
Under review as a conference paper at ICLR 2022

A PROOF OF THEOREM 1

Theorem 1. Let ⇡⇤
i be the policy obtained by optimizing Eq. (2). Then, we have

that J(⇡⇤
i) � J(⇡̂�i) �

↵
1��Eoi⇠d⇡⇤

i (oi)
[D(⇡⇤

i , ⇡̂�i)(oi)] +
⌧

1�⌧ Eoi⇠d⇡⇤
i (oi)

⇥
(⇡⇤

i (oi)� âi)2
⇤
�

⌧
1�⌧ Eoi⇠d

⇡̂�i (oi),ai⇠⇡̂�i

⇥
(ai � âi)2

⇤
, where D(⇡i, ⇡̂�i)(oi) =

1
⇡̂�i

(⇡i(oi)|oi) � 1, and d⇡i(oi) is the
marginal discounted distribution of observations of policy ⇡i.

Proof. For OMAR, we have the following iterative update for agent i:

Q̂k+1
i argminQi

↵Eoi⇠Di

h
Eai⇠⇡̃i(ai|oi) [Qi(oi, ai)]� Eai⇠⇡̂�i

(ai|oi) [Qi(oi, ai)]
i

+
1

2
Eoi,ai,oi0⇠D

⇣
Qi(oi, ai)� B̂

⇡iQ̂k
i (oi, ai)

⌘2�
,

(4)

where ⇡̃i(ai|oi) = 1 if and only if ai = ⇡i(oi).

Let Q̂k+1
i be the fixed point of solving Equation (4) by setting the derivative of Eq. (4) with respect

to Qi to be 0, then we have that

Q̂k+1
i (oi, ai) = B̂

⇡iQ̂k
i (oi, ai)� ↵

✓
Iai=⇡i(oi)

⇡̂�i(ai|oi)
� 1

◆
, (5)

where I is the indicator function.

Denote D(⇡i, ⇡̂�i)(oi) =
1

⇡̂�i
(⇡i(oi)|oi) �1, and we obtain the difference between the value function

V̂i(oi) and the original value function as:

V̂i(oi) = Vi(oi)� ↵D(⇡i, ⇡̂�i)(oi), (6)

Then, the policy that minimizes the loss function defined in Eq. (2) is equivalently obtained by
maximizing

(1� ⌧)

✓
J(⇡i)� ↵

1

1� �
Eoi⇠d

⇡i
M̂i

(oi)
[D(⇡i, ⇡̂�i)(oi)]

◆
� ⌧Eoi⇠d

⇡i
M̂i

(oi)

⇥
(⇡i(oi)� âi)

2
⇤
. (7)

Therefore, we obtain that

(1� ⌧)

J(⇡⇤

i)� ↵
1

1� �
E
oi⇠d

⇡⇤
i

M̂i
(oi)

[D(⇡⇤
i , ⇡̂�i)(oi)]

!
� ⌧E

oi⇠d
⇡⇤
i

M̂i
(oi)

⇥
(⇡⇤

i (oi)� âi)
2
⇤

�(1� ⌧)J(⇡̂�i)� ⌧E
oi⇠d

⇡̂�i
M̂i

(oi),ai⇠⇡̂�i
(ai|oi)

⇥
(ai � âi)

2
⇤
.

(8)

Then, from Eq. (8) we obtain the result.

B MORE DETAILS OF THE EXPERIMENTS

B.1 EXPERIMENTAL SETUP

Tasks. We adopt the open-source implementations for multi-agent particle environments2

from (Lowe et al., 2017) and Multi-Agent MuJoCo3 from (Peng et al., 2020). Figure 5 illustrates
the tasks.

2https://github.com/openai/multiagent-particle-envs
3https://github.com/schroederdewitt/multiagent_mujoco

13

https://github.com/openai/multiagent-particle-envs
https://github.com/schroederdewitt/multiagent_mujoco

Under review as a conference paper at ICLR 2022

(a) Cooperative navigation. (b) Predator-prey. (c) World. (d) Two-agent HalfChee-
tah.

Figure 5: Multi-agent particle environments and Multi-Agent HalfCheetah.

Baselines. All baseline methods are implemented based on an open-source implementation4 from
(Iqbal & Sha, 2019), where we implement MA-TD3+BC5, MA-CQL6, and MA-ICQ7 based on
authors’ open-source implementations with fine-tuned hyperparameters. For MA-CQL, we tune a
best critic regularization coefficient from {0.1, 0.5, 1.0, 5.0} following (Kumar et al., 2020) for each
task. Specifically, we use the discount factor � of 0.99. We sample a minibatch of 1024 samples
from the dataset for updating each agent’s actor and critic using the Adam (Kingma & Ba, 2014)
optimizer with the learning rate to be 0.01. The target networks for the actor and critic are soft
updated with the update rate to be 0.01. Both the actor and critic networks are feedforward networks
consisting of two hidden layers with 64 neurons per layer using ReLU activation. For OMAR, the
only hyperparameter that requires tuning is the regularization coefficient �, where we use a smaller
value for datasets with more diverse data distribution in random and medium-replay with a value
of 0.5, while we use a larger value for datasets with more narrow data distribution in medium and
expert with values of 0.7 and 0.9 respectively. As OMAR is insensitive to the hyperparameters of
the sampling mechanism, we set them to a fixed set of values for all types of datasets in all tasks,
where the number of iteration is 3, the number of samples is 10, the mean is 0.0, and the standard
deviation is 2.0. The code will be released upon publication of the paper.

4https://github.com/shariqiqbal2810/maddpg-pytorch
5https://github.com/sfujim/TD3_BC
6https://github.com/aviralkumar2907/CQL
7https://github.com/YiqinYang/ICQ

14

https://github.com/shariqiqbal2810/maddpg-pytorch
https://github.com/sfujim/TD3_BC
https://github.com/aviralkumar2907/CQL
https://github.com/YiqinYang/ICQ

Under review as a conference paper at ICLR 2022

B.2 LEARNING CURVES

Figure 6 demonstrates the learning curves of MA-ICQ, MA-TD3+BC, MA-CQL and OMAR in
different types of datasets in multi-agent particle environments, where the solid line and shaded
region represent mean and standard deviation, respectively.

(a) CN-random (b) CN-medium-replay (c) CN-medium (d) CN-expert

(e) PP-random (f) PP-medium-replay (g) PP-medium (h) PP-expert

(i) W-random (j) W-medium-replay (k) W-medium (l) W-expert

Figure 6: Learning curves of MA-ICQ, MA-TD3+BC, MA-CQL, and OMAR in multi-agent particle
environments (CN, PP, and W is abbreviated for cooperative navigation, predator-prey, and world
respectively).

15

