
A Implementation Details537

In this section, we present some works that need to be done to actually accelerate the training process538

on hardware.539

A.1 BMM in Attention540

In attention, there are batch matrix multiplications (BMMs) that need to be dealt with. We now show541

that our method for MMs can be extended to BMMs.542

Consider the following BMM product:543

T = BMM(Q,K⊤),

where we define T ∈ RB×N×P ,Q ∈ RB×N×M ,K ∈ RB×P×M . The Hadamard matrix is defined544

as :545

Ĥ = RepeatB(H) = RepeatB(BlockDiag(Hk, . . . ,Hk)),

where Ĥ ∈ RB×M×M ,H ∈ RM×M ,Hk ∈ R2k×2k . In this case,546

T ≈ BMM
(
BMM(Q, Ĥ),BMM(K, Ĥ)⊤

)
,

which verifies that our HQ can be applied to BMMs.547

For backward, the gradient of weight and activation can be calculated by the straight-through estimator548

⌊x⌉′ = 1 and the chain rule:549

∇Q = sQ

(
BMM(∇⊤

T, K̂) ◦ IQ
)
H⊤,

∇K = sKIK ◦ BMM(∇T, Q̂)H⊤ = sKBMM(IK ◦ ∇T, Q̂)H⊤,

where we define sQ ∈ RB , sk ∈ RB being the batch step size, K̂ = intsK
(

BMM(K, Ĥ)
)

,550

Q̂ = intsQ
(

BMM(Q, Ĥ)
)

, IQ = I(−QN ≤ Q/sQ ≤ QP), and IK = I(−QN ≤ K/sK ≤ QP).551

Similar to Sec. 4.2, we only focus on BMM(∇⊤
T, K̂) and ∇T, since we do leverage sampling on552

them.553

For BMM(∇⊤
T, K̂), we define the sample probability pi and sample the M̃ in the same way554

as MMs. The matrix can be computed as BMM(BMM(∇↕
T

⊤
, ˆ̃H), K̂

↕
), where ˆ̃H is defined as555

CONCAT(H̃1, · · · , H̃B), ∇↕
T

⊤
and K̂

↕
follows the same definition of Eq. 6and the leverage score556

is cb,i := ∥∇↕
Tb,i,:∥∥K

↕
b,i,:∥ for 0 ≤ b ≤ B, 0 ≤ i ≤ 2M.557

For ∇T, similarly, can be viewed as ∇T = BMM(Î
↕
,∇↕

T),where we define ∇↕
Y =558

CONCAT([s↑b∇
↑
Tb; s↓b∇

↓
Tb]) ∈ RB×2N×P , Î

↕
= CONCAT([I I]) ∈ RB×N×2N ,559

s↑b,∇
↑
Tb, s↓b,∇

↓
Tb follows the definition of Eq.5. So it can be computed as560

BMM(BMM(Î
↕
, ˆ̃H),∇↕

T), where ˆ̃H is defined as CONCAT(H̃1, · · · , H̃B), and the lever-561

age score is cb,i := ∥∇↕
Tb,i,:∥ for 0 ≤ b ≤ B, 0 ≤ i ≤ 2M, which verifies that our LSS can be562

applied to BMM.563

A.2 Computing Leverage Score564

In the previous discussion, we find the optimal sample probability pi that can minimize the variance565

of the gradient. However, it is likely for the proportional pi is larger than one, which is invalid for the566

Bernoulli distribution. Accordingly, we propose an algorithm to solve this issue.567

Define the probability array as568

P = [p01, · · · , p02N],

2N∑
i=1

p0i = N,

14

we first clamp the array to p1i ∈ [0, 1]. In this case,
∑2N

i=1 p
1
i ≤ N , so we scale the pi which is smaller569

than 1 to make sure their sum is again N . However, this will probably introduce some more elements570

larger than 1, so we cycle through the above operations until all the pi ∈ [0, 1]. This process will571

certainly stop, since if after the scaling operation, no element is larger than 1, then we get a valid572

distribution. Otherwise, the number larger than 1 is reduced by at least one, thus the process will halt573

after at most O(N) times.574

A.3 Learning Quantizer Parameters575

In this section, we discuss the detail of how to calculate the gradient of activation and quantization576

step size.577

For gradient of activation, the coefficient ci := ∥∇↕
Yi∥ is the leverage score for activation gradient,578

and the variance achieves its minimum When pi ∝ ci by the Cauchy Inequality.579

Putting everything together, we propose the following MM procedure to compute activation gradient:580

Procedure LSS-MM
1. Quantize ∇Y with BS to obtain ∇↑

Y and ∇↓
Y in INT4.

2. Compute the leverage score ∥∇↕
Yi∥ in FP16.

3. Sample the masks {mi}.
4. Sample rows of ∇Y given the masks {mi}.

5. Compute IM̃
↑∇↑

Y and IM̃
↓∇↓

Y by discard some of its rows.

6. Compute INT4 MMs IM̃
↑∇↑

YŴ and IM̃
↓∇↓

YŴ.

7. Dequantize and sum up the resultant INT32 matrices to obtain the FP16 result Î
↕
∇↕

YŴ.

581

The two matrix multiplications in Step 5 take about 2NCD INT4 MACs in expectation.582

For the quantization step sizes. Following the chain rule, we have583

∇sW = g(sW)∇⊤
YX̂ ◦ δW(sW), ∇sX = g(sX)∇YŴ ◦ δX(sX),

where we define g(sW) = 1/
√

QpNW , g(sX) = 1/
√

QpNX , NW and NX being the number584

of elements of weight and activation, δX(sX) = intsX (X) − IX ◦ (X/sX), and δW(sW) =585

intsW (W)− IW ◦ (W/sW).586

Notice that for computing ∇sW and ∇sX , the most expensive MMs are ∇⊤
YX̂ and ∇YŴ, which587

are already calculated through Eq. (7) and Eq. (8) during previous calculations, so it does not588

require extra computation. The elementwise multiplication with δX(sX) and δW(sW) requires minor589

computation.590

A.4 Cold Start Problem591

There is a cold start problem. When the model is trained from scratch (i.e., from a random initializa-592

tion), distributions of weights and activations can change rapidly in the early stage of optimization.593

In this case, jointly optimizing the quantization step size and the weights would cause the training to594

be unstable. As a remedy, we do not learn the step size in the first few iterations, and use a heuristic595

rule to dynamically set the step size for each tensor X to 2mean(X)/
√
Qp in each iteration.596

A.5 Choose hadamard matrix size597

For the hadamard matrix, let the hadamard matrix to be H ∈ RD×D: H = BlockDiag(Hk, . . . ,Hk),598

where D is a multiple of 2k. We first define599

X̄k = sX intsX (XH)H⊤, W̄ = sW intsW (WH)H⊤,

where X̄ and W̄ can be viewed as an approximation of X and W. Then, we define the quantization600

error to be MSE(X̄,X)× MSE(W̄,W). We search for the optimal k that can minimize this quan-601

tization error. For fine-tuning tasks, once the hadamard matrix size has been calculated, we fix it602

through the training process. For the pre-training task, since the distribution shifts greatly as we train603

the model, we empirically define a time when we re-initialize the hadamard matrix size and the LSQ604

step size. Usually, we do this when the first 2 epochs finish.605

15

A.6 GPU Implementation606

In the previous discussion, we get to know HQ-MM and LSS-MM from an algorithm level, nevertheless607

it is not enough to actually implement it on hardware. In this section, we will delve deeper into608

hardware implementation details as well as extra limitations.609

HQ-MM can be divided into 5 parts: Hadamard matrix multiplication, Quantize, Data Pack, INT4610

GEMM, and Dequantize.611

For the Hadamard matrix multiplication process, since it can be interpreted as a half float matrix612

multiplication process where the two matrices involved in the operation are input/weight matrix and613

hadamard matrix, respectively, we implement it in Python, because PyTorch MM uses CublassGemm614

and is more efficient then CutlassGemm.615

In the quantize process, we quantize input/weight into INT4 data respectively, and also preserve a616

corresponding FP16 version for the LSQ Back Propagation process to use.617

In the previous discussion, we assume the quantize part of HQ-MM is quantizing the resultant618

matrices to INT4, however, the smallest representation unit of data is INT8. As a result, we actually619

use INT8 data type to represent quantized data and pack two adjacent data into one data using620

(data[1] << 4)|(data[0]&15) in the data packing process, which means we use one INT8 data to621

represent two adjacent INT4 data. With both input matrices’ data packed in this way, we then use622

cutlass tensor-core INT4 GEMM to do the matrix multiplication.623

For the GEMM process, we choose Nvidia CutlassGemm because it’s the most efficient open-source624

operator library we can find. We use INT4 Tensor Core Gemm for our implementation and it requires625

the two input matrices A&B to be RowMajor and ColMajor, respectively. Since the default Pytorch626

tensor is RowMajor, we have to use Transpose+Contiguous operations to make it ColMajor, which is627

very time-consuming and needs further optimization in the future.628

Finally, we dequantize the INT GEMM result back into FP16 output using a dequantize kernel, which629

is the final output of the forward kernel.630

As compared, LSS-MM is more complicated, and can be divided into 7 parts: Quantization of higher631

lower 4-bit, Leverage Score Calculating, Sampling, Data Pack, INT4 GEMM, Dequantize, and LSQ632

Back Propagation.633

In the Quantize process, we fuse the quantize operation of higher 4-bit and lower 4-bit into a single634

kernel for acceleration. In the Leverage Score Calculating process, we use the quantized INT8 data635

to calculate the score and scale up it in the final because integer arithmetic is far more efficient than636

float arithmetic.637

In the sampling process, we sample out rows/columns given the previously calculated leverage score.638

Note that in Section. A.2, we repeat our proposed algorithm for several loops to sample out specific639

elements, which is effective but not efficient. According to experiments, however, we notice that640

simply selecting elements whose leverage score is bigger than 0 can also work well, even better than641

our proposed algorithm in some cases. So in real quantization implementation, we just sample out642

rows/ columns whose Euclidean norm is bigger than 0 to accelerate our training process.643

Pack, Gemm, and Dequantize processes are as similar as before. It’s worth noting that for Int4 Tensor644

Core Gemm, suppose two input matrices have shape M ×K and K ×N , K needs to be a multiple645

of 32 so that the Tensor core Gemm address can be aligned. We do not need to consider this in the646

Forward Propagation process because the input data shape always satisfies. However, in the Back647

Propagation process, the matrix shape may not meet the requirement after sampling. As a result, we648

need zero_padding the sampled matrix so that K can be a multiple of 32.649

Finally, we utilize the dequantized data to do the LSQ Back Propagation. We also fuse all operations650

into a single Cuda kernel for acceleration, and the metric remains.651

Besides the component of HQ-MM and LSS-MM , there is still something that needs to be mentioned.652

1. We omit the Quantization and Leverage Score Calculating process in LSSinput, and use the653

same value as LSSWeight to accelerate the training process.654

2. For Element-Wise kernel, we set block size as 256, grid size as input.numel()/256. For655

Reduction kernels like sum and min/max, we set block size as 32, grid size as RowNum,656

16

reducing elements in each row to the first 32 elements. We find this setting to be most657

efficient through experiments.658

B Proofs.659

In this section, we present the proofs of the leverage score.660

B.1 Proof of Proposition. 4.1661

Proposition B.1. (LSS variance for weight gradient)662

Var

[
2N∑
i=1

mi

pi
∇↕

Y

⊤
:,iX

↕
i

]
=

2N∑
i=1

1− pi
pi

∥∇↕
Yi,:∥

2∥X↕
i,:∥

2.

Proof.

V ar(∇W) = V ar
(2N∑

i=1

1

pi
(mi∇↕

Z

⊤
:,iX

↕
i)
)

= V ar
(2N∑

i=1

1

pi
(

C∑
j=1

D∑
k=1

mi∇↕
Z

⊤
j,iX

↕
i,k)

)

=

2N∑
i=1

pi(1− pi)

p2i
V ar

(
(

C∑
j=1

D∑
k=1

∇↕
Z

⊤
j,iX

↕
i,k)

)

=

2N∑
i=1

1− pi
pi

(

C∑
j=1

D∑
k=1

∇↕
Z

⊤
j,i

2

X
↕
i,k

2
).

663

So that664

V ar(∇W) =

2N∑
i=1

(
1

pi
− 1)(

C∑
j=1

∇↕
Z

⊤
j,i

2

)(

D∑
k=1

X
↕
i,k

2
) (9)

=

2N∑
i=1

(
1

pi
− 1)∥∇↕

Z

⊤
:,i∥

2∥X↕
i,:∥

2, (10)

which proves.665

B.2 Proof of Activation Leverage Score in Sec. 4.2666

we divide the matrix multiplication into the sum of 2N smaller multiplications:667

Î
↕
∇↕

Y =

2N∑
i=1

Î
↕
:,i∇

↕
Yi =

2N∑
i=1

∇̂Yi
, (11)

where we define ∇̂Yi = Î
↕
:,i∇

↕
Yi.668

We assigns each ∇Yi
a probability pi ∈ [0, 1], i = 1, · · · , 2N , that satisfies

∑2N
i=1 pi = N . We669

define random masks mi ∼ Bern(pi), and define M̃ = diag
(

m1

p1
, . . . , m2N

p2N

)
, and make an unbiased670

estimation:671

Î
↕
∇↕

Y ≈ Î
↕
M̃∇↕

Y =

2N∑
i=1

mi

pi
∇↕

Yi.

17

Define M↑ to be the top-left N ×N submatrix of M and M↓ to be the bottom-right one, we have672

Î
↕
M̃∇↕

Y = s↑IM̃
↑∇↑

Y + s↓IM̃
↓∇↓

Y,

In this case, IM̃
↑∇↑

Y and IM̃
↓∇↓

Y both only have parts of its rows being non zero, and the rest rows673

are zeros since they are discarded. Then, when we multiply it by Ŵ , there are half of rows being674

zeros in IM̃
↑∇↑

YŴ and IM̃
↓∇↓

YŴ. So there’s no need to calculate them, and we successfully cut675

off half of the computation in this case.676

Now focus on the variance that677

Proposition B.2. (LSS variance for activation gradient)678

Var

[
2N∑
i=1

Î
↕
:,i∇

↕
Yi

]
=

2N∑
i=1

1− pi
pi

∥∇↕
Yi∥2.

Proof.

V ar(∇X) = V ar
(2N∑

i=1

1

pi
(miÎ

↕
:,iX

↕
i)
)

= V ar
(2N∑

i=1

1

pi
(

C∑
j=1

D∑
k=1

miÎ
↕
j,i∇

↕
Yi,k)

)

=

2N∑
i=1

pi(1− pi)

p2i
V ar

(
(

C∑
j=1

D∑
k=1

Î
↕
j,i∇

↕
Yi,k)

)

=

2N∑
i=1

1− pi
pi

(C∑
j=1

D∑
k=1

(Î
↕
j,i)

2(∇↕
Yi,k)

2
)

=

2N∑
i=1

(
1

pi
− 1)

(C∑
j=1

(Î
↕
j,i)

2)(

D∑
k=1

(∇↕
Yi,k)

2
)

=

2N∑
i=1

(
1

pi
− 1)∥Î

↕
:,i∥2∥∇

↕
Yi∥

2

=

2N∑
i=1

(
1

pi
− 1)∥∇↕

Yi∥
2.

679

In this way, the coefficient ci := ∥∇↕
Yi∥ is the leverage score.680

C Experiments.681

In this section, we present more details for experiments in Sec. 5.682

C.1 Experiments setup683

For the GLUE, QA, SWAG, and CONLL tasks, we implement our algorithm based on https:684

//github.com/huggingface/transformers. For the machine translation task, we implement our685

algorithm based on https://github.com/facebookresearch/fairseq. For the ViT fine-tuning686

task, we implement our algorithm based on https://github.com/jeonsworld/ViT-pytorch.687

For the deit pretraining task, we implement our algorithm based on https://github.com/688

facebookresearch/deit.689

We employed NVIDIA GeForce RTX 3090 for running most of the experiments, while the NVIDIA690

A40 was utilized to evaluate the performance of BERT-Large and ViT-L. Furthermore, we conducted691

runtime measurements using the NVIDIA T4, 3090, and A100 GPUs.692

18

https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/facebookresearch/fairseq
https://github.com/jeonsworld/ViT-pytorch
https://github.com/facebookresearch/deit
https://github.com/facebookresearch/deit
https://github.com/facebookresearch/deit

Table 2: GLUE results on BERT-base-uncased and BERT-large uncased. FP refers to full precision
training, INT8 refers to INT8 training, LSQ + LUQ refers to learned step size quantization for forward
and logarithmic unbiased quantization for backward, and HQ + LSS refers to Hadamard quantization
for forward and leverage score sampling for backward.

QUANTIZATION METHODS

MODEL DATASET FP INT8 LSQ+LUQ HQ+LSS

BERT-BASE

COLA 56.890.64 56.150.94 18.763.58 52.461.46

STSB 88.140.73 87.050.38 84.310.29 87.770.30

RTE 64.801.26 62.271.26 56.800.92 62.451.08

MRPC 88.610.66 86.850.76 86.230.67 86.540.83

SST2 92.720.06 92.370.17 90.370.46 92.490.29

QNLI 91.520.22 90.920.24 87.330.48 90.530.23

QQP 91.090.11 90.570.05 89.260.03 89.800.05

MNLI 84.520.22 84.100.08 81.790.18 83.590.12

MNLI-MM 84.680.20 84.490.31 82.220.33 83.750.28

BERT-LARGE

COLA 60.330.49 58.801.52 0.000.00 53.461.17

STSB 87.592.39 86.530.20 83.080.41 87.570.78

RTE 71.121.80 63.711.26 53.060.72 64.620.78

MRPC 91.060.28 87.571.47 82.560.59 87.620.51

SST2 93.980.17 93.750.63 83.940.69 93.520.40

QNLI 92.260.05 92.290.29 63.1813.10 91.530.38

QQP 91.040.63 90.710.00 75.6212.44 90.770.02

MNLI 86.710.19 85.820.08 33.421.38 85.860.10

MNLI-MM 86.410.35 85.870.14 33.541.55 85.820.07

C.2 GLUE results693

In this section, we present the detailed result of fine-tuning the GLUE dataset on BERT-base-uncased694

and BERT-large-uncased.695

On BERT-base, on STSB, SST2, QNLI, and QQP, HQ+LSS only has < 0.5% accuracy degradation.696

On the most challenging tasks CoLA and RTE, our accuracy degradation is much smaller compared697

to LSQ+LUQ. On QQP and MNLI, our method achieves < 1.3% degradation, while LSQ + LUQ698

has ≥ 1.8% degradation. The trend is that the more difficult the task is, the more significant our699

advantage over LSQ+LUQ.700

On BERT-large, the improvement is significant. On CoLA, QNLI, and MNLI, the accuracy im-701

provement compared with LSQ+LUQ > 30%. On other datasets like SST2 and QQP, the accuracy702

improvement is > 10%. On RTE the accuracy improvement is > 5%, and on STSB and MRPC the703

improvement is > 3%.704

We suspect that for those challenging tasks, there is more information stored in the outliers, which705

results in a larger gap between our method and LSQ+LUQ.706

C.3 More Granular Quantization Methods707

In this section, in Table 4, we show that the more granular quantization methods, such as per-token708

quantization and per-channel quantization, or smoothing techniques, such as SmoothQuant, do not709

work under the 4-bit FQT setting. Meanwhile, combining these methods with HQ will not bring710

significant improvement.711

We find that LSQ is beneficial for all of these more granular quantization methods under low-bit712

settings, which highlights the importance of LSQ. Meanwhile, we also notice that the smoothquant713

will even harm the result of LSQ when the bit-width is low. Our explanation is that the motivation714

of LSQ is to learn a trade-off between outliers and inliers, while smoothquant aims to sacrifice the715

19

Table 3: Experiments on GPT2-base and Bert-large. Total time spent for epoch 1-5 are reported.
TRAINING METHODS

MODEL (HIDDEN_SIZE, INTERMIDIATE_SIZE, BATCH_SIZE) FP16 HQ+LSS SPEEDUP

BERT-LARGE

(2560, 10240, 2048) 15.094S 18.949S −25.5%
(4096, 16384, 1280) 32.016S 30.594S 4.4%
(5120, 20480, 960) 47.418S 39.482S 16.7%
(7680, 30720, 600) 95.832S 67.253S 29.8%
(8960, 35840, 480) 128.441S 83.388S 35.1%
(9600, 38400, 160) 161.114S 114.325S 29.0%

(12800, 51200, 100) 326.265S 255.966S 21.5%
(14400, 57600, 96) 409.291S 346.354S 15.3%

GPT2-BASE

(2560, 10240, 1536) 17.253S 22.037S −27.7%
(4096, 16384, 960) 35.937S 35.694S ~
(5120, 20480, 768) 52.723S 46.548S 11.7%
(7680, 30720, 260) 113.855S 92.548S 18.7%
(8960, 35840, 200) 150.680S 114.881S 23.8%
(9600, 38400, 180) 172.182S 126.540S 26.5%

(12800, 51200, 112) 320.757S 236.433S 26.3%

Figure 6: Time proportion for each part in HQ-MM and LSS-MM operator.

precision of inliers in order to exactly maintain the information of outliers. When the bitwidth is high,716

this is not a problem, since there are still enough bits to quantize the inliers. But when the bitwidth is717

low, such sacrifice will cause severe problems since the inlier information is discarded.718

C.4 Large Language Model Operator Speed719

In this section, we show that our hardware-friendly INT4 training method can really accelerate the720

training process on Large Language Models. We run distributed training on a system of 8 A100 cards721

and our implementation uses distributed data parallel training with zero-3, gradient checkpointing,722

and optimizer offloading.723

We experimented with two architectures: BERT-Large and GPT2-base. We vary the network width724

and batch size to make full utilization of the GPU memory and show the end-to-end performance for725

fine-tuning these models on the SuperGLUE RTE dataset in Table 3.726

C.5 More experiments on Operator Speed727

Time proportion We examine the proportion of time for each part of computation in HQ-MM and728

LSS-MM operator in Fig. 6 when the shapes of input matrices vary. In HQ, hadamard means multi-729

plying the input matrix with the Hadamard matrix, pack means packing input data into INT4 data,730

gemm means the matrix multiplication of two INT4 matrices. In LSSWeight, quantize corresponds to731

20

(4608, 5120, 6144)

(5120, 6144, 8192)

(6144, 6144, 9216)

(7168, 6656, 8704)

(8192, 7680, 9728)

(15360, 8704, 10752)

Matrix size (M,N,K)

0

10

20

30

40

50

60

70

Tf
lo

ps

FP16
INT4
HQ
LSSWeight
LSSAct

Figure 7: Real quantization performance on Nvidia T4.

(4608, 5120, 6144)

(5120, 6144, 8192)

(6144, 6144, 9216)

(7168, 6656, 8704)

(8192, 7680, 9728)

(15360, 8704, 10752)

Matrix size (M,N,K)

0

50

100

150

200

250

300

350

400

Tf
lo

ps

FP16
INT4
HQ
LSSWeight
LSSAct

Figure 8: Real quantization performance on Nvidia A100.

Table 4: Comparison of different quantization methods, quantize the activation and weight into the
same bit-width from 2 to 8. Per-token refers to quantize activation per-token, while Per-channel refers
to quantize weight per-channel.

Quantize Bits

quantization methods 2 3 4 5 6 7 8

Per-tensor 0 0 0 0 0 50.2 54.6
Per-token 0 0 0 0 31.4 52.8 56

Per-channel 0 0 0 0 0 51.9 56.7
smoothquant 0 0 0 0 0 49.4 57.7

Per-token + Per-channel + smoothquant 0 0 0 0 40.7 55.7 56.7

LSQ 0 9.16 24.2 37.3 39.6 45.3 51.4
Per-token + LSQ 0 15.3 27.8 31.6 42.9 46 54.4

Per-channel + LSQ 0 8 23.9 29.3 40 45.5 50.7
smoothquant + LSQ 0 0 0 0 49.6 54.9 57

Per-token + Per-channel + smoothquant + LSQ 0 0 0 0 28.8 52.4 55.2

HQ 0 45.2 54.6 54.2 56.5 57.4 58.4
HQ + Per-token + Per-channel 0 48.4 54.1 54.9 55 56 56

HQ + Per-token + Per-channel + smoothquant 0 0 46.6 54.9 55.9 55.8 56.5

the quantization of higher and lower 4-bit, leverage means computing leverage score, sample means732

sample out rows/columns given the leverage score, dequantize is the process of dequantizing INT data733

back into FP16 data, and LSQ is the backpropagation process of LSQ method. In LSSAct, we ignore734

quantize and leverage process, using the same value as LSSWeight for saving time, other processes735

share the same meaning with LSSWeight. Note that our implementation is not fully optimized, and736

optimizations like operator fusion can further improve the performance.737

21

Operator Speed on more GPUs On an Nvidia RTX 3090 GPU with a Cuda capability of sm_86.,738

we show the comparison of FP16 MM, HQ, and LSS operators in Section 5.3 as well as time739

proportion in each operator in Figure. 6. We also adjust our hardware implementation and test its740

performance on Nvidia T4 GPU and Nvidia A100 GPU, which have Cuda capability of sm_75 and741

sm_80 , respectively. The result is shown in Fig. 7 and Fig. 8.742

22

	Introduction
	Related Work
	Forward Propagation
	Learned Step Size Quantization
	Activation Outliers
	Hadamard Quantization

	Backpropagation
	Structural Sparsity of Gradients
	Bit Splitting and Leverage Score Sampling

	Experiments
	Converged Model Accuracy
	Ablation Study
	Computational and Memory Efficiency

	Conclusions
	Implementation Details
	BMM in Attention
	Computing Leverage Score
	Learning Quantizer Parameters
	Cold Start Problem
	Choose hadamard matrix size
	GPU Implementation

	Proofs.
	Proof of Proposition. 4.1
	Proof of Activation Leverage Score in Sec. 4.2

	Experiments.
	Experiments setup
	GLUE results
	More Granular Quantization Methods
	Large Language Model Operator Speed
	More experiments on Operator Speed

