R(w).
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4.2.2 CONVERGENCE ANALYSIS

Assumption 5 ((Ls, s)-RSS’, Shen & Li (2017); Nguyen et al. (2017)). R is Ls strongly restricted
smooth with sparsity level s, i.e. it is differentiable, and there exist a generic constant Ls such that
for all (x,y) ∈ Rd with ∥x− y∥0 ≤ s:

∥∇R(x)−∇R(y)∥ ≤ Ls∥x− y∥.
Note that if a function R is (Ls, s)-RSS’, then it is (Ls, s)-RSS.

Such assumption is often simply called restricted smoothness, but we name it strong restricted
smoothess to avoid any confusion with Assumption 2. Assumption 5 is slightly more restrictive
than Assumption 2, but it is necessary when working with ZO gradient estimators (see more details
in de Vazelhes et al. (2022)). We now present our main convergence theorem for the ZO setting.
Theorem 3 (Proof in App. E.3). Suppose that Assumptions 1, 3, and 5 hold, and that R is non-
negative (without loss of generality). Let s = 3k, and let w̄ be an arbitrary k̄-sparse vector. Let
s2 ∈ {1, ..., d}. Assume that R is (Ls′ , s

′)-RSS’ with s′ = max(s2, s), and νs-RSC. Denote κs :=
Ls′
νs

. Let C be an arbitrary positive constant, and denote εF := 2d
(s2+2)

(
(s−1)(s2−1)

d−1 + 3
)

, εabs :=

2dL2
s′ss2

(
(s−1)(s2−1)

d−1 + 1
)

, and εµ := L2
s′sd. Assume that we run HZO-HT-TSP (Algorithm 3)

for T timesteps, with η = 1
Ls′+C = 1

αLs′
, with α := C

Ls′
+ 1. Suppose that k ≥ 16α2

ρ2 κ
2
sk̄ for some

ρ ∈ (0, 1). Finally, assume that we take qt random directions at each iteration, with qt :=
⌈

τ
ωt

⌉
with ω := 1− 1

8 1
ρακs

and τ := 16κs
εF

(α−1) . Then, we have the following convergence rate:

E min
t∈[T ]

R(wt)− (1 + 2ρ)R(w̄) ≤ 4
α2

ρ(1− ρ)
Ls′κsω

T

(
∥w̄ −w0∥2 +

1

3

η∥∇R(w̄)∥2
κsLs′

)
+ Zµ2,

with Z = 1
1−ρ

(
εµ

(
2
νs

+ 1
C

)
+ εabs

C

)
. Further, if w̄ is a global minimizer of R over B0(k) :=

{w : ∥w∥0 ≤ k}, then, with ρ = 0.5:

E min
t∈[T ]

R (wt)−R(w̄) ≤ 16α2Ls′κsω
T

(
∥w̄ −w0∥2 +

1

3

η∥∇R(w̄)∥2
κsLs′

)
+ Zµ2.

Corollary 2 (Proof in App. E.4.). Additionally, the number of calls to the function R (#IZO), and
the number of hard thresholding operations (#HT) such that the left-hand sides in Theorem 3 above
are smaller than ε + Zµ2, for some ε > 0 are respectively: #HT = O(κs log(

1
ε )) and #IZO =

O
(
εF

κ3
sLs

ε

)
. Note that if s2 = d, we have εF = O(s) = O(k), and therefore we obtain a query

complexity that is dimension independent.
Remark 4. If Γ = Rd, we name the corresponding algorithm HZO-HT, and we provide the con-
vergence rate of HZO-HT in Theorem 6 in Appendix E.3.2, also recalled in Table 1. Such a result
is novel, and can be seen as an independent contribution illustrating the power of proof techniques
based on our three-point lemma. Up to our knowledge, it is the first global convergence guarantee
without system error for a zeroth-order hard-thresholding algorithm (see Table 1), and as such, is a
significant improvement over the result from de Vazelhes et al. (2022) .

5 EXPERIMENTS

Before describing our experiments, we provide a short discussion about the settings and algorithms
that we will illustrate. For constraints Γ for which the Euclidean projection onto B0(k) ∩ Γ has a
closed form equal to the TSP, our algorithm is identical to a vanilla non-convex projected gradient
descent baseline (see Remark 2). In such case, our contribution in this paper is on the theoretical
side, by providing some global guarantees on the optimization, instead of the local guarantees from
existing work (cf. Table 1). Additionally, there are case in which there exists a closed form for
projection onto Γ ∩ B0(k), different from the TSP (e.g. when Γ = Rd

+, cf. Lu (2015)). Although
our framework allows us to get approximate global convergence results when using the TSP, still,
at the iteration level, a gradient step followed by Euclidean projection (not TSP) is optimal, since it

8
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minimizes a constrained quadratic upper bound on R. Therefore, we may not expect much improve-
ment of the TSP over the Euclidean projection in such case, except on the computational side . For
these reasons, we illustrate cases where, up to our knowledge, there is no known closed form for
projection onto Γ∩B0(k), which we believe are the most interesting from the empirical perspective
(since no algorithm was about to deal with such cases before). We present below an experiment on
a real life index tracking use-case, and provide some extra experimental results in Appendix F, for
the settings of multi-class logistic regression as well as adversarial attacks.

Setting: Index tracking. We consider the following index tracking problem, originally presented
in Takeda et al. (2013), and used as well in Lu (2015); Beck & Hallak (2016). It is also similar to
the portfolio optimization problem presented in Kyrillidis et al. (2013). We seek to reproduce the
performance of an index fund (such as S&P500), by investing only in a few key k assets, in order to
limit transaction costs. The general problem can be formulated as a linear regression problem:

min
w∈B0(k)∩Γ

∥Aw − y∥2 (4)

Figure 2: Index Tracking with Sector
constraints

where w represents the amount invested in each asset.
For each i ∈ [n] denoting a timestep , the i-th row of A
denotes the returns of the d stocks at timestep i, and yi the
return of the index fund. In our scenario, we seek to limit
to a value D > 0 the amount of transactions in each of
c activity sector (group) of the portfolio (e.g. Industrials,
Healthcare, etc.), denoted as Gi for i ∈ [c]. We ensure
such constraint through an ℓ1 norm constraint on each
group: Γ = {w ∈ Rd : ∀i ∈ [c], ∥wGi

∥1 ≤ D}, where
wGi

is the restriction of w to group Gi (i.e. for j ∈ [d],
wGi j = wj if j ∈ Gi and 0 otherwise). In our case, y
denotes the daily returns of the S&P500 index from Jan-
uary 1, 2021, to December 31, 2022, and A the returns
of the corresponding d = 497 assets (over c = 11 sec-
tors) of the index during such period. We choose k = 15
and D = 50. We also apply our algorithms to additional
financial indices (CSI300 and HSI) in Appendix F.1.

Results. Up to our knowledge, there are no closed form for the Euclidean projection onto B0(k) ∩
Γ, but the two-step projection can easily be done by projecting onto the ℓ1 ball for each sector
independently. We compare our algorithm (FG-HT-TSP) to two naive baselines: (a) the first one.
called ”PGD(Γ) + finalΠB0

”, consists in only ensuring the constraints in Γ, followed at the end of
training by a simple hard-thresholding step to keep the k largest components of w in absolute value,
and (b) the second one, called ”PGD(B0)+finalΠΓ”, consists in running vanilla IHT, followed at the
end of training by a simple projection onto Γ to keep w in Γ ∩ B0. We plot in Figure 2 the value of
the returns for (i) the tracked index, (ii) our index (output of FG-HT-TSP), and (iii) our two baselines
(a) and (b). We learn the weights of the portfolio on 80% of the considered period, and evaluate the
out of sample (test set) performance on the remaining 20% (shaded area in the figure). As we can
observe, the true index is successfully tracked by our method (FG-HT-TSP) (better than the two
baselines as can be observed in particular on the train-set: the green curve is the one which is the
closest to the blue one), and our algorithm solution spans 9 sectors, therefore it is well diversified,
which illustrates the applicability of our method in practice.

6 CONCLUSION

In this paper, we provided global convergence guarantees for variants of Iterative Hard Thresholding
which can handle extra convex constraints which are support-preserving, via a two-step projection
algorithm. We provided our analysis in the deterministic, stochastic, and zeroth-order settings. To
that end, we used a variant of the three-point lemma, adapted to such mixed constraints, which
allowed to simplified existing proofs for vanilla constraints (and to provide a new kind of result in the
ZO setting), as well as obtaining new proofs in such combined constraints setting. We illustrated the
applicability of our algorithm on several sparse learning tasks. Finally, it would also be interesting
to extend this work to a broader family of sparsity structures and constraints, for instance to matrices
or graphs. We leave this for future work.
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A NOTATIONS

Below we aggregate the various notations used throughout the paper, for ease of reference.

• ΠΓ(w): Euclidean projection of w onto a set Γ, i.e. ΠΓ(w) ∈ argminz∈Γ ∥w − z∥2.
• wi: i-th component of w.
• B0(k): ℓ0 pseudo-ball of radius k, i.e. B0(k) = {w ∈ Rd : ∥w∥0 ≤ k}.
• Hk: Euclidean projection onto B0(k), also known as the hard-thresholding operator (which

keeps the k largest (in magnitude) components of a vector, and sets the others to 0 (if there
are ties, we can break them e.g. lexicographically)).

• Π̄k
Γ: Two-step projection of sparsity k onto the set Γ, i.e. Π̄k

Γ(·) = ΠΓ(Hk(·)).
• ∥ · ∥p: ℓp norm for p ∈ [1,+∞).
• ∥ · ∥: ℓ2 norm.
• [n]: set {1, ..., n} for n ∈ N∗.
• |S|: number of elements of a set S ⊆ [d].
• supp(w): support of a vector w ∈ Rd, i.e. the set of coordinates of its non-zero compo-

nents.
• TSP: two-step projection
• EP: Euclidean projection

B RELATED WORKS

Below we present a more detailed review of the related works.

B.1 LOCAL GUARANTEES FOR COMBINED CONSTRAINTS

Among the works considering optimization over the intersection of the ℓ0 pseudo-ball of radius
k and a set Γ, Metel (2023) analyze the convergence of a first-order and zeroth-order stochastic
algorithm with a weighted ℓ0 group norm constraint (which generalizes the ℓ0 norm), combined
with an ℓ∞ ball constraint. Pan et al. (2017) provide a deterministic algorithm which can tackle extra
positivity constraints. Lu (2015) and Beck & Hallak (2016) analyze the convergence of variants of
hard-thresholding in the deterministic case, with extra constraints that are symmetric and sign-free
or positive. Other line of works such as Frankel et al. (2014); Xu et al. (2019b); Attouch et al.
(2013); De Marchi & Themelis (2022); Yang & Yu (2020); Gu et al. (2018); Yang & Li (2023);
Bolte et al. (2014); Boţ et al. (2016); Xu et al. (2019a); Li & Lin (2015) have a general approach,
and analyze the convergence of general proximal algorithms, for composite problems of the form
minw R(w) + h(w) where h is a more general non-convex regularizer which can include the ℓ0
constraint combined with an additional constraint, as long as the closed form for the projection onto
the mixed constraint is known (or an approximation of it in the case of Gu et al. (2018)). However,
all of these works only provide guarantees of convergence towards a critical point, or at best, a local
optimum. We provide an overview of those works in Table 1. More details about algorithms with
local convergence specialized to ℓ0 optimization can also be found in Table 1 from Damadi & Shen
(2022).

B.2 GLOBAL GUARANTEES FOR IHT AND RSC FUNCTIONS

On the other hand, in the case of restricted strongly convex (RSC) and restricted smooth (RSS)
functions, existing approximate global guarantees for the IHT algorithm do not apply to problems
with such combined constraints. Indeed, several works have considered global convergence guar-
antees for IHT in various settings: the full gradient (deterministic) setting (IHT (Jain et al., 2014)),
the stochastic setting (Nguyen et al., 2017; Li et al., 2016; Shen & Li, 2017), and the zeroth-order
setting (de Vazelhes et al., 2022). However, they do not address the case where the extra constraint
Γ is added to the original sparsity constraint. The works of Barber & Ha (2018); Liu & Foygel Bar-
ber (2020) tackle respectively general non-convex thresholding operators, and general non-convex
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constraints, in the full gradient (deterministic) setting but however they do not provide explicit con-
vergence rates for the particular type of sets that we consider in this paper: their rates depend on
some constants (the relative concavity or the local concavity constant) for which, up to our knowl-
edge, an explicit form is still unknown for the sets we consider.

C PROOF OF REMARK 1

Before proceeding with the proof of Remark 1, we recall the definition of sign-free convex sets from
Lu (2015) and Beck & Hallak (2016) below. Essentially, sign-free convex sets are convex sets that
are closed by swapping the sign of any coordinate.

Definition 1 (Lu (2015),Beck & Hallak (2016)). A convex set Γ is sign-free if for all y ∈ {−1, 1}d
and for all x ∈ Γ, x⊙ y ∈ Γ, where ⊙ denotes the element-wise vector multiplication (Hadamard
product for vectors).

We now proceed with the proof of Remark 1.

Proof. It is easy to show that any elementwise decomposable constraint such as box constraint
is support-preserving (as projection can be done component-wise, independently). Similarly, for
group-wise separable constraints where the constraint on each group is k-support-preserving (such
as the constraint for the index tracking problem in our Section 5), for a k-sparse vector x ∈ Rd,
one can project each group of coordinates independently, and each of such projection will have its
support preserved (since each such group of coordinates also contains less than k non-zero elements,
i.e. they are k-sparse). Therefore, we analyze in more detail the case of sign-free convex sets. Let
Γ be a sign-free convex set, and let x ∈ Rd be a k-sparse vector. Define z = ΠΓ(x) and assume
that supp(z) ̸⊆ supp(x). This implies that there exist some non-empty set of coordinates S ⊆ [d],

such that for all i ∈ S: zi ̸= 0 and xi = 0. Define z′ such that z′k =

{−zk if k ∈ S

zk otherwise
. Since Γ is

sign-free, z′ ∈ Γ. Now, define z′′ such that z′′k =

{
0 if k ∈ S

zk if otherwise
. Since Γ is convex and since

z′′ = 1
2z

′ + 1
2z, we have z′′ ∈ Γ. Now, we have:

∥x− z′′∥22 =

d∑
k=1

(xk − z′′k )
2 =

∑
k∈[d]\S

(xk − zk)
2

<
∑

k∈[d]\S

(xk − zk)
2 +

∑
k∈S

(xk − zk)
2 =

d∑
k=1

(xk − zk)
2 = ∥x− z∥22

Therefore, we encounter a contradiction since we have defined z = ΠΓ(x), and therefore, our
assumption supp(z) ̸⊆ supp(x) is wrong, which means that supp(z) ⊆ supp(x).

D PROOFS OF SECTION 3 (DETERMINISTIC OPTIMIZATION)

D.1 PROOF OF LEMMA 1

Before providing the proof of Lemma 1, we first recall below some useful definitions and lemmas
from the literature. We then proceed with the proof of Lemma 1 in Section D.1.2.

D.1.1 USEFUL LEMMAS

In this section, as mentioned above, we first recall some useful definitions and lemmas from the
literature.

Definition 2 (Relative concavity Liu & Foygel Barber (2020)). The relative concavity coefficient
γk,β of a k-sparse projection operatorHk, of relative sparsity β := k̄

k with k̄ ≤ k is defined as:
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γk,β (Hk) = sup

{
⟨y −Hk(z), z −Hk(z)⟩

∥y −Hk(z)∥22
y, z ∈ Rd, ∥y∥0 ≤ βk,y ̸= Hk(z)

}
.

Lemma 2 (Lemma 4.1 Liu & Foygel Barber (2020)). When Hk is the hard-thresholding operator
at sparsity level k, we have:

γk,β (Hk) =

√
β

2
=

1

2

√
k̄

k
.

Proof. Proof in Liu & Foygel Barber (2020).

This allows us to derive the following 3 points lemma for hard-thresholding, without additional
constraints first:
Lemma 3 (ℓ0 three-point lemma). Consider w, w̄ ∈ Rp with ∥w̄∥0 ≤ k̄. For any k̄ ≤ k it holds
that:

∥Hk(w)−w∥2 ≤ ∥w − w̄∥2 −
(
1−

√
β
)
∥Hk(w)− w̄∥2.

Proof. We have:

∥w − w̄∥2 = ∥w −Hk(w)∥2 + ∥Hk(w)− w̄∥2 + 2⟨w −Hk(w),Hk(w)− w̄⟩
(a)

≥ ∥w −Hk(w)∥2 + ∥Hk(w)− w̄∥2 − 2γk,ρ∥Hk(w)− w̄∥2

= ∥w −Hk(w)∥2 + (1− 2γk,ρ)∥Hk(w)− w̄∥2

(b)
= ∥w −Hk(w)∥2 +

(
1−

√
k̄

k

)
∥Hk(w)− w̄∥2,

where (a) follows from Definition 2 and (b) follows from Lemma 2. Therefore, rearranging, we
obtain:

∥Hk(w)−w∥2 ≤ ∥w − w̄∥2 −
(
1−

√
k̄

k

)
∥Hk(w)− w̄∥2.

The proof is completed.

D.1.2 PROOF OF LEMMA 1

Using the above lemmas, we can now proceed to the proof of Lemma 1.

Proof. Let us abbreviate vk := Hk(w). It can be verified that

∥Π̄k
Γ(w)−w∥2 =

∥∥Π̄k
Γ(w)− vk + vk −w

∥∥2
(a)
=
∥∥Π̄k

Γ(w)− vk

∥∥2 + ∥vk −w∥2
(b)

≤∥vk − w̄∥2 − ∥Π̄k
Γ(w)− w̄∥2 + ∥w − w̄∥2 −

(
1−

√
β
)
∥vk − w̄∥2

=∥w − w̄∥2 − ∥Π̄k
Γ(w)− w̄∥2 +

√
β∥vk − w̄∥2,

where (a) is due to Assumption 3 and the definition of the two-step projection, which imply that
Π̄k

Γ(w) − vk and vk − w have disjoint supporting sets, and (b) uses the three-point-lemma for
projection onto a convex set Γ , as well as Lemma 3. The proof is completed.

D.2 PROOF OF THEOREM 1

Before proceeding with the proof of Theorem 1, we first present a result and proof for the conver-
gence of Algorithm 1, without the additional constraint, which is needed for the proof of Theorem 1,
but also, as a byproduct, illustrates how the three-points lemma simplifies previous proofs of Iterative
Hard-Thresholding. Then, the full proof of Theorem 1 will be given in Section D.2.2.
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D.2.1 CASE WITHOUT ADDITIONAL CONSTRAINT

In this section, we present a result and proof for the convergence of Algorithm 1, without the ad-
ditional constraint, which as mentioned above, is needed for the proof of Theorem 1, but also, as
a byproduct, illustrates how the three-points lemma simplifies previous proofs of Iterative Hard-
Thresholding.
Theorem 4. Assume that Γ = Rd. Suppose that Assumption 1 and Assumption 2 holds. Let s = 2k.
Let η = 1

Ls
. Let w̄ be an arbitrary k̄-sparse vector. Suppose that k ≥ 4L2

s

ν2
s
k̄. Then for any ε > 0,

the iterate of IHT satisfies R(wt) ≤ R(w̄) + ε if

t ≥
⌈
2Ls

νs
log

(
(Ls − νs)∥w0 − w̄∥2

2ε

)⌉
+ 1.

Proof. The Ls- restricted smoothness of R implies that

R(wt)

≤R(wt−1) + ⟨∇R(wt−1),wt −wt−1⟩+
Ls

2
∥wt −wt−1∥2

=R(wt−1) +
Ls

2

∥∥∥∥wt −wt−1 +
1

Ls
∇R(wt−1)

∥∥∥∥2 − 1

2Ls
∥∇R(wt−1)∥2

(a)

≤R(wt−1) +
Ls

2

∥∥∥∥w̄ −wt−1 +
1

Ls
∇R(wt−1)

∥∥∥∥2 − Ls

2
(1−

√
β)∥wt − w̄∥2

− 1

2Ls
∥∇R(wt−1)∥2

=R(wt−1) + ⟨∇R(wt−1), w̄ −wt−1⟩+
Ls

2
∥wt−1 − w̄∥2 − Ls

2
(1−

√
β)∥wt − w̄∥2

(b)

≤R(w̄) +
Ls − νs

2
∥wt−1 − w̄∥2 − Ls

2
(1−

√
β)∥wt − w̄∥2

≤R(w̄) +
Ls − νs

2
∥wt−1 − w̄∥2 − 2Ls − νs

4
∥wt − w̄∥2, (5)

where (a) uses Lemma 3, (b) is due to the νs-restricted strong-convexity of R, while the last step is
implied by the condition on the sparsity level k from the theorem (k ≥ 4L2

s

ν2
s
k̄), and the definition of

β (β =
√

k̄
k ).

The update rule composed of the gradient step and the projection from Algorithm 1 can be rewritten
into the following (given that the learning rate is η = 1

Ls
, and by definition of a projection):

wt = arg min
w s.t.∥w∥0≤k

∥∥∥∥w − (wt−1 −
1

Ls
∇R(wt−1)

)∥∥∥∥2
= arg min

w s.t.∥w∥0≤k

2

Ls
⟨∇R(wt−1),w −wt−1⟩+ ∥w −wt−1∥2 +

1

L2
s

∥∇R(wt−1)∥2

= arg min
w s.t.∥w∥0≤k

R(wt−1) + ⟨∇R(wt−1),w −wt−1⟩+
Ls

2
∥w −wt−1∥2.

Therefore, by definition of an argmin, we have:

R(wt−1) + ⟨∇R(wt−1),wt −wt−1⟩+
Ls

2
∥wt −wt−1∥2

≤ R(wt−1) + ⟨∇R(wt−1),wt−1 −wt−1⟩+
Ls

2
∥wt−1 −wt−1∥2

= R(wt−1). (6)

And from the Ls smoothness of R, we also have:

R(wt) ≤ R(wt−1) + ⟨∇R(wt−1),wt −wt−1⟩+
Ls

2
∥wt −wt−1∥2. (7)
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Therefore, combining equations 6 and 7, we obtain:

R(wt) ≤ R(wt−1).

That is, the sequence {R(wt)}t≥0 of risk is non-increasing.

Let us now consider

T :=

⌈
2Ls

νs
log

(
(Ls − νs)∥w0 − w̄∥2

2ε

)⌉
.

We claim that R(wt) ≤ R(w̄) + ε for t ≥ T + 1. To show this, suppose that ∃t ∈ [T ] such that
R(wt) ≤ R(w̄) + ε. Then the claim is naturally true by monotonicity. Otherwise assume that
R(wt) > R(w̄) + ε for all t ∈ [T ]. Then in view of the inequality equation 5 we know that

∥wT − w̄∥2 ≤ 2Ls − 2νs
2Ls − νs

∥wT−1 − w̄∥2

≤
(
1− νs

2Ls

)
∥wT−1 − w̄∥2

≤
(
1− νs

2Ls

)T

∥w0 − w̄∥2

= exp

(
T log

(
1− νs

2Ls

))
∥w0 − w̄∥2

≤ exp

(
2Ls

νs
log

(
(Ls − νs)∥w0 − w̄∥2

2ε
+ 1

)
log

(
1− νs

2Ls

))
∥w0 − w̄∥2

=

(
1− νs

2Ls

)
exp

(
2Ls

νs
log

(
(Ls − νs)∥w0 − w̄∥2

2ε

)
log

(
1− νs

2Ls

))
∥w0 − w̄∥2

(a)

≤
(
1− νs

2Ls

)
exp

(
2Ls

νs
log

(
2ε

(Ls − νs)∥w0 − w̄∥2
)

νs
2Ls

)
∥w0 − w̄∥2

=

(
1− νs

2Ls

)
2ε

Ls − νs

(b)

≤ 2ε

Ls − νs
,

where (a) follows from the fact that for all x in (−∞, 1): log(1 − x) ≤ −x, and (b) uses the fact
that

(
1− νs

2Ls

)
≤ 1.

Then according to equation 5 we must have

R(wT+1) ≤ R(w̄) +
Ls − νs

2
∥wT − w̄∥2 ≤ R(w̄) + ε,

which implies the desired claim. The proof is completed.

Remark 5. Theorem 4 recovers the result of Jain et al. (2014, Theorem 1). Our proof is shorter yet
more intuitive than in that paper.

D.2.2 PROOF OF THEOREM 1

Using the above results, we can now proceed to the full proof of convergence of Theorem 1 below.

Proof. Denote vt = Hk(wt−1 − 1
Ls
∇R(wt−1)) for any t ∈ N. Similar to the arguments for equa-

tion 5, based on the Ls-restricted smoothness of R we can show that:

R(wt)

≤R(wt−1) + ⟨∇R(wt−1),wt −wt−1⟩+
Ls

2
∥wt −wt−1∥2

=R(wt−1) +
Ls

2

∥∥∥∥wt −wt−1 +
1

Ls
∇R(wt−1)

∥∥∥∥2 − 1

2Ls
∥∇R(wt−1)∥2
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(a)

≤R(wt−1) +
Ls

2

∥∥∥∥w̄ −wt−1 +
1

Ls
∇R(wt−1)

∥∥∥∥2 − Ls

2
∥wt − w̄∥2

+
Ls

2

√
β∥vt − w̄∥2 − 1

2Ls
∥∇R(wt−1)∥2

=R(wt−1) + ⟨∇R(wt−1), w̄ −wt−1⟩+
Ls

2
∥wt−1 − w̄∥2 − Ls

2
∥wt − w̄∥2

+
Ls

2

√
β∥vt − w̄∥2

(b)

≤R(w̄) +
Ls − νs

2
∥wt−1 − w̄∥2 − Ls

2
∥wt − w̄∥2 + Ls

2

√
β∥vt − w̄∥2

≤R(w̄) +
Ls − νs

2
∥wt−1 − w̄∥2 − Ls

2
∥wt − w̄∥2 + ρνs

4(1− ρ)
∥vt − w̄∥2, (8)

where (a) uses Lemma 3, (b) is due to the νs-restricted strong-convexity of R, and the last step is
due to the condition on sparsity level k from the theorem (k ≥ 4L2

s(1−ρ)2

ν2
sρ

2 k̄), and the definition of

β =
√

k̄
k .

In view of equation 5, which is valid under the given conditions, we know that

R(vt) ≤ R(w̄) +
Ls − νs

2
∥wt−1 − w̄∥2 − 2Ls − νs

4
∥vt − w̄∥2. (9)

After proper scaling and summing both sides of equation 8 and equation 9 yields that

(1− ρ)R(wt) + ρR(vt)

≤R(w̄) +
Ls − νs

2
∥wt−1 − w̄∥2 − (1− ρ)Ls

2
∥wt − w̄∥2 − ρ(Ls − νs)

2
∥vt − w̄∥2

=R(w̄) +
Ls − νs

2
∥wt−1 − w̄∥2 − Ls − ρνs

2
∥wt − w̄∥2, (10)

where in the second inequality we have used w̄ ∈ Γ and the non-expansiveness of projection over
convex sets.

Let us now consider

T :=

⌈
2Ls

νs
log

(
(Ls − νs)∥w0 − w̄∥2

2ε

)⌉
. (11)

We claim that:

min
t∈[T+1]

{(1− ρ)R(wt) + ρR(vt)} ≤ R(w̄) + ε. (12)

To show this, suppose that ∃t ∈ [T ] such that (1− ρ)R(wt)+ ρR(vt) ≤ R(w̄)+ ε. Then the claim
is naturally true. Otherwise assume that (1− ρ)R(wt) + ρR(vt) > R(w̄) + ε for all t ∈ [T ]. Then
in view of the inequality equation 10 we know that

∥wT − w̄∥2 ≤ Ls − νs
Ls − ρνs

∥wT−1 − w̄∥2 ≤
(
1− (1− ρ)νs

Ls

)
∥wT−1 − w̄∥2

≤
(
1− (1− ρ)νs

Ls

)T

∥w0 − w̄∥2 ≤ 2ε

Ls − νs
.

Then according to equation 10 we must have

(1− ρ)R(wT+1) + ρR(vT+1) ≤ R(w̄) +
Ls − νs

2
∥wT − w̄∥2 ≤ R(w̄) + ε, (13)

which proves the claim from equation 12. Now, recall that we have assumed in the Assumptions of
Theorem 1, without loss of generality, that R is non-negative (if not, we can redefine R by adding
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a constant, without modifying the gradient of R, keeping the algorithm untouched), which implies
that R (vt) ≥ 0. Plugging this in equation 12, for T ≥

⌈
2Ls

νs
log
(

(Ls−νs)∥w0−w̄∥2

2ε′(1−ρ)

)⌉
+ 1 implies

that:

min
t∈[T ]

R (wt) ≤
1

1− ρ
R(w̄) +

ε

1− ρ
≤ (1 + 2ρ)R(w̄) +

ε

1− ρ
. (14)

Plugging the change of variable ε′ = ε
1−ρ into equation 14 above, and in 11, we obtain that when

T ≥
⌈
2Ls

νs
log
(

(Ls−νs)∥w0−w̄∥2

2ε′(1−ρ)

)⌉
+ 1:

min
t∈[T ]

R (wt) ≤ (1 + 2ρ)R(w̄) + ε′.

Further, consider an ideal case where w̄ is a global minimizer of R over B0(k) := {w : ∥w∥0 ≤ k}.
Then R (vt) ≥ R(w̄) is always true for all t ≥ 1. It follows that the bound in equation 12 yields,
for T ≥

⌈
2Ls

νs
log
(

(Ls−νs)∥w0−w̄∥2

2ε

)⌉
+ 1:

min
t∈[T ]

{(1− ρ)R (wt) + ρR(w̄)} ≤ min
t∈[T ]

{(1− ρ)R (wt) + ρR (vt)} ≤ R(w̄) + ε,

which implies: mint∈[T ] R (wt) ≤ R(w̄)+ ε
1−ρ . In this case, we can simply set ρ = 0.5, and define

ε′ = ε
1−ρ = 2ε similarly as above. This implies the desired claims. The proof is completed.

E PROOFS OF SECTION 4 (STOCHASTIC AND ZEROTH-ORDER
OPTIMIZATION)

E.1 PROOF OF THEOREM 2

For the proof of Theorem 2, we use a similar technique as in Theorem 1 to deal with the extra
constraint, starting from the case Γ = Rd (see Theorem 5, Appendix E.1.2). Based on our ℓ0 three-
point lemma (Lemma 3), such proof of Theorem 5 is much simpler than the corresponding proof of
Zhou et al. (2018) (Proof of Theorem 2, Appendix B.3). Also, compared to the deterministic setting,
here, we need to carefully incorporate the exponentially decreasing error of the gradient estimator
into a propertly weighted telescopic sum containing terms in ∥wt − w̄∥2.

Below we provide several intermediary results needed for the proof of Theorem 2. Then, the proof
of Theorem 2 will be provided in Section E.1.3.

E.1.1 USEFUL LEMMA

Before starting the proof, we present the following lemma from Mishchenko et al. (2020), which
relates the batch-size st and the error of the gradient estimator:

Lemma 4 (Mishchenko et al. (2020), Lemma 1). Let wt ∈ Rd. Assume that gt is the sampled
gradient in Algorithm 2 and that the population variance of Ri(wt) is bounded by B as in Assump-
tion 4. Then the gradient estimate gt is an unbiased estimate of ∇R(wt), and its variance is as
follows:

E ∥gt −∇R (wt)∥2 ≤
n− st
n− 1

1

st
B, (15)

Note that the original Lemma from Mishchenko et al. (2020) is written as an equality, in terms of
the exact population variance of a random variable, denoted σ2, but we rewrite it as an inequality
here for simplicity, in order to have a general bound that applies at each iteration.

Proof. Proof in Mishchenko et al. (2020).
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E.1.2 CASE WITHOUT ADDITIONAL CONSTRAINT

Below we now first present some results (and their proofs) for the convergence of Algorithm 2 with-
out the additional constraint, which is needed for the proof of Theorem 2, and also, as a byproduct,
illustrates how the three-point lemma simplifies such proof.

Theorem 5. Assume that Γ = Rd. Suppose that Assumption 1, Assumption 2 and Assumption 4
hold. Let s = 2k. Let w̄ be an arbitrary k̄-sparse vector. Let C be an arbitrary positive constant.
Assume that we run HSG-HT-TSP (Algorithm 2) for T timesteps, with η = 1

Ls+C , and denote
α := C

Ls
+ 1 and κs := Ls

νs
. Suppose that k ≥ 4α2κ2

sk̄. Finally, assume that we take the following
batch-size:

st :=
⌈

τ
ωt

⌉
with ω := 1− 1

4ακs
and τ := ηB

C .

Then, we have the following convergence rate:

ER(ŵT )−R(w̄) ≤ 2α2Lsκsω
T

(
∥w̄ −w0∥2 +

4

3

)
. (16)

Proof. The Ls-smoothness of R implies that

R(wt)

≤R(wt−1) + ⟨∇R(wt−1),wt −wt−1⟩+
Ls

2
∥wt −wt−1∥2

=R(wt−1) + ⟨gt−1,wt −wt−1⟩+
Ls

2
∥wt −wt−1∥2 + ⟨∇R(wt−1)− gt−1,wt −wt−1⟩

=R(wt−1) +
1

2η

[
∥wt − (wt−1 − ηgt−1)∥2 − η2∥gt−1∥2 − ∥wt −wt−1∥2

]
+

Ls

2
∥wt −wt−1∥2

+ ⟨∇R(wt−1)− gt−1,wt −wt−1⟩

=R(wt−1) +
1

2η
∥wt − (wt−1 − ηgt−1)∥2 −

η

2
∥gt−1∥2 +

[
Ls − 1

η

2

]
∥wt −wt−1∥2

+ ⟨∇R(wt−1)− gt−1,wt −wt−1⟩
(a)

≤R(wt−1) +
1

2η

[
∥w̄ − (wt−1 − ηgt−1)∥2 − (1−

√
β)∥wt − w̄∥2

]
− η

2
∥gt−1∥2

+

[
Ls − 1

η

2

]
∥wt −wt−1∥2 + ⟨∇R(wt−1)− gt−1,wt −wt−1⟩

=R(wt−1) +
1

2η

[
∥w̄ −wt−1∥2 + η2∥gt−1∥2 − 2⟨ηgt−1,wt−1 − w̄⟩

]
− 1

2η
(1−

√
β)∥wt − w̄∥2

− η

2
∥gt−1∥2 +

[
Ls − 1

η

2

]
∥wt −wt−1∥2 + ⟨∇R(wt−1)− gt−1,wt −wt−1⟩

=R(wt−1) +
1

2η

[
∥w̄ −wt−1∥2 − 2⟨ηgt−1,wt−1 − w̄⟩

]
− 1

2η
(1−

√
β)∥wt − w̄∥2

+

[
Ls − 1

η

2

]
∥wt −wt−1∥2 + ⟨∇R(wt−1)− gt−1,wt −wt−1⟩

(b)
=R(wt−1) +

1

2η
∥w̄ −wt−1∥2 − ⟨gt−1,wt−1 − w̄⟩ − 1

2η
(1−

√
β)∥wt − w̄∥2

+

[
Ls − 1

η + C

2

]
∥wt −wt−1∥2 +

1

2C
∥∇R(wt−1)− gt−1∥2,

where (a) follows from Lemma 3 and (b) follows from the inequality ⟨a, b⟩ ≤ C
2 a

2 + 1
2C b2, for any

(a, b) ∈ (Rd)2 with C > 0 an arbitrary strictly positive constant.
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Let us now assume that η = 1
Ls+C : therefore the term

[
Ls− 1

η+C

2

]
∥wt − wt−1∥2 above is 0.

We now take the conditional expectation (conditioned on wt−1, which is the random variable which
realizations are wt−1), on both sides, and from Lemma 4 we obtain the inequality below (we slightly
abuse notations and denote E[·|wt−1 = wt−1] by E[·|wt−1]):

E[R(wt)|wt−1] ≤R(wt−1) +
1

2η
∥w̄ −wt−1∥2 − ⟨∇R(wt−1),wt−1 − w̄⟩

− 1

2η
(1−

√
β)E

[
∥wt − w̄∥2|wt−1

]
+

B(n− st−1)

2Cst−1(n− 1)

(a)

≤R(wt−1) +
1

2η
∥w̄ −wt−1∥2 +

[
R(w̄)−R(wt−1)−

νs
2
∥wt−1 − w̄∥2

]
− 1

2η
(1−

√
β)E

[
∥wt − w̄∥2|wt−1

]
+

B

2Cst−1

=R(w̄) +

[
1
η − νs

2

]
∥w̄ −wt−1∥2 −

1

2η
(1−

√
β)E

[
∥wt − w̄∥2|wt−1

]
+

B

2Cst−1
,

where (a) follows from the RSC condition, and the fact that st−1 ∈ N∗.

We recall that η = 1
Ls+C . Let us define α := C

Ls
+ 1. Then C = (α − 1)Ls, and η = 1

αLs
. Also

recall that κs =
Ls

νs
.

We can simplify the inequality above into:

E[R(wt)|wt−1]−R(w̄) ≤ 1

2η

[(
1− 1

ακs

)
∥w̄ −wt−1∥2 − (1−

√
β)E

[
∥wt − w̄∥2|wt−1

]
+

ηB

Cst−1

]
.

We now take the expectation over wt−1 of the above inequality (i.e. we take Ewt−1
[·]): using the

law of total expectation (E[·] = Ewt−1
[E[·|wt−1]]) we obtain:

ER(wt)−R(w̄) ≤ 1

2η

[(
1− 1

ακs

)
E∥w̄ −wt−1∥2 − (1−

√
β)E∥wt − w̄∥2 + ηB

Cst−1

]
(17)

Similarly as in Liu & Foygel Barber (2020), we now take a weighted sum over t = 1, ..., T , to
obtain:

T∑
t=1

2η

(
1− 1

ακs

1−√β

)T−t

E[R(wt)−R(w̄)]

≤
T∑

t=1

(
1− 1

ακs

1−√β

)T−t [(
1− 1

ακs

)
E∥w̄ −wt−1∥2 − (1−

√
β)E∥wt − w̄∥2 + ηB

Cst−1

]

=

T∑
t=1

(
1− 1

ακs

1−√β

)T−t [(
1− 1

ακs

)
E∥w̄ −wt−1∥2 − (1−

√
β)E∥wt − w̄∥2

]

+

T∑
t=1

(
1− 1

ακs

1−√β

)T−t
ηB

Cst−1

=(1−
√
β)

T∑
t=1

(1− 1
ακs

1−√β

)T−t+1

E∥w̄ −wt−1∥2 −
(
1− 1

ακs

1−√β

)T−t

E∥wt − w̄∥2

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+

T∑
t=1

(
1− 1

ακs

1−√β

)T−t
ηB

Cst−1

(a)
=(1−

√
β)

(1− 1
ακs

1−√β

)T

∥w̄ −w0∥2 − E∥wT − w̄∥2
+

T∑
t=1

(
1− 1

ακs

1−√β

)T−t
ηB

Cst−1

≤(1−
√

β)

(
1− 1

ακs

1−√β

)T

∥w̄ −w0∥2 +
T∑

t=1

(
1− 1

ακs

1−√β

)T−t
ηB

Cst−1

≤
(
1− 1

ακs

1−√β

)T

∥w̄ −w0∥2 +
T∑

t=1

(
1− 1

ακs

1−√β

)T−t
ηB

Cst−1
, (18)

where (a) follows from simplifying the telescopic sum.

We now choose k and st as follows: we choose k ≥ 4α2κ2
sk̄, which implies that:√

β ≤ 1

2ακs

=⇒
√

β ≤ 1

2ακs − 1

=⇒ 1−
√
β ≥ 1− 1

2ακs − 1
=

2ακs − 2

2ακs − 1
=

1− 1
ακs

1− 1
2ακs

=⇒
(
1− 1

ακs

1−√β

)
≤ 1− 1

2ακs
. (19)

And we choose st :=
⌈

τ
ωt

⌉
with ω := 1− 1

4ακs
and τ := ηB

C .

Let us call ν := 1− 1
2ακs

. Note that we have:

ν ≤ ω. (20)

And that we have the inequality below:

ν

ω
=

1− 1
2ακs

1− 1
4ακs

=
4ακs − 2

4ακs − 1
= 1− 1

4ακs − 1
≤ 1− 1

4ακs
= ω. (21)

This allows us to simplify equation 18 into:

E
T∑

t=1

2η

(
1− 1

ακs

1−√β

)T−t

[R(wt)−R(w̄)] ≤ νT ∥w̄ −w0∥2 +
T∑

t=1

νT−tωt−1

= νT ∥w̄ −w0∥2 +
ωT

ω

T∑
t=1

( ν
ω

)T−t

= νT ∥w̄ −w0∥2 +
ωT

ω

1−
(
ν
ω

)T
1−

(
ν
ω

)
≤ νT ∥w̄ −w0∥2 +

ωT

ω

1

1−
(
ν
ω

)
(a)

≤ νT ∥w̄ −w0∥2 +
ωT

ω

1

1− ω
(b)

≤ νT ∥w̄ −w0∥2 +
4

3
ωT 1

1− ω
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(c)

≤ ωT ∥w̄ −w0∥2 +
4

3
ωT 1

1− ω
(d)

≤ ωT

1− ω
∥w̄ −w0∥2 +

4

3
ωT 1

1− ω

=
ωT

1− ω

(
∥w̄ −w0∥2 +

4

3

)
= 4ακsω

T

(
∥w̄ −w0∥2 +

4

3

)
,

where in the left hand side we have used the linearity of expectation, and where (a) uses equation 21,
(b) uses the fact that 1

ω = 1
1− 1

4ακs

≤ 1
1− 1

4

= 4
3 (since κs ≥ 1 and α ≥ 1 (indeed, from the theorem’s

assumption α = C
Ls

+ 1 with C > 0)), (c) uses equation 20, and (d) uses the fact that ω < 1 so
1 < 1

1−ω .

Let us now normalize the above inequality:

E

∑T
t=1 2η

(
1− 1

ακs

1−
√
β

)T−t

R(wt)∑T
t=1 2η

(
1− 1

ακs

1−
√
β

)T−t
≤ R(w̄) +

4ακsω
T
(
∥w̄ −w0∥2 + 4

3

)
∑T

t=1 2η
(

1− 1
ακs

1−
√
β

)T−t
.

The left hand side above is a weighted sum, which is an upper bound on the smallest term of the
sum.

Regarding the right hand side, we can simplify it using the fact that 0 <
(

1− 1
ακs

1−
√
β

)
, and therefore:

T∑
t=1

(
1− 1

ακs

1−√β

)T−t

≥ 1.

Therefore, we obtain:

E min
t∈{1,..,T}

R(wt)−R(w̄) ≤ 4ακsω
T
(
∥w̄ −w0∥2 + 4

3

)
2η

= 2α2Lsκsω
T

(
∥w̄ −w0∥2 +

4

3

)
Which can be simplified into the expression below, using the definition of ŵT :

ER(ŵT )−R(w̄) ≤ 2α2Lsκsω
T

(
∥w̄ −w0∥2 +

4

3

)
.

The proof is completed.

Corollary 3. Under the assumptions of Theorem 5, let ε be a small enough positive number ε > 0.
To achieve an error ER(ŵT )−R(w̄) ≤ ε using Algorithm 2 the number of calls to a gradient∇Ri

(#IFO), and the number of hard thresholding operations (#HT) are respectively:

#HT = O(κs log(
1

ε
)), #IFO = O

(
κs

νsε

)
.

Proof. Let ε ∈ R∗
+. Let us find T to ensure that ER(ŵT )−R(w̄) ≤ ε. This will be enforced if:

2α2Lsκsω
T

(
∥w̄ −w0∥2 +

4

3

)
≤ ε

⇐⇒ T log(ω) ≤ log

(
ε

2α2Lsκs

(
∥w̄ −w0∥2 + 4

3

))
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⇐⇒ T ≥ 1

log( 1
ω )

log

(
2α2Lsκs

(
∥w̄ −w0∥2 + 4

3

)
ε

)
.

Therefore, let us take:

T :=

⌈
1

log( 1
ω )

log

(
2α2Lsκs

(
∥w̄ −w0∥2 + 4

3

)
ε

)⌉
. (22)

We can now derive the #IFO and #HT. First, we have one hard-thresholding operation at each iter-
ation, therefore #HT= T . Using the fact that 1

log( 1
ω )

= 1
− log(ω) = 1

− log(1− 1
4ακs

)
≤ 1

1
4ακs

= 4ακs

(since by property of the logarithm, for all x ∈ (−∞,−1) : log(1 − x) ≤ −x ), we obtain that
#HT = O(κs log

(
1
ε

)
).

We now turn to computing the #IFO. At each iteration t we have st gradient evaluations, therefore:

#IFO =

T−1∑
t=0

st

≤
T−1∑
t=0

( τ

ωt
+ 1
)

= T + τ

(
1
ω

)T − 1
1
ω − 1

≤ T +
τ

1
ω − 1

(
1

ω

)T

= T +
τ

1
ω − 1

exp

(
T log

(
1

ω

))
(a)

≤ 1 +
1

log( 1
ω )

log

(
2α2Lsκs

(
∥w̄ −w0∥2 + 4

3

)
ε

)

+
τ

1
ω − 1

exp

(
log

(
1

ω

)[
1

log( 1
ω )

log

(
2α2Lsκs

(
∥w̄ −w0∥2 + 4

3

)
ε

)
+ 1

])

= 1 +
1

log( 1
ω )

log

(
2α2Lsκs

(
∥w̄ −w0∥2 + 4

3

)
ε

)
+

τ
ω

1
ω − 1

2α2Lsκs

(
∥w̄ −w0∥2 + 4

3

)
ε

= 1 +
1

log( 1
ω )

log

(
2α2Lsκs

(
∥w̄ −w0∥2 + 4

3

)
ε

)
+

τ

1− ω

2α2Lsκs

(
∥w̄ −w0∥2 + 4

3

)
ε

= 1 +
1

log( 1
ω )

log

(
2α2Lsκs

(
∥w̄ −w0∥2 + 4

3

)
ε

)
+ τ

8α3Lsκ
2
s

(
∥w̄ −w0∥2 + 4

3

)
ε

(b)
= 1 +

1

log( 1
ω )

log

(
2α2Lsκs

(
∥w̄ −w0∥2 + 4

3

)
ε

)

+
B

αLs

1

Ls(α− 1)

8α3Ls

ε

Ls

νs
κs

(
∥w̄ −w0∥2 +

4

3

)
= 1 +

1

log( 1
ω )

log

(
2α2Lsκs

(
∥w̄ −w0∥2 + 4

3

)
ε

)
+

8Bα2κs

(
∥w̄ −w0∥2 + 4

3

)
(α− 1)νs

1

ε
,

where (a) follows from equation 22, and for (b) we recall that τ = ηB
C , η = 1

αLs
and C = Ls(α−1).

Therefore, overall, the IFO complexity is in O( κs

νsε
).
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E.1.3 PROOF OF THEOREM 2

We now proceed with the full proof of Theorem 2.

Proof. Similary as in the proof of Theorem 5 in Section E.1.2, let us take: η := 1
Ls+C , and α :=

C
Ls

+ 1. Then C = (α − 1)Ls, and η = 1
αLs

. Recall that κs := Ls

νs
. Denote vt = Hk(wt−1 −

η∇R(wt−1)) for any t ∈ N.

Similarly as in Section E.1.2, the Ls-smoothness of R implies that

R(wt)

≤R(wt−1) + ⟨∇R(wt−1),wt −wt−1⟩+
Ls

2
∥wt −wt−1∥2

=R(wt−1) + ⟨gt−1,wt −wt−1⟩+
Ls

2
∥wt −wt−1∥2 + ⟨∇R(wt−1)− gt−1,wt −wt−1⟩

=R(wt−1) +
1

2η

[
∥wt − (wt−1 − ηgt−1)∥2 − η2∥gt−1∥2 − ∥wt −wt−1∥2

]
+

Ls

2
∥wt −wt−1∥2

+ ⟨∇R(wt−1)− gt−1,wt −wt−1⟩

=R(wt−1) +
1

2η
∥wt − (wt−1 − ηgt−1)∥2 −

η

2
∥gt−1∥2 +

[
Ls − 1

η

2

]
∥wt −wt−1∥2

+ ⟨∇R(wt−1)− gt−1,wt −wt−1⟩
(a)

≤R(wt−1) +
1

2η

[
∥w̄ − (wt−1 − ηgt−1)∥2 − ∥wt − w̄∥2 +

√
β∥vt − w̄∥2

]
− η

2
∥gt−1∥2

+

[
Ls − 1

η

2

]
∥wt −wt−1∥2 + ⟨∇R(wt−1)− gt−1,wt −wt−1⟩

=R(wt−1) +
1

2η

[
∥w̄ −wt−1∥2 + η2∥gt−1∥2 − 2⟨ηgt−1,wt−1 − w̄⟩

]
− 1

2η
∥wt − w̄∥2

+

√
β

2η
∥vt − w̄∥2 − η

2
∥gt−1∥2 +

[
Ls − 1

η

2

]
∥wt −wt−1∥2 + ⟨∇R(wt−1)− gt−1,wt −wt−1⟩

=R(wt−1) +
1

2η

[
∥w̄ −wt−1∥2 − 2⟨ηgt−1,wt−1 − w̄⟩

]
− 1

2η
∥wt − w̄∥2 +

√
β

2η
∥vt − w̄∥2

(23)

+

[
Ls − 1

η

2

]
∥wt −wt−1∥2 + ⟨∇R(wt−1)− gt−1,wt −wt−1⟩

(b)
=R(wt−1) +

1

2η
∥w̄ −wt−1∥2 − ⟨gt−1,wt−1 − w̄⟩ − 1

2η
∥wt − w̄∥2 +

√
β

2η
∥vt − w̄∥2

+

[
Ls − 1

η + C

2

]
∥wt −wt−1∥2 +

1

2C
∥∇R(wt−1)− gt−1∥2, (24)

where (a) follows from Lemma 1 and (b) follows from the inequality ⟨a, b⟩ ≤ C
2 a

2 + 1
2C b2, for

any (a, b) ∈ (Rd)2 with C > 0 an arbitrary strictly positive constant. Let us now take η := 1
Ls+C :

therefore the term
[
Ls− 1

η+C

2

]
∥wt −wt−1∥2 above is 0. We now take the conditional expectation

(conditioned on wt−1, which is the random variable which realizations are wt−1), on both sides, and
from Lemma 4 we obtain the inequality below (we slightly abuse notations and denote E[·|wt−1 =
wt−1] by E[·|wt−1]):

E[R(wt)|wt−1] ≤R(wt−1) +
1

2η
∥w̄ −wt−1∥2 − ⟨∇R(wt−1),wt−1 − w̄⟩
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− 1

2η
E
[
∥wt − w̄∥2|wt−1

]
+

√
β

2η
E
[
∥vt − w̄∥2|wt−1

]
+

B(n− st−1)

2Cst−1(n− 1)

(a)

≤R(wt−1) +
1

2η
∥w̄ −wt−1∥2 +

[
R(w̄)−R(wt−1)−

νs
2
∥wt−1 − w̄∥2

]
− 1

2η
E
[
∥wt − w̄∥2|wt−1

]
+

√
β

2η
E
[
∥vt − w̄∥2|wt−1

]
+

B

2Cst−1

=R(w̄) +

[
1
η − νs

2

]
∥w̄ −wt−1∥2 −

1

2η
E
[
∥wt − w̄∥2|wt−1

]
+

√
β

2η
E
[
∥vt − w̄∥2|wt−1

]
+

B

2Cst−1
, (25)

where (a) follows from the RSC condition, and the fact that st−1 ∈ N∗.

Now recall that we have taken η = 1
Ls+C , and let us define α := C

Ls
+1. Then C = (α− 1)Ls, and

η = 1
αLs

. Also recall that κs =
Ls

νs
.

We can simplify the inequality above into:

E[R(wt)|wt−1]−R(w̄)

≤ 1

2η

[(
1− 1

ακs

)
∥w̄ −wt−1∥2 − E

[
∥wt − w̄∥2|wt−1

]
+
√
βE
[
∥vt − w̄∥2|wt−1

]
+

ηB

Cst−1

]
.

We now take the expectation over wt−1 of the above inequality (i.e. we take Ewt−1 [·]): using the
law of total expectation (E[·] = Ewt−1 [E[·|wt−1]]) we obtain:

ER(wt)−R(w̄) ≤ 1

2η

[(
1− 1

ακs

)
E∥w̄ −wt−1∥2 − E∥wt − w̄∥2 +

√
βE∥vt − w̄∥2 + ηB

Cst−1

]
.

Additionally, in view of equation 17 applied at vt instead of wt, (since vt here corresponds to the
wt from Section E.1.2, i.e. vt is the hard-thresholding of an iterate after a gradient step), we know
that:

ER(vt)−R(w̄) ≤ 1

2η

[(
1− 1

ακs

)
E∥w̄ −wt−1∥2 − (1−

√
β)E∥wt − w̄∥2 + ηB

Cst−1

]
.

We now take a convex combination similarly as in the case without additional constraint (section
D.2), for some ρ ∈ (0, 1).

E(1− ρ)R(wt) + ρR(vt)

≤R(w̄) +
1

2η

[(
1− 1

ακs

)
E∥w̄ −wt−1∥2 − (1− ρ)E∥wt − w̄∥2

+
(
(1− ρ)

√
β − (1−

√
β)ρ
)
E∥vt − w̄∥2 + ηB

Cst−1

]
=R(w̄) +

1

2η

[(
1− 1

ακs

)
E∥w̄ −wt−1∥2 − (1− ρ)E∥wt − w̄∥2

−
(
ρ−

√
β
)
E∥vt − w̄∥2 + ηB

Cst−1

]
(b)

≤R(w̄) +
1

2η

[(
1− 1

ακs

)
E∥w̄ −wt−1∥2 − (1− ρ)E∥wt − w̄∥2
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−
(
ρ−

√
β
)
E∥wt − w̄∥2 + ηB

Cst−1

]
=R(w̄) +

1

2η

[(
1− 1

ακs

)
E∥w̄ −wt−1∥2 − (1−

√
β)E∥wt − w̄∥2 + ηB

Cst−1

]
,

where in (b), we have assumed that
√
β ≤ ρ (later we will verify that our choice of k ensures such a

condition), and have used the fact that projection onto a convex set is non-expansive (which implies
that ∥vt−w̄∥2 ≥ ∥wt−w̄∥2). Similarly as in E.1.2, we now take a weighted sum over t = 1, ..., T ,
to obtain:

T∑
t=1

2η

(
1− 1

ακs

1−√β

)T−t

E[(1− ρ)R(wt) + ρR(vt)−R(w̄)]

≤
T∑

t=1

(
1− 1

ακs

1−√β

)T−t [(
1− 1

ακs

)
E∥w̄ −wt−1∥2 − (1−

√
β)E∥wt − w̄∥2 + ηB

Cst−1

]

=

T∑
t=1

(
1− 1

ακs

1−√β

)T−t [(
1− 1

ακs

)
E∥w̄ −wt−1∥2 − (1−

√
β)E∥wt − w̄∥2

]

+

T∑
t=1

(
1− 1

ακs

1−√β

)T−t
ηB

Cst−1

=(1−
√
β)

T∑
t=1

(1− 1
ακs

1−√β

)T−t+1

E∥w̄ −wt−1∥2 −
(
1− 1

ακs

1−√β

)T−t

E∥wt − w̄∥2


+

T∑
t=1

(
1− 1

ακs

1−√β

)T−t
ηB

Cst−1

(a)
=(1−

√
β)

(1− 1
ακs

1−√β

)T

∥w̄ −w0∥2 − E∥wT − w̄∥2
+

T∑
t=1

(
1− 1

ακs

1−√β

)T−t
ηB

Cst−1

≤(1−
√

β)

(
1− 1

ακs

1−√β

)T

∥w̄ −w0∥2 +
T∑

t=1

(
1− 1

ακs

1−√β

)T−t
ηB

Cst−1

≤
(
1− 1

ακs

1−√β

)T

∥w̄ −w0∥2 +
T∑

t=1

(
1− 1

ακs

1−√β

)T−t
ηB

Cst−1
, (26)

where (a) follows from simplifying the telescopic sum.

We now choose k and st as follows: we choose k ≥ 4 1
ρ2α

2κ2
sk̄, which implies that:

ρ ≥ √β (thereby verifying the assumption made earlier), and that:

√
β ≤ 1

2α 1
ρκs

=⇒
√

β ≤ 1

2α 1
ρκs − 1

=⇒ 1−
√
β ≥ 1− 1

2α 1
ρκs − 1

=
2α 1

ρκs − 2

2α 1
ρκs − 1

=
1− 1

α 1
ρκs

1− 1
2α 1

ρκs

(a)

≥
1− 1

ακs

1− 1
2α 1

ρκs

=⇒
(
1− 1

ακs

1−√β

)
≤ 1− 1

2α 1
ρκs

, (27)
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where (a) follows from the fact that ρ ≤ 1.

And we now choose st :=
⌈

τ
ωt

⌉
, with ω := 1− 1

4α 1
ρκs

and τ := ηB
C .

Let us call ν := 1− 1
2α 1

ρκs
. Note that we have:

ν ≤ ω. (28)
And that we have the inequality below:

ν

ω
=

1− 1
2α 1

ρκs

1− 1
4α 1

ρκs

=
4α 1

ρκs − 2

4α 1
ρκs − 1

= 1− 1

4α 1
ρκs − 1

≤ 1− 1

4α 1
ρκs

= ω. (29)

This allows us to simplify equation 26 into:

E
T∑

t=1

2η

(
1− 1

ακs

1−√β

)T−t

[(1− ρ)R(wt) + ρR(vt)−R(w̄)]

≤ νT ∥w̄ − w0∥2 +
T∑

t=1

νT−tωt−1

= νT ∥w̄ − w0∥2 +
ωT

ω

T∑
t=1

( ν
ω

)T−t

= νT ∥w̄ − w0∥2 +
ωT

ω

1−
(
ν
ω

)T
1−

(
ν
ω

)
≤ νT ∥w̄ − w0∥2 +

ωT

ω

1

1−
(
ν
ω

)
(a)

≤ νT ∥w̄ − w0∥2 +
ωT

ω

1

1− ω
(b)

≤ νT ∥w̄ − w0∥2 +
4

3
ωT 1

1− ω
(c)

≤ ωT ∥w̄ − w0∥2 +
4

3
ωT 1

1− ω
(d)

≤ ωT

1− ω
∥w̄ − w0∥2 +

4

3
ωT 1

1− ω

=
ωT

1− ω

(
∥w̄ − w0∥2 +

4

3

)
= 4α

1

ρ
κsω

T

(
∥w̄ − w0∥2 +

4

3

)
,

where in the left hand side we have used the linearity of expectation, and where (a) uses equation 29,
(b) uses the fact that 1

ω = 1
1− 1

4α 1
ρ
κs

≤ 1
1− 1

4

= 4
3 (since κs ≥ 1 and α ≥ 1 (indeed, from the

theorem’s assumption α = C
Ls

+ 1 with C > 0), so consequently α 1
ρ ≥ 1), (c) uses equation 28,

and (d) uses the fact that ω < 1 so 1 < 1
1−ω .

Let us now normalize the above inequality:

E

∑T
t=1 2η

(
1− 1

ακs

1−
√
β

)T−t

(1− ρ)R(wt) + ρR(vt)∑T
t=1 2η

(
1− 1

ακs

1−
√
β

)T−t
≤ R(w̄) +

4α 1
ρκsω

T
(
∥w̄ −w0∥2 + 4

3

)
∑T

t=1 2η
(

1− 1
ακs

1−
√
β

)T−t
.
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The left hand side above is a weighted sum, which is an upper bound on the smallest term of the
sum.

Regarding the right hand side, we can simplify it using the fact that 0 <
(

1− 1
ακs

1−
√
β

)
, and therefore:

T∑
t=1

(
1− 1

ακs

1−√β

)T−t

≥ 1.

Therefore, we obtain:

E min
t∈{1,..,T}

(1− ρ)R(wt) + ρR(vt)−R(w̄) ≤
4α 1

ρκsω
T
(
∥w̄ −w0∥2 + 4

3

)
2η

= 2α2 1

ρ
Lsκsω

T

(
∥w̄ −w0∥2 +

4

3

)
. (30)

We denote by εT the right-hand side above:

εT = 2α2 1

ρ
Lsκsω

T

(
∥w̄ −w0∥2 +

4

3

)
.

We now proceed similarly as in the proof of Theorem 1 above. Recall that we have assumed in the
Assumptions of Theorem 2, without loss of generality, that R is non-negative, which implies that
R (vt) ≥ 0. Plugging this in equation 30 implies that:

E min
t∈[T ]

R (wt) ≤
1

1− ρ
R(w̄) +

εT
1− ρ

≤ (1 + 2ρ)R(w̄) +
εT

1− ρ
. (31)

Plugging the change of variable ε′T = εT
1−ρ into equation 31 above, we obtain that:

E min
t∈[T ]

R (wt) ≤ (1 + 2ρ)R(w̄) + ε′T .

Further, consider an ideal case where w̄ is a global minimizer of R over B0(k) := {w : ∥w∥0 ≤ k}.
Then R (vt) ≥ R(w̄) is always true for all t ≥ 1. It follows that the bound in equation 31 yields:

E min
t∈[T ]

{(1− ρ)R (wt) + ρR(w̄)} ≤ E min
t∈[T ]

{(1− ρ)R (wt) + ρR (vt)} ≤ R(w̄) + εT ,

which implies: Emint∈[T ] R (wt) ≤ R(w̄) + εT
1−ρ . In this case, we can simply set ρ = 0.5, and

define ε′T = εT
1−ρ = 2εT similarly as above.. The proof is completed.

E.2 PROOF OF COROLLARY 1

Proof. We proceed similarly as in the proof of Corollary 3 in Section E.1.2:

Let ε ∈ R∗
+. Let us find T to ensure that Emint∈{1,..,T}(1− ρ)R(wt) + ρR(vt)−R(w̄) ≤ ε This

will be enforced if:

2α2 1

ρ
Lsκsω

T

(
∥w̄ −w0∥2 +

4

3

)
≤ ε

⇐⇒ T log(ω) ≤ log

(
ε

2α2 1
ρLsκs

(
∥w̄ −w0∥2 + 4

3

))

⇐⇒ T ≥ 1

log( 1
ω )

log

(
2α2 1

ρLsκs

(
∥w̄ −w0∥2 + 4

3

)
ε

)
.

Therefore, let us take:

T :=

⌈
1

log( 1
ω )

log

(
2α2 1

ρLsκs

(
∥w̄ −w0∥2 + 4

3

)
ε

)⌉
. (32)
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We can now derive the #IFO and #HT. First, we have one hard-thresholding operation at each it-
eration, therefore #HT= T . Using the fact that 1

log( 1
ω )

= 1
− log(ω) = 1

− log(1− 1

4α 1
ρ
κs

)
≤ 1

1

4α 1
ρ
κs

=

4α 1
ρκs (since by property of the logarithm, for all x ∈ (−∞,−1) : log(1 − x) ≤ −x ), we obtain

that #HT = O(κs log
(
1
ε

)
).

We now turn to computing the #IFO. At each iteration t we have st gradient evaluations, therefore:

#IFO =

T−1∑
t=0

st

≤
T−1∑
t=0

( τ

ωt
+ 1
)

= T + τ

(
1
ω

)T − 1
1
ω − 1

≤ T +
τ

1
ω − 1

(
1

ω

)T

= T +
τ

1
ω − 1

exp

(
T log

(
1

ω

))
(a)

≤ 1 +
1

log( 1
ω )

log

(
2α2 1

ρLsκs

(
∥w̄ −w0∥2 + 4

3

)
ε

)

+
τ

1
ω − 1

exp

(
log

(
1

ω

)[
1

log( 1
ω )

log

(
2α2 1

ρLsκs

(
∥w̄ −w0∥2 + 4

3

)
ε

)
+ 1

])

= 1 +
1

log( 1
ω )

log

(
2α2 1

ρLsκs

(
∥w̄ −w0∥2 + 4

3

)
ε

)
+

τ
ω

1
ω − 1

2α2 1
ρLsκs

(
∥w̄ −w0∥2 + 4

3

)
ε

= 1 +
1

log( 1
ω )

log

(
2α2 1

ρLsκs

(
∥w̄ −w0∥2 + 4

3

)
ε

)
+

τ

1− ω

2α2 1
ρLsκs

(
∥w̄ −w0∥2 + 4

3

)
ε

= 1 +
1

log( 1
ω )

log

(
2α2 1

ρLsκs

(
∥w̄ −w0∥2 + 4

3

)
ε

)
+ τ

8α3 1
ρ2Lsκ

2
s

(
∥w̄ −w0∥2 + 4

3

)
ε

(b)
= 1 +

1

log( 1
ω )

log

(
2α2 1

ρLsκs

(
∥w̄ −w0∥2 + 4

3

)
ε

)

+
B

αLs

1

Ls(α− 1)

8α3 1
ρ2Ls

ε

Ls

νs
κs

(
∥w̄ −w0∥2 +

4

3

)
= 1 +

1

log( 1
ω )

log

(
2α2 1

ρLsκs

(
∥w̄ −w0∥2 + 4

3

)
ε

)
+

8Bα2 1
ρ2κs

(
∥w̄ −w0∥2 + 4

3

)
(α− 1)νs

1

ε
,

where (a) follows from equation 32, and for (b) we recall that τ = ηB
C , η = 1

αLs
and C = Ls(α−1).

Therefore, overall, the IFO complexity is in O( κs

νsε
).

E.3 PROOF OF THEOREM 3

Our proof is similar to the one for Theorem 2, though we needed to refine some results from
de Vazelhes et al. (2022) to properly express the variance of the ZO gradient estimator and in-
corporate it into the telescopic sum. Before proving the main Theorem 3, below we provide several
intermediary results needed for the proof of Theorem 3. Then, the proof of Theorem 2 will be
provided in Section E.3.3.
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E.3.1 USEFUL LEMMAS

We first recall the following results from de Vazelhes et al. (2022):

Proposition 1 (Proposition 1 (i) de Vazelhes et al. (2022)). Let us consider any support F ⊆ [d] of
size s (|F | = s). For the Z0 gradient estimator gt in Algorithm 3 at wt, with qt random directions,
and random supports of size s2, and assuming that R is (Ls2 , s2)-RSS’ , we have, with [u]F denoting
the hard thresholding of a vector u on F (that is, we set all coordinates not in F to 0):

∥[Egt]F − [∇R(wt)]F ∥2 ≤ εµµ
2 (33)

with εµ := L2
s2sd

Proof. Proof in de Vazelhes et al. (2022).

Lemma 5 (Lemma C.2 de Vazelhes et al. (2022)). For any (Ls2 , s2)-RSS’ function R, using the
gradient estimator gt defined in Algorithm 3 with qt = 1, we have, for any support F ⊆ [d], with
|F | = s, and F c := [d] \ F :

E∥[gt]F ∥2 = εF ∥[∇R(wt)]F ∥2 + εF c ∥[∇R(wt)]F c∥2 + εabsµ
2 (34)

with:
(i) εF := 2d

(s2+2)

(
(s−1)(s2−1)

d−1 + 3
)

(ii) εF c := 2d
(s2+2)

(
s(s2−1)
d−1

)
(iii) εabs := 2dL2

sss2

(
(s−1)(s2−1)

d−1 + 1
)

.

Proof. Proof in de Vazelhes et al. (2022).

We now use the above lemma to bound the variance of the zeroth-order gradient estimator gt.

Lemma 6. The gradient estimator gt defined in Algorithm 3 verifies the following properties for
any qt ∈ N∗:

E∥[gt]F − E[gt]F ∥2 ≤
εF
qt
∥∇R(w)∥2 + εabs

qt
µ2 (35)

with εF and εabs defined above in Lemma 5

Proof. If qt = 1, we have:

E∥[gt]F − E[gt]F ∥2
(a)
= E∥[gt]F ∥2 − ∥[Eg]F ∥2

≤ E∥[gt]F ∥2
(34)

≤ εF ∥[∇R(w)]F ∥2 + εF c∥[∇R(w)]F c∥2 + εabsµ
2

(b)

≤ εF ∥∇R(w)∥2 + εabsµ
2,

where (a) follows from the bias-variance formula E∥X −E[X]∥22 = E∥X∥22 − ∥EX∥22 for a multi-
dimensional random variable X , and (b) follows from the fact that

εF =
2d

s2 + 2

(
s(s2 − 1)

d− 1
+ 3− s2 − 1

d

)
>

2d

s2 + 2

(
s(s2 − 1)

d− 1

)
= εF c

(since s2 ≤ d), and since ∥[∇R(w)]F ∥2 + ∥[∇R(w)]F c∥2 = ∥∇R(w)∥2 (by definition of the
Euclidean norm).

Now, if qt ≥ 1, we know that the variance of an average of qt i.i.d. realizations of a random variable
of total variance σ2 is σ2

qt
(and its expected value remains the same by linearity of expectation):
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indeed, for any random multidimensional random variable X , for which we consider the q i.i.d.
random variables Xi of same distribution, we have:

E

∥∥∥∥∥ 1

qt

qt∑
i=1

Xi − E

[
1

qt

qt∑
i=1

Xi

]∥∥∥∥∥
2

2

= E

∥∥∥∥∥ 1

qt

qt∑
i=1

(Xi − EXi)

∥∥∥∥∥
2

2

=
1

q2t

(
qt∑
i=1

(Xi − EXi)

)⊤( qt∑
i=1

(Xi − EXi)

)
(a)
=

1

q2t

qt∑
i=1

∥Xi − EXi∥22

=
1

q2t

qt∑
i=1

∥X − EX∥22

=
1

q2t
qt∥X − EX∥22

=
1

qt
∥X − EX∥22,

where (a) follows from the fact that Xi are i.i.d hence for i ̸= j: Cov(Xi, Xj) = E(Xi −
EXi)

⊤(Xj − EXj) = 0. Applying this to the random variable which realizations are [gt]F , this
concludes the proof.

E.3.2 CASE WITHOUT ADDITIONAL CONSTRAINT

Below we now first present some results (and their proofs) for the convergence of Algorithm 3 with-
out the additional constraint, which is needed for the proof of Theorem 3, and also, as a byproduct,
provides, up to our knowledge, the first convergence guarantee in objective value without system
error for a zeroth-order hard-thresholding algorithm.
Theorem 6. Assume that Γ = Rd. Let w̄ be an arbitrary k̄-sparse vector. Let s = 3k,
and s2 ∈ {1, ..., d}. Assume that R is (Ls′ , s

′)-RSS’ with s′ = max(s2, s), and νs-restricted
strongly convex. Denote κs := Ls′

νs
. Let C be an arbitrary positive constant, and denote

εF := 2d
(s2+2)

(
(s−1)(s2−1)

d−1 + 3
)

, εabs := 2dL2
s′ss2

(
(s−1)(s2−1)

d−1 + 1
)

, and εµ := L2
s′sd. As-

sume that we run HZO-HT-TSP (Algorithm 3) for T timesteps, with η = 1
Ls′+C = 1

αLs′
, with

α := C
Ls′

+ 1. Suppose that k ≥ 16α2κ2
sk̄. Finally, assume that we take the following number qt of

random directions at each iteration:

qt :=
⌈

τ
ωt

⌉
with ω := 1 − 1

8ακs
and τ := 16κs

εF
(α−1) . Then, we have the following convergence

rate:

ER(ŵT )−R(w̄) ≤ 4α2Ls′κsω
T

(
∥w̄ −w0∥2 +

1

3

η∥∇R(w̄)∥2
κsLs′

)
+ Zµ2 (36)

with Z = εµ

(
2
νs

+ 1
C

)
+ εabs

C

Proof. Let us denote for simplicity: C1 := εF
qt

, C2 := εabs

qt
, and C3 := εµµ

2. Moreover, let us
denote F := supp(wt) ∪ supp(wt−1) ∪ supp(w̄), where supp denotes the support of a vector, i.e.
the set of coordinates of its non-zero components. Note that therefore we have |F | ≤ 2k + k̄ ≤
3k. In addition [u]F denotes the thresholding of u to the support F , that is, the vector u with its
components that are not in F set to 0.

The fact that R is (Ls′ , s
′)-RSS’, therefore also (Ls′ , s)-RSS’, implies from the remark in 5 that it

is also (Ls′ , s)-RSS, therefore:

R(wt)
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≤R(wt−1) + ⟨∇R(wt−1),wt −wt−1⟩+
Ls′

2
∥wt −wt−1∥2

=R(wt−1) + ⟨gt−1,wt −wt−1⟩+
Ls′

2
∥wt −wt−1∥2 + ⟨∇R(wt−1)− gt−1,wt −wt−1⟩

=R(wt−1) +
1

2η

[
∥wt − (wt−1 − ηgt−1)∥2 − η2∥gt−1∥2 − ∥wt −wt−1∥2

]
+

Ls′

2
∥wt −wt−1∥2

+ ⟨∇R(wt−1)− gt−1,wt −wt−1⟩

=R(wt−1) +
1

2η
∥wt − (wt−1 − ηgt−1)∥2 −

η

2
∥gt−1∥2 +

[
Ls′ − 1

η

2

]
∥wt −wt−1∥2

+ ⟨[∇R(wt−1)− gt−1]F ,wt −wt−1⟩
(a)

≤R(wt−1) +
1

2η

[
∥w̄ − (wt−1 − ηgt−1)∥2 − (1−

√
β)∥wt − w̄∥2

]
− η

2
∥gt−1∥2

+

[
Ls′ − 1

η

2

]
∥wt −wt−1∥2 + ⟨[∇R(wt−1)− gt−1]F ,wt −wt−1⟩

=R(wt−1) +
1

2η

[
∥w̄ −wt−1∥2 + η2∥gt−1∥2 − 2⟨ηgt−1,wt−1 − w̄⟩

]
− 1

2η
(1−

√
β)∥wt − w̄∥2

− η

2
∥gt−1∥2 +

[
Ls′ − 1

η

2

]
∥wt −wt−1∥2 + ⟨[∇R(wt−1)− gt−1]F ,wt −wt−1⟩

=R(wt−1) +
1

2η

[
∥w̄ −wt−1∥2 − 2⟨ηgt−1,wt−1 − w̄⟩

]
− 1

2η
(1−

√
β)∥wt − w̄∥2

+

[
Ls′ − 1

η

2

]
∥wt −wt−1∥2 + ⟨[∇R(wt−1)− gt−1]F ,wt −wt−1⟩

(b)
=R(wt−1) +

1

2η
∥w̄ −wt−1∥2 − ⟨gt−1,wt−1 − w̄⟩ − 1

2η
(1−

√
β)∥wt − w̄∥2

+

[
Ls′ − 1

η + C

2

]
∥wt −wt−1∥2 +

1

2C
∥[∇R(wt−1)− gt−1]F ∥2

=R(wt−1) +
1

2η
∥w̄ −wt−1∥2 − ⟨∇R(wt−1),wt−1 − w̄⟩+ ⟨[∇R(wt−1)− gt−1]F ,wt−1 − w̄⟩

− 1

2η
(1−

√
β)∥wt − w̄∥2 +

[
Ls′ − 1

η + C

2

]
∥wt −wt−1∥2 +

1

2C
∥[∇R(wt−1)− gt−1]F ∥2,

where (a) follows from Lemma 3 and (b) follows from the inequality ⟨a, b⟩ ≤ C
2 a

2 + 1
2C b2, for any

(a, b) ∈ (Rd)2 with C > 0 an arbitrary strictly positive constant.

Let us now choose η := 1
Ls′+C : therefore the term

[
Ls′− 1

η+C

2

]
∥wt − wt−1∥2 above is 0. We

now take the conditional expectation (conditioned on wt−1, which is the random variable which
realizations are wt−1), on both sides, and from Lemma 4 we obtain the inequality below (we slightly
abuse notations and denote E[·|wt−1 = wt−1] by E[·|wt−1]):

E[R(wt)|wt−1]

≤R(wt−1) +
1

2η
∥w̄ −wt−1∥2 − ⟨∇R(wt−1),wt−1 − w̄⟩

− 1

2η
(1−

√
β)E

[
∥wt − w̄∥2|wt−1

]
+ ⟨[∇R(wt−1)− E [gt−1|wt−1]]F ,wt−1 − w̄⟩

+ E
[

1

2C
∥[∇R(wt−1)− gt−1]F ∥2|wt−1

]
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(a)

≤R(wt−1) +
1

2η
∥w̄ −wt−1∥2 − ⟨∇R(wt−1),wt−1 − w̄⟩

− 1

2η
(1−

√
β)E

[
∥wt − w̄∥2|wt−1

]
+

G

2
∥[∇R(wt−1)− E[gt−1|wt−1]]F ∥2 +

1

2G
∥wt−1 − w̄∥2

+
1

2C
E
[
∥∇R(wt−1)− gt−1∥2|wt−1

]
=R(wt−1) +

[
1

2η
+

1

2G

]
∥w̄ −wt−1∥2 − ⟨∇R(wt−1),wt−1 − w̄⟩

− 1

2η
(1−

√
β)E

[
∥wt − w̄∥2|wt−1

]
+

G

2
∥[∇R(wt−1)− E[gt−1|wt−1]]F ∥2

+
1

2C
E
[
∥[∇R(wt−1)− gt−1]F ∥2|wt−1

]
(b)

≤R(wt−1) +

[
1

2η
+

1

2G

]
∥w̄ −wt−1∥2 − ⟨∇R(wt−1),wt−1 − w̄⟩

− 1

2η
(1−

√
β)E

[
∥wt − w̄∥2|wt−1

]
+

G

2
∥[∇R(wt−1)− E[gt−1|wt−1]]F ∥2

+
1

2C

(
2∥[∇R(wt−1)− E[gt−1|wt−1]]F ∥2 + 2∥[gt−1 − E[gt−1|wt−1]]F ∥2

)
(33)+(35)

≤ R(wt−1) +

[
1

2η
+

1

2G

]
∥w̄ −wt−1∥2 − ⟨∇R(wt−1),wt−1 − w̄⟩

− 1

2η
(1−

√
β)E

[
∥wt − w̄∥2|wt−1

]
+

G

2
C3

+
1

2C

(
2C3 + 2C1∥∇R(wt−1)∥2 + 2C2µ

2
)

(c)

≤R(wt−1) +

[
1

2η
+

1

2G

]
∥w̄ −wt−1∥2 − ⟨∇R(wt−1),wt−1 − w̄⟩

− 1

2η
(1−

√
β)E

[
∥wt − w̄∥2|wt−1

]
+

G

2
C3

+
1

2C

(
2C1

(
2∥∇R(wt−1)−∇R(w̄)∥2 + 2∥∇R(w̄)∥2

)
+ 2C2µ

2 + 2C3

)
(d)

≤R(wt−1) +

[
1

2η
+

1

2G

]
∥w̄ −wt−1∥2 − ⟨∇R(wt−1),wt−1 − w̄⟩

− 1

2η
(1−

√
β)E

[
∥wt − w̄∥2|wt−1

]
+

G

2
C3

+
1

2C

(
2C1

(
2L2

s′∥wt−1 − w̄∥2 + 2∥∇R(w̄)∥2
)
+ 2C2µ

2 + 2C3

)
=R(wt−1) +

[
1

2η
+

1

2G
+

2C1L
2
s′

C

]
∥w̄ −wt−1∥2 − ⟨∇R(wt−1),wt−1 − w̄⟩

− 1

2η
(1−

√
β)E

[
∥wt − w̄∥2|wt−1

]
+

G

2
C3 +

1

C

(
2C1∥∇R(w̄)∥2 + C2µ

2 + C3

)
(e)

≤R(wt−1) +

[
1

2η
+

1

2G
+

2C1L
2
s′

C

]
∥w̄ −wt−1∥2 +

[
R(w̄)−R(wt−1)−

νs
2
∥wt−1 − w̄∥2

]
− 1

2η
(1−

√
β)E

[
∥wt − w̄∥2|wt−1

]
+

G

2
C3 +

1

C

(
2C1∥∇R(w̄)∥2 + C2µ

2 + C3

)
=R(w̄) +

[
1
η − νs

2
+

1

2G
+

2C1L
2
s′

C

]
∥w̄ −wt−1∥2

− 1

2η
(1−

√
β)E

[
∥wt − w̄∥2|wt−1

]
+

G

2
C3 +

1

C

(
2C1∥∇R(w̄)∥2 + C2µ

2 + C3

)
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(f)

≤R(w̄) +

[
1
η − νs

2
+

1

2G
+

2εFL
2
s′

τC

]
∥w̄ −wt−1∥2

− 1

2η
(1−

√
β)E

[
∥wt − w̄∥2|wt−1

]
+

G

2
C3 +

1

C

(
2C1∥∇R(w̄)∥2 + C2µ

2 + C3

)
,

(37)

where (a) follows from the inequality ⟨a, b⟩ ≤ G
2 a

2 + 1
2Gb2, for any (a, b) ∈ (Rd)2 with G > 0 an

arbitrary strictly positive constant, (b) and (c) follow from the inequality ∥a+ b∥2 ≤ 2∥a∥2+2∥b∥2
for any (a, b) ∈ (Rd)2, (d) follows from the fact that R is (Ls′ , s

′)-RSS’ (Assumption 5 with sparsity
level s′), therefore it is also (Ls′ , s2)-RSS’, (e) follows from the RSC condition, and for (f), we recall
that C1 = εF

qt
, and we define qt =

⌈
τ
ωt

⌉
, for some ω > 1 and τ > 0 that will be chosen later in the

proof.

Recall that we have chosen η = 1
Ls′+C . Let us define α := C

Ls′
+ 1. Then C = (α − 1)Ls′ , and

η = 1
αLs′

. Also recall that κs =
Ls′
νs

.

We will now choose the constant G and C, in order to simplify the inequality above, such that it
matches as much as possible the structure of the previous proofs:

We will seek to rewrite:[ 1
η−νs

2 + 1
2G +

2
εF
τ L2

s′
C

] (
= 1

2η

[
1 + 1

GαLs′
+

4L2
s′

εF
τ

(α−1)αL2
s′
− 1

ακs

])
, into :

1
2η

[
1− 1

α′κs

]
for some α′ > 0 (we will seek α′ ∝ α, with a dimensionless proportionality constant

for simplicity).

Therefore, let us choose G := 4
νs

, which implies:

1

GαLs′
=

1

4ακs
. (38)

And let us choose τ := 16κsεF
(α−1) , which implies:

4L2
s′

εF
τ

(α− 1)αL2
s′

=
1

4ακs
. (39)

Therefore, using equations 38 and 39, we obtain:

[
1
η − νs

2
+

1

2G
+

2 εF
τ L2

s′

C

]
=

1

2η

[
1 +

1

GαLs′
+

4L2
s′

εF
τ

(α− 1)αL2
s′
− 1

ακs

]
=

1

2η

[
1 +

1

4ακs
+

1

4ακs
− 1

ακs

]
=

1

2η

[
1− 1

2ακs

]
=

1

2η

[
1− 1

α′κs

]
,

where for simplicity we have denoted α′ = 2α.

We can therefore simplify (37) into:

E[R(wt)|wt−1]−R(w̄) ≤ 1

2η

[(
1− 1

α′κs

)
∥w̄ −wt−1∥2 − (1−

√
β)E

[
∥wt − w̄∥2|wt−1

]
+2η

(
G

2
C3 +

1

C

(
2C1∥∇R(w̄)∥2 + C2µ

2 + C3

))]
.

We now take the expectation over wt−1 of the above inequality (i.e. we take Ewt−1 [·]): using the
law of total expectation (E[·] = Ewt−1 [E[·|wt−1]]) we obtain:

ER(wt)−R(w̄) ≤ 1

2η

[(
1− 1

α′κs

)
E∥w̄ −wt−1∥2 − (1−

√
β)E∥wt − w̄∥2 (40)
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+2η

(
G

2
C3 +

1

C

(
2C1∥∇R(w̄)∥2 + C2µ

2 + C3

))]
(41)

Let us call A := 2η
(
G
2 C3 +

1
C

(
2C1∥∇R(w̄)∥2 + C2µ

2 + C3

))
for simplicity. Similarly as in Liu

& Foygel Barber (2020), we now take a weighted sum over t = 1, ..., T , to obtain:

T∑
t=1

2η

(
1− 1

α′κs

1−√β

)T−t

E[R(wt)−R(w̄)]

≤
T∑

t=1

(
1− 1

α′κs

1−√β

)T−t [(
1− 1

α′κs

)
E∥w̄ −wt−1∥2 − (1−

√
β)E∥wt − w̄∥2 +A

]

=

T∑
t=1

(
1− 1

α′κs

1−√β

)T−t [(
1− 1

α′κs

)
E∥w̄ −wt−1∥2 − (1−

√
β)E∥wt − w̄∥2

]

+

T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

A

=(1−
√

β)

T∑
t=1

(1− 1
α′κs

1−√β

)T−t+1

E∥w̄ −wt−1∥2 −
(
1− 1

α′κs

1−√β

)T−t

E∥wt − w̄∥2


+

T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

A

(a)
=(1−

√
β)

(1− 1
α′κs

1−√β

)T

∥w̄ −w0∥2 − E∥wT − w̄∥2
+

T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

A

≤(1−
√

β)

(
1− 1

α′κs

1−√β

)T

∥w̄ −w0∥2 +
T∑

t=1

(
1− 1

α′κs

1−√β

)T−t

A

≤
(
1− 1

α′κs

1−√β

)T

∥w̄ −w0∥2 +
T∑

t=1

(
1− 1

α′κs

1−√β

)T−t

A

=

(
1− 1

α′κs

1−√β

)T

∥w̄ −w0∥2 +
T∑

t=1

(
1− 1

α′κs

1−√β

)T−t

2η

(
G

2
C3 +

1

C

(
2C1∥∇R(w̄)∥2 + C2µ

2 + C3

))

=

(
1− 1

α′κs

1−√β

)T

∥w̄ −w0∥2 +
T∑

t=1

(
1− 1

α′κs

1−√β

)T−t

2η

(
G

2
C3 +

1

C

(
2
εF
qt
∥∇R(w̄)∥2 + εabsµ

2

qt
+ C3

))

=

(
1− 1

α′κs

1−√β

)T

∥w̄ −w0∥2 +
T∑

t=1

(
1− 1

α′κs

1−√β

)T−t
2η

qt

(
2εF ∥∇R(w̄)∥2 + εabsµ

2

C

)

+

T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

2ηC3

(
G

2
+

1

C

)

=

(
1− 1

α′κs

1−√β

)T

∥w̄ −w0∥2 +
T∑

t=1

(
1− 1

α′κs

1−√β

)T−t
2η

qt

(
2εF ∥∇R(w̄)∥2

C

)

+

T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

2ηµ2

(
εµ

(
G

2
+

1

C

)
+

εabs
Cqt

)

≤
(
1− 1

α′κs

1−√β

)T

∥w̄ −w0∥2 +
T∑

t=1

(
1− 1

α′κs

1−√β

)T−t
2η

qt

(
2εF ∥∇R(w̄)∥2

C

)
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+

T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

2ηµ2

(
εµ

(
G

2
+

1

C

)
+

εabs
C

)
, (42)

where (a) follows from simplifying the telescopic sum. Let us denote for simplicity ζ :=
2η(2εF ∥∇R(w̄)∥2)

C = 4ηεF ∥∇R(w̄)∥2

C and Z := εµ
(
G
2 + 1

C

)
+ εabs

C .

We now choose k and qt as follows: we choose k ≥ 4α′2κ2
sk̄, which implies that:√

β ≤ 1

2α′κs

=⇒
√
β ≤ 1

2α′κs − 1

=⇒ 1−
√
β ≥ 1− 1

2α′κs − 1
=

2α′κs − 2

2α′κs − 1
=

1− 1
α′κs

1− 1
2α′κs

=⇒
(
1− 1

α′κs

1−√β

)
≤ 1− 1

2α′κs
. (43)

We recall that we previously defined qt =
⌈

τ
ωt

⌉
, with τ := 16κsεF

(α−1) . We now set the value of ω, to
ω := 1− 1

4α′κs
.

Let us call ν := 1− 1
2α′κs

. Note that we have:

ν ≤ ω. (44)

And that we have the inequality below:

ν

ω
=

1− 1
2α′κs

1− 1
4α′κs

=
4α′κs − 2

4α′κs − 1
= 1− 1

4α′κs − 1
≤ 1− 1

4α′κs
= ω. (45)

This allows us to simplify equation 42 into:

E

 T∑
t=1

2η

(
1− 1

α′κs

1−√β

)T−t

[R(wt)−R(w̄)]


≤ νT ∥w̄ −w0∥2 +

ζ

τ

T∑
t=1

νT−tωt−1 +

T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

2ηZµ2

= νT ∥w̄ −w0∥2 +
ζ

τ

ωT

ω

T∑
t=1

( ν
ω

)T−t

+

T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

2ηZµ2

= νT ∥w̄ −w0∥2 +
ζ

τ

ωT

ω

1−
(
ν
ω

)T
1−

(
ν
ω

) +

T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

2ηZµ2

≤ νT ∥w̄ −w0∥2 +
ζ

τ

ωT

ω

1

1−
(
ν
ω

) + T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

2ηZµ2

(a)

≤ νT ∥w̄ −w0∥2 +
ζ

τ

ωT

ω

1

1− ω
+

T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

2ηZµ2

(b)

≤ νT ∥w̄ −w0∥2 +
ζ

τ

4

3
ωT 1

1− ω
+

T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

2ηZµ2

(c)

≤ ωT ∥w̄ −w0∥2 +
ζ

τ

4

3
ωT 1

1− ω
+

T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

2ηZµ2
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(d)

≤ ωT

1− ω
∥w̄ −w0∥2 +

ζ

τ

4

3
ωT 1

1− ω
+

T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

2ηZµ2

=
ωT

1− ω

(
∥w̄ −w0∥2 +

ζ

τ

4

3

)
+

T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

2ηZµ2

= 4α′κsω
T

(
∥w̄ −w0∥2 +

ζ

τ

4

3

)
+

T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

2ηZµ2,

where in the left hand side we have used the linearity of expectation, and where (a) uses equation 45,
(b) uses the fact that 1

ω = 1
1− 1

4α′κs

≤ 1
1− 1

4

= 4
3 (since κs ≥ 1 and α′ ≥ 1 (indeed, we have

α′ = 2α = 2( C
Ls′

+ 1) with C > 0)), (c) uses equation 44, and (d) uses the fact that ω < 1 so
1 < 1

1−ω .

Let us now normalize the above inequality:

E

∑T
t=1 2η

(
1− 1

α′κs

1−
√
β

)T−t

R(wt)

∑T
t=1 2η

(
1− 1

α′κs

1−
√
β

)T−t
≤ R(w̄) +

4α′κsω
T
(
∥w̄ −w0∥2 + 4

3
ζ
τ

)
∑T

t=1 2η

(
1− 1

α′κs

1−
√
β

)T−t
+ Zµ2.

The left hand side above is a weighted sum, which is an upper bound on the smallest term of the
sum.

Regarding the right hand side, we can simplify it using the fact that 0 <

(
1− 1

α′κs

1−
√
β

)
, and therefore:

T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

≥ 1.

Therefore, we obtain:

E min
t∈{1,..,T}

R(wt)−R(w̄) ≤
4α′κsω

T
(
∥w̄ −w0∥2 + 4

3
ζ
τ

)
2η

+ Zµ2

= 4α2Ls′κsω
T

(
∥w̄ −w0∥2 +

4

3

ζ

τ

)
+ Zµ2.

Which can be simplified into the expression below, using the definition of ŵT :

ER(ŵT )−R(w̄) ≤ 4α2Ls′κsω
T

(
∥w̄ −w0∥2 +

4

3

ζ

τ

)
+ Zµ2. (46)

To simplify the above result, we recall the assumptions made earlier on: we have chosen τ = 16κsεF
(α−1) ,

and G = 4
νs

.

Therefore, to sum up, we have:

Z = εµ

(
G

2
+

1

C

)
+

εabs
C

= εµ

(
2

νs
+

1

C

)
+

εabs
C

.

ω = 1− 1

4α′κs
= 1− 1

8ακs
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ζ =
4ηεF ∥∇R(w̄)∥2

C

The last inequality implies: ζ
τ =

4ηεF ∥∇R(w̄)∥2
C

16κsLs′
εF
C

= η∥∇R(w̄)∥2

4κsLs′
.

Corollary 4. Additionally, the number of calls to the function R (#IZO), and the number of hard
thresholding operations (#HT) such that the upper bound in Theorem 2 above is smaller than ε+Zµ,
with ε > 0 are respectively: #HT = O(κs log(

1
ε )) and #IZO = O

(
εFκ3

sLs

ε

)
. Note that if

s2 = d, we have εF = O(s) = O(k), and therefore we obtain a query complexity that is dimension
independent.

Proof. Let ε ∈ R∗
+. Let us find T to ensure that ER(ŵT )−R(w̄) ≤ ε+Zµ2 This will be enforced

if:

4α2Ls′κsω
T

(
∥w̄ −w0∥2 +

4

3

η∥∇R(w̄)∥2
4κsLs′

)
≤ ε

⇐⇒ T log(ω) ≤ log

 ε

4α2Ls′κs

(
∥w̄ −w0∥2 + 4

3
η∥∇R(w̄)∥2

4κsLs′

)


⇐⇒ T ≥ 1

log( 1
ω )

log

4α2Ls′κs

(
∥w̄ −w0∥2 + 4

3
η∥∇R(w̄)∥2

4κsLs′

)
ε

 .

Therefore, let us take:

T :=

 1

log( 1
ω )

log

4α2Ls′κs

(
∥w̄ −w0∥2 + 4

3
η∥∇R(w̄)∥2

4κsLs′

)
ε

 . (47)

We can now derive the #IZO and #HT. First, we have one hard-thresholding operation at each iter-
ation, therefore #HT= T . Using the fact that 1

log( 1
ω )

= 1
− log(ω) = 1

− log(1− 1
8ακs

)
≤ 1

1
8ακs

= 8ακs

(since by property of the logarithm, for all x ∈ (−∞,−1) : log(1 − x) ≤ −x ), and the fact that
α = C

Ls′
is independent of κs, we obtain that #HT = O(κs log

(
1
ε

)
).

We now turn to computing the #IZO. At each iteration t we have qt function evaluations, therefore:

#IFO =

T−1∑
t=0

qt

≤
T−1∑
t=0

( τ

ωt
+ 1
)

= T + τ

(
1
ω

)T − 1
1
ω − 1

≤ T +
τ

1
ω − 1

(
1

ω

)T

= T +
τ

1
ω − 1

exp

(
T log

(
1

ω

))
(a)

≤ 1 +
1

log( 1
ω )

log

4α2Ls′κs

(
∥w̄ −w0∥2 + 4

3
η∥∇R(w̄)∥2

4κsLs′

)
ε


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+
τ

1
ω − 1

exp

log

(
1

ω

) 1

log( 1
ω )

log

4α2Ls′κs

(
∥w̄ −w0∥2 + 4

3
η∥∇R(w̄)∥2

4κsLs′

)
ε

+ 1


= 1 +

1

log( 1
ω )

log

4α2Ls′κs

(
∥w̄ −w0∥2 + 4

3
η∥∇R(w̄)∥2

4κsLs′

)
ε

+
τ
ω

1
ω − 1

4α2Ls′κs

(
∥w̄ −w0∥2 + 4

3
η∥∇R(w̄)∥2

4κsLs′

)
ε

= 1 +
1

log( 1
ω )

log

4α2Ls′κs

(
∥w̄ −w0∥2 + 4

3
η∥∇R(w̄)∥2

4κsLs′

)
ε

+
τ

1− ω

4α2Ls′κs

(
∥w̄ −w0∥2 + 4

3
η∥∇R(w̄)∥2

4κsLs′

)
ε

= 1 +
1

log( 1
ω )

log

4α2Ls′κs

(
∥w̄ −w0∥2 + 4

3
η∥∇R(w̄)∥2

4κsLs′

)
ε

+ τ
32α3Ls′κ

2
s

(
∥w̄ −w0∥2 + 4

3
η∥∇R(w̄)∥2

4κsLs′

)
ε

,

where (a) follows from equation 47.

And we recall that τ := 16κsεF
(α−1) , which implies that:

τ
32α3Ls′κ

2
s

(
∥w̄ −w0∥2 + 4

3
η∥∇R(w̄)∥2

2γκsLs′

)
ε

= O
(
εF
ε

(
κ3
sLs′ +

κs

νs

))
.

Therefore, overall, the # IZO complexity is in O
(
εF
ε κ3

sLs′
)
.

E.3.3 PROOF OF THEOREM 3

Using the results above, we can now proceed to the proof of Theorem 3.

Proof. Let us denote for simplicity: C1 := εF
qt

, C2 := εabs

qt
, and C3 := εµµ

2. Moreover, let us
denote F := supp(wt) ∪ supp(wt−1) ∪ supp(w̄), where supp denotes the support of a vector, i.e.
the set of coordinates of its non-zero components. Note that therefore we have |F | ≤ 2k + k̄ ≤
3k. In addition [u]F denotes the thresholding of u to the support F , that is, the vector u with its
components that are not in F set to 0. Since R is Ls′ -RSS’, with s′ = max(s2, s), R is also s-RSS’
and s2-RSS’, with Lipschitz constant Ls′ .

Denote vt = Hk(wt−1 − η∇R(wt−1)) for any t ∈ N. The fact that R is (Ls′ , s
′)-RSS’, therefore

also (Ls′ , s)-RSS’, implies from the remark in Assumption 5 that it is also (Ls′ , s)-RSS, therefore:

R(wt)

≤R(wt−1) + ⟨∇R(wt−1),wt −wt−1⟩+
Ls

2
∥wt −wt−1∥2

=R(wt−1) + ⟨gt−1,wt −wt−1⟩+
Ls

2
∥wt −wt−1∥2 + ⟨∇R(wt−1)− gt−1,wt −wt−1⟩

=R(wt−1) +
1

2η

[
∥wt − (wt−1 − ηgt−1)∥2 − η2∥gt−1∥2 − ∥wt −wt−1∥2

]
+

Ls

2
∥wt −wt−1∥2

+ ⟨∇R(wt−1)− gt−1,wt −wt−1⟩

=R(wt−1) +
1

2η
∥wt − (wt−1 − ηgt−1)∥2 −

η

2
∥gt−1∥2 +

[
Ls − 1

η

2

]
∥wt −wt−1∥2

+ ⟨[∇R(wt−1)− gt−1]F ,wt −wt−1⟩
(a)

≤R(wt−1) +
1

2η

[
∥w̄ − (wt−1 − ηgt−1)∥2 − ∥wt − w̄∥2 +

√
β∥vt − w̄∥2

]
− η

2
∥gt−1∥2

+

[
Ls − 1

η

2

]
∥wt −wt−1∥2 + ⟨[∇R(wt−1)− gt−1]F ,wt −wt−1⟩
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=R(wt−1) +
1

2η

[
∥w̄ −wt−1∥2 + η2∥gt−1∥2 − 2⟨ηgt−1,wt−1 − w̄⟩

]
− 1

2η
∥wt − w̄∥2 +

√
β

2η
∥vt − w̄∥2

− η

2
∥gt−1∥2 +

[
Ls − 1

η

2

]
∥wt −wt−1∥2 + ⟨[∇R(wt−1)− gt−1]F ,wt −wt−1⟩

=R(wt−1) +
1

2η

[
∥w̄ −wt−1∥2 − 2⟨ηgt−1,wt−1 − w̄⟩

]
− 1

2η
∥wt − w̄∥2 +

√
β

2η
∥vt − w̄∥2

+

[
Ls − 1

η

2

]
∥wt −wt−1∥2 + ⟨[∇R(wt−1)− gt−1]F ,wt −wt−1⟩

(b)
=R(wt−1) +

1

2η
∥w̄ −wt−1∥2 − ⟨gt−1,wt−1 − w̄⟩ − 1

2η
∥wt − w̄∥2 +

√
β

2η
∥vt − w̄∥2

+

[
Ls − 1

η + C

2

]
∥wt −wt−1∥2 +

1

2C
∥[∇R(wt−1)− gt−1]F ∥2

=R(wt−1) +
1

2η
∥w̄ −wt−1∥2 − ⟨∇R(wt−1),wt−1 − w̄⟩+ ⟨∇R(wt−1)− gt−1,wt−1 − w̄⟩

− − 1

2η
∥wt − w̄∥2 +

√
β

2η
∥vt − w̄∥2 +

[
Ls′ − 1

η + C

2

]
∥wt −wt−1∥2 +

1

2C
∥[∇R(wt−1)− gt−1]F ∥2,

where (a) follows from Lemma 3 and (b) follows from the inequality ⟨a, b⟩ ≤ C
2 a

2 + 1
2C b2, for any

(a, b) ∈ (Rd)2 with C > 0 an arbitrary strictly positive constant.

Let us now assume that η := 1
Ls′+C : therefore the term

[
Ls′− 1

η+C

2

]
∥wt − wt−1∥2 above is 0.

We now take the conditional expectation (conditioned on wt−1, which is the random variable which
realizations are wt−1), on both sides, and from Lemma 4 we obtain the inequality below (we slightly
abuse notations and denote E[·|wt−1 = wt−1] by E[·|wt−1]):

E[R(wt)|wt−1]

≤R(wt−1) +
1

2η
∥w̄ −wt−1∥2 − ⟨∇R(wt−1),wt−1 − w̄⟩

− 1

2η
E
[
∥wt − w̄∥2|wt−1

]
+

√
β

2η
E
[
∥vt − w̄∥2|wt−1

]
+ ⟨[∇R(wt−1)− E [gt−1|wt−1]]F ,wt−1 − w̄⟩

+ E
[

1

2C
∥[∇R(wt−1)− gt−1]F ∥2|wt−1

]
(a)

≤R(wt−1) +
1

2η
∥w̄ −wt−1∥2 − ⟨∇R(wt−1),wt−1 − w̄⟩

− 1

2η
E
[
∥wt − w̄∥2|wt−1

]
+

√
β

2η
E
[
∥vt − w̄∥2|wt−1

]
+

G

2
∥[∇R(wt−1)− E[gt−1|wt−1]]F ∥2 +

1

2G
∥wt−1 − w̄∥2 + 1

2C
E
[
∥∇R(wt−1)− gt−1∥2|wt−1

]
=R(wt−1) +

[
1

2η
+

1

2G

]
∥w̄ −wt−1∥2 − ⟨∇R(wt−1),wt−1 − w̄⟩

− 1

2η
E
[
∥wt − w̄∥2|wt−1

]
+

√
β

2η
E
[
∥vt − w̄∥2|wt−1

]
+

G

2
∥[∇R(wt−1)− E[gt−1|wt−1]]F ∥2

+
1

2C
E
[
∥[∇R(wt−1)− gt−1]F ∥2|wt−1

]
(b)

≤R(wt−1) +

[
1

2η
+

1

2G

]
∥w̄ −wt−1∥2 − ⟨∇R(wt−1),wt−1 − w̄⟩
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− 1

2η
E
[
∥wt − w̄∥2|wt−1

]
+

√
β

2η
E
[
∥vt − w̄∥2|wt−1

]
+

G

2
∥[∇R(wt−1)− E[gt−1|wt−1]]F ∥2

+
1

2C

(
2∥[∇R(wt−1)− E[gt−1|wt−1]]F ∥2 + 2∥[gt−1 − E[gt−1|wt−1]]F ∥2

)
(33)+(35)

≤ R(wt−1) +

[
1

2η
+

1

2G

]
∥w̄ −wt−1∥2 − ⟨∇R(wt−1),wt−1 − w̄⟩

− 1

2η
E
[
∥wt − w̄∥2|wt−1

]
+

√
β

2η
E
[
∥vt − w̄∥2|wt−1

]
+

G

2
C3

+
1

2C

(
2C3 + 2C1∥∇R(wt−1)∥2 + 2C2µ

2
)

(c)

≤R(wt−1) +

[
1

2η
+

1

2G

]
∥w̄ −wt−1∥2 − ⟨∇R(wt−1),wt−1 − w̄⟩

− 1

2η
E
[
∥wt − w̄∥2|wt−1

]
+

√
β

2η
E
[
∥vt − w̄∥2|wt−1

]
+

G

2
C3

+
1

2C

(
2C1

(
2∥∇R(wt−1)−∇R(w̄)∥2 + 2∥∇R(w̄)∥2

)
+ 2C2µ

2 + 2C3

)
(d)

≤R(wt−1) +

[
1

2η
+

1

2G

]
∥w̄ −wt−1∥2 − ⟨∇R(wt−1),wt−1 − w̄⟩

− 1

2η
E
[
∥wt − w̄∥2|wt−1

]
+

√
β

2η
E
[
∥vt − w̄∥2|wt−1

]
+

G

2
C3

+
1

2C

(
2C1

(
2L2

s′∥wt−1 − w̄∥2 + 2∥∇R(w̄)∥2
)
+ 2C2µ

2 + 2C3

)
=R(wt−1) +

[
1

2η
+

1

2G
+

2C1L
2
s′

C

]
∥w̄ −wt−1∥2 − ⟨∇R(wt−1),wt−1 − w̄⟩

− 1

2η
E
[
∥wt − w̄∥2|wt−1

]
+

√
β

2η
E
[
∥vt − w̄∥2|wt−1

]
+

G

2
C3 +

1

C

(
2C1∥∇R(w̄)∥2 + C2µ

2 + C3

)
(e)

≤R(wt−1) +

[
1

2η
+

1

2G
+

2C1L
2
s′

C

]
∥w̄ −wt−1∥2 +

[
R(w̄)−R(wt−1)−

νs
2
∥wt−1 − w̄∥2

]
− 1

2η
E
[
∥wt − w̄∥2|wt−1

]
+

√
β

2η
E
[
∥vt − w̄∥2|wt−1

]
+

G

2
C3 +

1

C

(
2C1∥∇R(w̄)∥2 + C2µ

2 + C3

)
=R(w̄) +

[
1
η − νs

2
+

1

2G
+

2C1L
2
s′

C

]
∥w̄ −wt−1∥2

− 1

2η
E
[
∥wt − w̄∥2|wt−1

]
+

√
β

2η
E
[
∥vt − w̄∥2|wt−1

]
+

G

2
C3 +

1

C

(
2C1∥∇R(w̄)∥2 + C2µ

2 + C3

)
(f)

≤R(w̄) +

[
1
η − νs

2
+

1

2G
+

2εFL
2
s′

τC

]
∥w̄ −wt−1∥2

− 1

2η
E
[
∥wt − w̄∥2|wt−1

]
+

√
β

2η
E
[
∥vt − w̄∥2|wt−1

]
+

G

2
C3 +

1

C

(
2C1∥∇R(w̄)∥2 + C2µ

2 + C3

)
(48)

Where (a) follows from the inequality ⟨a, b⟩ ≤ G
2 a

2 + 1
2Gb2, for any (a, b) ∈ (Rd)2 with G > 0 an

arbitrary strictly positive constant, (b) and (c) follow from the inequality ∥a+ b∥2 ≤ 2∥a∥2+2∥b∥2
for any (a, b) ∈ (Rd)2, (d) follows from the fact that R is (Ls′ , s

′)-RSS’ (Assumption 5 with sparsity
level s′), therefore it is also (Ls′ , s)-RSS’, (e) follows from the RSC condition, and for (f), we recall
that C1 = εF

qt
, and we define qt =

⌈
τ
ωt

⌉
, for some ω > 1 and τ > 0 that will be chosen later in the

proof.

Recall that we have chosen η := 1
Ls′+C . Let us define α := C

Ls′
+ 1. Then C = (α − 1)Ls′ , and

η = 1
αLs′

. Also recall that κs =
Ls′
νs

.
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We will now choose the constant G and C, in order to simplify the inequality above, such that it
matches as much as possible the structure of the previous proofs:

We will seek to rewrite:[ 1
η−νs

2 + 1
2G +

2
εF
τ L2

s′
C

] (
= 1

2η

[
1 + 1

GαLs′
+

4L2
s′

εF
τ

(α−1)αL2
s′
− 1

ακs

])
, into :

1
2η

[
1− 1

α′κs

]
for some α′ > 0 (we will seek α′ ∝ α, with a dimensionless proportionality constant

for simplicity).

Therefore, let us choose G := 4
νs

, which implies:

1

GαLs′
=

1

4ακs
. (49)

And let us choose τ := 16κsεF
(α−1) , which implies:

4L2
s′

εF
τ

(α− 1)αL2
s′

=
1

4ακs
. (50)

Therefore, using equations 49 and 50, we obtain:

[
1
η − νs

2
+

1

2G
+

2 εF
τ L2

s′

C

]
=

1

2η

[
1 +

1

GαLs′
+

4L2
s′

εF
τ

(α− 1)αL2
s′
− 1

ακs

]
=

1

2η

[
1 +

1

4ακs
+

1

4ακs
− 1

ακs

]
=

1

2η

[
1− 1

2ακs

]
=

1

2η

[
1− 1

α′κs

]
,

where for simplicity we denote α′ = 2α.

We can therefore simplify (48) into:

E[R(wt)|wt−1]−R(w̄) ≤ 1

2η

[(
1− 1

α′κs

)
∥w̄ −wt−1∥2 −

1

2η
E
[
∥wt − w̄∥2|wt−1

]
+

√
β

2η
E
[
∥vt − w̄∥2|wt−1

]
+2η

(
G

2
C3 +

1

C

(
2C1∥∇R(w̄)∥2 + C2µ

2 + C3

))]
.

We now take the expectation over wt−1 of the above inequality (i.e. we take Ewt−1
[·]): using the

law of total expectation (E[·] = Ewt−1
[E[·|wt−1]]) we obtain:

ER(wt)−R(w̄) ≤ 1

2η

[(
1− 1

α′κs

)
E∥w̄ −wt−1∥2 −

1

2η
E
[
∥wt − w̄∥2

]
(51)

+

√
β

2η
E
[
∥vt − w̄∥2

]
(52)

+2η

(
G

2
C3 +

1

C

(
2C1∥∇R(w̄)∥2 + C2µ

2 + C3

))]
. (53)

Let us call A := 2η
(
G
2 C3 +

1
C

(
2C1∥∇R(w̄)∥2 + C2µ

2 + C3

))
for simplicity.

This gives:

ER(wt)−R(w̄) ≤ 1

2η

[(
1− 1

α′κs

)
E∥w̄ −wt−1∥2 −

1

2η
E∥wt − w̄∥2 +

√
β

2η
E∥vt − w̄∥2 +A

]
.

(54)
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Additionally, in view of equation 40 applied at vt instead of wt, (since vt here corresponds to the
wt from Section E.1.2, i.e. vt is the hard-thresholding of an iterate after a gradient step), we know
that:

ER(vt)−R(w̄) ≤ 1

2η

[(
1− 1

α′κs

)
E∥w̄ −wt−1∥2 − (1−

√
β)E∥wt − w̄∥2 +A

]
.

We now take a convex combination similarly as in the case without additional constraint (section
D.2), for some ρ ∈ (0, 1).

E(1− ρ)R(wt) + ρR(vt)

≤R(w̄) +
1

2η

[(
1− 1

α′κs

)
E∥w̄ −wt−1∥2 − (1− ρ)E∥wt − w̄∥2

+
(
(1− ρ)

√
β − (1−

√
β)ρ
)
E∥vt − w̄∥2 +A

]
=R(w̄) +

1

2η

[(
1− 1

α′κs

)
E∥w̄ −wt−1∥2 − (1− ρ)E∥wt − w̄∥2

−
(
ρ−

√
β
)
E∥vt − w̄∥2 +A

]
(b)

≤R(w̄) +
1

2η

[(
1− 1

α′κs

)
E∥w̄ −wt−1∥2 − (1− ρ)E∥wt − w̄∥2

−
(
ρ−

√
β
)
E∥wt − w̄∥2 +A

]
=R(w̄) +

1

2η

[(
1− 1

α′κs

)
E∥w̄ −wt−1∥2 − (1−

√
β)E∥wt − w̄∥2 +A

]
.

where in (b), we have assumed that
√
β ≤ ρ (later we will verify that our choice of k ensures such a

condition), and have used the fact that projection onto a convex set is non-expansive (which implies
that ∥vt − w̄∥2 ≥ ∥wt − w̄∥2).

Similarly as in Liu & Foygel Barber (2020), we now take a weighted sum over t = 1, ..., T , to
obtain:

T∑
t=1

2η

(
1− 1

α′κs

1−√β

)T−t

E[(1− ρ)R(wt) + ρR(vt)−R(w̄)]

≤
T∑

t=1

(
1− 1

α′κs

1−√β

)T−t [(
1− 1

α′κs

)
E∥w̄ −wt−1∥2 − (1−

√
β)E∥wt − w̄∥2 +A

]

=

T∑
t=1

(
1− 1

α′κs

1−√β

)T−t [(
1− 1

α′κs

)
E∥w̄ −wt−1∥2 − (1−

√
β)E∥wt − w̄∥2

]

+

T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

A

=(1−
√
β)

T∑
t=1

(1− 1
α′κs

1−√β

)T−t+1

E∥w̄ −wt−1∥2 −
(
1− 1

α′κs

1−√β

)T−t

E∥wt − w̄∥2


+

T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

A

(a)
=(1−

√
β)

(1− 1
α′κs

1−√β

)T

∥w̄ −w0∥2 − E∥wT − w̄∥2
+

T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

A
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≤(1−
√
β)

(
1− 1

α′κs

1−√β

)T

∥w̄ −w0∥2 +
T∑

t=1

(
1− 1

α′κs

1−√β

)T−t

A

≤
(
1− 1

α′κs

1−√β

)T

∥w̄ −w0∥2 +
T∑

t=1

(
1− 1

α′κs

1−√β

)T−t

A

=

(
1− 1

α′κs

1−√β

)T

∥w̄ −w0∥2 +
T∑

t=1

(
1− 1

α′κs

1−√β

)T−t

2η

(
G

2
C3 +

1

C

(
2C1∥∇R(w̄)∥2

+C2µ
2 + C3

))
=

(
1− 1
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)T
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T∑

t=1

(
1− 1

α′κs

1−√β

)T−t

2η

(
G

2
C3 +

1

C

(
2
εF
qt
∥∇R(w̄)∥2

+
εabsµ

2

qt
+ C3

))

=

(
1− 1

α′κs

1−√β

)T

∥w̄ −w0∥2 +
T∑

t=1

(
1− 1

α′κs

1−√β

)T−t
2η

qt

(
2εF ∥∇R(w̄)∥2 + εabsµ

2

C

)

+

T∑
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(
1− 1

α′κs

1−√β

)T−t

2ηC3

(
G

2
+

1

C

)

=

(
1− 1

α′κs

1−√β

)T

∥w̄ −w0∥2 +
T∑

t=1

(
1− 1

α′κs

1−√β

)T−t
2η

qt

(
2εF ∥∇R(w̄)∥2

C

)

+

T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

2ηµ2

(
εµ

(
G

2
+

1

C

)
+

εabs
Cqt

)

≤
(
1− 1

α′κs

1−√β

)T

∥w̄ −w0∥2 +
T∑

t=1

(
1− 1

α′κs

1−√β

)T−t
2η

qt

(
2εF ∥∇R(w̄)∥2

C

)

+

T∑
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(
1− 1

α′κs

1−√β

)T−t

2ηµ2

(
εµ

(
G

2
+

1

C

)
+

εabs
C

)
, (55)

where (a) follows from simplifying the telescopic sum. Let us denote for simplicity ζ :=
2η(2εF ∥∇R(w̄)∥2)

C = 4ηεF ∥∇R(w̄)∥2

C and Z := εµ
(
G
2 + 1

C

)
+ εabs

C .

We now choose k and st as follows: we choose k ≥ 4α′2

ρ κ2
sk̄, which implies that:√

β ≤ 1

2α′

ρ κs

=⇒
√
β ≤ 1

2α′

ρ κs − 1

=⇒ 1−
√
β ≥ 1− 1

2α′

ρ κs − 1
=

2α′

ρ κs − 2

2α′

ρ κs − 1
=

1− 1
α′
ρ κs

1− 1

2α′
ρ κs

=⇒

1− 1
α′
ρ κs

1−√β

 ≤ 1− 1

2α′

ρ κs

. (56)

We recall that we previously defined qt =
⌈

τ
ωt

⌉
, with τ = 16κs

εF
(α−1) . We now set the value of ω,

to ω := 1− 1
α′
ρ κs

.

Let us call ν := 1− 1

2α′
ρ κs

. Note that we have:
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ν ≤ ω. (57)

And that we have the inequality below:

ν

ω
=

1− 1

2α′
ρ κs

1− 1

4α′
ρ κs

=
4α′

ρ κs − 2

4α′

ρ κs − 1
= 1− 1

4α′

ρ κs − 1
≤ 1− 1

4α′

ρ κs

= ω. (58)

This allows us to simplify equation 55 into:

E
T∑

t=1

2η

(
1− 1

α′κs

1−√β

)T−t

[(1− ρ)R(wt) + ρR(vt)−R(w̄)]
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νT−tωt−1 +
ζ

τ
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2ηZµ2
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ωT

ω
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( ν
ω
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+
ζ

τ

T∑
t=1

(
1− 1

α′κs
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2ηZµ2
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ωT

ω
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(
ν
ω
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1−

(
ν
ω

) +
ζ

τ

T∑
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(
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α′κs

1−√β

)T−t

2ηZµ2
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ωT

ω

1

1−
(
ν
ω

) + ζ

τ

T∑
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(
1− 1

α′κs

1−√β

)T−t

2ηZµ2

(a)

≤ νT ∥w̄ −w0∥2 +
ωT

ω

1

1− ω
+

ζ

τ

T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

2ηZµ2

(b)

≤ νT ∥w̄ −w0∥2 +
4

3
ωT 1

1− ω
+

ζ

τ

T∑
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(
1− 1

α′κs

1−√β
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2ηZµ2
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≤ ωT ∥w̄ −w0∥2 +
4

3
ωT 1

1− ω
+

ζ

τ

T∑
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(
1− 1

α′κs

1−√β

)T−t

2ηZµ2

(d)

≤ ωT

1− ω
∥w̄ −w0∥2 +

4

3
ωT 1

1− ω
+

ζ

τ

T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

2ηZµ2

=
ωT

1− ω

(
∥w̄ −w0∥2 +

4

3

)
+

ζ

τ

T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

2ηZµ2

= 4
α′

ρ
κsω

T

(
∥w̄ −w0∥2 +

4

3

)
+

ζ

τ

T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

2ηZµ2,

where in the left hand side we have used the linearity of expectation, and where (a) uses equation 58,
(b) uses the fact that 1

ω = 1
1− 1

4α′
ρ

κs

≤ 1
1− 1

4

= 4
3 (since κs ≥ 1 and α′ ≥ 1 (indeed, we have

α′ = 2α = 2( C
Ls′

+ 1) with C > 0), so consequently α′

ρ ≥ 1), (c) uses equation 57, and (d) uses
the fact that ω < 1 so 1 < 1

1−ω .

Let us now normalize the above inequality:
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E

∑T
t=1 2η

(
1− 1

α′κs

1−
√
β

)T−t

[(1− ρ)R(wt) + ρR(vt)]

∑T
t=1 2η

(
1− 1

α′κs

1−
√
β

)T−t
≤ R(w̄)+

4α′

ρ κsω
T
(
∥w̄ −w0∥2 + 4

3
ζ
τ

)
∑T

t=1 2η

(
1− 1

α′κs

1−
√
β

)T−t
+Zµ2.

The left hand side above is a weighted sum, which is an upper bound on the smallest term of the
sum.

Regarding the right hand side, we can simplify it using the fact that 0 <

(
1− 1

α′κs

1−
√
β

)
, and therefore:

T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

≥ 1.

Therefore, we obtain:

E min
t∈{1,..,T}

[(1− ρ)R(wt) + ρR(vt)−R(w̄)] ≤
4α′

ρ κsω
T
(
∥w̄ −w0∥2 + 4

3
ζ
τ

)
2η

+ Zµ2

= 4
α2

ρ
Ls′κsω

T

(
∥w̄ −w0∥2 +

4

3

ζ

τ

)
+ Zµ2,

which can be simplified into the expression below, using the definition of ŵT :

E[min
t∈[T ]

(1− ρ)R(wt) + ρR(vt)−R(w̄)] ≤ 4
α2

ρ
Ls′κsω

T

(
∥w̄ −w0∥2 +

4

3

ζ

τ

)
+ Zµ2. (59)

To simplify the above result, we recall the assumptions made earlier on: we have chosen

τ = 16κsεF
(α−1) , and G = 4

νs
.

Therefore, to sum up, we have:

Z = εµ

(
G

2
+

1

C

)
+

εabs
C

= εµ

(
2

νs
+

1

C

)
+

εabs
C

ω = 1− 1

4α′

ρ κs

= 1− 1

8α
ρκs

ζ =
4ηεF ∥∇R(w̄)∥2

C

The last inequality implies: ζ
τ =

4ηεF ∥∇R(w̄)∥2
C

16κsLs′
εF
C

= η∥∇R(w̄)∥2

4κsLs′
.

Let us denote by εT the right-hand side term from equation 59:

εT = 4
α2

ρ
Ls′κsω

T

(
∥w̄ −w0∥2 +

4

3

η∥∇R(w̄)∥2
4κsLs′

)
+ Zµ2.

We now proceed similarly as in the proof of Theorem 2 above. Recall that we have assumed in the
Assumptions of Theorem 3, without loss of generality, that R is non-negative, which implies that
R (vt) ≥ 0. Plugging this in equation 59 implies that:

E min
t∈[T ]

R (wt) ≤
1

1− ρ
R(w̄) +

εT
1− ρ

+
Z

(1− ρ)
µ2 ≤ (1 + 2ρ)R(w̄) +

εT
1− ρ

+
Z

1− ρ
µ2. (60)
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Plugging the change of variable ε′T = εT
1−ρ into equation 60 above, and redefining Z into Z :=

1
1−ρ

(
εµ

(
2
νs

+ 1
C

)
+ εabs

C

)
, we obtain that:

E min
t∈[T ]

R (wt) ≤ (1 + 2ρ)R(w̄) + ε′T + Zµ2.

Further, consider an ideal case where w̄ is a global minimizer of R over B0(k) := {w : ∥w∥0 ≤ k}.
Then R (vt) ≥ R(w̄) is always true for all t ≥ 1. It follows that the bound in equation 59 yields:

E min
t∈[T ]

{(1− ρ)R (wt) + ρR(w̄)} ≤ E min
t∈[T ]

{(1− ρ)R (wt) + ρR (vt)} ≤ R(w̄) + εT ,

which implies: Emint∈[T ] R (wt) ≤ R(w̄) + εT
1−ρ . In this case, we can simply set ρ = 0.5, and

define ε′T = εT
1−ρ = 2εT similarly as above. The proof is completed.

E.4 PROOF OF COROLLARY 2

Proof. Let ε ∈ R∗
+. Let us find T to ensure that Emint∈{1,..,T}(1− ρ)R(wt) + ρR(vt)−R(w̄) ≤

ε+ Zµ2

This will be enforced if:

4α2 1

ρ
Ls′κsω

T

(
∥w̄ −w0∥2 +

4

3

η∥∇R(w̄)∥2
4κsLs′

)
≤ ε

⇐⇒ T log(ω) ≤ log

 ε

4α2 1
ρLs′κs

(
∥w̄ −w0∥2 + 4

3
η∥∇R(w̄)∥2
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
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log( 1
ω )
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4α2 1
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(
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)
ε

 .

Therefore, let us take:

T :=

 1

log( 1
ω )

log

4α2 1
ρLs′κs

(
∥w̄ −w0∥2 + 4

3
η∥∇R(w̄)∥2

4κsLs′

)
ε

 . (61)

We can now derive the #IZO and #HT. First, we have one hard-thresholding operation at each it-
eration, therefore #HT= T . Using the fact that 1

log( 1
ω )

= 1
− log(ω) = 1

− log(1− 1

8α 1
ρ
κs

)
≤ 1

1

8α 1
ρ
κs

=

8α 1
ρκs (since by property of the logarithm, for all x ∈ (−∞,−1) : log(1− x) ≤ −x ), and the fact

that α = C
Ls′

is independent of κs, we obtain that #HT = O(κs log
(
1
ε

)
).

We now turn to computing the #IZO. At each iteration t we have qt function evaluations, therefore:

#IZO =

T−1∑
t=0

qt

≤
T−1∑
t=0

( τ

ωt
+ 1
)

= T + τ

(
1
ω

)T − 1
1
ω − 1

≤ T +
τ

1
ω − 1

(
1

ω

)T
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= T +
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1
ω − 1
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(
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where (a) follows from equation 61.

And we recall that τ = 16κs
εF

(α−1) , which implies that:

τ
32α3 1

ρ2Ls′κ
2
s

(
∥w̄ −w0∥2 + 4

3
η∥∇R(w̄)∥2

2γκsLs′

)
ε

= O
(
εF
ε

(
κ3
sLs′ +

κs

νs

))
.

Therefore, overall, the IZO (query complexity) is in O
(
εF
ε κ3

sLs′
)
. The proof is completed.

F ADDITIONAL EXPERIMENTS

F.1 ADDITIONAL RESULTS AND DETAILS FOR THE INDEX TRACKING PROBLEM

In section 5, we presented the performance of an index tracking strategy based on FG-HT-TSP, for
the S&P500 index. In this Appendix, we also present the performance of the index tracking strategy
on two additional indices: the CSI300 index in Figure 3a, and the HSI index in Figure 3b, over the
same time period for HSI, and for CSI300 we start the period in March 2021 due to missing values.
We keep the constraint k = 15 for both indices, and enforce a constraint on sector transactions of
D = 100 for CSI300 and D = 1000 for HSI. We provide in Table 2 below the respective dimensions
of the train-sets used for the experiments (which constitutes, as we recall, 80% of the total dataset).

After running FG-HT-TSP, the obtained weight vector for the CSI300 index spans 7 sectors out of
the 10 total sectors of the index, and the one for the HSI index spans 3 of the 4 sectors of the index,
which validates the diversifying effect of the enforced constraint. Additionally, we can observe that
the index strategy based on FG-HT-TSP can more successfully track the true index than the two
baselines.
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INDEX n d
S&P500 402 497
CSI300 353 291
HSI 394 72

Table 2: Number of samples (n) and dimension (d) of the training sets for the index tracking exper-
iment

The data for those three indices is scrapped from the web using the beautifulsoup1 library to
gather information about the index, and the yfinance2 library to scrap the returns of such stocks
during the considered time period.

(a) HSI (b) CSI300

Figure 3: Index tracking with sector constraints on HSI and CSI300

On the verification of Assumptions 1 to 3: Note that such index tracking experiments verify
Assumptions 1, 2 and 3:

• Assumption 1 is verified since the cost function is quadratic, with a design matrix of size
n > d (except in the case of S&P500). As can be expected with such matrices in general,
the Hessian H = 2A⊤A is positive-definite (we have indeed verified in our code that
it is). Therefore the RSC constant is bounded below by λmin where λmin is the smallest
eigenvalue of 2A⊤A. Note that for S&P500, strong convexity is not verified since d > n:
however, since we take k = 15, with high probability (i.e. unless we can find s = 2k = 30
columns of A that are exactly linearly dependent), RSC should be verified.

• Assumption 2 and Assumption 5 are both verified since the cost function is quadratic,
therefore the (strong) RSS constant is bounded above by 2∥A∥2s, where ∥ · ∥s denotes the
spectral norm.

• Assumption 3 is verified since projection onto Γ can be done group-wise, and for each
group the projection is onto an ℓ1 ball, which is a convex symmetric set (which is support-
preserving from Remark 1), therefore, overall, Γ is support-preserving).

1https://pypi.org/project/beautifulsoup4/
2https://github.com/ranaroussi/yfinance
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F.2 COMPARISON BETWEEN TWO-STEP PROJECTION AND EUCLIDEAN PROJECTION

F.2.1 RECALL ON THE DIFFERENCES BETWEEN TWO-STEP PROJECTION AND EUCLIDEAN
PROJECTION

In this section, we recall the differences between the two-step projection and the Euclidean projec-
tion onto the mixed constraints Γ ∩ B0(k). As described in the paper, one can encounter several
possible cases:

• Case (i): the two-step projection (TSP) and the Euclidean projection onto Γ ∩ B0(k) are
identical (see e.g. Remark 2): in that case, the contribution of our paper are on the the-
oretical side: Theorems 1 2, 3 give global convergence guarantee which therefore in this
case apply to the usual (non-convex) projected gradient descent algorithm with Euclidean
projection.

• Case (ii): the TSP and the Euclidean projection onto the mixed constraints are different:
this case can be declined into several sub-cases as described below:

– Case (a): the Euclidean projection onto the mixed constraint Γ ∩ B0(k) is unknown
(such as for the constraints Γ used in the experiments from Section 5): in that case,
the TSP can allow to fill such gap, since the TSP only requires the knowledge of the
projection onto Γ, which is often known and easy to do.

– Case (b): the Euclidean projection onto the mixed constraint Γ ∩ B0(k) is known,
but computationally expensive: in that case, the TSP can provide a simpler and faster
alternative to the Euclidean projection, while still enjoying some convergence guaran-
tees as shown in this paper.

– Case (c): the Euclidean projection onto the mixed constraint Γ ∩ B0(k) is known and
is efficient enough (e.g. when Γ belongs to the set of positive symmetric sets such
as in Lu (2015)). In such cases, it is unclear whether the TSP can improve upon
Euclidean projection since, at the iteration level, using the Euclidean projection is
optimal (indeed, a (Euclidean) projected gradient descent step minimizes a quadratic
upper bound on the objective value under constraints (derived from the smoothness of
R)), and the TSP is therefore suboptimal in that sense (at the iteration level). This is
the case that we will analyze in this section, in order to evaluate in practice the extend
of such differences between TSP and Euclidean projection in such case.

F.2.2 SETTING

As mentioned above, we analyze in more details the case (ii,c) above. We consider a simple synthetic
linear regression setting with a correlated design matrix, i.e. where the design matrix X is formed
by n i.i.d. samples from d (we take d = 1000 , and n = 5000) correlated Gaussian random variables
{X1, .., Xd} of zero mean and unit variance, such that:

∀i ∈ {1, . . . , d} : E[Xi] = 0,E[X2
i ] = 1;

∀(i, j) ∈ {1, . . . , d}2, i ̸= j : E[XiXj ] = ρ|i−j|.

More precisely, we generate each feature Xi in an auto-regressive manner, from previous features,
using a correlation ρ ∈ [0, 1), in the following way: we have X1 ∼ N (0, 1) and σ2 = 1 − ρ2, and
for all j ∈ {2, ..., d}: Xj+1 = ρXj + ϵj where ϵj = σ∆, with ∆ ∼ N (0, 1). Additionally, the data
is generated from a vector w∗ of k∗-sparse support sampled uniformly at random, with k∗ = 20,
and with each non-zero entry sampled from a normal distribution, and y is obtained with a noise
vector ϵ created from i.i.d. samples from a normal distribution, rescaled to enforce a given signal to
noise ratio (SNR), as follows:

y = Xw∗ + ϵ

with the signal to noise ratio defined as snr = ∥Xw∗∥
∥ϵ∥ (we choose snr = 3). We generate this dataset

using the make correlated data function from the benchopt package Moreau et al. (2022).
The problem that we solve is:

min
w∈Γ∩Rd

1

n
∥Xw − y∥2
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In such case, the Euclidean projection of w ∈ Rd onto Γ ∩ B0(k) is given in Lu (2015), Beck &
Hallak (2016), and consists in simply sorting the entries in w, (w1, ..., wd) (not in absolute value),
keeping the k largest ones (and setting the others to 0) to obtain w′ and then replacing each coordi-
nate w′

i by max(0, w′
i). The two-step projection (TSP) in such case is simply hard-thresholding of

w to obtain a vector w′ followed by replacing each coordinate w′
i by max(0, w′

i)).

We plot the optimization curves for several values of k (k ∈ {30, 100, 200, 500, 800, 1000} in Fig-
ure 4). In all curves, the learning rate is set to 1/L where L is the smoothness constant, equal to
2
n∥X∥2s where ∥X∥s is the spectral norm of X .

(a) k = 30 (b) k = 100

(c) k = 200 (d) k = 500

(e) k = 800 (f) k = 1000

Figure 4: Comparison of TSP vs. Euclidean projection for several k

F.2.3 DISCUSSION

As we can observe in Figure 4, the Euclidean projection onto Γ ∩ B0(k) performs better in terms of
objective value than the TSP in some cases. However, the gap between the two methods closes as
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the enforced sparsity of the iterates k increases. We interpret it in the following way. First, (non-
convex) projected gradient descent (i.e. using Euclidean projection) is guaranteed to converge to a
(non-convex constraints version of a) stationary point of the objective function (see e.g. Theorem 1
from Xu et al. (2019a)), whereas our method does not possess such guarantee (indeed, our guarantees
are of the global kind: we give upper bounds on the objective value for the output of the algorithm),
and therefore, the TSP may in some cases not converge to a stationary point, which may explain
why Euclidean projection sometimes performs better than TSP. However, for larger k, in both cases
the projections operators (TSP or Euclidean projection) become closer to a simple projection onto Γ
(i.e. without sparsity constraints), which explains why as k grows, the gap between the two methods
reduces. Finally, the improved performance of the TSP when k is larger is consistent with our
Theorem 1, since for larger k, the upper bound on R from Theorem 1 can be made smaller, since
considering larger k implies that ρ can be taken smaller as per Remark 3, reducing our upper bound
on the objective value.

In conclusion, these results show that in case (ii) from Section F.2.1 above, the TSP introduced in
this paper can be the most useful if the Euclidean projection onto Γ ∩ B0(k) is unknown, or too
expensive computationally. Additionally, the gap between the two methods reduces if the enforced
sparsity k of the iterates is large enough, or if the constraint forces iterates to stay close to 0.

F.3 MULTICLASS LOGISTIC REGRESSION

We consider the multiclass logistic regression problem with class group-wise ℓ2 norm constraint as

follows. We have Ri(w) =
∑c

j=1

[
λ
c ∥wj∥22 − 1 {yi = j} log exp(x⊤

i wj)∑c
l=1 exp(x⊤

i wl)

]
, where yi is the

target output of xi, c is the number of classes, and wj is the weight vector specific to class j. In
addition to the sparsity constraint B0(k), we enforce the following additional constraint Γ = {w ∈
Rd : ∀j ∈ [c] : ∥wj∥2 ≤ D}, for some constant D ∈ R+, where d = p × c, with p the number
of features of the samples xi. More precisely, in such multiclass logistic regression, we seek to
ensure an extra regularization not only on the whole global weight vector w (with the used squared
ℓ2 penalty), but also on each weight vector related to each class (through Γ), in order to prevent a
potential class-wise overfitting.

Up to our knowledge, there is no known closed form for the Euclidean projection onto such Γ ∩
B0(k). However, the two-step projection (TSP) can be done easily: once the first projection is done
(projection onto B0(k), i.e. hard-thresholding) and the sparse support S is identified as per Section
3.1, the projection onto Γ restricted to S can be easily done since Γ is class-wise decomposable, and
therefore it suffices to project, for each j ∈ [c], each wj onto the ℓ2 ball of radius D.

We have the smoothness constant L as below (see Böhning (1992) for a derivation):

L = σmax

(
1

2n

(
Ic×c −

1

c
1c1

⊤
c

)
⊗X⊤X + 2λId×d

)
(62)

Where ⊗ denotes the Kronecker product, σmax the largest singular value of a matrix, Im×m the
identity matrix of size m×m for some m, and 1c the vector [1, 1, .., 1]⊤ ∈ Rc .

We consider the dna dataset from the LibSVM dataset repository (Chang & Lin, 2011), and we
choose D = 0.5, λ = 10. For the stochastic case we take B = 1e5, and for the stochastic and
ZO case we take α = 2. Note that in the stochastic case, if the growing batch-size required by
Theorem 2 becomes larger than n, we keep it fixed to n (i.e. in such case we take the whole dataset
at each step). In the zeroth-order case, we take µ = 1e − 6. We set set all other hyperparameters
as per Theorems 1, 2 and 3. In Figures 5, 6, 7 and 8, we plot the number of calls to a gradient ∇Ri

(IFO: iterative first order oracle), and number of hard-thresholding operations (NHT), for various
values of k and D (for the zeroth-order case, we plot the IZO (number of calls to the function R)
instead of the IFO). We can observe that HSG-HT-TSP allows a smaller IFO than FG-HT-TSP in
early iterations, since it does not need to compute a full gradient at each iteration.

In addition, to illustrate the theoretical improvement of our results on zeroth-order, even in the case
where there is no additional constraint, we compare in Figures 9, 10 and 11 our algorithm HZO-HT
with ZOHT (de Vazelhes et al., 2022), choosing for both algorithm an initial number of random
direction as prescribed by our Theorem 3, and choosing, for the learning rate, in our case the one
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prescribed by Theorem 3, and for ZOHT, the one prescribed by Theorem 1 from de Vazelhes et al.
(2022) (and in both cases we fix s = 3k as per Theorem 3): we can see that, in addition to being able
to obtain a convergence in risk without system error, contrary to ZOHT (cf. Table 1), our Theorem
3 also prescribes a better (larger) learning rate (i.e. less conservative), leading to faster convergence.

(a) #IFO (b) #IZO (c) #NHT

Figure 5: Multiclass Logistic Regression with TSP, k = 50, D = 0.5

(a) #IFO (b) #IZO (c) #NHT

Figure 6: Multiclass Logistic Regression with TSP, k = 150, D = 0.5

(a) #IFO (b) #IZO (c) #NHT

Figure 7: Multiclass Logistic Regression with TSP, k = 50, D = 0.01

(a) #IFO (b) #IZO (c) #NHT

Figure 8: Multiclass Logistic Regression with TSP, k = 150, D = 0.01
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(a) #IZO (b) #NHT

Figure 9: Multiclass Logistic Regression: HZO-HT
vs. ZOHT, k = 50

(a) #IZO (b) #NHT

Figure 10: Multiclass Logistic Regression: HZO-HT
vs. ZOHT, k = 100

(a) #IZO (b) #NHT

Figure 11: Multiclass Logistic Regression: HZO-HT
vs. ZOHT, k = 150

On the verification of Assumptions 1 to 3: Note that such logistic regression experiments verify
Assumptions 1, 2, 5 and 3:

• Assumption 1 is verified thanks to the added squared ℓ2 regularization, which makes the
problem strongly convex and hence also restricted strongly convex.

• Assumption 2 and Assumption 5 are both verified since the problem is smooth with a
constant L as described above in equation 62, and therefore such constant is also a valid
(strong) restricted-smoothness constant.

• Assumption 3 is verified since, since, similarly as in the index tracking experiments from
Section F.1, projection onto Γ can be done group-wise, and for each group the projection is
onto an ℓ1 ball, which is a convex sign-free set (which is support-preserving from Remark
1), therefore, overall, Γ is support-preserving.
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F.4 ADVERSARIAL ATTACKS

We consider the problem of adversarial attacks, where we seek to optimize a perturbation δ applied
to an image, such that a (previously trained) classifier (e.g. deep convolutional neural network)
predicts the wrong class for the perturbed image. In our case we seek to enforce sparse constraints
(i.e. where the number of pixels modified must be at most k). In addition, we seek to enforce
an additional group constraint over a grid, similar to the constraints in the previous experiments
(Section 5): Γ = {δ ∈ Rd : ∀i ∈ r, ∥δGi

∥2 ≤ D}, where r denotes the number of regions (16 in
our case, see Figure 12), and where each group Gi corresponds to a region from a grid, shown in
Figure 12 below. We consider the CIFAR10 dataset (Krizhevsky et al., 2009), with k = 50, and
D = 1

4 = 1√
16

. The motivation for using such constraint is that methods which enforce a global ℓ2
constraint may still leave the freedom to the attack to be focused in a small region of the image, in
which case it might be more detectable. Enforcing a maximum ℓ2 norm over each region ensures
that there are no region with an ℓ2 norm being too large. We compare such method to a simple
algorithm (baseline) which ensures a simple, global, ℓ2 constraint of radius D = 1. Finally, we use
the package Torchattacks by Kim (2020) to conduct those adversarial attacks.

Figure 12: Original image, and the corresponding grid.

White-Box Adversarial Attacks In white-box adversarial attacks, one has access to the gradient
of the objective function (cross-entropy of the prediction by the neural network, which we seek to
maximize in order to attack the image). Therefore, we use FG-HT-TSP for the optimization in this
case. We illustrate the attack and the baseline in Figure 16: we plot the learned attack δ in both
cases (Figure 13, the image after attack (Figure 14), and the intensity map, that is, the ℓ2 norm of
each RGB pixel seen as an R3 vector (Figure 15)). Note that in the displayed image, the attack
was successful (for the two methods), misclassifying the ’airplane’ into a ’ship’. As we can observe,
enforcing an ℓ2 norm constraint on each region allows to have potentially more imperceptible attacks
than few-pixels adversarial attacks which only constrain the global ℓ2 norm: the maximum ℓ2 norm
of the regions is 0.25 for our method, but 0.46 for the baseline.

Black-Box Adversarial Attacks In many practical adversarial attacks settings however, we do
not have access to the gradient, and can rely only on function evaluations, also called Black-Box
Adversarial Attacks. Therefore, in such a case, we use our algorithm HZO-HT-TSP to optimize the
cost function. We take a smoothing radius µ = 0.01, and consider the negative log-likelihood loss
instead of cross-entropy loss, which is more stable for zeroth-order optimization, as it leads to less
numerical imprecision. We illustrate the attack and the baseline in Figure 20: we plot the learned
attack δ in both cases (Figure 17, the image after attack (Figure 18), and the intensity map, that
is, the ℓ2 norm of each RGB pixel seen as an R3 vector (Figure 19)). Note that in the displayed
image, the attack was successful (for the two methods), misclassifying the ’airplane’ into a ’ship’.
As we can observe, enforcing an ℓ2 norm constraint on each region allows to have potentially more
imperceptible attacks than few-pixels adversarial attacks which only constrain the global ℓ2 norm: :
the maximum ℓ2 norm of the regions is 0.25 for our method, but 0.41 for the baseline.
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(a) Extra constraint: Γ

(b) Extra constraint: ℓ2 ball

Figure 13: Attack δ

(a) Extra constraint: Γ

(b) Extra constraint: ℓ2 ball

Figure 14: Image after attack

(a) Extra constraint: Γ

(b) Extra constraint: ℓ2 ball

Figure 15: Intensity map

Figure 16: White-Box Adversarial Attacks

(a) Extra constraint: Γ

(b) Extra constraint: ℓ2 ball

Figure 17: Attack δ

(a) Extra constraint: Γ

(b) Extra constraint: ℓ2 ball

Figure 18: Image after attack

(a) Extra constraint: Γ

(b) Extra constraint: ℓ2 ball

Figure 19: Intensity map

Figure 20: Black-Box Adversarial Attacks
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F.5 SYNTHETIC EXPERIMENTS

In the section below, we provide a synthetic experiment to illustrate our Theorem 1, i.e. the trade-off
between sparsity and optimality that is introduced by the extra constraint Γ, and that is measured by
ρ ∈ (0, 0.5]. We consider the synthetic linear regression example from Axiotis & Sviridenko (2022)
(Section E), with the risk below:

R(w) :=
1

2
∥Xw − y∥22 ,

and where X is diagonal with:

Xii =


1 if i ∈ I1√
κ if i ∈ I2

1 if i ∈ I3 ,

where I1 = [s], I2 = [s+1, s(κ+1)], I3 = [s(κ+1)+1, s(κ2+κ+1)] for some s ≥ 1 and κ ≥ 1
(we choose s = 50 and κ = 2, which results in having d = 350) and y is defined as

yi =


κ
√
1− 4δ if i ∈ I1√

κ
√
1− 2δ if i ∈ I2

1 if i ∈ I3

for some small δ > 0 used for tie-breaking (we set it to 1e− 4). We chose such an example as it is
used by Axiotis & Sviridenko (2022) to prove a lower bound on the fundamental trade-off between
sparsity and optimality proper to IHT: they use it to show that the relaxation of the sparsity k, of the
order k = Ω(κ2k̄) (see also Table 1) is in fact unavoidable for IHT-type algorithms.

Case without extra constraints First, we illustrate our Theorem 4 which considers vanilla IHT,
without extra constraints. In Figure 21, on the one hand, we plot in blue, for every k ∈ [d], the
value of R(ŵk) where ŵk is the result of running vanilla IHT with sparsity k up to convergence.
Then, on the other hand, we go through every value of k̄ ∈ [d], and for each of them, we plot a point
(K(k̄), R(w̄k̄)), where K(k̄) denotes the value of k required in our Theorem 4, i.e.: K(k̄) := 4κ2k̄,
and w̄k̄ := minw∈Rd:∥w∥0≤k̄ R(w). Therefore, each of such point R(w̄k̄) constitutes an upper
bound on the value of R(ŵK(k̄)), as we can indeed observe on Figure 21.

Figure 21: Illustration of Theorem 4 (i.e. Γ = Rd).

Case with extra constraints We now illustrate the influence of the extra constraint Γ on the prob-
lem. We consider for Γ an ℓ∞ norm constraint of radius λ > 0, that is: Γ = {w ∈ Rd : ∀i ∈
[d], |wi| ≤ λ}. In this new setting, we also go through every value of k̄ ∈ [d], but this time,
each of those values actually defines a curve parameterized by ρ, according to our Theorem 1:
for each k̄ we plot the parametric curve (K(k̄, ρ), (1 + 2ρ)R(w̄k̄)), where, similarly as above,
K(k̄, ρ) denotes the required value of k according to Theorem 1 (i.e., K(k̄, ρ) = 4(1−ρ)2k̄κ2

ρ2 ), and
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w̄k̄ := minw∈Rd:∥w∥0≤k̄ R(w), and where ρ ranges in (0, 0.5]. We present the results for several
values of λ in Figure 22 below. Note that a priori, the curves are allowed to cross, i.e. for a given k
on the x-axis, one could have a point from a curve of small k̄ (i.e. lighter shade of red) which could
potentially also belong to a curve of larger k̄ (let us denote it k̄′) (darker shade of red), which would
necessarily have a larger ρ (let us denote it ρ′), but for which the overall (1 + 2ρ′)R(w̄k̄′) could be
equal to (1 + 2ρ)R(w̄k̄) (since the problem will be less constrained with k̄′ than with k). However,
interestingly, this is not the case here due to the simplicity of the structure of the example. We can
also observe that similarly as in the case where Γ = Rd, the bound is a bit tighter in the small k
regime (i.e. when k ∈ [50, 100]).

(a) λ = 0.1 (b) λ = 0.5

(c) λ = 1 (d) λ = 2

Figure 22: Illustration of Theorem 4 (with Γ an ℓ∞ ball of radius λ).
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