
Understanding and Mitigating the Limitations of Prioritized Experience Replay

Yangchen Pan1,3 Jincheng Mei*1 Amir-massoud Farahmand2,4 Martha White1,4

Hengshuai Yao1 Mohsen Rohani3 Jun Luo3

1University of Alberta
2University of Toronto & Vector Institute

3Huawei Noah’s Ark Lab
4CIFAR AI Chair

Abstract

Prioritized Experience Replay (ER) has been
empirically shown to improve sample efficiency
across many domains and attracted great attention;
however, there is little theoretical understanding
of why such prioritized sampling helps and its lim-
itations. In this work, we take a deep look at the
prioritized ER. In a supervised learning setting,
we show the equivalence between the error-based
prioritized sampling method for minimizing mean
squared error and the uniform sampling for cu-
bic power loss. We then provide theoretical in-
sight into why error-based prioritized sampling
improves convergence rate upon uniform sampling
when minimizing mean squared error during early
learning. Based on the insight, we further point
out two limitations of the prioritized ER method:
1) outdated priorities and 2) insufficient coverage
of the sample space. To mitigate the limitations,
we propose our model-based stochastic gradient
Langevin dynamics sampling method. We show
that our method does provide states distributed
close to an ideal prioritized sampling distribution
estimated by the brute-force method, which does
not suffer from the two limitations. We conduct
experiments on both discrete and continuous con-
trol problems to show our approach’s efficacy and
examine the practical implication of our method in
an autonomous driving application.

1 INTRODUCTION

Experience Replay (ER) [Lin, 1992] has been a popu-
lar method for training large-scale modern Reinforcement

*Work done while at the University of Alberta. Equal con-
tribution with Yangchen Pan. Correspondence to: Yangchen Pan
<pan6@ualberta.ca> and Jincheng Mei <jmei2@ualberta.ca>.

Learning (RL) systems [Degris et al., 2012, Adam and Buso-
niu, 2012, Mnih et al., 2015a, Hessel et al., 2018, François-
Lavet et al., 2018]. In ER, visited experiences are stored in
a buffer, and at each time step, a mini-batch of experiences
is uniformly sampled to update the training parameters in
the value or policy function. Such a method is empirically
shown to effectively stabilize the training and improve the
sample efficiency of deep RL algorithms. Several follow-up
works propose to improve upon it by designing non-uniform
sampling distributions or re-weighting mechanisms of ex-
periences [Schaul et al., 2016, Andrychowicz et al., 2017,
Oh et al., 2018, de Bruin et al., 2018, Horgan et al., 2018,
Zha et al., 2019, Novati and Koumoutsakos, 2019, Kumar
et al., 2020, Sun et al., 2020, Liu et al., 2021, Lee et al.,
2021, Sinha et al., 2022]. The most relevant one to our work
is prioritized ER [Schaul et al., 2016], which attempts to
improve the vanilla ER method by sampling those visited
experiences proportional to their absolute Temporal Differ-
ence (TD) errors. Empirically, it can significantly improve
sample efficiency upon vanilla ER on many domains.

ER methods have a close connection to Model-Based RL
(MBRL) methods [Kaelbling et al., 1996, Bertsekas, 2009,
Sutton and Barto, 2018]. ER can be thought of as an instance
of a classical model-based RL architecture—Dyna [Sut-
ton, 1991], using a non-parametric model given by the
buffer [van Seijen and Sutton, 2015, van Hasselt et al., 2019].
A Dyna agent uses real experience to update its policy as
well as its reward and dynamics model. In-between taking
actions, the agent can get hypothetical experiences from the
model and use them just like the real experiences to fur-
ther improve the policy. How to generate those hypothetical
experiences is largely dependent on search-control—the
mechanism of generating states or state-action pairs from
which to query the model to get the next states and rewards.
Existing works show that smart search-control strategies can
further improve sample efficiency of a Dyna agent [Sutton
et al., 2008, Gu et al., 2016, Goyal et al., 2019, Holland
et al., 2018, Pan et al., 2018, Corneil et al., 2018, Janner
et al., 2019, Chelu et al., 2020]. Particularly, prioritized

Accepted for the 38th Conference on Uncertainty in Artificial Intelligence (UAI 2022).

sweeping [Moore and Atkeson, 1993] is among the earliest
work that improves upon vanilla Dyna. The idea behind
prioritized sweeping is quite intuitive: we should give high
priority to states whose absolute TD errors are large because
they are likely to cause the most change in value estimates.
Hence, the prioritized ER by Schaul et al. [2016], which ap-
plies TD error-based prioritized sampling to ER, is a natural
idea in a model-free RL setting. However, there is little rig-
orous understanding towards prioritized ER method about
why it can help and its limitations.

This work provides a theoretical insight into the prioritized
ER’s advantage and points out its two drawbacks: outdated
priorities and insufficient sample space coverage, which may
significantly weaken its efficacy. To mitigate the two issues,
we propose to use the Stochastic Gradient Langevin Dynam-
ics (SGLD) sampling method to acquire states. Our method
relies on applying an environment model to 1) simulate
priorities of states and 2) acquire hypothetical experiences.
Then these experiences are used for further improving the
policy. We demonstrate that, comparing with the conven-
tional prioritized ER method, the hypothetical experiences
generated by our method are distributed closer to the ideal
TD error-based sampling distribution, which does not suffer
from the two drawbacks. Finally, we demonstrate the utility
of our approach on various benchmark discrete and continu-
ous control domains and an autonomous driving application.

2 BACKGROUND

In this section, we firstly review basic concepts in RL. Then
we briefly introduce the prioritized ER method, which will
be examined in-depth in the next section. We conclude this
section by discussing a classic MBRL architecture called
Dyna [Sutton, 1991] and its recent variants, which are most
relevant to our work.

Basic notations. We consider a discounted Markov De-
cision Process (MDP) framework [Szepesvári, 2010]. An
MDP can be denoted as a tuple (S,A,P, R, γ) including
state space S, action space A, probability transition ker-
nel P, reward function R, and discount rate γ ∈ [0, 1].
At each environment time step t, an RL agent observes
a state st ∈ S, takes an action at ∈ A, and moves to
the next state st+1 ∼ P(·|st, at), and receives a scalar re-
ward signal rt+1 = R(st, at, st+1). A policy is a mapping
π : S ×A → [0, 1] that determines the probability of choos-
ing an action at a given state.

A popular algorithm to find an optimal policy is Q-
learning [Watkins and Dayan, 1992]. With function approx-
imation, parameterized action-values Qθ are updated using
θ = θ+αδt∇θQθ(st, at) for stepsize α > 0 with TD-error
δt

def
= rt+1+γmaxa′∈A Qθ(st+1, a

′)−Qθ(st, at). The pol-
icy is defined by acting greedily w.r.t. these action-values.

ER methods. ER is critical when using neural networks

to estimate Qθ, as used in DQN [Mnih et al., 2015b],
both to stabilize and speed up learning. The vanilla ER
method uniformly samples a mini-batch of experiences
from those visited ones in the form of (st, at, st+1, rt+1) to
update neural network parameters. Prioritized ER [Schaul
et al., 2016] improves upon it by sampling prioritized ex-
periences, where the probability of sampling a certain ex-
perience is proportional to its TD error magnitude, i.e.,
p(st, at, st+1, rt+1) ∝ |δt|. However, the underlying the-
oretical mechanism behind this method is still not well un-
derstood.

MBRL and Dyna. With a model, an agent has more flex-
ibility to sample hypothetical experiences. We consider a
one-step model which takes a state-action pair as input and
provides a distribution over the next state and reward. We
build on the Dyna formalism [Sutton, 1991] for MBRL, and
more specifically, the recently proposed (Hill Climbing) HC-
Dyna [Pan et al., 2019] as shown in Algorithm 1. HC-Dyna
provides some smart approach to Search-Control (SC).

HC-Dyna proposes to employ stochastic gradient Langevin
dynamics (SGLD) for sampling states, which relies on hill
climbing on some criterion function h(·). The term “Hill
Climbing (HC)” is used for generality as the SGLD sam-
pling process can be thought of as doing some modified
gradient ascent [Pan et al., 2019, 2020].

The algorithmic framework maintains two buffers: the con-
ventional ER buffer storing experiences (i.e., an experi-
ence/transition has the form of (st, at, st+1, rt+1)) and a
search-control queue storing the states acquired by search-
control mechanisms (i.e., SLGD sampling). At each time
step t, a real experience (st, at, st+1, rt+1) is collected and
stored into the ER buffer. Then the HC search-control pro-
cess starts to collect states and store them into the search-
control queue. A hypothetical experience is obtained by
first selecting a state s from the search-control queue, then
selecting an action a according to the current policy, and
then querying the model to get the next state s′ and reward r
to form an experience (s, a, s′, r). These hypothetical tran-
sitions are combined with real experiences into a single
mini-batch to update the training parameters. The n updates,
performed before taking the next action, are called plan-
ning updates [Sutton and Barto, 2018], as they improve the
value/policy by using a model. The choice of pairing states
with on-policy actions to form hypothetical experiences has
been reported to be beneficial [Gu et al., 2016, Pan et al.,
2018, Janner et al., 2019].

Two instances have been proposed for h(·): the value func-
tion v(s) [Pan et al., 2019] and the sum of gradient and
Hessian magnitude ||∇sv(s)||+ ||Hv(s)|| [Pan et al., 2020].
The former is used as a measure of the utility of a state: do-
ing HC on the learned value function should find high-value
states without being constrained by the physical environ-
ment dynamics. The latter is considered as a measure of

Algorithm 1 HC-Dyna: Generic framework

Input: Hill Climbing (HC) criterion function h : S 7→ R;
batch-size b; initialize empty search-control queue Bsc;
empty ER buffer Ber; initialize policy and model P; HC
stepsize αh; mini-batch size b; environment P; mixing
rate ρ decides the proportion of hypothetical experiences
in a mini-batch.
for t = 1, 2, . . . do

Add (st, at, st+1, rt+1) to Ber

while within some budget time steps do
// SGLD sampling for states
s ← s + αh∇sh(s) + Gaussian noise // Search-
control, see Section 4 for details about SGLD sam-
pling
Add s into Bsc

// n planning updates/steps
for n times do
B ← ∅ // initialize an empty mini-batch B
for bρ times do

Sample s ∼ Bsc, on-policy action a
Sample s′, r ∼ P(s, a)
Add (s, a, s′, r) into B

Sample b(1− ρ) experiences from Ber, add to B
// NOTE: if ρ = 0, then we only uniformly sample
b experiences from Ber and use them as B, and the
algorithm reduces to ER
Update policy/value on mixed mini-batch B

the value approximation difficulty, then doing HC provides
additional states whose values are difficult to learn. The two
suffer from several issues as we discuss in the Appendix A.1.
This paper will introduce a HC search-control method moti-
vated by overcoming the limitations of the prioritized ER.

3 A DEEPER LOOK AT ERROR-BASED
PRIORITIZED SAMPLING

In this section, we provide theoretical motivation for error-
based prioritized sampling by showing its equivalence to
optimizing a cubic power objective with uniform sampling
in a supervised learning setting. We prove that optimizing
the cubic objective provides a faster convergence rate during
early learning. Based on the insight, we discuss two limi-
tations of the prioritized ER: 1) outdated priorities and 2)
insufficient coverage of the sample space. We then empiri-
cally study the limitations.

3.1 THEORETICAL INSIGHT INTO
ERROR-BASED PRIORITIZED SAMPLING

In the l2 regression, we minimize the mean squared er-
ror minθ

1
2n

∑n
i=1(fθ(xi) − yi)

2, for training set T =
{(xi, yi)}ni=1 and function approximator fθ, such as a neu-

ral network. In error-based prioritized sampling, we define
the priority of a sample (x, y) ∈ T as |fθ(x) − y|; the
probability of drawing a sample (x, y) ∈ T is typically
q(x, y; θ) ∝ |fθ(x)− y|. We employ the following form to
compute the probability of a point (x, y) ∈ T :

q(x, y; θ)
def
=

|fθ(x)− y|∑n
i=1 |fθ(xi)− yi|

. (1)

We can show an equivalence between the gradients of the
squared objective with this prioritization and the cubic
power objective 1

3n

∑n
i=1 |fθ(xi)−yi|3 in Theorem 1 below.

See Appendix A.3 for the proof.

Theorem 1. For a constant c determined by θ, T , we have

cE(x,y)∼q(x,y;θ)[∇θ(1/2)(fθ(x)− y)2]

= E(x,y)∼uniform(T)[∇θ(1/3)|fθ(x)− y|3].

We empirically verify this equivalence in the Appendix A.7.
This simple theorem provides an intuitive reason for why
prioritized sampling can help improve sample efficiency: the
gradient direction of the cubic function is sharper than that
of the square function when the error is relatively large (Fig-
ure 8). We refer readers to the work by Fujimoto et al. [2020]
regarding more discussions about the equivalence between
prioritized sampling and of uniform sampling. Theorem 2
below further proves that optimizing the cubic power objec-
tive by gradient descent has faster convergence rate than the
squared objective, and this provides a solid motivation for
using error-based prioritized sampling. See Appendix A.4
for a detailed version of the theorem below, and its proof
and empirical simulations.

Theorem 2 (Fast early learning, concise version). Let n be
a positive integer (i.e., the number of training samples). Let
xt, x̃t ∈ Rn be the target estimates of all samples at time
t, t ≥ 0, and x(i)(i ∈ [n], [n]

def
= {1, 2, ..., n}) be the ith

element in the vector. We define the objectives:

ℓ2(x, y)
def
=

1

2

n∑
i=1

(x(i)− y(i))
2
,

ℓ3(x, y)
def
=

1

3

n∑
i=1

|x(i)− y(i)|3.

Let {xt}t≥0 and {x̃t}t≥0 be generated by using ℓ2, ℓ3 objec-
tives respectively. Then define the total absolute prediction
errors respectively:

δt
def
=

n∑
i=1

δt(i) =

n∑
i=1

|xt(i)− y(i)|,

δ̃t
def
=

n∑
i=1

δ̃t(i) =

n∑
i=1

|x̃t(i)− y(i)|,

where y(i) ∈ R is the training target for the ith training
sample. That is, ∀i ∈ [n],

dxt(i)

dt
= −η · dℓ2(xt, y)

dxt(i)
,

dx̃t(i)

dt
= −η′ · dℓ3(x̃t, y)

dx̃t(i)
.

Given any 0 < ϵ ≤ δ0 =
∑n

i=1 δ0(i), define the following
hitting time,

tϵ
def
= min

t
{t ≥ 0 : δt ≤ ϵ}, t̃ϵ

def
= min

t
{t ≥ 0 : δ̃t ≤ ϵ}.

Assume the same initialization x0 = x̃0. We have the fol-
lowing conclusion.
If there exists δ0 ∈ R and 0 < ϵ ≤ δ0 such that

1

n
·

n∑
i=1

1

δ0(i)
≤ η

η′
· log (δ0/ϵ)

δ0
ϵ − 1

, (2)

then we have tϵ ≥ t̃ϵ, which means gradient descent using
the cubic loss function will achieve the total absolute error
threshold ϵ faster than using the squared objective function.

This theorem illustrates that when the total loss of all
training examples is greater than some threshold, cubic
power learns faster. For example, let the number of samples
n = 1000, and each sample has initial loss δ0(i) = 2. Then
δ0 = 2000. Setting ϵ = 570 (i.e., ϵ(i) ≈ 0.57) satisfies the
inequality (2). This implies that using the cubic objective is
faster in reducing the total loss from 2000 to 570. Though
it is not our focus here to investigate the practical utility
of the high power objectives, we include some empirical
results and discuss the practical utilities of such objectives
in Appendix A.6.

Note that, although the original prioritized ER raises the
importance ratio to a certain power, which is annealing from
1 at the beginning to 0 [Schaul et al., 2016]; our theorem
still explains the improvement of sample efficiency during
the early learning stage. It is because, the power is close to
one and hence it is equivalent to using a higher power loss.
This point has also been confirmed by a concurrent work
[Fujimoto et al., 2020, Sec 5.1, Theorem 3].

3.2 LIMITATIONS OF THE PRIORITIZED ER

Inspired by the above theorems, we now discuss two draw-
backs of prioritized sampling: outdated priorities and in-
sufficient sample space coverage. Then we empirically
examine their importance and effects in the next section.

The above two theorems show that the advantage of prior-
itized sampling comes from the faster convergence rate of
cubic power objective during early learning. By Theorem 1,
such advantage requires to update the priorities of all train-
ing samples by using the updated training parameters θ at
each time step. In RL, however, at the each time step t, the
original prioritized ER method only updates the priorities of

those experiences from the sampled mini-batch, leaving the
priorities of the rest of experiences unchanged [Schaul et al.,
2016]. We call this limitation outdated priorities. It is typi-
cally infeasible to update the priorities of all experiences at
each time step.

In fact, in RL, “all training samples” in RL are restricted to
those visited experiences in the ER buffer, which may only
contain a small subset of the whole state space, making the
estimate of the prioritized sampling distribution inaccurate.
There can be many reasons for the small coverage: the ex-
ploration is difficult, the state space is huge, or the memory
resource of the buffer is quite limited, etc. We call this issue
insufficient sample space coverage, which is also noted
by Fedus et al. [2020].

Note that insufficient sample space coverage should not be
considered equivalent to off-policy distribution issue. The
latter refers to some old experiences in the ER buffer may
be unlikely to appear under the current policy [Novati and
Koumoutsakos, 2019, Zha et al., 2019, Sun et al., 2020, Oh
et al., 2021]. In contrast, the issue of insufficient sample
space coverage can raise naturally. For example, the state
space is large and an agent is only able to visit a small subset
of the state space during early learning stage. We visualize
the state space coverage issue on a RL domain in Section 4.

3.3 NEGATIVE EFFECTS OF THE LIMITATIONS

In this section, we empirically show that the outdated pri-
orities and insufficient sample space coverage significantly
blur the advantage of the prioritized sampling method.

Experiment setup. We conduct experiments on a super-
vised learning task. We generate a training set T by uni-
formly sampling x ∈ [−2, 2] and adding zero-mean Gaus-
sian noise with standard deviation σ = 0.5 to the target
fsin(x) values. Define fsin(x)

def
= sin(8πx) if x ∈ [−2, 0)

and fsin(x) = sin(πx) if x ∈ [0, 2]. The testing set contains
1k samples where the targets are not noise-contaminated.
Previous work [Pan et al., 2020] shows that the high fre-
quency region [−2, 0] usually takes long time to learn.
Hence we expect error-based prioritized sampling to make a
clear difference in terms of sample efficiency on this dataset.
We use 32×32 tanh layers neural network for all algorithms.
We refer to Appendix A.8 for missing details and A.7 for
additional experiments.

Naming of algorithms. L2: the l2 regression with uniformly
sampling from T . Full-PrioritizedL2: the l2 regression
with prioritized sampling according to the distribution de-
fined in (1), the priorities of all samples in the training set
are updated after each mini-batch update. PrioritizedL2:
the only difference with Full-PrioritizedL2 is that only the
priorities of those training examples sampled in the mini-
batch are updated at each iteration, the rest of the training
samples use the original priorities. This resembles the ap-

proach taken by the prioritized ER in RL [Schaul et al.,
2016]. We show the learning curves in Figure 1.

Outdated priorities. Figure 1 (a) shows that PrioritizedL2
without updating all priorities can be significantly worse
than Full-PrioritizedL2. Correspondingly, we further ver-
ify this phenomenon on the classical Mountain Car do-
main [Brockman et al., 2016]. Figure 1(c) shows the eval-
uation learning curves of different DQN variants in an RL
setting. We use a small 16×16 ReLu NN as the Q-function,
which should highlight the issue of priority updating: every
mini-batch update potentially perturbs the values of many
other states. Hence many experiences in the ER buffer have
the wrong priorities. Full-PrioritizedER does perform sig-
nificantly better.

Sample space coverage. To check the effect of insufficient
sample space coverage, we examine how the relative perfor-
mances of L2 and Full-PrioritizedL2 change when we train
them on a smaller training dataset with only 400 examples
as shown in Figure 1(b). The small training set has a small
coverage of the sample space. Unsurprisingly, using a small
training set makes all algorithms perform worse; however,
it significantly narrows the gap between Full-PrioritizedL2
and L2. This indicates that prioritized sampling needs suffi-
cient samples across the sample space to estimate the priori-
tized sampling distribution reasonably accurate. We further
verify the sample space coverage issue in prioritized ER on
a RL problem in the next section.

4 ADDRESSING THE LIMITATIONS

In this section, we propose a Stochastic Gradient Langevin
Dynamics (SGLD) sampling method to mitigate the limita-
tions of the prioritized ER method mentioned in the above
section. Then we empirically examine our sampling distri-
bution. We also describe how our sampling method is used
for the search-control component in Dyna.

4.1 SAMPLING METHOD

SGLD sampling method. Let vπ(·; θ) : S 7→ R be a differ-
entiable value function under policy π parameterized by θ.
For s ∈ S, define y(s)

def
= Er,s′∼Pπ(s′,r|s)[r + γvπ(s′; θ)],

and denote the TD error as δ(s, y; θt)
def
= y(s) − v(s; θt).

Given some initial state s0 ∈ S, let the state sequence
{si} be the one generated by updating rule si+1 ← si +
αh∇s log |δ(si, y(si); θt)| + Xi, where αh is a stepsize
and Xi is a Gaussian random variable with some con-
stant variance.1 Then {si} converges to the distribution
p(s) ∝ |δ(s, y(s))| as i → ∞. The proof is a direct con-
sequence of the convergent behavior of Langevin dynam-

1The stepsize and variance decides the temperature parameter
in the Gibbs distribution: 2αh/σ

2 [Zhang et al., 2017]. The two
parameters are usually treated as hyper-parameters in practice.

ics stochastic differential equation (SDE) [Roberts, 1996,
Welling and Teh, 2011, Zhang et al., 2017]. We include a
brief background knowledge in Appendix A.2.

It should be noted that, this sampling method enables us to
acquire states 1) whose absolute TD errors are estimated by
using the current parameter θt and 2) that are not restricted
to those visited ones. We empirically verify the two points
in Section 4.2.

Implementation. In practice, we can compute the state
value estimate by v(s) = maxa Q(s, a; θt) as suggested
by Pan et al. [2019]. In the case that a true environment
model is not available, we compute an estimate ŷ(s) of y(s)
by a learned model. Then at each time step t, states approxi-
mately following the distribution p(s) ∝ |δ(s, y(s))| can be
generated by

s← s+ αh∇s log |ŷ(s)−max
a

Q(s, a; θt)|+X, (3)

where X is a Gaussian random variable with zero-mean
and some small variance. Observing that αh is small, we
consider ŷ(s) as a constant given a state s without backprop-
agating through it. Though this updating rule introduces
bias due to the usage of a learned model, fortunately, the
difference between the sampling distribution acquired by
the true model and the learned model can be upper bounded
as we show in Theorem 3 in Appendix A.5.

Algorithmic details. We present our algorithm called Dyna-
TD in the Algorithm 3 in Appendix A.8. Our algorithm
follows the general steps in Algorithm 1. Particularly, we
choose the function h(s)

def
= log |ŷ(s) − maxa Q(s, a; θt)|

for HC search-control process, i.e., run the updating rule 3
to generate states.

4.2 EMPIRICAL VERIFICATION OF TD
ERROR-BASED SAMPLING METHOD

We visualize the distribution of the sampled states by our
method and those from the buffer of the prioritized ER,
verifying that our sampled states have an obviously larger
coverage of the state space. We then empirically verify that
our sampling distribution is closer to a brute-force calculated
prioritized sampling distribution—which does not suffer
from the two limitations—than the prioritized ER method.
Finally, we discuss concerns regarding computational cost.
Please see Appendix A.8 for any missing details.

Large sample space coverage. During early learning, we
visualize 2k states sampled from 1) DQN’s buffer trained
by prioritized ER and 2) our algorithm Dyna-TD’s Search-
Control (SC) queue on the continuous state GridWorld (Fig-
ure 2(a)). Figure 2 (b-c) visualize state distributions with
different sampling methods via heatmap. Darker color in-
dicates higher density. (b)(c) show that DQN’s ER buffer,
no matter with or without prioritized sampling, does not

0.00 0.25 0.50 0.75 1.00
1e5

0.15
0.20

0.30

0.40

0.50

(a) |T | = 4000

0.00 0.25 0.50 0.75 1.00
1e5

0.15

0.50
Root
mean

squared
error

averaged
over

50runs
L2
PrioritizedL2
Full-PrioritizedL2

(b) |T | = 400

2 4 6 8
time steps 1e4

2000
1750

500
250

0

Average
Return

per
Episode
(30runs)

ER
PrioritizedER
Full-PrioritizedER

(c) Mountain Car.

Figure 1: Comparing L2 (black), PrioritizedL2 (red), and Full-PrioritizedL2 (blue) in terms of testing RMSE v.s. number
of mini-batch updates. (a)(b) show the results trained on a large and small training set, respectively. (c) shows the result of a
corresponding RL experiment on mountain car domain. We compare episodic return v.s. environment time steps for ER
(black), PrioritizedER (red), and Full-PrioritizedER (blue). Results are averaged over 50 random seeds on (a), (b) and 30
on (c). The shade indicates standard error.

cover well the top-left part and the right half part on the
GridWorld. In contrast, Figure 2 (d) shows that states from
our SC queue are more diversely distributed on the square.
These visualizations verify that our sampled states cover
better the state space than the prioritized ER does.

Notations and experiment setting. We denote our sam-
pling distribution as p1(·), the one acquired by conven-
tional prioritized ER as p2(·), and the one computed by
thorough priority updating of enumerating all states in the
state space as p∗(·) (this one should be unrealistic in prac-
tice and we call it the ideal distribution as it does not
suffer from the two limitations we discussed). We visu-
alize how well p1(·) and p2(·) can approximate p∗(·) on
the GridWorld domain, where the state distributions can
be conveniently estimated by discretizing the continuous
state GridWorld to a 50 × 50 one. We compute the dis-
tances of p1, p2 to p∗ by two sensible weighting schemes: 1)
on-policy weighting:

∑2500
j=1 dπ(sj)|pi(sj) − p∗(sj)|, i ∈

{1, 2}, where dπ is approximated by uniformly sample
3k states from a recency buffer; 2) uniform weighting:

1
2500

∑2500
j=1 |pi(sj)− p∗(sj)|, i ∈ {1, 2}.

Sampling distribution is close to the ideal one. We plot
the distances change when we train our Algorithm 3 and
the prioritized ER in Figure 3(a)(b). They show that the
HC procedure in our algorithm Dyna-TD-Long produces a
state distribution with a significantly closer distance to the
desired sampling distribution p∗ than PrioritizedER under
both weighting schemes. In contrast, the state distribution
acquired from PrioritizedER, which suffers from the two
limitations, is far away from p∗. Note that the suffix “-Long”
of Dyna-TD-Long indicates that we run a large number of
SGLD steps (i.e., 1k) to reach stationary behavior. This is a
sanity check but impractical; hence, we test the version with
only a few SGLD steps.

Sampling distribution with much fewer SGLD steps. In
practice, we probably only want to run a small number of
SGLD steps to save time. As a result, we include a practical

version of Dyna-TD, which only runs 30 SGLD steps, with
either a true or learned model. Figure 3(a)(b) show that even
a few SGLD steps can give better sampling distribution than
the conventional PrioritizedER does.

Computational cost. Let the mini-batch size be b, and the
number of HC steps be kHC . If we assume one mini-batch
update takes O(c), then the time cost of our sampling is
O(ckHC/b), which is reasonable. On the GridWorld, Fig-
ure 3(c) shows that given the same time budget, our algo-
rithm achieves better performance.This makes the additional
time spent on search-control worth it.

5 EXPERIMENTS

In this section, we firstly introduce baselines and the ba-
sic experimental setup. Then we design experiments in the
three paragraphs 1) performances on benchmarks, 2) Dyna
variants comparison, and 3) a demo for continuous control
to answer three following questions correspondingly.

1. By mitigating the limitations of the conventional prior-
itized ER method, can Dyna-TD outperform the priori-
tized ER under various planning budgets in different
environments?

2. Can Dyna-TD outperform the existing Dyna variants?

3. How effective is Dyna-TD under an online learned
model, particularly for more realistic applications
where actions are continuous?

Baselines and basic setup. ER is DQN with a regular ER
buffer without prioritized sampling. PrioritizedER is the
one by Schaul et al. [2016], which has the drawbacks as
discussed in our paper. Dyna-Value [Pan et al., 2019] is
the Dyna variant which performs HC on the learned value
function to acquire states to populate the SC queue. Dyna-
Frequency [Pan et al., 2020] is the Dyna variant which
performs HC on the norm of the gradient of the value func-
tion to acquire states to populate the SC queue. For fair

S

G

(a) GridWorld

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(b) PER (uniform)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(c) PER (prioritized)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(d) Dyna-TD SC queue

Figure 2: (a) shows the GridWorld [Pan et al., 2019]. It has S = [0, 1]2,A = {up, down, right, left}. The agent starts
from the left bottom and learn to reach the right top within as few steps as possible. (b) and (c) respectively show the state
distributions with uniform and prioritized sampling methods from the ER buffer of prioritized ER. (d) shows the SC queue
state distribution of our Dyna-TD. Dark color indicates high density.

1 2 3 4 5
time steps 1e4

0.000

0.025

Distance
between
actual

sampling
distribution
to desired

distribution
(20runs)

Dyna-TD
PrioritizedER
Dyna-TD-Long

(a) on-policy weighting

1 2 3 4 5
time steps 1e4

0.0004

0.0010

Distance
between
actual

sampling
distribution
to desired

distribution
(20runs)

Dyna-TD
PrioritizedER
Dyna-TD-Long

(b) uniform weighting

0 1 2 3 4 5 6
computation time cost (second)1e3

2000

1500

1000

500

0

ER
PrioritizedER
Dyna-TD

(c) time cost v.s. performance

Figure 3: (a)(b) show the distance change as a function of environment time steps for Dyna-TD (black), PrioritizedER
(forest green), and Dyna-TD-Long (orange), with different weighting schemes. The dashed line corresponds to our
algorithm with an online learned model. The corresponding evaluation learning curve is in the Figure 4(c). (d) shows the
policy evaluation performance as a function of running time (in seconds) with ER(magenta). All results are averaged over
20 random seeds. The shade indicates standard error.

comparison, at each environment time step, we stochasti-
cally sample the same number of mini-batches to train those
model-free baselines as the number of planning updates
in Dyna variants. We are able to fix the same HC hyper-
parameter setting across all environments. Whenever it in-
volves an online learned model, we use the mean squared
error to learn a deterministic model, which we found to
be reasonably good on those tested domains in this paper.
Please see Appendix A.8 for experiment details.2 We also
refer readers to Appendix A.7.4 for experiments on the au-
tonomous driving domain.

Performances on benchmarks. Figure 4 shows the perfor-
mances of different algorithms on MountainCar, Acrobot,
GridWorld (Figure 2(a)), and CartPole. On these small do-
mains, we focus on studying our sampling distribution and
hence we need to isolate the effect of model errors (by using
a true environment model), though we include our algorithm
Dyna-TD with an online learned model for curiosity. We
have the following observations. First, our algorithm Dyna-

2The code is released at https://github.com/
yannickycpan/reproduceRL.git.

TD consistently outperforms PrioritizedER across domains
and planning updates. In contrast, the PrioritizedER may
not even outperform regular ER, as occurred in the previous
supervised learning experiment.

Second, Dyna-TD’s performance significantly improves and
even outperforms other Dyna variants when increasing the
planning budget (i.e., planning updates n) from 10 to 30.
This validates the utility of those additional hypothetical
experiences acquired by our sampling method. In contrast,
both ER and PrioritizedER show limited gain when increas-
ing the planning budget (i.e., number of mini-batch updates),
which implies the limited utility of those visited experiences.

Dyna variants comparison. Dyna-Value occasionally finds
a sub-optimal policy when using a large number of planning
updates, while Dyna-TD always finds a better policy. We
hypothesize that Dyna-Value results in a heavy sampling
distribution bias even during the late learning stage, with
density always concentrated around the high-value regions.
We verified our hypothesis by checking the entropy of the
sampling distribution in the late training stage, as shown
in Figure 5. A high entropy indicates the sampling distri-

https://github.com/yannickycpan/reproduceRL.git
https://github.com/yannickycpan/reproduceRL.git

1 2 3 4 5
time steps 1e4

2000

1500

1000

500

0

(a) MountainCar, n = 10

1 2 3 4 5
time steps 1e4

2000

1500

1000

500

0

(b) MountainCar, n = 30

1 2 3 4 5
time steps 1e4

400

50

(c) Acrobot, n = 10

1 2 3 4 5
time steps 1e4

400

50

Average
Return

per
Episode
(20runs)

ER
PrioritizedER
Dyna-Frequency
Dyna-Value
Dyna-TD

(d) Acrobot, n = 30

1 2 3 4 5
time steps 1e4

2000

1500

1000

500

0

(e) GridWorld, n = 10

1 2 3 4 5
time steps 1e4

2000

1500

1000

500

0

(f) GridWorld, n = 30

1 2 3 4 5
time steps 1e4

0

100

200

300

400

500

(g) CartPole, n = 10

1 2 3 4 5
time steps 1e4

0

100

200

300

400

500

(h) CartPole, n = 30

Figure 4: Episodic return v.s. environment time steps: evaluation learning curves of Dyna-TD (black), Dyna-Frequency
(red), Dyna-Value (blue), PrioritizedER (forest green), and ER(magenta) with planning updates n = 10, 30. The dashed
line denotes Dyna-TD with an online learned model. All results are averaged over 20 random seeds after smoothing over a
window of size 30. The shade indicates standard error. Results with planning updates n = 5 are in Appendix A.7.3.

bution is more dispersed than the one with low entropy.
We found that the sampling distribution of Dyna-Value has
lower entropy than Dyna-TD.

Dyna-Frequency suffers from explosive or zero gradients. It
requires computing third-order differentiation ∇s||Hv(s)||
(i.e., taking the gradient of the Hessian). It is hence sensitive
to domains and parameter settings such as learning rate
choice and activation type. This observation is consistent
with the description from Pan et al. [2020].

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(a) Dyna-TD

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(b) Dyna-Value

Figure 5: Sampling distributions on the GridWorld visual-
ized by building 2D histogram from sampled states. Heavy
color indicates high visitations/state density. The concrete
way of generating the distribution is the same as Figure 2.
(a) has entropy around 4.5 and (b) has entropy around 3.9.

A demo for continuous control. We demonstrate that our
approach can be applied for Mujoco [Todorov et al., 2012]
continuous control problems with an online learned model
and still achieve superior performance. We use DDPG (Deep
Deterministic Policy Gradient) [Lillicrap et al., 2016, Silver
et al., 2014] as an example for use inside our Dyna-TD. Let

πθ′ : S 7→ A be the actor, then we set the HC function as
h(s)

def
= log |ŷ − Qθ(s, πθ′(s))| where ŷ is the TD target.

Figure 6 (a)(b) shows the learning curves of DDPG trained
with ER, PrioritizedER, and our Dyna-TD on Hopper and
Walker2d respectively. Since other Dyna variants never show
an advantage and are not relevant to the purpose of this ex-
periment, we no longer include them. Dyna-TD shows quick
improvement as before. This indicates our sampled hypothet-
ical experiences could be helpful for actor-critic algorithms
that are known to be prone to local optimums. Addition-
ally, we note again that ER outperforms PrioritizedER, as
occurred in the supervised learning (PrioritizedL2 is worse
than L2) experiments.

1 2 3 4 5
time steps 1e5

0

500

1000

1500

2000

2500
Dyna-TD
PrioritizedER
ER
Dyna-Frequency
Dyna-Value

(a) Hopper-v2

1 2 3 4 5
time steps 1e5

0

500

1000

1500

2000

2500
Dyna-TD
PrioritizedER
ER
Dyna-Frequency
Dyna-Value

(b) Walker2d-v2

Figure 6: Episodic returns v.s. environment time steps of
Dyna-TD (black) with an online learned model, and other
competitors. Results are averaged over 5 random seeds after
smoothing over a window of size 30. The shade indicates
standard error.

6 DISCUSSION

We provide theoretical insight into the error-based priori-
tized sampling by establishing its equivalence to the uniform

sampling for a cubic power objective in a supervised learn-
ing setting. Then we identify two drawbacks of prioritized
ER: outdated priorities and insufficient sample space cov-
erage. We mitigate the two limitations by SGLD sampling
method with empirical verification. Our empirical results
on both discrete and continuous control domains show the
efficacy of our method.

There are several promising future directions. First, a nat-
ural question is how a model should be learned to benefit
a particular sampling method, as this work mostly focuses
on sampling hypothetical experiences without considering
model learning algorithms. Existing results show that learn-
ing a model while considering how to use it should make the
policy robust to model errors [Farahmand et al., 2017, Farah-
mand, 2018]. Second, one may apply our approach with a
model in latent space [Hamilton et al., 2014, Wahlström
et al., 2015, Ha and Schmidhuber, 2018, Hafner et al., 2019,
Schrittwieser et al., 2020], which enables our method to
scale to large domains. Third, since there are existing works
examining how ER is affected by bootstrap return [Daley
and Amato, 2019], by buffer or mini-batch size [Zhang and
Sutton, 2017, Liu and Zou, 2017], and by environment steps
taken per gradient step [Fu et al., 2019, van Hasselt et al.,
2018, Fedus et al., 2020], it is worth studying the theoretical
implications of those design choices and their effects on
prioritized ER’s efficacy.

Last, as our cubic objective explains only one version of
the error-based prioritization, efforts should also be made
to theoretically interpret other sampling distributions, such
as distribution location or reward-based prioritization [Lam-
bert et al., 2020]. It is interesting to explore whether these
alternatives can be formulated as surrogate objectives. Fur-
thermore, a recent work by Fujimoto et al. [2020] establishes
an equivalence between various distributions and uniform
sampling for different loss functions. Studying if those gen-
eral loss functions have faster convergence rate as shown in
our Theorem 2 could help illuminate their benefits.

Acknowledgements

We would like to thank all anonymous reviewers for their
helpful feedback during multiple submissions of this pa-
per. We acknowledge the funding from the Canada CIFAR
AI Chairs program, Alberta Machine Intelligence Institute,
and Natural Sciences and Engineering Council of Canada
(NSERC) Discovery Grant.

References

Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo,
Zhifeng Chen, and et al. TensorFlow: Large-scale machine
learning on heterogeneous systems. Software available from
tensorflow.org, 2015.

S Adam and L Busoniu. Experience Replay for Real-Time Rein-
forcement Learning Control. Systems, 2012.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider,
Rachel Fong, Peter Welinder, Bob McGrew, Josh Tobin, OpenAI
Pieter Abbeel, and Wojciech Zaremba. Hindsight experience
replay. Advances in Neural Information Processing Systems,
pages 5048–5058, 2017.

Dimitri P. Bertsekas. Neuro-Dynamic Programming. Springer US,
2009.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schnei-
der, John Schulman, Jie Tang, and Wojciech Zaremba. OpenAI
Gym. arXiv:1606.01540, 2016.

Veronica Chelu, Doina Precup, and Hado van Hasselt. Forethought
and hindsight in credit assignment. Advances in Neural Infor-
mation Processing Systems, 2020.

Tzuu-Shuh Chiang, Chii-Ruey Hwang, and Shuenn Jyi Sheu. Dif-
fusion for global optimization in Rn. SIAM Journal on Control
and Optimization, pages 737–753, 1987.

Dane S. Corneil, Wulfram Gerstner, and Johanni Brea. Efficient
model-based deep reinforcement learning with variational state
tabulation. In International Conference on Machine Learning,
pages 1049–1058, 2018.

Brett Daley and Christopher Amato. Reconciling lambda-returns
with experience replay. Advances in Neural Information Pro-
cessing Systems, pages 1133–1142, 2019.

Tim de Bruin, Jens Kober, Karl Tuyls, and Robert Babuska. Ex-
perience selection in deep reinforcement learning for control.
Journal of Machine Learning Research, 2018.

T. Degris, P. M. Pilarski, and R. S. Sutton. Model-free reinforce-
ment learning with continuous action in practice. In American
Control Conference (ACC), 2012.

Alain Durmus and Eric Moulines. Nonasymptotic convergence
analysis for the unadjusted Langevin algorithm. The Annals of
Applied Probability, pages 1551–1587, 2017.

Amir-massoud Farahmand. Iterative value-aware model learning.
Advances in Neural Information Processing Systems, pages
9072–9083, 2018.

Amir-Massoud Farahmand, Andre Barreto, and Daniel Nikovski.
Value-Aware Loss Function for Model-based Reinforcement
Learning. International Conference on Artificial Intelligence
and Statistics, pages 1486–1494, 2017.

William Fedus, Prajit Ramachandran, Rishabh Agarwal, Yoshua
Bengio, Hugo Larochelle, Mark Rowland, and Will Dabney.
Revisiting fundamentals of experience replay. International
Conference on Machine Learning, pages 3061–3071, 2020.

Vincent François-Lavet, Peter Henderson, Riashat Islam, Marc G.
Bellemare, and Joelle Pineau. An introduction to deep reinforce-
ment learning. Foundations and Trends® in Machine Learning,
pages 219–354, 2018.

Justin Fu, Aviral Kumar, Matthew Soh, and Sergey Levine. Diag-
nosing bottlenecks in deep q-learning algorithms. International
Conference on Machine Learning, pages 2021–2030, 2019.

Scott Fujimoto, David Meger, and Doina Precup. An equivalence
between loss functions and non-uniform sampling in experience
replay. Advances in Neural Information Processing Systems,
2020.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty
of training deep feedforward neural networks. In International
Conference on Artificial Intelligence and Statistics, 2010.

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Ex-
plaining and harnessing adversarial examples. International
Conference on Learning Representations, 2015.

Anirudh Goyal, Philemon Brakel, William Fedus, Soumye Sing-
hal, Timothy Lillicrap, Sergey Levine, Hugo Larochelle, and
Yoshua Bengio. Recall traces: Backtracking models for efficient
reinforcement learning. International Conference on Learning
Representations, 2019.

Shixiang Gu, Timothy P. Lillicrap, Ilya Sutskever, and Sergey
Levine. Continuous Deep Q-Learning with Model-based Ac-
celeration. In International Conference on Machine Learning,
pages 2829–2838, 2016.

David Ha and Jürgen Schmidhuber. Recurrent world models facili-
tate policy evolution. Advances in Neural Information Process-
ing Systems, pages 2450–2462, 2018.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas,
David Ha, Honglak Lee, and James Davidson. Learning latent
dynamics for planning from pixels. International Conference
on Machine Learning, pages 2555–2565, 2019.

W L Hamilton, M M Fard, and J Pineau. Efficient learning and
planning with compressed predictive states. Journal of Machine
Learning Research, 2014.

Matteo Hessel, Joseph Modayil, Hado van Hasselt, Tom Schaul,
Georg Ostrovski, Will Dabney, Dan Horgan, Bilal Piot, Moham-
mad Azar, and David Silver. Rainbow: Combining improve-
ments in deep reinforcement learning. AAAI Conference on
Artificial Intelligence, 2018.

G. Zacharias Holland, Erin Talvitie, and Michael Bowling. The
effect of planning shape on dyna-style planning in high-
dimensional state spaces. CoRR, abs/1806.01825, 2018.

Dan Horgan, John Quan, David Budden, Gabriel Barth-Maron,
Matteo Hessel, Hado van Hasselt, and David Silver. Distributed
prioritized experience replay. International Conference on
Learning Representations, 2018.

Peter J. Huber. Robust estimation of a location parameter. Annals
of Mathematical Statistics, pages 73–101, 1964.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine.
When to trust your model: Model-based policy optimization.
Advances in Neural Information Processing Systems, pages
12519–12530, 2019.

Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore.
Reinforcement learning: A survey. Journal of Artificial Intelli-
gence Research, page 237–285, 1996.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. International Conference on Learning Represen-
tations, 2014.

Aviral Kumar, Abhishek Gupta, and Sergey Levine. Discor: Cor-
rective feedback in reinforcement learning via distribution cor-
rection. Advances in Neural Information Processing Systems,
33:18560–18572, 2020.

Nathan Lambert, Brandon Amos, Omry Yadan, and Roberto Calan-
dra. Objective mismatch in model-based reinforcement learning.
arXiv preprint arXiv:2002.04523, 2020.

Kimin Lee, Michael Laskin, Aravind Srinivas, and Pieter Abbeel.
Sunrise: A simple unified framework for ensemble learning
in deep reinforcement learning. International Conference on
Machine Learning, pages 6131–6141, 2021.

Edouard Leurent. An environment for autonomous driving
decision-making. GitHub repository https://github.
com/eleurent/highway-env , 2018.

Edouard Leurent, Yann Blanco, Denis Efimov, and Odalric-
Ambrym Maillard. Approximate robust control of uncertain
dynamical systems. CoRR, abs/1903.00220, 2019.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas
Heess, Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra.
Continuous control with deep reinforcement learning. Interna-
tional Conference on Learning Representations, 2016.

Long-Ji Lin. Self-Improving Reactive Agents Based On Reinforce-
ment Learning, Planning and Teaching. Machine Learning,
1992.

Ruishan Liu and James Zou. The effects of memory replay in
reinforcement learning. Conference on Communication, Control,
and Computing, 2017.

Xu-Hui Liu, Zhenghai Xue, Jing-Cheng Pang, Shengyi Jiang, Feng
Xu, and Yang Yu. Regret minimization experience replay in off-
policy reinforcement learning. Advances in Neural Information
Processing Systems, 2021.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A.
Rusu, and et al. Human-level control through deep reinforce-
ment learning. Nature, 2015a.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A
Rusu, Joel Veness, Marc G Bellemare, Alex Graves, Martin
Riedmiller, Andreas K Fidjeland, Georg Ostrovski, Stig Pe-
tersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen
King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and
Demis Hassabis. Human-level control through deep reinforce-
ment learning. Nature, 2015b.

Andrew W. Moore and Christopher G. Atkeson. Prioritized sweep-
ing: Reinforcement learning with less data and less time. Ma-
chine learning, pages 103–130, 1993.

https://github.com/eleurent/highway-env
https://github.com/eleurent/highway-env

Guido Novati and Petros Koumoutsakos. Remember and forget
for experience replay. International Conference on Machine
Learning, pages 4851–4860, 2019.

Junhyuk Oh, Yijie Guo, Satinder Singh, and Honglak Lee. Self-
imitation learning. International Conference on Machine Learn-
ing, pages 3878–3887, 2018.

Youngmin Oh, Kimin Lee, Jinwoo Shin, Eunho Yang, and Sung Ju
Hwang. Learning to sample with local and global contexts in
experience replay buffer. International Conference on Learning
Representations, 2021.

Yangchen Pan, Muhammad Zaheer, Adam White, Andrew Patter-
son, and Martha White. Organizing experience: a deeper look
at replay mechanisms for sample-based planning in continuous
state domains. In International Joint Conference on Artificial
Intelligence, pages 4794–4800, 2018.

Yangchen Pan, Hengshuai Yao, Amir-massoud Farahmand, and
Martha White. Hill climbing on value estimates for search-
control in dyna. International Joint Conference on Artificial
Intelligence, 2019.

Yangchen Pan, Jincheng Mei, and Amir massoud Farahmand.
Frequency-based search-control in dyna. In International Con-
ference on Learning Representations, 2020.

Richard L. Roberts, Gareth O.and Tweedie. Exponential conver-
gence of langevin distributions and their discrete approxima-
tions. Bernoulli, pages 341–363, 1996.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver.
Prioritized Experience Replay. In International Conference on
Learning Representations, 2016.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen
Simonyan, Laurent Sifre, Simon Schmitt, Arthur Guez, Edward
Lockhart, Demis Hassabis, Thore Graepel, Timothy Lillicrap,
and David Silver. Mastering atari, go, chess and shogi by plan-
ning with a learned model. Nature, pages 604–609, 2020.

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan
Wierstra, and Martin Riedmiller. Deterministic policy gradient
algorithms. In International Conference on Machine Learning,
pages I–387–I–395, 2014.

Samarth Sinha, Jiaming Song, Animesh Garg, and Stefano Ermon.
Experience replay with likelihood-free importance weights. An-
nual Learning for Dynamics and Control Conference, pages
110–123, 2022.

Peiquan Sun, Wengang Zhou, and Houqiang Li. Attentive experi-
ence replay. AAAI Conference on Artificial Intelligence, pages
5900–5907, 2020.

Richard S. Sutton. Integrated architectures for learning, planning,
and reacting based on approximating dynamic programming. In
Machine Learning, 1990.

Richard S. Sutton. Integrated modeling and control based on
reinforcement learning and dynamic programming. In Advances
in Neural Information Processing Systems, 1991.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning:
An Introduction. The MIT Press, second edition, 2018.

Richard S. Sutton, Csaba Szepesvári, Alborz Geramifard, and
Michael Bowling. Dyna-style planning with linear function
approximation and prioritized sweeping. Conference on Uncer-
tainty in Artificial Intelligence, pages 528–536, 2008.

Csaba Szepesvári. Algorithms for Reinforcement Learning. Mor-
gan Claypool Publishers, 2010.

E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for
model-based control. In 2012 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, pages 5026–5033,
2012.

Hado van Hasselt, Yotam Doron, Florian Strub, Matteo Hessel,
Nicolas Sonnerat, and Joseph Modayil. Deep reinforcement
learning and the deadly triad. Deep Reinforcement Learning
Workshop at Advances in Neural Information Processing Sys-
tems, 2018.

Hado P van Hasselt, Matteo Hessel, and John Aslanides. When to
use parametric models in reinforcement learning? Advances in
Neural Information Processing Systems, pages 14322–14333,
2019.

Harm van Seijen and Richard S. Sutton. A deeper look at plan-
ning as learning from replay. In International Conference on
Machine Learning, pages 2314–2322, 2015.

Niklas Wahlström, Thomas B. Schön, and Marc P. Deisenroth.
From pixels to torques: Policy learning with deep dynamical
models. Deep Learning Workshop at International Conference
on Machine Learning, 2015.

Christopher J. C. H. Watkins and Peter Dayan. Q-learning. Ma-
chine Learning, pages 279–292, 1992.

Max Welling and Yee Whye Teh. Bayesian learning via stochastic
gradient Langevin dynamics. In International Conference on
Machine Learning, pages 681–688, 2011.

Daochen Zha, Kwei-Herng Lai, Kaixiong Zhou, and Xia Hu. Ex-
perience replay optimization. International Joint Conference
on Artificial Intelligence, pages 4243–4249, 2019.

Shangtong Zhang and Richard S. Sutton. A Deeper Look at Ex-
perience Replay. Deep Reinforcement Learning Symposium at
Advances in Neural Information Processing Systems, 2017.

Yuchen Zhang, Percy Liang, and Moses Charikar. A hitting time
analysis of stochastic gradient langevin dynamics. Conference
on Learning Theory, pages 1980–2022, 2017.

A APPENDIX

The appendix includes the following contents:

1. Section A.1: background in Dyna architecture and two Dyna variants.

2. Section A.2: background of Langevin dynamics.

3. Section A.3: the full proof of Theorem 1.

4. Section A.4: the full proof of Theorem 2 and its simulations.

5. Section A.5: the theorem characterizing the error bound between the sampling distribution estimated by using a true
model and a learned model. It includes the full proof.

6. Section A.6: a discussion and some empirical study of using high power objectives.

7. Section A.7: supplementary experimental results: training error results to check the negative effects of the limitations
of prioritized sampling; results to verify the equivalence between prioritized sampling and cubic power; additional
results on the discrete control domains A.7.3; results on the autonomous driving application; results on MazeGridWorld
from Pan et al. [2020].

8. Section A.8: details for reproducible research.

A.1 BACKGROUND IN DYNA

Dyna integrates model-free and model-based policy updates in an online RL setting [Sutton, 1990]. As shown in Algorithm 2,
at each time step, a Dyna agent uses the real experience to learn a model and performs a model-free policy update. During
the planning stage, simulated experiences are acquired from the model to further improve the policy. It should be noted that,
in Dyna, the concept of planning refers to any computational process which leverages a model to improve policy, according
to Sutton and Barto [2018], Chapter 8. The mechanism of generating states or state-action pairs from which to query the
model is called search-control, which is of critical importance to improving sample efficiency. The below algorithm shows a
naive search-control strategy: simply use visited state-action pairs and store them into the search-control queue. During the
planning stage, these pairs are uniformly sampled according to the original paper.

The recent works by Pan et al. [2019, 2020] propose two search-control strategies to generate states. The first one is to
search high-value states actively, and the second one is to search states whose values are difficult to learn.

However, there are several limitations of the two previous works. First, they do not provide any theoretical justification
to use the stochastic gradient ascent trajectories for search-control. Second, HC on gradient norm and Hessian norm of
the learned value function [Pan et al., 2020] suffers from great computation cost and zero or explosive gradient due to the
high order differentiation (i.e., ∇s||∇sv(s)||) as suggested by the authors. When using ReLu as activation functions, such
high order differentiation almost results in zero gradients. We empirically verified this phenomenon. And this phenomenon
can also be verified by intuition from the work by Goodfellow et al. [2015], which suggests that ReLU neural networks
are locally almost linear. Then it is not surprising to have zero higher order derivatives. Third, the two methods are prone
to result in sub-optimal policies: consider that the values of states are relatively well-learned and fixed, then value-based
search-control (Dyna-Value) would still find those high-value states even though they might already have low TD error.

Algorithm 2 Tabular Dyna

Initialize Q(s, a); initialize modelM(s, a), ∀(s, a) ∈ S ×A
while true do

observe s, take action a by ϵ-greedy w.r.t Q(s, ·)
execute a, observe reward R and next State s′

Q-learning update for Q(s, a)
update modelM(s, a) (i.e. by counting)
store (s, a) into search-control queue // this is a naive search-control strategy
for i=1:d do

sample (s̃, ã) from search-control queue
(s̃′, R̃)←M(s̃, ã) // simulated transition
Q-learning update for Q(s̃, ã) // planning updates/steps

A.2 DISCUSSION ON THE LANGEVIN DYNAMICS MONTE CARLO METHOD

Theoretical mechanism. Define a SDE: dW (t) = ∇U(Wt)dt +
√
2dBt, where Bt ∈ Rd is a d-dimensional Brownian

motion and U is a continuous differentiable function. It turns out that the Langevin diffusion (Wt)t≥0 converges to a unique
invariant distribution p(x) ∝ exp (U(x)) [Chiang et al., 1987]. By applying the Euler-Maruyama discretization scheme
to the SDE, we acquire the discretized version Yk+1 = Yk + αk+1∇U(Yk) +

√
2αk+1Zk+1 where (Zk)k≥1 is an i.i.d.

sequence of standard d-dimensional Gaussian random vectors and (αk)k≥1 is a sequence of step sizes. It has been proved
that the limiting distribution of the sequence (Yk)k≥1 converges to the invariant distribution of the underlying SDE [Roberts,
1996, Durmus and Moulines, 2017]. As a result, considering U(·) as log |δ(·)|, Y as s justifies our SGLD sampling method..

A.3 PROOF FOR THEOREM 1

Theorem 1. For a constant c determined by θ, T , we have

E
(x,y)∼uniform(T)

[
1

3
· ∂ |fθ(x)− y|3

∂θ

]
= c · E

(x,y)∼q(x,y;θ)

[
1

2
· ∂ (fθ(x)− y)

2

∂θ

]

Proof. For the l.h.s., we have,

E
(x,y)∼uniform(T)

[
1

3
· ∂ |fθ(x)− y|3

∂θ

]
(4)

=
1

3 · n
·

n∑
i=1

∂ |fθ(x(i))− y(i)|3

∂θ
(5)

=
1

3 · n
·

n∑
i=1

∂
(
(fθ(x(i))− y(i))

2
) 3

2

∂θ
(6)

=
1

3 · n
·

n∑
i=1

∂
(
(fθ(x(i))− y(i))

2
) 3

2

∂ (fθ(x)− y)
2 · ∂ (fθ(x(i))− y(i))

2

∂θ
(7)

=
1

2 · n
·

n∑
i=1

|fθ(x(i))− y(i)| · ∂ (fθ(x(i))− y(i))
2

∂θ
. (8)

On the other hand, for the r.h.s., we have,

E
(x,y)∼q(x,y;θ)

[
1

2
· ∂ (fθ(x)− y)

2

∂θ

]
(9)

=
1

2
·

n∑
i=1

q(xi, yi; θ) ·
∂ (fθ(x(i))− y(i))

2

∂θ
(10)

=
n∑n

j=1 |fθ(xj)− yj |
·

[
1

2 · n
·

n∑
i=1

|fθ(x(i))− y(i)| · ∂ (fθ(x(i))− y(i))
2

∂θ

]
(11)

=
n∑n

j=1 |fθ(xj)− yj |
· E
(x,y)∼uniform(T)

[
1

3
· ∂ |fθ(x)− y|3

∂θ

]
. (12)

Setting c =
∑n

i=1 |fθ(xi)−yi|
n completes the proof.

A.4 PROOF FOR THEOREM 2

Theorem 2. (Fast early learning, detailed version) Let n be a positive integer (i.e., the number of training samples). Let
xt, x̃t ∈ Rn be the target estimates of all samples at time t, t ≥ 0, and x(i)(i ∈ [n], [n]

def
= {1, 2, ..., n}) be the ith element

in the vector. We define the objectives:

ℓ2(x, y)
def
=

1

2

n∑
i=1

(x(i)− y(i))
2
, ℓ3(x, y)

def
=

1

3

n∑
i=1

|x(i)− y(i)|3.

Let {xt}t≥0 and {x̃t}t≥0 be generated by using ℓ2, ℓ3 objectives respectively. Then define the total absolute prediction
errors respectively:

δt
def
=

n∑
i=1

δt(i) =

n∑
i=1

|xt(i)− y(i)|, δ̃t
def
=

n∑
i=1

δ̃t(i) =

n∑
i=1

|x̃t(i)− y(i)|,

where y(i) ∈ R is the training target for the ith training sample. That is, ∀i ∈ [n],

dxt(i)

dt
= −η · dℓ2(xt, y)

dxt(i)
,

dx̃t(i)

dt
= −η′ · dℓ3(x̃t, y)

dx̃t(i)
.

Assume the same initialization x0 = x̃0. Then:

(i) For all i ∈ [n], define the following hitting time, which is the minimum time that the absolute error takes to be ≤ ϵ(i),

tϵ(i)
def
= min

t
{t ≥ 0 : δt(i) ≤ ϵ(i)}, t̃ϵ(i)

def
= min

t
{t ≥ 0 : δ̃t(i) ≤ ϵ(i)}.

Then, ∀i ∈ [n] s.t. δ0(i) > η
η′ , given an absolute error threshold ϵ(i) ≥ 0, there exists ϵ0(i) ∈ (0, η

η′), such that for all
ϵ(i) > ϵ0(i), tϵ(i) ≥ t̃ϵ(i).

(ii) Define the following quantity, for all t ≥ 0,

H−1
t

def
=

1

n
·

n∑
i=1

1

δt(i)
=

1

n
·

n∑
i=1

1

|xt(i)− y(i)|
. (13)

Given any 0 < ϵ ≤ δ0 =
∑n

i=1 δ0(i), define the following hitting time, which is the minimum time that the total absolute
error takes to be ≤ ϵ,

tϵ
def
= min

t
{t ≥ 0 : δt ≤ ϵ}, t̃ϵ

def
= min

t
{t ≥ 0 : δ̃t ≤ ϵ}. (14)

If there exists δ0 ∈ R and 0 < ϵ ≤ δ0 such that the following holds,

H−1
0 ≤ η

η′
· log (δ0/ϵ)

δ0
ϵ − 1

, (15)

then we have, tϵ ≥ t̃ϵ, which means gradient descent using the cubic loss function will achieve the total absolute error
threshold ϵ faster than using the square loss function.

Proof. First part. (i). For the ℓ2 loss function, for all i ∈ [n] and t ≥ 0, we have,

dδt(i)

dt
=

n∑
j=1

dδt(i)

dxt(j)
· dxt(j)

dt
(16)

=
dδt(i)

dxt(i)
· dxt(i)

dt

(
dδt(i)

dxt(j)
= 0 for all i ̸= j

)
(17)

= sgn{xt(i)− y(i)} · (−η) · dℓ2(xt, y)

dxt(i)
(18)

= sgn{xt(i)− y(i)} · (−η) · (xt(i)− y(i)) (19)
= −η |xt(i)− y(i)| (20)
= −η · δt(i), (21)

which implies that,

d{log δt(i)}
dt

=
1

δt(i)
· dδt(i)

dt
= −η. (22)

Taking integral, we have,

log δt(i)− log δ0(i) = −η · t. (23)

Let δt(i) = ϵ(i). We have,

tϵ(i)
def
=

1

η
· log

(
δ0(i)

δt(i)

)
=

1

η
· log

(
δ0(i)

ϵ(i)

)
. (24)

On the other hand, for the ℓ3 loss function, we have,

d{δ̃t(i)−1}
dt

=

n∑
j=1

dδ̃t(i)
−1

dx̃t(j)
· dx̃t(j)

dt
(25)

=
dδ̃t(i)

−1

dx̃t(i)
· dx̃t(i)

dt
(26)

= − 1

δ̃t(i)2
· dδ̃t(i)
dx̃t(i)

· dx̃t(i)

dt
(27)

= − 1

(x̃t(i)− y(i))
2 · sgn{x̃t(i)− y(i)} · (−η′) · dℓ3(x̃t, y)

dx̃t(i)
(28)

= − sgn{x̃t(i)− y(i)}
(x̃t(i)− y(i))

2 · (−η′) · (x̃t(i)− y(i))
2 · sgn{x̃t(i)− y(i)} (29)

= η′. (30)

Taking integral, we have,

1

δ̃t(i)
− 1

δ̃0(i)
= η′ · t. (31)

Let δ̃t(i) = ϵ(i). We have,

t̃ϵ(i)
def
=

1

η′
·
(

1

δ̃t(i)
− 1

δ̃0(i)

)
=

1

η′
·
(

1

ϵ(i)
− 1

δ̃0(i)

)
. (32)

Then we have,

tϵ(i)− t̃ϵ(i) =
1

η
· log

(
δ0(i)

ϵ(i)

)
− 1

η′
·
(

1

ϵ(i)
− 1

δ̃0(i)

)
(33)

=
1

η
·
[(

log
1

ϵ(i)
− η

η′
· 1

ϵ(i)

)
−
(
log

1

δ0(i)
− η

η′
· 1

δ̃0(i)

)]
. (34)

According to x0(i) = x̃0(i), we have

δ0(i) = |xt(i)− y(i)| (35)
= |x̃t(i)− y(i)| (36)

= δ̃0(i). (37)

Define the following function, for all x > 0,

f(x) = log
1

x
− η

η′
· 1
x
. (38)

We have, the continuous function f is monotonically increasing for x ∈ (0, η
η′] and monotonically decreasing for x ∈

(η
η′ ,∞). Also, note that, maxx>0 f(x) = f(η

η′) = log η′

η − 1, limx→0 f(x) = limx→∞ f(x) = −∞.

Given δ0(i) = δ̃0(i) >
η
η′ , we have f(δ0(i)) < f(η

η′) = log η′

η − 1. According to the intermediate value theorem, there
exists ϵ0(i) ∈ (0, η

η′), such that f(ϵ0(i)) = f(δ0(i)). Since f(·) is monotonically increasing on (0, η
η′] and monotonically

decreasing on (η
η′ ,∞), for all ϵ(i) ∈ [ϵ0(i), δ0(i)], we have f(ϵ(i)) ≥ f(δ0(i))

3. Therefore, we have,

tϵ(i)− t̃ϵ(i) =
1

η
· (f(ϵ(i))− f(δ0(i))) ≥ 0. (39)

Second part. (ii). For the square loss function, we have, for all t ≥ 0,

dδt
dt

=

n∑
i=1

dδt(i)

dt
(40)

= −η ·
n∑

i=1

δt(i) (by eq. (16)) (41)

= −η · δt, (42)

which implies that,

d{log δt}
dt

=
1

δt
· dδt
dt

= −η. (43)

Taking integral, we have,

log δt − log δ0 = −η · t. (44)

Let δt = ϵ. We have,

tϵ
def
=

1

η
· log

(
δ0
δt

)
=

1

η
· log

(
δ0
ϵ

)
. (45)

After tϵ time, for all i ∈ [n], we have,

δtϵ(i) = δ0(i) · exp{−η · tϵ}. (46)

On the other hand, for the cubic loss function, we have, for all t ≥ 0,

dH−1
t

dt
=

1

n
·

n∑
i=1

d{δ̃t(i)−1}
dt

(47)

= η′. (by eq. (25)) (48)

Taking integral, we have,

H−1
t −H−1

0 = η′ · t, (49)

which means given a H−1
t value, we can calculate the hitting time as,

t =
1

η′
·
(
H−1

t −H−1
0

)
. (50)

Now consider after tϵ time, using gradient descent with the square loss function we have δtϵ(i) = δ0(i) · exp{−η · tϵ} for
all i ∈ [n], which corresponds to,

H−1
tϵ =

1

n
·

n∑
i=1

1

δtϵ(i)
(51)

=
1

n
·

n∑
i=1

1

δ0(i) · exp{−η · tϵ}
. (by eq. (46)) (52)

3Note that ϵ(i) < δ0(i) by the design of using gradient descent updating rule. If the two are equal, tϵ(i) = t̃ϵ(i) = 0 holds trivially.

Therefore, the hitting time of using gradient descent with the cubic loss function to achieve the H−1
tϵ value is,

t̃ϵ =
1

η′
·
(
H−1

tϵ −H−1
0

)
(53)

=
1

η′
·

(
1

n
·

n∑
i=1

1

δ0(i) · exp{−η · tϵ}
− 1

n
·

n∑
i=1

1

δ0(i)

)
(54)

=
1

η′
· (exp{η · tϵ} − 1) ·H−1

0 (55)

≤ 1

η
· (exp{η · tϵ} − 1) · log (δ0/ϵ)

δ0
ϵ − 1

(by eq. (15)) (56)

=
1

η
·
(
δ0
ϵ
− 1

)
· log (δ0/ϵ)

δ0
ϵ − 1

(57)

=
1

η
· log

(
δ0
ϵ

)
(58)

= tϵ, (by eq. (45)) (59)

finishing the proof.

Remark. Figure 7 shows the function f(x) = ln 1
x −

1
x , x > 0. Fix arbitrary x′ > 1, there will be another root ϵ0 < 1 s.t.

f(ϵ0) = f(x′). However, there is no real-valued solution for ϵ0. The solution in C is ϵ0 = − 1
W (log 1/δ0−1/δ0−πi) , where

W (·) is a Wright Omega function. Hence, finding the exact value of ϵ0 would require a definition of ordering on complex
plane. Our current theorem statement is sufficient for the purpose of characterizing convergence rate. The theorem states that
there always exists some desired low error level < 1, minimizing the square loss converges slower than the cubic loss.

0 1 2 3 4 55

4

3

2

1

0

f(x) = ln1
x

1
x

Figure 7: The function f(x) = ln 1
x −

1
x , x > 0. The function reaches maximum at x = 1.

Simulations. The theorem says that if we want to minimize our loss function to certain small nonzero error level, the cubic
loss function offers faster convergence rate. Intuitively, cubic loss provides sharper gradient information when the loss is
large as shown in Figure 8(a)(b). Here we provides a simulation. Consider the following minimization problems: minx≥0 x

2

and minx≥0 x
3. For implementation and visualization convenience, we use the hitting time formulae tϵ = 1

η · ln
{

δ0
ϵ

}
, t̃ϵ =

1
η ·
(

1
ϵ −

1
δ0

)
derived in the proof, to compute the hitting time ratio tϵ

t̃ϵ
under different initial values x0 and final error value

ϵ. In Figure 8(c)(d), we can see that it usually takes a significantly shorter time for the cubic loss to reach a certain xt with
various initial x0 values.

A.5 ERROR BOUND BETWEEN SAMPLING DISTRIBUTIONS

We now provide the error bound between the sampling distribution estimated by using a true model and a learned model. We
denote the transition probability distribution under policy π and the true model as Pπ(r, s′|s), and the learned model as
P̂π(r, s′|s). Let p(s) and p̂(s) be the convergent distributions described in the above sampling method by using the true and
learned models respectively. Let dtv(·, ·) be the total variation distance between the two probability distributions. Define
u(s)

def
= |δ(s, y(s))|, û(s) def

= |δ(s, ŷ(s))|, Z def
=
∫
s∈S u(s)ds, Ẑ

def
=
∫
s∈S û(s)ds. Then we have the following bound.

Figure 8: (a) show cubic v.s. square function. (b) shows their absolute derivatives. (c) shows the hitting time ratio v.s. initial value x0

under different target value xt. (d) shows the ratio v.s. the target xt to reach under different x0. Note that a ratio larger than 1 indicates a
longer time to reach the given xt for the square loss.

Theorem 3. Assume: 1) the reward magnitude is bounded |r| ≤ Rmax and define Vmax
def
= Rmax

1−γ ; 2) the largest model

error for a single state is ϵs
def
= maxs dtv(Pπ(·|s), P̂π(·|s)) and the total model error is bounded, i.e. ϵ def

=
∫
s∈S ϵsds <∞.

Then ∀s ∈ S, |p(s)− p̂(s)| ≤ min(Vmax(p(s)ϵ+ϵs)

Ẑ
, Vmax(p̂(s)ϵ+ϵs)

Z).

Proof. First, we bound the estimated temporal difference error. Fix an arbitrary state s ∈ S , it is sufficient the consider the
case u(s) > û(s), then

|u(s)− û(s)| = u(s)− û(s)

=E(r,s′)∼Pπ [r + γvπ(s′)]− E(r,s′)∼P̂π [r + γvπ(s′)]

=

∫
s,r

(r + γvπ(s))(Pπ(s′, r|s)− P̂π(s′, r|s))ds′dr

≤(Rmax + γ
Rmax

1− γ
)

∫
s,r

(Pπ(s′, r|s)− P̂π(s′, r|s))ds′dr

≤Vmaxdtv(Pπ(·|s), P̂π(·|s)) ≤ Vmaxϵs

Now, we show that |Z − Ẑ| ≤ Vmaxϵ.

|Z − Ẑ| = |
∫
s∈S

u(s)ds−
∫
s∈S

û(s)ds| = |
∫
s∈S

(u(s)− û(s))ds|

≤
∫
s∈S
|u(s)− û(s)|ds ≤ Vmax

∫
s∈S

ϵsds = Vmaxϵ

Consider the case p(s) > p̂(s) first.

p(s)− p̂(s) =
u(s)

Z
− û(s)

Ẑ

≤ u(s)

Z
− u(s)− Vmaxϵs

Ẑ
=

u(s)Ẑ − u(s)Z + ZVmaxϵs

ZẐ

≤ u(s)Vmaxϵ+ ZVmaxϵs

ZẐ
=

Vmax(p(s)ϵ+ ϵs)

Ẑ

Meanwhile, below inequality should also hold:

p(s)− p̂(s) =
u(s)

Z
− û(s)

Ẑ
≤ û(s) + Vmaxϵs

Z
− û(s)

Ẑ

=
û(s)Ẑ − û(s)Z + ẐVmaxϵs

ZẐ
≤ Vmax(p̂(s)ϵ+ ϵs)

Z

0.00 0.25 0.50 0.75 1.00
1e5

0.1

0.2

0.3

0.4

0.5

(a) σ = 0.1

0.00 0.25 0.50 0.75 1.00
1e5

0.1

0.2

0.3

0.4

0.5

L2
Cubic
Power4

(b) σ = 0.5

Figure 9: Figure(a)(b) show the testing RMSE as a function of number of mini-batch updates with increasing noise standard
deviation σ added to the training targets. We compare the performances of Power4(magenta), L2 (black), Cubic (forest
green). The results are averaged over 50 random seeds. The shade indicates standard error. Note that the testing set is not
noise-contaminated.

Because both the two inequalities must hold, when p(s)− p̂(s) > 0, we have:

p(s)− p̂(s) ≤ min(
Vmax(p(s)ϵ+ ϵs)

Ẑ
,
Vmax(p̂(s)ϵ+ ϵs)

Z
)

It turns out that the bound is the same when p(s) ≤ p̂(s). This completes the proof.

A.6 HIGH POWER LOSS FUNCTIONS

We would like to point out that directly using a high power objective in general problems is unlikely to have an advantage.

First, notice that our convergence rate is characterized w.r.t. to the expected updating rule, not stochastic gradient updating
rule. When using a stochastic sample to estimate the gradient, high power objectives are sensitive to the outliers as they
augment the effect of noise. Robustness to outliers is also the motivation behind the Huber loss Huber [1964] which, in fact,
uses low power error in most places so it can be less sensitive to outliers.

We conduct experiments to examine the effect of noise on using high power objectives. We use the same dataset as described
in Section 3.3. We use a training set with 4k training examples. The naming rules are as follows. Cubic is minimizing the
cubic objective (i.e. minθ

1
n

∑n
i=1 |fθ(xi)− yi|3) by uniformly sampling, and Power4 is minθ

1
n

∑n
i=1(fθ(xi)− yi)

4 by
uniformly sampling.

Figure 9 (a)(b) shows the learning curves of uniformly sampling for Cubic and for Power4 trained by adding noises with
standard deviation σ = 0.1, 0.5 respectively to the training targets. It is not surprising that all algorithms learn slower
when we increase the noise variance added to the target variables. However, one can see that high power objectives is more
sensitive to noise variance added to the targets than the regular L2: when σ = 0.1, the higher power objectives perform
better than the regular L2; after increasing σ to 0.5, Cubic becomes almost the same as L2, while Power4 becomes worse
than L2.

Second, it should be noted that in our theorem, we do not characterize the convergence rate to the minimum; instead, we
show the convergence rate to a certain low error solution, corresponding to early learning performance. In optimization
literature, it is known that cubic power would converge slower to the minimizer as it has a relatively flat bottom. However,
it may be an interesting future direction to study how to combine objectives with different powers so that optimizing the
hybrid objective leads to a faster convergence rate to the optimum and is robust to outliers.

A.7 ADDITIONAL EXPERIMENTS

In this section, we include the following additional experimental results:

1. As a supplementary to Figure 1 from Section 3.3, we show the learning performance measured by training errors to
show the negative effects of the two limitations.

0.00 0.25 0.50 0.75 1.00
1e5

0.45

0.50

0.55

0.60

0.65

0.70

(a) |T | = 4000

0.00 0.25 0.50 0.75 1.00
1e5

0.45

0.70
Root
mean

squared
error

averaged
over

50runs

L2
PrioritizedL2
Full-PrioritizedL2

(b) |T | = 400

Figure 10: Figure (a)(b) show the training RMSE as a function of number of mini-batch updates with a training set containing
4k examples and another containing 400 examples respectively. We compare the performances of Full-PrioritizedL2 (blue),
L2 (black), and PrioritizedL2 (red). The results are averaged over 50 random seeds. The shade indicates standard error.

2. Empirical verification of Theorem 1 (prioritized sampling and uniform sampling on cubic power equivalence).

3. Additional results on discrete domains A.7.3.

4. Results on an autonomous driving application A.7.4.

5. Results on MazeGridWorld from Pan et al. [2020].

A.7.1 Training Error Corresponding to Figure 1 from Section 3.3

Note that our Theorem 1 and 2 characterize the expected gradient calculated on the training set; hence it is sufficient to
examine the learning performances measured by training errors. However, the testing error is usually the primary concern,
so we put the testing error in the main body. As a sanity check, we also investigate the learning performances measured by
training error and find that those algorithms behave similarly as shown in Figure 10 where the algorithms are trained by
using training sets with decreasing training examples from (a) to (b). As we reduce the training set size, Full-PrioritizedL2 is
closer to L2. Furthermore, PrioritizedL2 is always worse than Full-PrioritizedL2. These observations show the negative
effects resulting from the issues of outdated priorities and insufficient sample space coverage.

A.7.2 Empirical verification of Theorem 1

Theorem 1 states that the expected gradient of doing prioritized sampling on mean squared error is equal to the gradient
of doing uniformly sampling on cubic power loss. As a result, we expect that the learning performance on the training set
(note that we calculate gradient by using training examples) should be similar when we use a large mini-batch update as the
estimate of the expectation terms become close.

We use the same dataset as described in Section 3.3 and keep using training size 4k. Figure 11(a)(b) shows that when
we increase the mini-batch size, the two algorithms Full-PrioritizedL2 and Cubic are becoming very close to each other,
verifying our theorem.

Note that our theorem characterizes the expected gradient calculated on the training set; hence it is sufficient to examine
the learning performances measured by training errors. However, usually, the testing error is the primary concern. For
completeness, we also investigate the learning performances measured by testing error and find that the tested algorithms
behave similarly as shown in Figure 11(c)(d).

A.7.3 Additional Results on Discrete Benchmark Domains

Figure 12 shows the empirical results of our algorithm on the discrete domains with plan steps = 5.

0.00 0.25 0.50 0.75 1.00
1e5

0.50

0.55

0.60

0.65

0.70

(a) b=128, σ = 0.5

0.00 0.25 0.50 0.75 1.00
1e5

0.5

0.7
Root
mean

squared
error

averaged
over

(50runs)

Cubic
Full-PrioritizedL2

(b) b=512, σ = 0.5

0.00 0.25 0.50 0.75 1.00
1e5

0.15
0.20

0.30

0.40

0.50

(c) b=128, σ = 0.5

0.00 0.25 0.50 0.75 1.00
1e5

0.05

0.50
Root
mean

squared
error

averaged
over

(50runs)

Cubic
Full-PrioritizedL2

(d) b=512, σ = 0.5

Figure 11: Figure(a)(b) show the training RMSE as a function of number of mini-batch updates with increasing mini-batch
size b. Figure (c)(d) show the testing RMSE. We compare the performances of Full-PrioritizedL2 (blue), Cubic (forest
green). As we increase the mini-batch size, the two performs more similar to each other. The results are averaged over 50
random seeds. The shade indicates standard error.

1 2 3 4 5
time steps 1e4

2000

1500

1000

500

(a) MountainCar

1 2 3 4 5
time steps 1e4

400

50

Average
Return

per
Episode
(20runs)

PrioritizedER
ER
Dyna-Frequency
Dyna-Value
Dyna-TD

(b) Acrobot

1 2 3 4 5
time steps 1e4

2000

1500

1000

500

0

(c) GridWorld

1 2 3 4 5
time steps 1e4

0

100

200

300

400

(d) CartPole

Figure 12: Episodic return v.s. environment time steps. We show evaluation learning curves of Dyna-TD (black), Dyna-Frequency
(red), Dyna-Value (blue), PrioritizedER (forest green), and ER(magenta) with planning updates n = 5.

A.7.4 Autonomous Driving Application

We study the practical utility of our method in a relatively large autonomous driving application [Leurent, 2018] with an
online learned model. We use the roundabout-v0 domain (Figure 13 (a)). The agent learns to go through a roundabout by
lane change and longitude control. The reward is designed such that the car should go through the roundabout as fast as
possible without collision. We observe that all algorithms perform similarly when evaluating algorithms by episodic return
(Figure 13 (d)). In contrast, there is a significantly lower number of car crashes with the policy learned by our algorithm,
as shown in Figure 13(b). Figure 13 (c) suggests that ER and PrioritizedER gain reward mainly due to fast speed which
potentially incur more car crashes. The conventional prioritized ER method still incurs many crashes, which may indicate its
prioritized sampling distribution does not provide enough crash experiences to learn.

(a) roundabout

0.0 0.5 1.0 1.5
Driving time steps 1e3

0

10

13

Cumulative
Number

of
Car

Crashes
(50runs)

ER
PrioritizedER
Dyna-TD

(b) Num of car crashes

0.0 0.2 0.4 0.6 0.8 1.0
time steps 1e4

2

6

8

Average
speed

per
Episode
(50runs)

(c) Avg. speed

0.0 0.2 0.4 0.6 0.8 1.0
time steps 1e4

8.6

8.8

9.0

9.2

9.4

ER
PrioritizedER
Dyna-TD

(d) Episodic return

Figure 13: (a) shows the roundabout domain with S ⊂ R90. (b) shows crashes v.s. total driving time steps during policy
evaluation. (c) shows the average speed per evaluation episode v.s. environment time steps. (d) shows the episodic return v.s.
trained environment time steps. We show Dyna-TD (black) with an online learned model, PrioritizedER (forest green),
and ER (magenta). Results are averaged over 50 random seeds after smoothing over a window of size 30. The shade
indicates standard error.

S

G

(a) MazeGridWorld

1 2 3 4 5
time steps 1e4

2000
1750

500

100

Average
Return

per
Episode
(20runs) Dyna-Frequency

Dyna-Value
Dyna-TD

(b) MazeGW, n = 30

Figure 14: Figure(a) shows MazeGridWorld(GW) taken from Pan et al. [2020] and the learning curves are in (b). We show
evaluation learning curves of Dyna-TD (black), Dyna-Frequency (red), and Dyna-Value (blue). The dashed line indicates
Dyna-TD trained with an online learned model. All results are averaged over 20 random seeds after smoothing over a
window of size 30. The shade indicates standard error.

A.7.5 Results on MazeGridWorld Domain

In Figure 14, we demonstrate that our algorithm can work better than Dyna-Frequency on a MazeGridWorld domain Pan
et al. [2020], where Dyna-Frequency was shown to be superior to Dyna-Value and model-free baselines. This result further
confirms the usefulness of our sampling approach.

A.8 REPRODUCIBLE RESEARCH

Our implementations are based on tensorflow with version 1.13.0 Abadi et al. [2015]. We use Adam optimizer Kingma and Ba
[2014] for all experiments. The code is available at https://github.com/yannickycpan/reproduceRL.git.

A.8.1 Reproduce experiments before Section 5

Supervised learning experiment. For the supervised learning experiment shown in section 3, we use 32× 32 tanh units
neural network, with learning rate swept from {0.01, 0.001, 0.0001, 0.00001} for all algorithms. We compute the constant
c as specified in the Theorem 1 at each time step for Cubic loss. We compute the testing error every 500 iterations/mini-
batch updates and our evaluation learning curves are plotted by averaging 50 random seeds. For each random seed, we
randomly split the dataset to testing set and training set and the testing set has 1k data points. Note that the testing set is not
noise-contaminated.

Reinforcement Learning experiments in Section 3. We use a particularly small neural network 16× 16 to highlight the
issue of incomplete priority updating. Intuitively, a large neural network may be able to memorize each state’s value and
thus updating one state’s value is less likely to affect others. We choose a small neural network, in which case a complete
priority updating for all states should be very important. We set the maximum ER buffer size as 10k and mini-batch size as
32. The learning rate is chosen from {0.0001, 0.001} and the target network is updated every 1k steps.

Distribution distance computation in Section 4. We now introduce the implementation details for Figure 3. The distance
is estimated by the following steps. First, in order to compute the desired sampling distribution, we discretize the domain
into 50× 50 grids and calculate the absolute TD error of each grid (represented by the left bottom vertex coordinates) by
using the true environment model and the current learned Q function. We then normalize these priorities to get probability
distribution p∗. Note that this distribution is considered as the desired one since we have access to all states across the state
space with priorities computed by current Q-function at each time step. Second, we estimate our sampling distribution by
randomly sampling 3k states from search-control queue and count the number of states falling into each discretized grid
and normalize these counts to get p1. Third, for comparison, we estimate the sampling distribution of the conventional
prioritized ER Schaul et al. [2016] by sampling 3k states from the prioritized ER buffer and count the states falling into each
grid and compute its corresponding distribution p2 by normalizing the counts. Then we compute the distances of p1, p2 to p∗

by two weighting schemes: 1) on-policy weighting:
∑2500

j=1 dπ(sj)|pi(sj)− p∗(sj)|, i ∈ {1, 2}, where dπ is approximated

https://github.com/yannickycpan/reproduceRL.git

by uniformly sample 3k states from a recency buffer and normalizing their visitation counts on the discretized GridWorld;
2) uniform weighting: 1

2500

∑2500
j=1 |pi(sj)− p∗(sj)|, i ∈ {1, 2}. We examine the two weighting schemes because of two

considerations: for the on-policy weighting, we concern about the asymptotic convergent behavior and want to down-weight
those states with relatively high TD error but get rarely visited as the policy gets close to optimal; uniform weighting makes
more sense during early learning stage, where we consider all states are equally important and want the agents to sufficiently
explore the whole state space.

Computational cost v.s. performance in Section 4. The setting is the same as we used for Section 5. We use plan
step/updates=10 to generate that learning curve.

A.8.2 Reproduce experiments in Section 5

For our algorithm, the pseudo-code with concrete parameter settings is presented in Algorithm 4.

Common settings. For all discrete control domains other than roundabout-v0, we use 32× 32 neural network with ReLu
hidden units except the Dyna-Frequency which uses tanh units as suggested by the author Pan et al. [2020]. This is one
of its disadvantages: the search-control of Dyna-Frequency requires the computation of Hessian-gradient product and
it is empirically observed that the Hessian is frequently zero when using ReLu as hidden units. Except the output layer
parameters which were initialized from a uniform distribution [−0.003, 0.003], all other parameters are initialized using
Xavier initialization Glorot and Bengio [2010]. We use mini-batch size b = 32 and maximum ER buffer size 50k. All
algorithms use target network moving frequency 1000 and we sweep learning rate from {0.001, 0.0001}. We use warm up
steps = 5000 (i.e. random action is taken in the first 5k time steps) to populate the ER buffer before learning starts. We keep
exploration noise as 0.1 without decaying.

Hyper-parameter settings. Across RL experiments including both discrete and continuous control tasks, we are able to fix
the same parameters for our hill climbing updating rule 3 s← s+ αh∇s log |ŷ(s)−maxa Q(s, a; θt)|+X , where we fix
αh = 0.1, X ∼ N(0, 0.01).

For our algorithm Dyna-TD, we are able to keep the same parameter setting across all discrete domains: c = 20 and learning
rate 0.001. For all Dyna variants, we fetch the same number of states (m = 20) from hill climbing (i.e. search-control
process) as Dyna-TD does, and use ϵaccept = 0.1 and set the maximum number of gradient step as k = 100 unless otherwise
specified.

Our Prioritized ER is implemented as the proportional version with sum tree data structure. To ensure fair comparison, since
all model-based methods are using mixed mini-batch of samples, we use prioritized ER without importance ratio but half
of mini-batch samples are uniformly sampled from the ER buffer as a strategy for bias correction. For Dyna-Value and
Dyna-Frequency, we use the setting as described by the original papers.

For the purpose of learning an environment model on those discrete control domains, we use a 64× 64 ReLu units neural
network to predict s′ − s and reward given a state-action pair s, a; and we use mini-batch size 128 and learning rate 0.0001
to minimize the mean squared error objective for training the environment model.

Environment-specific settings. All of the environments are from OpenAI [Brockman et al., 2016] except that: 1) the
GridWorld envirnoment is taken from Pan et al. [2019] and the MazeGridWorld is from Pan et al. [2020]; 2) Roundabout-v0
is from Leurent et al. [2019]. For all OpenAI environments, we use the default setting except on Mountain Car where
we set the episodic length limit to 2k. The GridWorld has state space S = [0, 1]2 and each episode starts from the left
bottom and the goal area is at the top right [0.95, 1.0]2. There is a wall in the middle with a hole to allow the agent to pass.
MazeGridWorld is a more complicated version where the state and action spaces are the same as GridWorld, but there are
two walls in the middle and it takes a long time for model-free methods to be successful. On the this domain, we use the
same setting as the original paper for all Dyna variants. We use exactly the same setting as described above except that
we change the Q− network size to 64× 64 ReLu units, and number of search-control samples is m = 50 as used by the
original paper. We refer readers to the original paper Pan et al. [2020] for more details.

On roundabout-v0 domain, we use 64× 64 ReLu units for all algorithms and set mini-batch size as 64. The environment
model is learned by using a 200× 200 ReLu neural network trained by the same way mentioned above. For Dyna-TD, we
start using the model after 5k steps and set m = 100, k = 500 and we do search-control every 50 environment time steps to
reduce computational cost. To alleviate the effect of model error, we use only 16 out of 64 samples from the search-control
queue in a mini-batch.

Algorithm 3 Dyna-TD

Input: m: number of states to fetch through search-control; Bsc: empty search-control queue; Ber: ER buffer; ϵaccept:
threshold for accepting a state; initialize Q-network Qθ

for t = 1, 2, . . . do
Observe (st, at, st+1, rt+1) and add it to Ber

// Hill climbing on absolute TD error
Sample s from Ber, c← 0, s̃← s
while c < m do
ŷ ← Es′,r∼P̂(·|s,a)[r + γmaxa Qθ(s

′, a)]
Update s by rule (3)
if s is out of the state space then

Sample s from Ber, s̃← s // restart
continue

if ||s̃− s||2/
√
d ≥ ϵaccept then

// d is the number of state variables, i.e. S ⊂ Rd

Add s into Bsc, s̃← s, c← c+ 1
//n planning updates
for n times do

Sample a mixed mini-batch with half samples from Bsc and half from Ber

Update Q-network parameters by using the mixed mini-batch

On Mujoco domains Hopper and Walker2d, we use 200 × 100 ReLu units for all algorithms and set mini-batch size as
64. The environment model is learned by using a 200 × 200 ReLu neural network trained by the same way mentioned
above. For Dyna-TD, we start using the model after 10k steps and set m = 100, k = 500 and we do search-control every
50 environment time steps to reduce computational cost. To alleviate the effect of model error, we use only 16 out of 64
samples from the search-control queue in a mini-batch.

Algorithm 4 Dyna-TD with implementation details

Input or notations: k = 20: number search-control states to acquire by hill climbing, kb = 100: the budget of
maximum number of hill climbing steps; ρ = 0.5: percentage of samples from search-control queue, d : S ⊂ Rd; empty
search-control queue Bsc and ER buffer Ber

empirical covariance matrix: Σ̂s ← I
µss ← 0 ∈ Rd×d, µs ← 0 ∈ Rd (auxiliary variables for computing empirical covariance matrix, sample average will
be maintained for µss, µs)
nτ ← 0: count for parameter updating times, τ ← 1000 target network updating frequency
ϵaccept ← 0: threshold for accepting a state
Initialize Q network Qθ and target Q network Qθ′

for t = 1, 2, . . . do
Observe (s, a, s′, r) and add it to Ber

µss ← µss(t−1)+ss⊤

t , µs ← µs(t−1)+s
t

Σ̂s ← µss − µsµ
⊤
s

ϵaccept ← (1− β)ϵaccept + β||s′ − s||2 for β = 0.001
// Hill climbing on absolute TD error
Sample s from Ber, c← 0, s̃← s, i← 0
while c < k and i < kb do

// since environment is deterministic, the environment model becomes a Dirac-delta distribution and we denote it as
a deterministic functionM : S ×A 7→ S × R
s′, r ←M(s, a)
ŷ ← r + γmaxa Qθ(s

′, a)
// add a smooth constant 10−5 inside the logarithm
s← s+ αh∇s log(|ŷ −maxa Q(s, a; θt)|+ 10−5) +X,X ∼ N(0, 0.01Σ̂s)
if s is out of the state space then

// restart hill climbing
Sample s from Ber, s̃← s
continue

if ||s̃− s||2/
√
d ≥ ϵaccept then

Add s into Bsc, s̃← s, c← c+ 1
i← i+ 1

for n times do
Sample a mixed mini-batch b, with proportion ρ from Bsc and 1− ρ from Ber

Update parameters θ (i.e. DQN update) with b
nτ ← nτ + 1
if mod(nτ , τ) == 0 then
Qθ′ ← Qθ

	Introduction
	Background
	A Deeper Look at Error-based Prioritized Sampling
	Theoretical Insight into Error-based Prioritized Sampling
	Limitations of the Prioritized ER
	Negative Effects of the Limitations

	Addressing the Limitations
	Sampling Method
	Empirical Verification of TD Error-based Sampling Method

	Experiments
	Discussion
	Appendix
	Background in Dyna
	Discussion on the Langevin Dynamics Monte Carlo Method
	Proof for Theorem 1
	Proof for Theorem 2
	Error Bound between Sampling Distributions
	High Power Loss Functions
	Additional Experiments
	Training Error Corresponding to Figure 1 from Section 3.3
	Empirical verification of Theorem 1
	Additional Results on Discrete Benchmark Domains
	Autonomous Driving Application
	Results on MazeGridWorld Domain

	Reproducible Research
	Reproduce experiments before Section 5
	Reproduce experiments in Section 5

