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1 INTRODUCTION

In this supplementary section, we first quote the notations used throughout this manuscript. Next, we
will conduct a brief analysis of the objective functions in FedDC and FedDyn utilizing the Hessian
optimizer. Subsequently, we present a Convergence Analysis of FedHC with a detailed discussion
of the objective function’s smoothness, the decreasing properties of the Hessian, and an analysis of
the order of convergence. Additionally, we present ablation experimental results and analyze various
settings within the FedHC across different datasets.

1.1 NOTATIONS

Table 1 represents all the notations utilized throughout this main manuscript and supplementary
material.

Table 1: Notations and its description
Notation Description

Pi Restricted penalized term
i Represents the ith client
d Drift
w Global model parameters
θ Local model parameters
Di A Dataset on client
gi Local updated value of clients’ local parameters in last round
g Estimate update value of all client’s local parameter in previous round
η Learning rate
K Training iterations in one round
k Index of training iteration in one round
γ Gradients of the loss function
H Hessian matrix
p Hessian power

Diag(H) Hessian diagonal
L Objective function
L Empirical loss.

1.2 OBJECTIVE FUNCTION ANALYSIS WITH HESSIAN IN FEDDC AND FEDDYN

The objective functions of both the FedDC and FedDyn methods incorporate various terms. In the
FedDC method, the objective function encompasses an empirical loss, a restricted penalized term,
and a gradient correction term as detailed in Gao et al. (2022). Specifically, the gradient correction

term takes the form of Gi(θi, gi, g) =
1

ηK
⟨θi, gi − g⟩.

In the FedDyn method, the objective function includes an empirical loss, a penalized term, and dy-
namic regularization as explained in Acar et al. (2021). The dynamic regularization term is explicitly
represented as ⟨∇Li(θ

t−1
i ), θ⟩.
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Importantly, both the gradient correction term (Gi) in FedDC and the dynamical regularization term
in FedDyn exhibit linearity due to the nature of inner products. Consequently, when applying a
second-order optimizer, such as the Hessian, to either the FedDC or FedDyn objective functions,
these linear terms vanish.

This absence of contribution from these linear terms becomes a crucial factor in the model weight
updating process for both FedDC and FedDyn when employing the Hessian optimizer. It ultimately
leads to the non-convergence of the objective functions in these methods when utilizing the Hessian
optimizer, as these terms do not play a role in the optimization process. Also, from Table 5 it is
evident that, using Hessian second-order optimizer on FedDC results in the non-convergence in
CIFAR10 and CIFAR100 datasets.

1.3 CONVERGENCE ANALYSIS OF FEDHC

For a minimizing problem, we have that the first-order partial derivatives vanish at the minimized
point. Further, it satisfies the second derivative test. Hence, Theorem 3.1 (in the main manuscript)
holds. For a regressive proof of the same, the reader can refer [Jorge & Stephen (2006)]. It is well
known that the order convergence of the Hessian optimizer is 2 (see [Yao et al. (2021)]). Hence,
Theorem 3.2 (in the main manuscript) holds.

1.3.1 PROOF OF LEMMA 3.1

The cosine correlation Si is defined as:

Si(w, θi, gi, g) =
1

ηK

((
1− w · θi

∥w∥ · ∥θi∥

)2

(g − gi)

)
.

Now for any w1, w2 and i ∈ [N ],

∥Si(w1, θi, gi, g)− Si(w2, θi, gi, g)∥ =

∥∥∥∥∥ 1

2k

[(
1− w1θi

∥w1∥∥θi∥

)2

−
(
1− w2θi

∥w2∥∥θi∥

)2
]∥∥∥∥∥

=
1

2k

∥∥∥∥ θ

∥θi∥

(
w1

∥w1∥
− w2

∥w2∥

)∥∥∥∥2
=

1

2k
∥w1 − w2∥2, ( as ∥w∥ ≥ 0).

1.3.2 SMOOTHNESS OF THE OBJECTIVE FUNCTION

The objective function of each client contains three components: the local empirical loss, penalized
term, and proximal gradient correction. To prove the smoothness of the objective function, we prove
each of its components. Further, Lemma 3.1 ensures the smoothness of the rearmost term. Now, we
provide short proof for the inaugural terms. Now for any w1, w2 and i ∈ [N ],

∥Pi(θi, di, w1)− Pi(θi, di, w2)|| = ∥(di + θi − w1)
2 − (di + θi − w2)

2∥
≤ ∥di + θi − w1∥2 − ∥di + θi − w2∥2

≤ ∥w1 − w2∥2.
Thus, the penalized term is smooth. Further, the local empirical loss satisfies the following Lipschitz
property,

∥L(θ1i )− L(θ2i )∥ ≤ β∥θ1i − θ2i ∥, for all θ1i , θ
2
i ∈ R, and i ∈ [N ].

Further, as w is a function of (θi), we get

∥L(w1)− L(w2)∥ ≤ α∥w1 − w2∥, for all w1, w2 ∈ R for some α > 0.

1.4 DECREASING PROPERTIES OF THE HESSIAN AND ORDER OF CONVERGENCE

First, we observe that the proximal gradient correction can be represented as Si =
1

ηK

〈(
1− w.θi

∥w∥·∥θi∥

)
, g − gi

〉
. Here ⟨·, ·⟩ denotes the inner product (or dot product). As the in-

ner product is linear with respect to linear and the x→ x2 is strongly convex, we have the proximal
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gradient correction is strongly convex. By assuming the local empirical loss and penalized terms
are strong and as both are smooth, the objective function (Equation (3), in the main manuscript) is
strongly convex and strictly smooth on the domain R4. Thus there exists 0 < a1, a2 <∞ such that
a1I ≤ ∇2L(θt,ki ) ≤ a2I here t is the global round and k is the index for local epoch. Here X < Y
denotes that Y −X is a positive definite matrix, for two matrices X,Y of the same order. Thus, we
get

a1 ≤ min
j∈[N ]

Djj ≤ min
j∈[N ]

Djj ≤ a2 (1)

here Djj is the jth diagonal element of Diag(Ht,k,−p
i ).

Now we aim to prove the updated formation local model parameter θt,ki (Equation (6), in main
manuscript) converges with respect to t. In particular, we show that the proper learning rate:

L(θt+1,k
i )− L(θt,ki ) ≤ − ak1

2ak+1
2

∥γt,ki ∥.

For this, let us define ϕki : R → R by ϕki (θ
t,k
i ) =

[〈(
Ht,k,−p

i

)
γt,ki , γt,ki

〉]2
. Then, we get

ϕki (θ
t,k
i ) =

[〈(
Ht,k,−p

i

)
△γt,ki ,△γt,ki

〉]2
≥ ak1∥△γ

t,k
i ∥2. (2)

As L(θi) is strongly convex, we have

L(θt,ki − η△θt,ki ) ≤ L(θt,ki )− η⟨△θt,ki , γt,ki ⟩+ η2a1∥△θt,ki ∥2

2

= L(θt,ki )− ηϕki (θ
t,k
i )2 +

a2
2ak1

η2ϕki (θ
t,k
i )2, by Equation 2.

Therefore, by choosing an appropriate step size η̂ =
ak1
a2

, we get

L(θt,ki − η△θt,ki ) ≤ L(θt,ki )− 1

2
η̂ϕti(θ

t,k
i )2.

Now, by using the estimate of |Diag(Ht,k,−p
i )| Equation (1) we have,

ϕi(α
t,k
i ) ≥ 1

ak2
∥γt,ki ∥2.

Thus, we have

L(θt,ki − η△θt,ki )− L(θt,ki ) ≤ − ak1
2ak+1

2

∥γt,ki ∥2.

This provides the descending property of the Hessian optimizer, given in (Equation 6, in the main
manuscript). Now, prove that the proposed Hessian optimizer given in (Equation 7, in the main
manuscript) has the same convergence rate as (Equation 6, in the main manuscript). For this, we
first simplify our nations by D := Diag(Ht,k,−p

i ). In this case, we have jth diagonal entry Djj of
D satisfies ⟨Ht,k,−p

i ej , ej⟩ = ⟨Dej , ej⟩ = Djj . Here ej is the jth unit vector in the ordered basis
(those all coordinates are zero, expert the jth equal to 1) for all j ∈ [N ]. Then, one can easily see
that the diagonal matrix D as a vector and by strictly convexity of the objective function (Equation
(1), we get

a1 ≤ Djj ≤ a2, for all j ∈ [N ].

Therefore, each diagonal entry of D in the interval [a1, a2]. Now, let us define ψk
i : R → R by

ψk
i (θ

t,k
i ) =

[〈(
Diag(Ht,k,−p

i )
)
γt,ki , γt,ki

〉]2
. Then, we get

ψk
i (θ

t,k
i ) =

[〈(
Diag(Ht,k,−p

i )
)
△γt,ki ,△γt,ki

〉]2
≥ ak1∥△γ

t,k
i ∥2. (3)
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As L(θi) is strongly convex, we have

L(θt,ki − η△θt,ki ) ≤ L(θt,ki )− η⟨△θt,ki , γt,ki ⟩+ η2a1∥△θt,ki ∥2

2

= L(θt,ki )− ηϕki (θ
t,k
i )2 +

a2
2ak1

η2ϕki (θ
t,k
i )2, by Equation 3.

Therefore, by choosing an appropriate step size η̂ =
ak1
a2

, we get

L(θt,ki − η△θt,ki ) ≤ L(θt,ki )− 1

2
η̂ϕti(θ

t,k
i )2.

Now, by using the estimate of |Diag(Ht,k,−p
i )| (Equation 3) we have

ψi(α
t,k
i ) ≥ 1

ak2
∥γt,ki ∥2.

Thus, we have

L(θt,ki − η△θt,ki )− L(θt,ki ) ≤ − ak1
2ak+1

2

∥γt,ki ∥2.

This provides the descending property of the Hessian optimizer (Equation (7), in the main
manuscript) and it has the same convergence rate as (Equation (6), in the main manuscript).

Further, by the strong convexity and strictly smooth properties of the objective function L and em-
ploying similar techniques, we can prove the spatial averaging of the diagonal has a similar rate
in the decreasing property and has the same order of convergence of (Equation (6), in the main
manuscript).

1.5 ABLATION STUDY

To assess the efficacy of the proposed FedHC approach, we conducted an additional set of eight ab-
lation experiments employing both full and partial (15%) client participation. These experiments
encompassed three distinct settings: Non-IID (D1- 0.6 Dirichlet), Non-IID (D2- 0.3 Dirichlet),
and IID, conducted across four diverse datasets: CIFAR-10, CIFAR-100, MNIST, and EMNIST-
L. These extensive experiments enable us to evaluate the robustness and effectiveness of FedHC
across a range of configurations and datasets, providing valuable insights into its adaptability and
efficiency.

The evaluated experimental results are summarized in Tables 2 through 9. Specifically, Table 2 re-
ports the results for CIFAR-10, presenting the number of rounds and the speed required to attain

Table 2: Communication rounds required to achieve target accuracy for existing and proposed
FedHC, FL approaches on CIFAR10 with 100 clients for full participation. The ’SpeedUp’ column
indicates the communication savings relative to FedAvg.

Model Accuracy Non-IID (0.6- Dirichlet) Non-IID (0.3 - Dirichlet) IID
Round SpeedUP Round SpeedUP Round SpeedUP

FedAvg 0.78 205 - 346 - 149 -
0.80 >1000 - 1000 - 286 -

FedProx 0.78 195 1.05× 350 0.99× 142 1.05×
0.80 >474 2.11× 1000 1× 277 1.03×

Scaffold 0.78 123 1.67× 148 2.34× 89 1.67×
0.80 >165 6.06× 218 4.56× 120 2.38×

FedDyn 0.78 44 4.66× 75 17.54× 55 5.2×
0.80 > 60 16.67× 75 13.33× 55 5.2×

FedDC 0.78 43 4.77× 53 6.53× 35 4.25×
0.80 53 18.86× 70 14.28× 43 6.65×

Proposed 0.78 35 5.86× 46 7.52× 35 4.25×
0.80 47 21.27× 59 16.95× 42 6.81×
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Table 3: Communication rounds required to achieve target accuracy for existing and proposed
FedHC, FL approaches on CIFAR10 with 100 clients for partial participation (only 15% of clients
are participating in every round.). The ’SpeedUp’ column indicates the communication savings rel-
ative to FedAvg.

Model Accuracy Non-IID (0.6- Dirichlet) Non-IID (0.3 - Dirichlet) IID
Round SpeedUP Round SpeedUP Round SpeedUP

FedAvg 0.78 259 - 491 - 177 -
0.80 616 - 1000 - 1000 -

FedProx 0.78 228 1.13× 485 1.1× 153 1.15×
0.80 459 1.34× 1000 1× 307 3.28×

Scaffold 0.78 132 1.96× 169 2.91× 94 1.88×
0.80 200 3.08× 263 3.80× 126 7.93×

FedDyn 0.78 118 2.19× 146 3.39× 110 1.61×
0.80 193 3.19× 195 5.12× 145 6.9×

FedDC 0.78 101 2.56× 105 4.68× 88 2.01×
0.80 141 4.37× 143 6.99× 108 9.26×

Proposed 0.78 98 2.64× 112 4.38× 80 2.21×
0.80 122 5.05× 165 6.06× 104 9.61×

Table 4: Communication rounds required to achieve target accuracy for existing and proposed
FedHC, FL approaches on CIFAR100 with 100 clients for full participation. The ’SpeedUp’ column
indicates the communication savings relative to FedAvg.

Model Accuracy Non-IID (0.6- Dirichlet) Non-IID (0.3 - Dirichlet) IID
Round SpeedUP Round SpeedUP Round SpeedUP

FedAvg 0.35 142 - 112 - 201 -
0.40 476 - 847 - >1000 -

FedProx 0.35 190 0.75× 124 0.9× 145 1.39×
0.40 502 0.95× 507 1.67× 273 3.66×

Scaffold 0.35 64 2.22× 67 1.67× 58 3.47×
0.40 91 5.23× 94 9.01× 84 11.9×

FedDyn 0.35 38 3.74× 38 2.95× 45 4.47×
0.40 51 9.33× 53 15.98× 56 17.85×

FedDC 0.35 30 4.73× 33 3.39× 29 6.93×
0.40 39 12.2× 41 20.65× 37 27.03×

Proposed 0.35 27 5.26× 26 4.69× 31 6.48×
0.40 36 13.22× 39 21.72× 39 25.64×

Table 5: Communication rounds required to achieve target accuracy for existing and proposed
FedHC, FL approaches on CIFAR100 with 100 clients for partial participation (only 15% of clients
are participating in every round.). The ’SpeedUp’ column indicates the communication savings rel-
ative to FedAvg.

Model Accuracy Non-IID (0.6- Dirichlet) Non-IID (0.3 - Dirichlet) IID
Round SpeedUP Round SpeedUP Round SpeedUP

FedAvg 0.35 170 - 144 260 -
0.4 615 - 520 - 724 -

FedProx 0.35 227 0.75× 148 0.97× 187 1.39×
0.4 980 0.63× 503 1.03× 650 1.11×

Scaffold 0.35 68 2.5× 72 2× 68 3.82×
0.4 106 5.8× 114 3.56× 113 6.41×

FedDyn 0.35 98 1.73× 78 1.46× 106 2.45×
0.4 149 4.42× 148 3.51× 143 5.06×

FedDC 0.35 78 2.18× 74 1.54× 74 3.51×
0.4 102 6.03× 103 5.05× 100 7.04×

Proposed 0.35 65 2.62× 71 2.03× 71 3.66×
0.4 105 5.86× 103 5.05× 104 6.96×

target accuracies of 0.78% and 0.80%, when all clients participated in the FL process. Meanwhile,
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Table 6: Communication rounds required to achieve target accuracy for existing and proposed
FedHC, FL approaches on MNIST with 100 clients for full participation. The ’SpeedUp’ column
indicates the communication savings relative to FedAvg.

Model Accuracy Non-IID (0.6- Dirichlet) Non-IID (0.3 - Dirichlet) IID
Round SpeedUP Round SpeedUP Round SpeedUP

FedAvg 0.96 25 28 - 16 -
0.98 258 - 492 - 142 -

FedProx 0.96 24 1.04× 27 1.04× 16 1×
0.98 263 0.98× 480 1.03× 136 1.04×

Scaffold 0.96× 11 2.27× 14 2× 9 1.78×
0.98 58 4.45× 58 8.48× 53 2.68×

FedDyn 0.96 8 3.13× 9 3.11× 7 2.29×
0.98 46 5.61× 51 9.65× 27 5.26×

FedDC 0.96 8 3.13× 10 2.8× 7 2.29×
0.98 34 7.59× 37 13.3× 26 5.46×

Proposed 0.96 9 2.78× 9 3.11× 6 2.67×
0.98 34 7.59× 37 13.3× 25 5.68×

Table 7: Communication rounds required to achieve target accuracy for existing and proposed
FedHC, FL approaches on MNIST with 100 clients for partial participation (only 15% of clients
are participating in every round.). The ’SpeedUp’ column indicates the communication savings rel-
ative to FedAvg.

Model Accuracy Non-IID (0.6- Dirichlet) Non-IID (0.3 - Dirichlet) IID
Round SpeedUP Round SpeedUP Round SpeedUP

FedAvg 0.96 32 - 35 - 23 -
0.98 361 - > 600 - 158 -

FedProx 0.96 31 1.03× 34 1.03× 23 1×
0.98 383 0.94× 418 >1.44× 149 1.06×

Scaffold 0.96 20 1.6× 23 1.52× 16 1.44×
0.98 62 5.82× 72 8.33× 50 3.16×

FedDyn 0.96 21 1.52× 23 1.52× 18 1.28×
0.98 122 2.96× 153 3.92× 71 2.23×

FedDC 0.96 43 3.3× 60 3.2× 21 5.1×
0.98 78 3.85× 134 2.24× 50 6×

Proposed 0.96 15 2.13× 17 2.06× 11 2.09×
0.98 42 8.56× 61 6.85× 36 4.39×

Table 8: Communication rounds required to achieve target accuracy for existing and proposed
FedHC, FL approaches on EMNIST-L with 100 clients for full participation. The ’SpeedUp’ column
indicates the communication savings relative to FedAvg.

Model Accuracy Non-IID (0.6- Dirichlet) Non-IID (0.3 - Dirichlet) IID
Round SpeedUP Round SpeedUP Round SpeedUP

FedAvg 0.94 142 - 192 - 107 -
0.95 300 - 300 - 300 -

FedProx 0.94 135 1.05× 198 0.97× 92 1.16×
0.95 300 1× 300 1× 300 1×

Scaffold 0.94 43 3.30× 52 3.69× 30 3.57×
0.95 75 4× 150 2× 66 4.55×

FedDyn 0.94 30 4.73× 52 3.69× 27 3.96×
0.95 137 2.19× 160 1.88× 69 4.35×

FedDC 0.94 43 3.3× 60 3.2× 21 5.1×
0.95 78 3.85× 134 2.24× 50 6×

Proposed 0.94 35 4.06× 48 4× 21 5.09×
0.95 76 4.05× 123 2.44× 45 6.67×

Table 3 presents the corresponding results for CIFAR-10, where only 15% of the clients were in-
volved in the FL.
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Table 9: Communication rounds required to achieve target accuracy for existing and proposed
FedHC, FL approaches on EMNIST-L with 100 clients for partial participation (only 15% of clients
are participating in every round.). The ’SpeedUp’ column indicates the communication savings rel-
ative to FedAvg.

Model Accuracy Non-IID (0.6- Dirichlet) Non-IID (0.3 - Dirichlet) IID
Round SpeedUP Round SpeedUP Round SpeedUP

FedAvg 0.94 153 - 245 - 108 -
0.95 300 - 300 - 300 -

FedProx 0.94 145 1.06× 240 1.02× 105 1.03×
0.95 300 1× 300 1× 300 1×

Scaffold 0.94 44 3.48× 68 3.6× 42 2.57×
0.95 95 4.21× 300 1× 87 3.45×

FedDyn 0.94 73 2.1× 81 3.06× 61 1.61×
0.95 127 2.36× 300 1× 255 1.18×

FedDC 0.94 48 3.19× 74 3.13× 47 2.3×
0.95 92 3.26× 300 1× 81 3.7×

Proposed 0.94 42 3.64× 55 4.45× 34 3.18×
0.95 86 3.49× 293 1.02× 72 4.17×

Furthermore, Table 4 provides the results for CIFAR-100, including the number of rounds and speed
required to achieve target accuracies of 0.35% and 0.40% with full client participation, whereas
Table 5 presents the analogous results for CIFAR-100, with 15% client participation. Moving on to
the MNIST dataset, Table 6 details the experimental outcomes, specifically the number of rounds
and speed required to attain target accuracies of 0.96% and 0.98% when all clients participated in
the FL. In contrast, Table 7 showcases the results for MNIST, where only 15% of the clients were
engaged in the FL process. Finally, Tables 8 and 9 summarize the results for the EMNIST-L dataset,
reporting the number of rounds and speed necessary to achieve target accuracies of 0.94% and 0.95%
under two scenarios: full client participation and 15% client participation in the FL process. The
results validate that the proposed FedHC outperforms almost all SOTA FL approaches across all
four datasets, under various configurations and settings.
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