
Object-Centric Semantic Vector Quantization

Yi-Fu Wu∗

Rutgers University
Minseung Lee

KAIST
Sungjin Ahn

KAIST

Abstract

Neural discrete representations are crucial components of modern neural networks.
However, their main limitation is that the primary strategies such as VQ-VAE
can only provide representations at the patch level. Therefore, one of the main
goals of representation learning, acquiring conceptual, semantic, and compositional
abstractions such as the color and shape of an object, remains elusive. In this paper,
we present the first approach to semantic neural discrete representation learning.
The proposed model, called Semantic Vector-Quantized Variational Autoencoder
(SVQ), leverages recent advances in unsupervised object-centric learning to address
this limitation. Specifically, we observe that a simple approach quantizing at
the object level poses a significant challenge and propose constructing scene
representations hierarchically, from low-level discrete concept schemas to object
representations. Additionally, we suggest a novel method for training a prior over
these semantic representations, enabling the ability to generate images following
the underlying data distribution, which is lacking in most object-centric models.
In experiments on various 2D and 3D object-centric datasets, we find that our
model achieves superior generation performance compared to non-semantic vector
quantization methods such as VQ-VAE and previous object-centric generative
models. Furthermore, we find that the semantic discrete representations can solve
downstream scene understanding tasks that require reasoning about the properties
of different objects in the scene.

1 Introduction

While there have been various findings regarding the purpose of the brain, it is fair to say that the
human brain has at least two key functions. First, it constructs a good representation that captures the
structure of the world through perception. Second, it imagines or generates various possibilities of
the world. Similarly, AI systems that aim to be as generally capable as humans would also need to
realize similar capabilities computationally. Building such a learning system that can both structurally
recognize and generate has long been a desired vision in machine learning, from Helmholtz machines
[1, 2] to Variational Autoencoders [3, 4]. Although there could be various approaches to achieving
this, in this work, we focus on a specific class of models, which we call Generative Structured
Representation Models, which satisfy the following desiderata.

First, when it comes to representating a visual scene, it appears that we do not perceive the scene sim-
ply as a monolithic vector of features. Instead, we view it structurally and semantically, recognizing it
as a composition of meaningful components such as objects and their attributes like shape, color, and
position [5, 6, 7]. Various works in AI, particularly object-centric approaches [8], have demonstrated
that this structural decomposition facilitates relational reasoning [9, 10, 11] and out-of-distribution
generalization [12, 10] due to improved compositional generalization. It has also been shown that a
monolithic vector representation of a scene, such as VAE, fails in multi-object scenes [9, 12, 10].

∗Correspondence to yifu.wu@gmail.com.

Accepted to the NeurIPS 2023 Workshop on Causal Representation Learning.

yifu.wu@gmail.com

Table 1: Desiderata for Generative Structured Representation Models and Related Models
VAE VQ-VAE Slot Attention SysBinder SVQ (Ours)

Semantic
Decomposition

Factor ✘ Object Object & Factor Object & Factor

Discrete ✘ ✓ ✘ ✘ ✓

Sampling ✓ ✓ ✘ ✘ ✓

Moreover, this structured and semantic understanding can be categorized and conceptualized dis-
cretely in an unsupervised way. Such an ability is critical for organizing and comprehending the
complexity of the environment, e.g., via language, as well as for implementing modularity [13] or
symbolic reasoning [14]. In AI, discrete representations are also useful to leverage powerful learning
models like transformers. One of the most popular models for discrete representation learning in AI
is VQ-VAE [15]. It has been shown to be beneficial for image generation [16, 17] and probability
density modeling [18]. However, VQ-VAE and its variants, such as dVAE [19, 20] and VQ-GAN
[17], represent a scene as a grid of small patches, lacking the capability to capture the scene’s holistic
structure and semantics.

Besides, the ability to generate samples that adhere to the observed data distribution is foundational
for endowing AI the capabilities to imagine and simulate, e.g., for planning [21, 22]. However, only a
certain class of representation learning models supports this essential ability. While models like Slot
Attention [23] and SysBinder [24] offer structured, object-centric representations, in its original form
it is unclear how to support density-based sampling. In contrast, VAE-based models, such as VAE
and VQ-VAE, generally support this ability to sample from a prior distribution, but they either do not
provide object-centric structures (VAE) or are limited to patch-based representations (VQ-VAE).

In this work, we observe that, despite its significance, there is currently no method that simultaneously
satisfies all of the mentioned criteria of Generative Structured Representation Models, as summarized
in Table 1. To address this issue, we propose the Semantic Vector-Quantized (SVQ) Variational Au-
toencoder. Our model achieves discrete semantic decomposition by learning hierarchical, composable
factors that closely align with the objects and the properties of objects in visual scenes. Similar to
patch-based vector quantization methods, we can train an autoregressive prior to learn the distribution
of the dataset. However, unlike VQ-VAE, we achieve this by learning the distribution of semantic
discrete tokens, rather than patch tokens. As a result, the generation (or imagination) process is to
compose semantic concepts such as objects and their attributes, rather than stitching a grid of patches.

Our contributions are as follows: First, we introduce SVQ, the first model to obtain semantic neural
discrete representations without any supervision about the underlying factors in the scene. Second,
by training a prior over these discrete representations, we are able to obtain an object-centric density
model, capable of capturing the underlying data distribution and generating new samples. Third, we
evaluate our model on several 2D and 3D datasets including the challenging CLEVRTex dataset,
showing superior downstream task performance and image generation quality.

2 Background and Related Work

Vector-Quantized Variational Autoencoder (VQ-VAE). The VQ-VAE [15] is a model that learns
to compress high-dimensional data into a discretized latent space. The latent space is maintained
by a codebook of prototype vectors e ∈ RK×d where K is the size of the codebook and d is the
dimensionality of each prototype vector. An input x is first passed through encoder E(x) to obtain
latents ze ∈ Rd. A nearest-neighbor lookup between ze and each of the prototype vectors in the
codebook yields a quantized representation zq = Quantize(ze) = ek where k = argminj ||ze−ej ||2.
A straight-through estimator [25] is used to estimate the gradients through the quantization step by
copying the gradients from zq to ze. The model is trained with a reconstruction loss, a codebook loss,
and a commitment loss. We refer to the original work [15] for more details.

Slot Attention. We build on top of Slot Attention [23], a spatial attention-based object-centric
representation method that has been shown to be able to decompose a scene into a set of slots, each
corresponding to an object in the scene. Additional discussion of related work can be found in
Appendix C.

2

Figure 1: (a) Overall architecture of SVQ. We maintain M learned codebooks and split each slot into M blocks.
At the end of each Slot Attention iteration, we apply vector quantization to each block representation to obtain a
set of discrete codes for each slot. Each block ends up specializing in different underlying factors of variation
for the objects in the scene. (b) The Semantic Prior. After training the model, we freeze SVQ and train and
autoregressive prior over the discrete latent codes. Sampling from this prior allows us to generate an image one
object at a time, based on their properties.

3 Semantic Vector Quantization

Given a slot attention encoder that can obtain a set of representations of the objects in a scene,
one may think of a hypothetical method, applying vector quantization to the slot representation
itself to obtain a set of semantic discrete representations. While these representations would indeed
correspond to the different objects in a scene, this scheme would essentially require one codebook
entry per possible object configuration and would be insufficient for anything beyond trivially simple
scenes.

For example, consider a simple scene containing a single object in a fixed position that only varies
by color and shape. Assume there are c possible colors and s possible shapes for the object. With
slot-level quantization, in order to represent all the potential objects, the codebook would require at
least c× s entries. This is because each slot representation is a single entangled representation so
each combination of factors needs to be represented by a separate code. If instead, we were able to
disentangle the object-level representations into factor-level representations—representations that
align with the underlying latent factors of variation of each object—we would be able to describe the
potentially large combinatorial space of each object with a much small number of discrete factors. In
the above example, if we had a fully disentangled representation of the color and the shape, we would
be able to represent all possible scenes with c+ s codes. See Appendix A.4 for further discussion.

This observation motivates us to design an architecture that further disentangles slot representations
to factor representations that reflect the underlying discrete factors of the objects in the scene, and
to perform vector quantization on these factor representations. Under this scheme, each object
representation would be composed of multiple discrete factors, and each factor would have its own
codebook that can be shared across objects. The resulting model, the Semantic Vector-Quantized
Variational Autoencoder (SVQ), is depicted in Figure 1a and described below.

To obtain factored representations, we follow an approach motivated by Neural Systematic Binder
(SysBinder) [24], where a binding mechanism is introduced to produce disentangled factors within
a slot. Specifically, the following modifications are applied to slot attention: First, we maintain M
codebooks C ∈ RM×K×dc, each with K discrete prototype vectors of dimension dc = ds

M . Then,
we split each of the N ds-dimensional slot representations into M equally-sized blocks, each of
which will represent one factor. We denote the full set of block representations as ze ∈ RN×M×dc .
Crucially, we replace the slot-level GRUs and residual MLPs with block-level equivalents that have
shared parameters across blocks corresponding to the same factor. At the end of each slot attention
iteration, we apply vector quantization for each block using its corresponding codebook to obtain a
set of quantized blocks zq ∈ RN×M×dc . For n ∈ [1, N],m ∈ [1,M],

zn,mq = Cm,k where k = argmin
j

||zn,me − Cm,j ||2 ,

3

where zn,mq denotes the m-th block in the n-th slot and Cm,k is the k-th prototype vector in the
m-th codebook. By sharing the codebook for each block across all of the slots, each block ends
up specializing in different underlying factors of the objects in the scene, such as color, shape, and
position. Thus, these quantized representations are semantic in the sense that they contain factor-level
representations mapping to the underlying structure of the scene.

To reconstruct the image, we use the same autoregressive transformer decoder that is used in Singh
et al. [24]. We train the model with the reconstruction loss, the VQ-VAE commitment loss, and we
update the codebooks with EMA updates. To prevent codebook collapse, we also incorporate random
restarts for the embeddings, similar to previous work [26]. To achieve this, we keep a count of the
usage of each code in the codebooks and randomly reset it to be near one of the encoder outputs of
the current batch if its usage falls below a threshold.

3.1 Semantic Prior

Given these semantic discrete codes representing the different objects in the scene, we can now freeze
the SVQ and train an autoregressive prior p(zq) over these codes to model the structure of the data
(Figure 1b). We can then sample from this prior to obtain codes for new scenes and use these codes
in the SVQ decoder to generate new images. Compared to patch-based VQ methods that generate
tokens that correspond to a spatially local region of an image, this semantic prior generates an image
one object at a time, based on their properties.

We implement the prior using a simple autoregressive transformer decoder. First, we flatten zq along
the slot and block dimensions to a vector with dimensions NM × dc. We then apply a positional
encoding across all slots and blocks and input the resulting vector to a transformer decoder with an
objective of predicting the discrete code of the next block. Although slot attention does not guarantee
any specific ordering of the slots, the blocks within the slots are arranged in a predefined order.
Therefore, the positional encoding is important in providing information about the ordering of the
blocks as well as which block belongs to which slot.

Note that generating the latents of one image requires sampling NM blocks, but does not depend on
the size of the image. This is different than VQ-VAE, which scales with the size of the feature map
and may become expensive for high-resolution images.

4 Experiments

Datasets. We evaluate our model on two variants of a 2D Sprites dataset [27, 10] and three variants
of the CLEVR dataset [28], CLEVR-Easy, CLEVR-Hard, CLEVR-Tex. In the 2D Sprites datasets,
objects of varying shapes and colors are placed in a scene. In total, there are 7 possible colors and
12 possible shapes. In each image, one object has a single property that is unique from the other
objects. All other properties are shared by at least two objects. This structure allows us to evaluate if
the prior correctly models the dependencies between the properties of the scene. We test versions of
this dataset with and without textured backgrounds [29]. Details about the CLEVR datasets can be
found in Appendix B.1.

Baselines. We compare our model with several patch-based quantization methods: VQ-VAE [15]
with a PixelCNN [18] prior, and dVAE [19, 20] with a transformer decoder prior. For the dVAE
baseline, we use the dVAE weights that are trained along with the SVQ. This provides a more direct
ablation comparing the semantic prior of SVQ with the patch-based transformer decoder prior since
the dVAE decoder is shared across these models and will not contribute to differences in image
quality. We also compare with GENESIS-v2 [30], a continuous latent object-centric model with an
autoregressive prior that can also generate samples.

4.1 Generating Samples with Semantic Prior

4.1.1 2D Sprites

We show the results of the 2D Sprites experiments in Table 2 and sample generations in the appendix
(Figure 3). We additionally calculate generation accuracy by manually inspecting 128 images per
model to check if the generated images follow the constraints of the dataset. That is, each image must

4

have exactly one object that has a unique property. All other properties in the scene will have at least
one duplicate among the other objects.

We see that for the simplest dataset with 3 objects and no background, SVQ achieves the lowest FID
of the models and comparable generation accuracy to dVAE, generating about 75% of the scenes
correctly. This setting may be simple enough that dVAE with a transformer prior can capture the
structure of the scene even with a patch-based discrete latent. As the scene complexity increases with
more objects and textured background, SVQ starts to outperform the baselines in terms of generation
accuracy.

Table 2: FID and Generation Accuracy on the 2D Sprites datasets. For Generation Accuracy, 128 samples were
inspected manually to determine if they matched the constraints of the scene (ie. exactly one unique property
among all the shapes). Underlined numbers indicate a minor difference from the best value.

FID ↓ Generation Accuracy (in %) ↑
Dataset VQ-VAE dVAE SVQ (ours) VQ-VAE dVAE SVQ (ours)

2D Sprites (3 obj) 14.81 7.26 6.61 28.91 75.78 75.00
2D Sprites (4 obj) 26.35 19.15 17.93 21.88 62.50 66.41
2D Sprites w/ bg (4 obj) 58.14 66.08 58.50 19.53 30.47 42.19

4.1.2 CLEVR

In Figure 2, we show sample generations after training the models on the CLEVR-Easy, CLEVR-
Hard, and CLEVR-Tex datasets. We report the Frechet Inception Distance (FID) in Table 3. We
find that compared to the other models, GENESIS-v2 generates very blurry images and completely
fails on CLEVR-Tex, resulting in a high FID. While VQ-VAE produces sharper images, several of
the generated shapes are malformed or have mixed colors. The dVAE-generated images look closer
to the ground truth dataset, but still have some errors such as overlapping objects (first image) and
generating scenes with more objects than seen in the training set (third image). SVQ has the lowest
FID for all of these datasets and the generated images look very close to the ground truth dataset,
indicating the usefulness of having a semantic prior for generating these multi-object scenes.

In Appendix A.2, we show additional analysis of the learned codebook on the CLEVR-Easy dataset.

Figure 2: Generated samples for the CLEVR-Easy, CLEVR-Hard, and CLEVR-Tex Datasets.

4.2 Odd-One-Out Downstream Tasks

We first evaluate on a downstream supervised learning task on the 2D Sprites dataset. We modify
the dataset by first dividing each image into four quadrants and ensuring exactly one object will be
in each quadrant. As in our previous experiments, one object has a single property that is unique

5

Table 3: FID for the various models on the CLEVR datasets.
FID ↓

Dataset GENESIS-v2 VQ-VAE dVAE SVQ (ours)

CLEVR-Easy 115.56 57.06 40.30 32.50
CLEVR-Hard 93.01 73.33 65.89 43.12
CLEVR-Tex 225.08 178.59 112.80 84.52

from the other objects. The goal of the task is to identify the quadrant of the odd-one-out object.
We first pretrain the baseline models on a dataset containing all 12 possible shapes and 7 possible
colors. Then, we freeze the underlying model and train a downstream model on top of the learned
representations with the supervised objective. The downstream model is trained on a dataset that
only contains 9 possible shapes and 4 possible colors. We then evaluate on both the in-distribution
(ID) dataset and an out-of-distribution (OOD) dataset that consists of the remaining 3 shapes and 3
colors. In addition to dVAE and VQ-VAE, we use SysBinder as a baseline for this task, to compare
its continuous representation with SVQ’s discrete representation. For the latent representation of
SVQ, we include variants that use the codebook indices (SVQ Indices) and the codebook prototype
vectors (SVQ Codebook).

Table 4: Results for the downstream odd-one-out task.

Steps to 98% (↓) OOD Acc. % (↑)

dVAE 37,000 26.7
VQ-VAE Indices 77,000 24.0
SysBinder 27,000 67.6
SVQ Indices 77,000 46.8
SVQ Codebook 27,000 99.1

Table 4 shows the results of our ex-
periments. Since all models can
solve the task when evaluated on the
ID dataset, we report the number
of steps to reach 98% accuracy on
the validation dataset. We find that
SysBinder and SVQ Codebook learn
the quickest in the ID setting. For
the OOD setting, we find that dVAE
and VQ-VAE fail completely, not per-
forming better than randomly guess-
ing, showing that the patch-based discrete latent is insufficient for OOD generalization in this task.
SysBinder can partially solve the task in the OOD setting, while the SVQ Codebook seems to be able
to solve the task, achieving 99% accuracy. This indicates that the compact latent space offered by the
discrete code provides better out-of-distribution generalization abilities for this particular task. One
possible explanation for this is that since this is an odd-one-out task, the downstream network needs
to do comparisons between the properties of the objects and this may be easier to do with SVQ’s
codebook vectors that are fixed. SysBinder’s continuous latents, on the other hand, offer greater
variations for the same concept. This increases the potential for the downstream network to learn
spurious correlations in the data, which can negatively impact OOD performance. SVQ Indices is
also only able to partially solve the task. This makes sense because in the out-of-distribution case,
the model does not have any way of knowing two codebook indices are for the same property value
(e.g. if two codebook vectors both correspond to the color blue). Since SVQ Codebook uses the
prototype vectors, it does not have this problem because the similarity can be determined by the
vector representation.

5 Conclusion

In this work, we introduced the Semantic Vector-Quantized Variational Autoencoder. Unlike tradi-
tional vector quantization methods, our model can obtain semantic neural discrete representations,
capturing the rich structure of the objects in a scene. We showed that by training a prior over these
semantic discrete tokens, we are able to generate multi-object scenes that follow the underlying
data distribution. These semantic discrete representations are also useful for downstream tasks,
outperforming the representations from patch-based discretation methods. While our model is only
evaluated on static images, an interesting future direction would be to apply our method to videos
to predict future frames. This may be fruitful for modeling longer video sequences since SVQ can
compress each frame into a set of latents that only depend on the number of objects in the scene.

6

Acknowledgments and Disclosure of Funding

We thank Gautam Singh for insightful discussions and help with the CLEVR datasets. We also thank
Sjoerd van Steenkiste for valuable feedback on an earlier version of this paper.

References
[1] Peter Dayan, Geoffrey E Hinton, Radford M Neal, and Richard S Zemel. The helmholtz

machine. Neural computation, 7(5):889–904, 1995.

[2] Nicholas J Wade. The vision of helmholtz. Journal of the History of the Neurosciences,
30(4):405–424, 2021.

[3] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

[4] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and
variational inference in deep latent gaussian models. In International Conference on Machine
Learning, volume 2, 2014.

[5] Stephen E. Palmer. Hierarchical structure in perceptual representation. Cognitive Psychology,
9(4):441–474, 1977.

[6] Wolf Singer. Binding by synchrony. Scholarpedia, 2:1657, 2007.

[7] Elizabeth S Spelke and Katherine D Kinzler. Core knowledge. Developmental science, 10(1):89–
96, 2007.

[8] Klaus Greff, Sjoerd van Steenkiste, and Jürgen Schmidhuber. On the binding problem in
artificial neural networks. arXiv preprint arXiv:2012.05208, 2020.

[9] Yi-Fu Wu, Jaesik Yoon, and Sungjin Ahn. Generative video transformer: Can objects be the
words? In International Conference on Machine Learning, pages 11307–11318. PMLR, 2021.

[10] Jaesik Yoon, Yi-Fu Wu, Heechul Bae, and Sungjin Ahn. An investigation into pre-training
object-centric representations for reinforcement learning. CoRR, abs/2302.04419, 2023.

[11] Taylor W. Webb, Shanka Subhra Mondal, and Jonathan D. Cohen. Systematic visual reasoning
through object-centric relational abstraction. CoRR, abs/2306.02500, 2023.

[12] Andrea Dittadi, Samuele S. Papa, Michele De Vita, Bernhard Schölkopf, Ole Winther, and
Francesco Locatello. Generalization and robustness implications in object-centric learning.
In International Conference on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore,
Maryland, USA, volume 162 of Proceedings of Machine Learning Research, pages 5221–5285.
PMLR, 2022.

[13] Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. Neural module networks. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 39–48,
2016.

[14] Brenden M. Lake, Tomer D. Ullman, Joshua B. Tenenbaum, and Samuel J. Gershman. Building
machines that learn and think like people. CoRR, abs/1604.00289, 2016.

[15] Aäron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete representation
learning. In Advances in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA,
pages 6306–6315, 2017.

[16] Ali Razavi, Aäron van den Oord, and Oriol Vinyals. Generating diverse high-fidelity images with
VQ-VAE-2. In Advances in Neural Information Processing Systems 32: Annual Conference on
Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver,
BC, Canada, pages 14837–14847, 2019.

7

[17] Patrick Esser, Robin Rombach, and Björn Ommer. Taming transformers for high-resolution
image synthesis. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2021,
virtual, June 19-25, 2021, pages 12873–12883. Computer Vision Foundation / IEEE, 2021.

[18] Aaron Van den Oord, Nal Kalchbrenner, Lasse Espeholt, Oriol Vinyals, Alex Graves, et al.
Conditional image generation with pixelcnn decoders. In Advances in neural information
processing systems, pages 4790–4798, 2016.

[19] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark
Chen, and Ilya Sutskever. Zero-shot text-to-image generation. In Proceedings of the 38th
International Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event,
volume 139 of Proceedings of Machine Learning Research, pages 8821–8831. PMLR, 2021.

[20] Gautam Singh, Fei Deng, and Sungjin Ahn. Illiterate DALL-E learns to compose. In The Tenth
International Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29,
2022. OpenReview.net, 2022.

[21] Marcelo G Mattar and Máté Lengyel. Planning in the brain. Neuron, 110(6):914–934, 2022.

[22] Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control:
Learning behaviors by latent imagination. arXiv preprint arXiv:1912.01603, 2019.

[23] Francesco Locatello, Dirk Weissenborn, Thomas Unterthiner, Aravindh Mahendran, Georg
Heigold, Jakob Uszkoreit, Alexey Dosovitskiy, and Thomas Kipf. Object-centric learning with
slot attention, 2020.

[24] Gautam Singh, Yeongbin Kim, and Sungjin Ahn. Neural systematic binder. In The Eleventh
International Conference on Learning Representations, 2023.

[25] Yoshua Bengio, Nicholas Léonard, and Aaron C. Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. CoRR, abs/1308.3432, 2013.

[26] Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, and Ilya
Sutskever. Jukebox: A generative model for music. CoRR, abs/2005.00341, 2020.

[27] Nicholas Watters, Loic Matthey, Sebastian Borgeaud, Rishabh Kabra, and Alexander
Lerchner. Spriteworld: A flexible, configurable reinforcement learning environment.
https://github.com/deepmind/spriteworld/, 2019.

[28] Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Li Fei-Fei, C Lawrence Zitnick,
and Ross Girshick. Clevr: A diagnostic dataset for compositional language and elementary
visual reasoning. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 2901–2910, 2017.

[29] M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, , and A. Vedaldi. Describing textures in the wild.
In Proceedings of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2014.

[30] Martin Engelcke, Oiwi Parker Jones, and Ingmar Posner. Genesis-v2: Inferring unordered
object representations without iterative refinement, 2022.

[31] Laurynas Karazija, Iro Laina, and Christian Rupprecht. Clevrtex: A texture-rich benchmark for
unsupervised multi-object segmentation. In Proceedings of the Neural Information Processing
Systems Track on Datasets and Benchmarks 1, NeurIPS Datasets and Benchmarks 2021,
December 2021, virtual, 2021.

[32] Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast
and memory-efficient exact attention with io-awareness. In NeurIPS, 2022.

[33] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In 3rd
International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May
7-9, 2015, Conference Track Proceedings, 2015.

8

[34] Jiahui Yu, Xin Li, Jing Yu Koh, Han Zhang, Ruoming Pang, James Qin, Alexander Ku,
Yuanzhong Xu, Jason Baldridge, and Yonghui Wu. Vector-quantized image modeling with
improved VQGAN. In The Tenth International Conference on Learning Representations, ICLR
2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022.

[35] Robert M. Gray. Vector quantization. IEEE ASSP Magazine, 1:4–29, 1984.

[36] Christopher P Burgess, Loic Matthey, Nicholas Watters, Rishabh Kabra, Irina Higgins, Matt
Botvinick, and Alexander Lerchner. Monet: Unsupervised scene decomposition and representa-
tion. arXiv preprint arXiv:1901.11390, 2019.

[37] Klaus Greff, Raphaël Lopez Kaufmann, Rishab Kabra, Nick Watters, Chris Burgess, Daniel
Zoran, Loic Matthey, Matthew Botvinick, and Alexander Lerchner. Multi-object representation
learning with iterative variational inference. arXiv preprint arXiv:1903.00450, 2019.

[38] Titas Anciukevicius, Christoph H Lampert, and Paul Henderson. Object-centric image gen-
eration with factored depths, locations, and appearances. arXiv preprint arXiv:2004.00642,
2020.

[39] Klaus Greff, Sjoerd van Steenkiste, and Jürgen Schmidhuber. Neural expectation maximization.
In Advances in Neural Information Processing Systems, pages 6691–6701, 2017.

[40] Martin Engelcke, Adam R. Kosiorek, Oiwi Parker Jones, and Ingmar Posner. GENESIS:
generative scene inference and sampling with object-centric latent representations. In 8th
International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia,
April 26-30, 2020. OpenReview.net, 2020.

[41] Julius von Kügelgen, Ivan Ustyuzhaninov, Peter Gehler, Matthias Bethge, and Bernhard
Schölkopf. Towards causal generative scene models via competition of experts, 2020.

[42] Yilun Du, Kevin Smith, Tomer Ulman, Joshua Tenenbaum, and Jiajun Wu. Unsupervised
discovery of 3d physical objects from video, 2021.

[43] Rishabh Kabra, Daniel Zoran, Goker Erdogan, Loic Matthey, Antonia Creswell, Matthew
Botvinick, Alexander Lerchner, and Christopher P. Burgess. Simone: View-invariant,
temporally-abstracted object representations via unsupervised video decomposition. arXiv
preprint arXiv:2106.03849, 2021.

[44] Ruixiang Zhang, Tong Che, B. Ivanovic, Renhao Wang, Marco Pavone, Yoshua Bengio, and
Liam Paull. Robust and controllable object-centric learning through energy-based models. arXiv
preprint arXiv:2210.05519, 2022.

[45] SM Ali Eslami, Nicolas Heess, Theophane Weber, Yuval Tassa, David Szepesvari, and Ge-
offrey E Hinton. Attend, infer, repeat: Fast scene understanding with generative models. In
Advances in Neural Information Processing Systems, pages 3225–3233, 2016.

[46] Zhixuan Lin, Yi-Fu Wu, Skand Vishwanath Peri, Weihao Sun, Gautam Singh, Fei Deng, Jindong
Jiang, and Sungjin Ahn. Space: Unsupervised object-oriented scene representation via spatial
attention and decomposition. In International Conference on Learning Representations, 2020.

[47] Jindong Jiang and Sungjin Ahn. Generative neurosymbolic machines. In Advances in Neural
Information Processing Systems, 2020.

[48] Chang Chen, Fei Deng, and Sungjin Ahn. ROOTS: Object-centric representation and rendering
of 3D scenes. Journal of Machine Learning Research, 22(259):1–36, 2021.

[49] Fei Deng, Zhuo Zhi, Donghun Lee, and Sungjin Ahn. Generative scene graph networks. In
International Conference on Learning Representations, 2021.

[50] Zhixuan Lin, Yi-Fu Wu, Skand Vishwanath Peri, Jindong Jiang, and Sungjin Ahn. Improving
generative imagination in object-centric world models. In International Conference on Machine
Learning, pages 4114–4124, 2020.

9

[51] Thomas Kipf, Gamaleldin F. Elsayed, Aravindh Mahendran, Austin Stone, Sara Sabour, Georg
Heigold, Rico Jonschkowski, Alexey Dosovitskiy, and Klaus Greff. Conditional Object-Centric
Learning from Video. In International Conference on Learning Representations (ICLR), 2022.

[52] Gautam Singh, Yi-Fu Wu, and Sungjin Ahn. Simple unsupervised object-centric learning for
complex and naturalistic videos. In NeurIPS, 2022.

[53] Anand Gopalakrishnan, Kazuki Irie, Jürgen Schmidhuber, and Sjoerd van Steenkiste. Un-
supervised learning of temporal abstractions with slot-based transformers. arXiv preprint
arXiv:2203.13573, 2022.

[54] Maximilian Seitzer, Max Horn, Andrii Zadaianchuk, Dominik Zietlow, Tianjun Xiao, Carl-
Johann Simon-Gabriel, Tong He, Zheng Zhang, Bernhard Scholkopf, Thomas Brox, and
Francesco Locatello. Bridging the gap to real-world object-centric learning. arXiv preprint
arXiv:2209.14860, 2022.

[55] Olivier J Hénaff, Skanda Koppula, Evan Shelhamer, Daniel Zoran, Andrew Jaegle, Andrew
Zisserman, João Carreira, and Relja Arandjelović. Object discovery and representation networks.
In ECCV, pages 123–143. Springer, 2022.

[56] Xudong Wang, Rohit Girdhar, Stella X. Yu, and Ishan Misra. Cut and learn for unsupervised
object detection and instance segmentation, 2023.

[57] Xin Wen, Bingchen Zhao, Anlin Zheng, X. Zhang, and Xiaojuan Qi. Self-supervised visual
representation learning with semantic grouping. arXiv preprint arXiv:2205.15288, 2022.

[58] Daniel Zoran, Rishabh Kabra, Alexander Lerchner, and Danilo J Rezende. Parts: Unsupervised
segmentation with slots, attention and independence maximization. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 10439–10447, 2021.

[59] Eric Crawford and Joelle Pineau. Spatially invariant unsupervised object detection with convo-
lutional neural networks. In Proceedings of AAAI, 2019.

[60] Eric Crawford and Joelle Pineau. Exploiting spatial invariance for scalable unsupervised object
tracking. arXiv preprint arXiv:1911.09033, 2019.

[61] Jindong Jiang, Sepehr Janghorbani, Gerard De Melo, and Sungjin Ahn. Scalor: Generative
world models with scalable object representations. In International Conference on Learning
Representations, 2019.

[62] Daniil Kirilenko, Alexandr Korchemnyi, Alexey Kovalev, and Aleksandr Panov. Quantized
disentangled representations for object-centric visual tasks, 2023.

[63] Yanbo Wang, Letao Liu, and Justin Dauwels. Slot-vae: Object-centric scene generation with
slot attention. In International Conference on Machine Learning, ICML 2023, 23-29 July 2023,
Honolulu, Hawaii, USA, volume 202 of Proceedings of Machine Learning Research, pages
36020–36035. PMLR, 2023.

10

A Additional Experimental Results

A.1 2D Sprites Qualitative Samples

Figure 3: Generated samples for the 4-object 2D Sprites and 4-object 2D Sprites with background datasets.

Inspecting these qualitative results, we see that in the dataset with the background, VQ-VAE and
dVAE start generating occasional blurry objects, whereas SVQ maintains clean-looking objects that
match the ground truth dataset. This may be because SVQ can segment the background into its own
slot and factor the texture into a discrete latent, cleanly separating the representation of the objects
from the background. The patch-based methods, however, may have a harder time separating the
foreground from the background resulting in messier generations. Interestingly, despite the blurry
shapes, VQ-VAE achieves the lowest FID score on the 2D Sprites dataset with background. We
hypothesize this may be because the model spends more capacity modeling the background correctly
instead of the foreground, which may produce a better FID score, but not necessarily better generation
accuracy. This is confirmed by the low generation accuracy of the VQ-VAE model this dataset, only
generating 19.5% of the scenes correctly.

A.2 Codebook Analysis

Figure 4: Sample scene we use in our codebook analysis.

Latent Traversal. In this section, we qualitatively analyze the codebook for a sample scene. Figure
4 shows the sample we will use in our analysis. First, we run the image through the pretrained SVQ
encoder to obtain a set of semantic discrete latents. Each latent represents one block from one slot
and is provided by a prototype vector in the corresponding codebook for that block. To investigate
the effect of traversing through the codebook, we replace each block with a different code in the
codebook while keeping all other latents fixed. We then reconstruct the scene with the SVQ decoder
and dVAE, essentially generating a new image that only differs from the original image by one
discrete latent.

Figure 5 shows the results for several sample blocks for the first slot (which corresponds to the
teal ball) and the fourth slot (which corresponds to the gray cylinder). For each block, we choose
the same set of 16 prototype vectors to display. First, we see that the slots are disentangled at the
object level—changing one block in one slot does not affect the other objects. We also see that the
different blocks specialize in different factors. Block 1 corresponds to the left and right placement
of the object. Block 3 also corresponds to the placement of the object, but seems to also control the
forward and backward placement of the object, as well as the size of the object. We notice that in this
particular case, the factors of position and size are not completely disentangled. This may be because
in this scene, the size depends on the placement of the object (e.g. closer objects are bigger). Block 7
controls the color of the object. We see that the same prototype vector seems to produce the same
color, although there are some inconsistencies such as the disappearing cylinder in the bottom left.
The color also seems to be cleanly disentangled from the other factors—changing the color does not
affect other factors like shape, size, or position.

11

Figure 5: Latent traversal changing one latent in one block at a time while keeping all other latents fixed. The
image is then reconstructed with the single changed latent.

Block Analysis. Next, to further explore the representation captured in the codebook, we visualize
the objects that are attended to for different prototype vectors. To achieve this, we run the pretrained
SVQ on 1000 images obtaining the semantic discrete latents and slot attention segmentation maps for
the objects in the images. Then, for each prototype vector in the codebook, we find and visualize
the corresponding slots that are utilizing that code in one of its blocks. Note that unlike [24], we
do not need to do any k-means clustering to obtain this visualization since our representations are
discrete representations in the codebook. Figures 6 and 7 show sample objects corresponding to three
different prototype vectors for block 3 and block 7. We see that block 3 corresponds to object size
and block 7 corresponds to object color. These results are consistent with the previous latent traversal
experiments. Furthermore, the three prototype vectors we chose for block 7 correspond with the first
three latents in Figure 5 (right), showing that these three prototype vectors represent gray, purple, and
teal, respectively.

Figure 6: Objects attended to when the latent for block 3 is set to three different prototype vectors.

A.3 CLEVR-Hard Property Comparison

For CLEVR-Hard, we construct a downstream task that assigns a number to each image as follows:
First, we assign a number for each possible shape, color, and material present in the dataset. Then, for
a given image, we identify the maximum number for each of these three properties. Lastly, we sum

12

Figure 7: Objects attended to when the latent for block 7 is set to three different prototype vectors.

Table 5: Results for the downstream CLEVR-Hard Property Comparison task.

ID Acc. % (↑) OOD Acc. % (↑)

dVAE 27.52 19.87
VQ-VAE Indices 24.53 17.74
VQ-VAE Codebook 23.73 18.80
SysBinder 79.60 70.09
SVQ Indices 68.21 64.53
SVQ Codebook 75.86 71.15

the max numbers for each of the properties to arrive at one integer label per image. We formulate the
problem as a classification problem to correctly identify the number for each image. For example,
suppose we have a scene containing a matte red cylinder and a shiny blue sphere. Assume we assign
the following numbers to the different property values: matte = 0, shiny = 1, red = 5, blue = 3,
cylinder = 4, sphere = 6. Thus the two objects are represented by the numbers (0, 5, 4) and (1, 3, 6).
The max numbers for each of the properties is (1, 5, 6) and the final integer label is 1 + 5 + 6 = 12.
Solving this task requires understanding the property values of each object in the scene.

We train the underlying models on the entire dataset consisting of all the possible property values.
Then we randomly select 50 objects for an OOD dataset. Since our task relies on knowing the
numerical value of each property, the ID dataset we train on may still contain property values of
objects in the out-of-distribution dataset, but it will not contain objects where the combination of
property values is present in the OOD dataset. Thus, when evaluating on the OOD dataset, we are
testing the model on novel combinations of property values, even if those property values were
individually observed during training. We show the ID and OOD results in Table 5. We see that SVQ
outperforms the patch-based methods and performs comparably to SysBinder in both ID and OOD
settings. This shows that despite adding a discretization bottleneck, the latents in SVQ are still useful
for downstream tasks that rely on the properties of the objects in the scene.

A.4 Comparison with Slot-Level Quantization

We visualize the comparison between slot-level discretization and block-level discretization in Figure
8. As discussed in Section 3, we hypothesize that slot-level discretization would struggle with
complex scenes due to the combinatorial nature of the underlying factors of the objects. We test this
hypothesis by running experiments on 2D Sprites and CLEVR-Easy where we set the number of
blocks M to 1 and tune the size of the codebook, essentially doing slot-level quantization. In Figures
9, we show the masked attention of each slot on the input image as well as the image reconstruction.
We find that with slot-level quantization, the model completely fails on the CLEVR-Easy dataset,
unable to cleanly attend to the objects and reconstruct the image. On the 2D sprites dataset, we see
that with slot discretization, one slot ends up attending to all the foreground objects and the model
still cannot reconstruct the input image correctly. These results point to the importance of our choice
to do block-level discretization.

13

Figure 8: Comparison between VQ-VAE, Quantized Slots, and SVQ. (a) VQ-VAE quantizes the scene at a local
patch level and may not capture the semantic structure of the scene. (b) Quantized Slots (QS) would quantize the
scene at the slot level but require a separate code for every possible configuration of an object. (c) SVQ quantizes
at the block level, representing each factor (such as color or shape) as a code. In this example, to represent all
possible object configurations, SVQ requires only 10 codebook entries at the block level while QS requires 25.

Figure 9: Comparison of slot discretization and block discretization on CLEVR-Easy (top) and 2D sprites
(bottom).

B Experimental and Implementation Details

B.1 Dataset Details

CLEVR-Easy, CLEVR-Hard, and CLEVR-Tex were previously used in [24] and are modified from
the original CLEVR [28] and CLEVR-Tex [31] datasets to have larger objects so properties such as
shape and texture are more clearly visible. In CLEVR-Easy, objects may differ by only shape, color,
and position. In this dataset, there are 3 possible shapes and 8 possible colors. In CLEVR-Hard,
objects may differ by shape, color, position, size, and material. There are 3 possible shapes, 137
possible colors, and 2 possible materials (shiny or matte). In CLEVR-Tex, there are 4 possible shapes
and 58 possible textures for the objects and background.

B.2 Training and Implementation Details.

We use input images of 64x64 resolution for the 2D Sprites datasets and 128x128 for the CLEVR
datasets. Each model is trained on NVIDIA Quadro RTX 8000 GPUs with 48GB memory. We also
use Flash Attention [32] and half-precision floating-point format when training our models. We train
SVQ for 400k iterations which takes around 80 hours for the CLEVR datasets and 50 hours for the

14

2D datasets. We then train the prior for 1 million iterations which takes around 40 hours. For the 2D
Sprites dataset, similar to [10], we first train the underlying models on a dataset of random shapes
without any relationship between the objects. We then train the prior models on the odd-one-out
datasets.

B.3 Hyperparameters

Dataset

Module Hyperparameter CLEVR-Easy CLEVR-Hard 2D Sprites 2D Sprites w/ BG

General Batch Size 40 40 40 40
Training Steps 400K 400K 400K 400K
Image Size 128× 128 128× 128 64× 64 64× 64

SVQ Codebook Dimension 256 128 256 32
Blocks 8 16 8 8
Codebook Size 64 64 64 128
Iterations 3 3 3 3
Slots 4 4 6 8
β 50 50 50 50
Learning Rate 0.0001 0.0001 0.0001 0.0001

Table 6: Hyperparameters of our model used in our experiments.

Table 6 shows the hyperparameters we used for the different datasets in our experiments with SVQ.
For the dVAE and Transformer Decoder, we follow the hyperparameters, architecture, and training
procedure provided in [24] for CLEVR-Easy and CLEVR-Hard. For the 2D Sprites datasets, we use
the same hyperparameters as we do for CLEVR-Easy for those components. All models are trained
with the Adam optimizer [33] with β1 = 0.9 and β2 = 0.999.

B.4 Prior Models

For the SVQ and DVAE prior models, we use a transformer architecture with 8 layers, 4 heads, model
dimension 192, feedforward dimension 768, and a dropout probability of 0.1. We use a learning rate
of 0.0003 and 30,000 warmup steps. For VQ-VAE, we use a 20-layers PixelCNN prior, as proposed
in the original paper [15].

B.5 Downstream Models

For the 2D Sprites downstream experiments, we use a transformer architecture with 3 layers, 8 heads,
model dimension 192, feedforward dimension 768, and a dropout probability of 0.1 for all models.
We use the Adam optimizer with a learning rate of 0.0003.

For the CLEVR-Hard downstream experiments, we use a transformer architecture with 8 layers, 4
heads, model dimension 192, feedforward dimension 768, and a dropout probability of 0.1 for all
models. We use the Adam optimizer with a learning rate of 0.0001.

C Extended Related Work

Neural Discrete Representation Learning. Our work builds on top of neural discrete representation
learning, which has played a pivotal role in the advancement of generative models for images in
recent years [15, 16, 19, 17, 34]. These methods typically follow a two-stage approach. First, an
image is encoded into a CNN feature map, which is then tokenized using vector quantization [35]
into a set of discrete latent variables. In the second stage, a powerful autoregressive prior is then
trained to model the distribution of these discrete tokens, allowing for sampling new images from this
distribution. Our model also follows this two-stage approach, except our latents correspond to the
properties of objects instead of cells in a CNN feature map.

15

Unsupervised Object-Centric Learning. Recent unsupervised object-centric learning methods have
been shown to decompose an image or video into a set of latents, each representing an object in the
scene [36, 37, 38, 23, 39, 40, 30, 41, 42, 43, 44, 45, 46, 47, 48, 49, 46, 50, 24, 51, 52, 53, 54, 55,
56, 9, 57, 58]. While most of these methods result in a distributed representation per object, there
have been several attempts at learning more structured or disentangled representations, such as those
methods that decompose the latents into what and where components [45, 59, 60, 61, 47, 46, 50, 48]
or those that learn disentangled latents via a VAE [37, 58]. Closely related to our work, recent
methods have been designed to learn factor-level disentanglement [24, 62]. However, these methods
still operate with continuous latents instead of discrete tokens and do not support sampling new
images. While there are several object-centric learning methods that do support sampling new images
[40, 30, 47, 63], these also do not use semantic discrete latents as we do in our work.

D Limitations

While our method can learn semantic discrete representations and is capable of using these repre-
sentations to generate images of higher visual fidelity than previous object-centric methods such
as GENESIS [40, 30], it is still only shown to work well on synthetic datasets with similar visual
complexity as previous work [24]. Although scaling unsupervised object-centric models to more
realistic datasets is not a focus of this work, further improving our model so that it can work well
on more realistic scenes is an important avenue of future research. Another limitation of our model
is that our latent representations are all discrete. Although our visual world does consist of many
discrete concepts, factors such as position and pose are continuous. It would be interesting to explore
ways to combine continuous and discrete factors to better model realistic scenes.

16

	Introduction
	Background and Related Work
	Semantic Vector Quantization
	Semantic Prior

	Experiments
	Generating Samples with Semantic Prior
	2D Sprites
	CLEVR

	Odd-One-Out Downstream Tasks

	Conclusion
	Additional Experimental Results
	2D Sprites Qualitative Samples
	Codebook Analysis
	CLEVR-Hard Property Comparison
	Comparison with Slot-Level Quantization

	Experimental and Implementation Details
	Dataset Details
	Training and Implementation Details.
	Hyperparameters
	Prior Models
	Downstream Models

	Extended Related Work
	Limitations

