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Abstract

We introduce a clipping strategy for Stochastic Gradient Descent (SGD) which uses quantiles
of the gradient norm as clipping thresholds. We prove that this new strategy provides a
robust and efficient optimization algorithm for smooth objectives (convex or non-convex),
that tolerates heavy-tailed samples (including infinite variance) and a fraction of outliers
in the data stream akin to Huber contamination. Our mathematical analysis leverages
the connection between constant step size SGD and Markov chains and handles the bias
introduced by clipping in an original way. For strongly convex objectives, we prove that
the iteration converges to a concentrated distribution and derive high probability bounds
on the final estimation error. In the non-convex case, we prove that the limit distribution
is localized on a neighborhood with low gradient. We propose an implementation of this
algorithm using rolling quantiles which leads to a highly efficient optimization procedure
with strong robustness properties, as confirmed by our numerical experiments.
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1 Introduction

Stochastic gradient descent (SGD) (Robbins & Monro, 1951) is the core optimization algorithm at the
origin of most stochastic optimization procedures (Kingma & Ba, 2014; Defazio et al., 2014; Johnson &
Zhang, 2013). SGD and its variants are ubiquitously employed in machine learning in order to train most
models (Kushner & Yin, 2003; Benveniste et al., 2012; Lan, 2020; Shalev-Shwartz et al., 2007; Bottou et al.,
2018; Ma et al., 2018). The convergence properties of SGD are therefore subjects of major interest.

Early studies of SGD convergence generally relied on strong assumptions such as bounded domain (Shalev-
Shwartz et al., 2009) or uniformly bounded gradient variance (Rakhlin et al., 2011) and obtained error
bounds in expectation. With the recent resurgence of interest for robust statistics (Hsu & Sabato, 2016;
Diakonikolas et al., 2019; Lecué & Lerasle, 2017; Prasad et al., 2018), variants of SGD based on clipping are
shown to be robust to heavy-tailed gradients (Gorbunov et al., 2020; Tsai et al., 2022), where the gradient
samples are only required to have a finite variance. The latter requirement has been further weakened to
the existence of a q-th moment for some q > 1 in (Sadiev et al., 2023; Nguyen et al., 2023). In this paper,
we go further and show that another variant of clipped SGD with proper thresholds is robust both to heavy
tails and outliers in the data stream.

Robust statistics appeared in the 60s with the pioneering works of Huber, Tukey and others (Tukey, 1960;
Huber, 1992; 1972; Rousseeuw & Hubert, 2011; Hampel, 1971). More recently, the field found new momentum
thanks to a series of works about robust scalar mean estimation (Catoni, 2012; Alon et al., 1996; Jerrum
et al., 1986; Lugosi & Mendelson, 2021) and the more challenging multidimensional case (Hopkins, 2020;
Catoni & Giulini, 2018; Lugosi & Mendelson, 2019; Minsker, 2015; Cherapanamjeri et al., 2019; Depersin
& Lecué, 2022; Lei et al., 2020; Diakonikolas et al., 2020). These paved the way to the elaboration of a
host of robust learning algorithms (Holland & Ikeda, 2019; Prasad et al., 2018; Lecué & Lerasle, 2017; Liu
et al., 2020; Pensia et al., 2020) which have to date overwhelmingly focused on the batch learning setting.
We consider the setting of streaming stochastic optimization (Bottou & Cun, 2003; Bottou & Lecun, 2005;
McMahan et al., 2013), which raises an additional difficulty coming from the fact that algorithms can see
each sample only once and must operate under an O(d) memory and complexity constraint for d-dimensional
optimization problems. A limited number of papers (Tsai et al., 2022; Nazin et al., 2019; Diakonikolas et al.,
2022) propose theoretical guarantees for robust algorithms learning from streaming data.

This work introduces such an algorithm that learns from data on the fly and is robust both to heavy tails
and outliers, with minimal computational overhead and sound theoretical guarantees.
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We consider the problem of minimizing a smooth objective

min
θ∈Rd

L(θ) := Eζ [ℓ(θ, ζ)] (1)

using observations G(θ, ζt) of the unknown gradient ∇L(θ), based on samples (ζt)t≥0 received sequentially
that include corruptions with probability η < 1/2. Formulation (1) is common to numerous machine learning
problems where ℓ is a loss function evaluating the fit of a model with parameters θ on a sample ζ, the
expectation E is w.r.t the unknown uncorrupted sample distribution.

We introduce quantile-clipped SGD (QC-SGD) which uses the iteration

θt+1 =θt − αθtβG(θt, ζt) with αθt =min
(

1, τθt

∥G(θt, ζt)∥

)
, (2)

where β > 0 is a constant step size and αθt is the clipping factor with threshold chosen as the p-th quantile
τθt

= Qp(∥G̃(θt, ζt)∥) with G̃(θt, ζt) an uncorrupted sample of ∇L(θt) and p ∈ (0, 1) (details will follow).
Quantiles are a natural choice of clipping threshold which allows to handle heavy tails (Rothenberg et al.,
1964; Bloch, 1966) and corrupted data. For instance, the trimmed mean offers a robust and computationally
efficient estimator of a scalar expectation (Lugosi & Mendelson, 2021). Since the quantile Qp(∥G̃(θt, ζt)∥) is
non-observable, we introduce a method based on rolling quantiles in Section 5 which keeps the procedureO(d)
both memory and complexity-wise. The main benefit of QC-SGD 2 is to grant robustness to the presence
of a proportion η < 1/2 of corruptions in the stream of gradient samples. This could not be achieved by
previous clipped SGD methods (Gorbunov et al., 2020; Tsai et al., 2022; Sadiev et al., 2023; Nguyen et al.,
2023). We also show that iteration (2) is adaptive to heavy-tailed gradient variance and converges to a limit
distribution with strong concentration properties.

Contributions. Our main contributions are as follows:

• For small enough η and well-chosen p, we show that, whenever the optimization objective is smooth
and strongly convex, QC-SGD converges geometrically to a limit distribution such that the deviation
around the optimum achieves the optimal dependence on η.

• In the non-corrupted case η = 0 and with a strongly convex objective, we prove that a coordinated
choice of β and p ensures that the limit distribution is sub-Gaussian with constant of order O(

√
β).

In the corrupted case η > 0, the limit distribution is sub-exponential.

• For a smooth objective (non-convex) whose gradient satisfies an identifiability condition, we prove
that the total variation distance between QC-SGD iterates and its limit distribution vanishes sub-
linearly. In this case, the limit distribution is such that the deviation of the objective gradient is
optimally controlled in terms of η.

• Finally, we provide experiments to demonstrate that QC-SGD can be easily and efficiently imple-
mented by estimating Qp(∥G̃(θt, ζt)∥) with rolling quantiles. In particular, we show that the iteration
is indeed robust to heavy tails and corruption on multiple stochastic optimization tasks.

Our theoretical results are derived thanks to a modelling through Markov chains and hold under an Lq

assumption on the gradient distribution with q > 1.

Related works. Convergence in distribution of the Markov chain generated by constant step size SGD,
relatively to the Wasserstein metric, was first established in (Dieuleveut et al., 2020). Another geometric
convergence result was derived in (Yu et al., 2021) for non-convex, non-smooth, but quadratically growing
objectives, where a convergence statement relatively to a weighted total variation distance is given and a
CLT is established. These papers do not consider robustness to heavy tails or outliers. Early works proposed
stochastic optimization and parameter estimation algorithms which are robust to a wide class of noise of
distributions (Martin & Masreliez, 1975; Polyak & Tsypkin, 1979; 1981; Price & VandeLinde, 1979; Stanković
& Kovačević, 1986; Chen et al., 1987; Chen & Gao, 1989; Nazin et al., 1992), where asymptotic convergence
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guarantees are stated for large sample sizes. Initial evidence of the robustness of clipped SGD to heavy
tails was given by (Zhang et al., 2020) who obtained results in expectation. Subsequent works derived high-
confidence sub-Gaussian performance bounds under a finite variance assumption (Gorbunov et al., 2020;
Tsai et al., 2022) and later under an Lq assumption (Sadiev et al., 2023; Nguyen et al., 2023) with q > 1.
A similar SGD clipping scheme to (2) is presented in (Seetharaman et al., 2020), however, in contrast to
our work, they do not consider the robust setting and focus on experimental study while we also provide
theoretical guarantees.

Robust versions of Stochastic Mirror Descent (SMD) are introduced in (Nazin et al., 2019; Juditsky et al.,
2023). For a proper choice of the mirror map, SMD is shown to handle infinite variance gradients without
any explicit clipping (Nemirovskij & Yudin, 1983; Vural et al., 2022). Finally, (Diakonikolas et al., 2022)
study heavy-tailed and outlier robust streaming estimation algorithms of the expectation and covariance.
On this basis, robust algorithms for linear and logistic regression are derived. However, the involved filtering
procedure is hard to implement in practice and no numerical evaluation of the considered approach is
proposed.

Agenda. In Section 2 we set notations, state the assumptions required by our theoretical results and
provide some necessary background on continuous state Markov chains. In Section 3, we state our results
for strongly convex objectives including geometric ergodicity of QC-SGD (Theorem 1), characterizations of
the limit distribution and deviation bounds on the final estimate. In Section 4, we remove the convexity
assumption and obtain a weaker ergodicity result (Theorem 2) and characterize the limit distribution in terms
of the deviations of the objective gradient. Finally, we present a rolling quantile procedure in Section 5 and
demonstrate its performance through a few numerical experiments on synthetic and real data.

2 Preliminaries

The model parameter space is Rd endowed with the Euclidean norm ∥ · ∥, B(Rd) is the Borel σ-algebra of Rd

and we denote by M1(Rd) the set of probability measures over Rd. We assume throughout the paper that
the objective L is smooth.
Assumption 1. The objective L is L-Lipschitz-smooth, namely

L(θ′) ≤ L(θ) + ⟨∇L(θ), θ′ − θ⟩+ L

2 ∥θ − θ
′∥2

with L < +∞ for all θ, θ′ ∈ Rd.

The results from Section 3 below use the following
Assumption 2. The objective L is µ-strongly convex, namely

L(θ′) ≥ L(θ) + ⟨∇L(θ), θ′ − θ⟩+ µ

2 ∥θ − θ
′∥2

with µ > 0 for all θ, θ′ ∈ Rd.

An immediate consequence of Assumption 2 is the existence of a unique minimizer θ⋆ = arg minθ∈Rd L(θ).
The next assumption formalizes our corruption model.
Assumption 3 (η-corruption). The gradients (G(θt, ζt))t≥0 used in Iteration (2) are sampled as G(θt, ζt) =
Ut

qG(θt) + (1− Ut)G̃(θt, ζt) where Ut are i.i.d Bernoulli random variables with parameter η < 1/2, qG(θt) ∼
DO(θt) with DO(θt) an arbitrary distribution and G̃(θt, ζt) ∼ DI(θt) follows the true gradient distribution
and is independent from the past given θt.

Assumption 3 is an online analog of the Huber contamination model (Huber, 1965; 1992) where corruptions
occur with probability η and where the distribution of corrupted samples DO(θt) (outliers) is not fixed and
may depend on the current iterate θt. On the other hand, DI(θt) denotes the distribution of inliers. This
notation and dichotomy between inliers and outliers follows the example of (Lecué & Lerasle, 2017; Lecué &
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Lerasle, 2019). Assumption 3 corresponds to additive contamination (Diakonikolas & Kane, 2023, Section
1.2.2) where corruptions are only added to the data. A more general TV-contamination model allowing for
true samples to be adversely removed is used in (Diakonikolas et al., 2022). Note however, that the latter
mainly focuses on mean estimation. Note also that additive contamination remains realistic since it accounts
for invalid entries occurring in the data stream even if it doesn’t support entries being targeted and censored.
The next assumption requires the true gradient distribution to be unbiased and diffuse.
Assumption 4. For all θ, non-corrupted gradient samples G̃(θ, ζ) ∼ DI(θ) are such that

G̃(θ, ζ) = ∇L(θ) + εθ, (3)

where εθ is a centered noise E[εθ|θ] = 0 with distribution δνθ,1 + (1 − δ)νθ,2 where δ > 0 and νθ,1, νθ,2 are
distributions over Rd such that νθ,1 admits a density hθ w.r.t. the Lebesgue measure satisfying

inf
∥ω∥≤R

hθ(ω) > κ(R) > 0

for all R > 0, where κ(·) is independent of θ.

In addition to the unbiased property, Assumption 4 imposes that the noise distribution be expressible as
the combination of two components, one of which must be diffuse with density satisfying a minorization
inequality. Note that this is a weak constraint since it is satisfied, for example, as soon as the noise εθ

admits a density w.r.t. Lebesgue’s measure which is positive everywhere. This condition is similar to (Yu
et al., 2021, Assumption 2.3) since both find their origin in Markov chain minorization conditions (Meyn &
Tweedie, 1993, Section 5.2). These ensure that a chain properly explores its state space and are a common
way to prove Markov chain convergence (Rosenthal, 1995b;a; Douc et al., 2004; Meyn & Tweedie, 1994;
Baxendale, 2005). Our last assumption formalizes the requirement of a finite moment for the gradient error.
Assumption 5. There is q > 1 such that for G̃(θ, ζ) ∼ DI(θ), we have

E
[
∥εθ∥q | θ

]1/q = E
[∥∥G̃(θ, ζ)−∇L(θ)

∥∥q | θ
]1/q ≤ Aq∥θ − θ⋆∥+Bq (4)

for all θ ∈ Rd, where Aq, Bq > 0. When L is not strongly convex, we further assume that Aq = 0.

The bound (4) captures the case of arbitrarily high noise magnitude through the dependence on ∥θ − θ⋆∥.
This is consistent with convex optimization problems with L-Lipschitz-smooth objectives (Assumption 1)
where the norm of the gradient ∥∇L(θ)∥ is bounded by L · ∥θ − θ⋆∥. Assumption 5 improves upon the
conditions used in (Gorbunov et al., 2020; Tsai et al., 2022; Gorbunov et al., 2023; Nguyen et al., 2023) since
these either required a uniformly constant upperbound (independent of θ) or only considered the case q = 2
(finite variance). For non-strongly convex L, we require Aq = 0 since θ⋆ may not exist.
Definition 1. If X is a real random variable, we say that X is K-sub-Gaussian for K > 0 if

E exp(λ2X2) ≤ eλ2K2
for |λ| ≤ 1/K. (5)

We say that X is K-sub-exponential for K > 0 if

E exp(λ|X|) ≤ exp(λK) for all 0 ≤ λ ≤ 1/K. (6)

The convergence results presented in this paper use the following formalism of continuous state Markov
chains. Given a step size β > 0 and a quantile p ∈ (0, 1), we denote by Pβ,p the Markov transition kernel
governing the Markov chain (θt)t≥0 generated by QC-SGD, so that

P(θt+1 ∈ A | θt) = Pβ,p(θt, A)

for t ≥ 0 and A ∈ B(Rd). The transition kernel Pβ,p acts on probability distributions ν ∈ M1(Rd) through
the mapping ν → νPβ,p which is defined, for all A ∈ B(Rd), by νPβ,p(A) =

∫
A
Pβ,p(θ,A)dν(θ) = P(θt+1 ∈

A|θt ∼ ν). For n ≥ 1, we similarly define the multi-step transition kernel Pn
β,p which is such that Pn

β,p(θt, A) =
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P(θt+n ∈ A | θt) and acts on probability distributions ν ∈ M1(Rd) through νPn
β,p = (νPβ,p)Pn−1

β,p . Finally,
we define the total variation (TV) norm of a signed measure ν as

2∥ν∥TV = sup
f :|f |≤1

∫
f(θ)ν(dθ) = sup

A∈B(Rd)
ν(A)− inf

A∈B(Rd)
ν(A). (7)

In particular, we recover the TV distance between ν1, ν2 ∈M1(Rd) as

dTV(ν1, ν2) = ∥ν1 − ν2∥TV = sup
A∈B(Rd)

∣∣ν1(A)− ν2(A)
∣∣.

The second equality reflects the fact that the TV distance between two probability measures corresponds to
the largest absolute difference between the probabilities they assign to the same event. The TV distance is
a broadly used metric to quantify the convergence of Markov chains (Levin & Peres, 2017; Baxendale, 2005;
Meyn & Tweedie, 1993; Rosenthal, 1995a) besides the Wasserstein distance (Dieuleveut et al., 2020).

In the next section, we will prove that the Markov chain defined by iteration (2) converges to unique
invariant distribution in TV distance. This convergence mode will allow us to extrapolate the properties of
the limit distribution on the iterates θt and thus derive non-asymptotic concentration bounds for them, see
Corollaries 2 and 1 below.

3 Strongly Convex Objectives

We are ready to state our convergence result for the stochastic optimization of a strongly convex objective
using QC-SGD with η-corrupted samples.
Theorem 1 (Geometric ergodicity). Let Assumptions 1-5 hold and assume there is a quantile p ∈ [η, 1− η]
such that

κ := (1− η)pµ− ηL− (1− p)− 1
qAq(1− p(1− η)) > 0. (8)

Then, for a step size β satisfying

β <
1
4

κ

µ2 + 24ηL2 + 28A2
q

∧ 2
µ+ L

, (9)

the Markov chain (θt)t≥0 generated by QC-SGD with parameters β and p converges geometrically to a unique
invariant measure πβ,p: for any initial θ0 ∈ Rd, there is ρ < 1 and M <∞ such that after T iterations∥∥δθ0P

T
β,p − πβ,p

∥∥
TV ≤MρT

(
1 + ∥θ0 − θ⋆∥2)

,

where δθ0 is the Dirac measure located at θ0.

The proof of Theorem 1 is given in Appendix D.3 and relies on the geometric ergodicity result of (Meyn
& Tweedie, 1993, Chapter 15) for Markov chains with a geometric drift property. A similar result for
quadratically growing objectives was established by (Yu et al., 2021) and convergence w.r.t. Wasserstein’s
metric was shown in (Dieuleveut et al., 2020) assuming gradient co-coercivity. However, robustness was not
considered in these works. Theorem 1 establishes the iteration’s convergence to a unique invariant measure
πβ,p. The properties of this limit distribution will be explored in the sequel. The restriction p ∈ [η, 1−η] comes
from the consideration that other quantiles are not estimable in the event of η-corruption. Condition (8) is
best interpreted for the choice p = 1 − η in which case it translates into η1−1/q ≤ O(µ/(L + Aq)) implying
that it is verified for η small enough within a limit fixed by the problem conditioning. A similar condition
with q = 2 appears in (Diakonikolas et al., 2022, Theorem E.9) which uses a finite variance assumption.

When (8) is satisfied, one clearly has that κ = O(µ). Considering q = 2 for simplicity and taking the
maximum allowed corruption rate in this case η = O(µ2/(L+Aq)2) leads to an upperbound on the step-size
β of order O(µ/(µ2 + A2

q) ∧ 1/L). While the condition β = O(1/L) is standard in smooth optimization,
the additional condition in terms of Aq ensures that the noise introduced to the iteration by the gradient
samples does not cause it to diverge.
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The constants M and ρ controlling the geometric convergence speed in Theorem 1 depend on the parameters
β, p and the initial θ0. Among choices fulfilling the convergence conditions, it is straightforward that greater
step size β and θ0 closer to θ⋆ lead to faster convergence. However, the dependence in p is more intricate
and should be evaluated through the resulting value of κ. We provide a more detailed discussion about the
value of ρ in Appendix C.

The choice p = 1 − η appears to be ideal since it leads to optimal deviation of the invariant distribution
around the optimum θ⋆ which is the essence of our next statement.
Proposition 1. Assume the same as in Theorem 1 and condition (8) with the choice p = 1 − η. For step
size β satisfying (9), q ≥ 2, and additionally:

β ≤ η2−2/q/κ, (10)

for θ ∼ πβ,1−η, we have the following upper bound:

E∥θ − θ⋆∥2 ≤
(6η1−1/qBq

κ

)2
.

Proposition 1 is proven in Appendix D.4. An analogous result holds for q ∈ (1, 2) but requires a different
proof and can be found in Appendix D.5. Proposition 1 may be compared to (Yu et al., 2021, Theorem 3.1)
which shows that the asymptotic estimation error can be reduced arbitrarily using a small step size. However,
this is impossible in our case since we consider corrupted gradients. The performance of Proposition 1 is best
discussed in the specific context of linear regression where gradients are given as G(θ, (X,Y )) = X(X⊤θ−Y )
for samples X,Y ∈ Rd × R such that Y = X⊤θ⋆ + ϵ with ϵ a centered noise. In this case, a finite moment
of order k for the data implies order k/2 for the gradient corresponding to an η1−2/k rate in Proposition 1.
Since Assumption 5 does not include independence of the noise ϵ from X, this corresponds to the negatively
correlated moments assumption of (Bakshi & Prasad, 2021) being unsatisfied. Consequently, Proposition 1
is information-theoretically optimal in η based on (Bakshi & Prasad, 2021, Corollary 4.2). Nonetheless, the
dimension dependence through Bq remains poor since we have Bq ∼

√
d in general because the Euclidean

norm is used in Assumption 5. This dimension dependence may be improvable by using the quantiles
sup∥v∥=1 Qp

(
|⟨G̃(θt, ζt), v⟩|

)
as clipping thresholds and adapting ideas from (Catoni & Giulini, 2018) in the

analysis. However, exploring this method is beyond our scope as the involved estimations for all ∥v∥ = 1
would be excessively sample hungry and computationally heavy for stochastic optimization.If the gradient is
sub-Gaussian with constant K, we would have Bq ≲ K

√
q for q ≥ 1 (see (Vershynin, 2018) for a reference),

in which case, the choice q = log(1/η) recovers the optimal rate in η
√

log(1/η) for the Gaussian case.

We now turn to showing strong concentration properties for the invariant distribution πβ,p. For this purpose,
we restrict the optimization to a bounded and convex set Θ ⊂ Rd and replace Iteration (2) by the projected
iteration

θt+1 = ΠΘ
(
θt − αθt

βG(θt, ζt)
)
, (11)

where ΠΘ is the projection onto Θ. Assuming that the latter contains the optimum θ⋆ ∈ Θ, one can check
that the previous results continue to hold thanks to the inequality

∥ΠΘ(θ)− θ⋆∥ = ∥ΠΘ(θ)−ΠΘ(θ⋆)∥ ≤ ∥θ − θ⋆∥,

which results from the convexity of Θ. The restriction of the optimization to a bounded set allows us to
uniformly bound the clipping threshold τθ, which is indispensable for the following result.
Proposition 2. In the setting of Theorem 1, consider projected QC-SGD (11) and let τ = supθ∈Θ τθ, D =
diam(Θ) the diameter of Θ and Bq = AqD +Bq.

• Consider the non-corrupted case η = 0 and set the quantile p such that p ≥ 1 − (βµ)
q

2(q−1) . Then,
for θ ∼ πβ,p, the variable ∥θ − θ⋆∥ is sub-Gaussian in the sense of Definition 1 with constant

K = 4

√
2β(B2

q + τ2)
pµ

.
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• Consider the corrupted case η > 0, and set the quantile p ∈ [η, 1− η] such that Inequality (8) holds.
Then, for θ ∼ πβ,p, the variable ∥θ−θ⋆∥ is sub-exponential in the sense of Definition 1 with constant

K = 7τ + (1− p)1−1/qBq

pµ
.

The proof can be found in Appendix D.6. The strong concentration properties given by Proposition 2 for
the invariant distribution appear to be new. Still, the previous result remains asymptotic in nature. High
confidence deviation bounds for an iterate θt can be derived by leveraging the convergence in Total Variation
distance given by Theorem 1 leading to the following result.
Corollary 1. In the setting of Proposition 2, in the absence of corruption η = 0, after T iterations, for
δ > 0, we have

P
(∥∥θT − θ⋆

∥∥ > 4
√
B

2
q + τ2

√
2β log(e/δ)

pµ

)
≤ δ + ρTM

(
1 + ∥θ0 − θ⋆∥2)

.

Choosing a smaller step size β in Corollary 1 allows to improve the deviation bound. However, this comes
at the cost of weaker confidence because of slower convergence due to a greater ρ. See Appendix C for a
discussion including a possible compromise. Corollary 1 may be compared to the results of (Gorbunov et al.,
2020; Tsai et al., 2022; Sadiev et al., 2023; Nguyen et al., 2023) which correspond to β ≈ 1/T and have a
similar dependence on the dimension through the gradient variance. Although their approach is also based
on gradient clipping, they use different thresholds and proof methods. In the presence of corruption, the
invariant distribution is not sub-Gaussian. This can be seen by considering the following toy Markov chain:

Xt+1 =
{
αXt + ξ w.p. 1− η
Xt + τ w.p. η

where α < 1, τ > 0 are constants and ξ is a positive random noise. Using similar methods to the proof
of Theorem 1, one can show that (Xt)t≥0 converges (for any initial X0) to an invariant distribution whose
moments can be shown to grow linearly, indicating a sub-exponential distribution and excluding a sub-
Gaussian one. We provide additional details for the underlying argument in Appendix D.7. For the corrupted
case, the sub-exponential property stated in Proposition 2 holds with a constant K of order τ/µ, which is
not satisfactory and leaves little room for improvement due to the inevitable bias introduced by corruption.
Therefore, we propose the following procedure in order to obtain a high confidence estimate, similarly to
Corollary 1.

Algorithm 1: Aggregation of cycling iterates
Input: Step size β > 0, quantile index p ∈ (0, 1), initial parameter θ0 ∈ Θ, horizon T and
number of concurrent iterates N ≥ 1.

1 Optimize multiple parameters θ(1)
t , . . . , θ

(N)
t starting from a common θ0 = θ

(n)
0 for

n ∈ JNK =: {1, . . . , N} and T steps t = 0, . . . , T using the following cycling iteration:

θ
(n)
t+1 =

{
θ

(n)
t − α

θ
(n)
t
βG

(
θ

(n)
t , ζt

)
if t ≡ n− 1 mod N,

θ
(n)
t otherwise.

(12)

2 Compute the pairwise distances ri,j =
∥∥θ(i)

T − θ
(j)
T

∥∥ for i, j ∈ JNK.
3 For i ∈ JNK, let r(i) ∈ RN

+ be the vector ri,: := [ri,1, . . . , ri,N ] sorted in non decreasing order.
4 Compute the aggregated estimator as θ̂ = θ

(̂i)
T with î = arg mini∈JNK r

(i)
⌊N/2⌋.

5 return θ̂

Algorithm 1 uses ideas from (Hsu & Sabato, 2016) (see also (Minsker, 2015; Juditsky et al., 2023)) and
combines the collection of weak estimators

(
θ

(i)
T

)
i∈JNK (only satisfying L2 bounds) into a strong one with
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sub-exponential deviation. This is done by picking θ
(i)
T which is such that the median of its distances to

other estimators r(i)
⌊N/2⌋ is minimal. The aggregated estimator θ̂ satisfies the high probability bound given in

the next result.
Corollary 2. Assume the same as in Theorem 1 and Proposition 1. Consider θ̂ given by Algorithm 1, with
the assumption that the gradient sample sets used for each

(
θ

(n)
T

)
n∈JNK in Equation (12) are independent.

For δ > 0, if N ≥ 16 log(1/δ) and T satisfies

T ≥ N log(15M(1 + ∥θ0 − θ⋆∥2))/ log(1/ρ),

then, with probability at least 1− δ, we have

∥∥θ̂ − θ⋆
∥∥ ≤ 27η1− 1

qBq

κ
. (13)

We obtain a high confidence version of the bound in expectation previously stated in Proposition 1. As
argued before, the above bound depends optimally on η. Similar bounds to (13) are obtained for q = 2
in (Diakonikolas et al., 2022) for streaming mean estimation, linear and logistic regression. Their results
enjoy better dimension dependence but are less general than ours since we handle the case q ∈ (1, 2) and
consider strongly convex objectives more broadly. In addition, our results further extend to non-convex
objectives as detailed in the next section. Finally, the implementation of the algorithm in (Diakonikolas
et al., 2022) is not straightforward whereas our method is quite easy to use (see Section 5).

4 Non-Convex Objectives

In this section, we drop Assumption 2 and consider the optimization of possibly non-convex objectives.
Consequently, the existence of a unique optimum θ⋆ and the quadratic growth of the objective are no longer
guaranteed. This motivates us to use a uniform version of Assumption 5 with Aq = 0 since the gradient is
no longer assumed coercive and its deviation moments can be taken as bounded. In this context, we obtain
the following weaker (compared to Theorem 1) ergodicity result for QC-SGD.
Theorem 2 (Ergodicity). Let Assumptions 1, 3, 4 and 5 hold with Aq = 0 (uniformly bounded moments)
and let L be an objective such that infθ L(θ) > −∞ is finite. Let (θt)t≥0 be the Markov chain generated by
QC-SGD with step size β and quantile p ∈ [η, 1−η]. Assume that p and β are such that 3p(1−η)/4 > Lβ+η
and that the subset of Rd given by

{
θ : 1

2
∥∥∇L(θ)

∥∥2 ≤
B2

q

(
(1− p)− 2

q (Lβ + 2η2) + 2η2− 2
q
)

p(1− η)(3p(1− η)/4− Lβ − η)

}
(14)

is bounded. Then, for any initial θ0 ∈ Rd, there exists M < +∞ such that after T iterations∥∥δθ0P
T
β,p − πβ,p

∥∥
TV ≤

M

T
, (15)

where πβ,p is a unique invariant measure and where δθ0 is the Dirac measure located at θ0.

The proof is given in Appendix D.10 and uses ergodicity results from (Meyn & Tweedie, 1993, Chapter 13).
Theorem 2 provides convergence conditions for an SGD Markov chain on a smooth objective in a robust
setting. We are unaware of anterior results of this kind in the literature. Condition (14) requires that the
set where the true gradient norm is smaller than the estimation error is bounded. This aims to exclude
the possibility that the iteration gets trapped within this set and keep using unreliable gradient estimates
causing it to diverge. The result is stronger when the upperbound in (14) is smaller. Note that setting
p close to 1 − η increases the clipping threshold and the estimation error as a consequence, making this
condition harder to satisfy. On the other hand, using β = O(1/L) and a more conservative value of p makes
the upperbound of order O(B2

q ) and condition 14 easier to satisfy. Observe that, for no corruption (η = 0),
the condition is always fulfilled for some β and p. Note also that without strong convexity (Assumption 2),

9
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convergence occurs at a slower sublinear rate which is consistent with the optimization rate expected for a
smooth objective (see (Bubeck, 2015, Theorem 3.3)).

As previously, we complement Theorem 1 with a characterization of the invariant distribution.
Proposition 3. Under the conditions of Theorem 2, assume that the choice p = 1 − η is such that the
set (14) is bounded. For step size β ≤ η2/L, the stationary measure θ ∼ πβ,1−η satisfies

E
∥∥∇L(θ)

∥∥2 ≤
5η2− 2

qB2
q

p(1− η)
(
3p(1− η)/4− Lβ − η

) . (16)

The statement of Proposition 3 is clearly less informative than Propositions 1 and 2 since it only pertains
to the gradient rather than, for example, the excess risk. This is due to the weaker assumptions that do
not allow to relate these quantities. Still, the purpose remains to find a critical point and is achieved up
to O(η1−1/q) precision according to this result. Due to corruption, the estimation error on the gradient
cannot be reduced beyond Ω(η1−1/q) (Prasad et al., 2020; Hopkins & Li, 2018; Diakonikolas & Kane, 2019).
Therefore, one may draw a parallel with a corrupted mean estimation task, in which case, the previous rate
is, in fact, information-theoretically optimal.

5 Implementation and Numerical Experiments

The use of the generally unknown quantile Qp(∥G̃(θt, ζt)∥) in QC-SGD constitutes the main obstacle to
its implementation. For strongly convex objectives, one may use a proxy such as a∥θt − θref∥ + b with
positive a, b and θref ∈ Rd an approximation of θ⋆ serving as reference point. This choice is consistent
with Assumptions 1 and 5, see Lemma 2 in Appendix D. For instances of Problem (1) defined with an

Algorithm 2: Rolling QC-SGD
Input: Step size β > 0, quantile index
p ∈ (0, 1), initial parameter θ0 ∈ Rd, τunif > 0, buffer B of size S and horizon T.

1 Fill B with S − 1 values equal to τunif .
2 for t = 0 . . . T − 1 do
3 Draw a sample G(θt, ζt) and add ∥G(θt, ζt)∥ to B.
4 Q̂p ← ⌊pS⌋ rank element of B.
5 θt+1 ← θt − βclip(G(θt, ζt), Q̂p)
6 Delete the oldest value in B.
7 return θT

asymptotically linear function ℓ such as the logistic, hinge or Huber’s loss, a constant threshold can be used
since the gradient is a priori uniformly bounded, implying the same for the quantiles of its deviations. In
practice, we propose a simpler and more direct approach: we use a rolling quantile procedure, described in
Algorithm 2. The latter stores the values (∥G(θt−j , ζt−j)∥)1≤j≤S in a buffer of size S ∈ N∗ and replaces
Qp(∥G̃(θt, ζt)∥) in QC-SGD by an estimate Q̂p which is the ⌊pS⌋-th order statistic in the buffer. Note that
only the norms of previous gradients are stored in the buffer, limiting the memory overhead to O(S). The
computational cost of Q̂p can also be kept to O(S) per iteration thanks to a bookkeeping procedure (see
Appendix B).

Note that, since Algorithm 2 uses the corrupted samples G(θt, ζt) rather than the true ones G̃(θt, ζt) to
estimate the quantiles, a more conservative upperbound of roughly p ≤ 1 − 2η should be respected when
an estimate of η is available. Otherwise, one may default to p = 1/2 as an initial guess and adapt based
on performance. In practice, our experiments show that relatively low values within p ∈ [0.1, 0.2] are best
for strongly convex objectives while higher values are affordable in other cases. See Appendix B for more
details.

10
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We implement this procedure for a few tasks and compare its performance with relevant baselines. We do
not include a comparison with (Diakonikolas et al., 2022) whose procedure has no implementation we are
aware of and is difficult to use in practice. Indeed, the algorithm in question heavily depends on several
problem parameters and involves a filtering procedure which requires multiple passes on large data mini-
batches making it impractical for the streaming setting. Moreover, a number of special methods are required
to mitigate the costs of the matrix operations needed in the original procedure making the algorithm’s
implementation even more involved.

Our experiments on synthetic data consider an infinite horizon, dimension d = 128, and a constant step size
for all methods.

Linear regression. We consider least-squares linear regression and compare RQC-SGD with Huber’s
estimator (Huber, 1973) and clipped SGD (designated as CClip(λ)) with three clipping levels λσmax

√
d for

λ ∈ {0.8, 1.0, 1.2} where σmax is a fixed data scaling factor. These thresholds provide a rough estimate
of the gradient norm near the optimum θ⋆. We generate covariates X and labels Y both heavy-tailed and
corrupted. Corruption in the data stream is generated according to Assumption 3 with outliers represented
either by aberrant values or fake samples Y = X⊤θfake + ϵ using a false parameter θfake, see Appendix B
for further details on data generation and fine tuning of the Huber parameter. All methods are run with
constant step size and averaged results over 100 runs are displayed on Figure 1 (top row).

As anticipated, Huber’s loss function is not robust to corrupted covariates. In contrast, using gradient
clipping allows convergence to meaningful estimates. Although this holds true for a constant threshold,
Figure 1 shows it may considerably slow the convergence if started away from the optimum. In addition,
the clipping level also affects the final estimation precision and requires tuning. Both of the previous issues
are well addressed by RQC-SGD whose adaptive clipping level allows fast progress of the optimization and
accurate convergence towards a small neighborhood of the optimum.
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Figure 1: Evolution of ∥θt − θ⋆∥ on the tasks of linear regression (top row) and logistic regression (bottom
row) averaged over 100 runs at increasing corruption levels (error bars represent half the standard deviation).
Estimators based on Huber’s loss are strongly affected by data corruption. SGD with constant clipping
thresholds is robust but slow to converge for linear regression and requires tuning for better final precision.
RQC-SGD combines fast convergence with good final precision thanks to its adaptive clipping strategy.
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Figure 2: Evolution of the test loss (y-axis) against iteration t (x-axis) for the training of a single hidden layer
network on different real world classification datasets (average over 20 runs). We observe more consistent
and stable objective decrease for RQC-SGD whereas constant clipping baselines are slower and may fail to
converge.

Logistic regression. We test the same methods on logistic regression. Huber’s baseline is represented
by the modified Huber loss (also known as quadratic SVM (Zhang, 2004)). We generate data similarly to
the previous task except for the labels which follow Y ∼ Bernoulli(σ(X⊤θ⋆)) with σ the sigmoid function.
Corrupted labels are either uninformative, flipped or obtained with a fake θfake (see details in Appendix B).
Results are displayed on the bottom row of Figure 1.

As previously, Huber’s estimator performs poorly with corruption. However, constant clipping appears to be
better suited when the gradient is bounded, so that the optimization is less affected by its underestimation.
We observe, nonetheless, that a higher clipping level may lead to poor convergence properties, even at a
low corruption rate. Note also that the constant levels we use are based on prior knowledge about the data
distribution and would have to be fine tuned in practice. Meanwhile, the latter issue is well addressed by
quantile clipping. Finally, notice that no algorithm truly approaches the true solution for this task. This
reflects the difficulty of improving upon Proposition 3 which only states convergence to a neighborhood
where the objective gradient is comparable to the estimation error in magnitude.

Classification with shallow networks. Finally, we evaluate the performance on the task of training
a single hidden layer neural network classifier on some real datasets which corresponds to a non-convex
optimization problem. To handle multiclass data, we use the cross entropy loss and replace Huber’s baseline
with plain SGD for simplicity. We define constant clipping baselines using thresholds given by the quantiles
of order p = 0.25, 0.5, and 0.75 of the norms of a batch of gradients at the beginning of the optimisation. Due
to the greater sensitivity to corruption observed in this case, we set η = 0.02 and use p = 0.9 for RQC-SGD.
We train all methods with one sample per iteration using equal step sizes and evaluate them through the test
loss. We provide further results and experimental details in Appendix B. Results are displayed on Figure 2.

Unsurprisingly, standard SGD is not robust to corrupted samples and, while using a constant clipping level
helps keep the optimisation on track, the experiments show that careful tuning may sometimes be necessary
to prevent divergence. On the other hand, the adaptive clipping levels used by RQC-SGD allow to make the
iteration faster and more resilient to corruption. This leads to an optimization path with a more consistent
decrease of the objective. Moreover, we also observe that RQC-SGD allows for a better control of the
asymptotic variance of the optimized parameter compared to constant clipping.

6 Conclusion

We introduced a new clipping strategy for SGD and proved that it defines a stochastic optimization procedure
which is robust to both heavy tails and outliers in the data stream. We also provided an efficient rolling
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quantile procedure to implement it and demonstrated its performance through numerical experiments on
synthetic and real data. Future research directions include improving the dimension dependence in our
bounds, possibly by using sample rejection rules or by considering stochastic mirror descent (Nemirovskij &
Yudin, 1983; Beck & Teboulle, 2003) clipped with respect to a non Euclidean norm. This may also procure
robustness to higher corruption rates. Another interesting research track is the precise quantification of the
geometric convergence speed of the Markov chain generated by constant step size SGD on a strongly convex
objective.
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Supplementary Material
Robust Stochastic Optimization via Gradient Quantile Clipping

A Additional experimental results
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Figure 3: Evolution of the test loss (y-axis) against iteration t (x-axis) for the training of a single hidden
layer network on additional real world classification datasets (average over 20 runs).

Classification with shallow networks. We performed the same experiment using two additional
datasets. The results are displayed on Figure 3 and corroborate our statements in the main paper.

Expectation estimation. We estimate the expectation of a random vector X by minimizing the objective
L(θ) = 1

2∥θ−θ
⋆∥2 with θ⋆ = E[X] using a stream of both corrupted and heavy-tailed samples, see Appendix B

for details. We run RQC-SGD (Algorithm 2) and compare it to an online version of geometric and coordinate-
wise Median-Of-Means (GMOM and CMOM (Cardot et al., 2017; 2013)) which use block sample means to
minimize an L1 objective (see Appendix B). Although these estimators are a priori not robust to η-corruption,
we ensure that their estimates are meaningful by limiting η to 4% and using blocks of 10 samples. Thus,
blocks are corrupted with probability < 1/2 so that the majority contains only true samples. Figure 4
displays the evolution of ∥θt−θ⋆∥ for each method averaged over 100 runs for increasing η and constant step
size. We also display a single run for η = 0.04. We observe that RQC-SGD is only weakly affected by the
increasing corruption whereas the performance of GMOM and CMOM quickly degrades with η, leading to
unstable estimates.

B Experimental details

As previously mentioned, the dimension is set to d = 128 in our experiments with synthetic data. We also
set σmin = 1 and σmax = 5 as minimum and maximum scaling factors. For all tasks and algorithms, the
optimization starts from θ0 = 0.

Bookkeeping in RQC-SGD The buffer in Algorithm 2 stores values in sorted order along with their
“ages”. The most recent and oldest values have ages 0 and S − 1 respectively. At each iteration, a new
gradient is received, all ages are incremented and the oldest value is replaced by the new one with age 0.
The latter is then sorted using one iteration of insertion sort. The estimate Q̂p is retrieved at each iteration
as the value at position ⌊pS⌋.

19



Under review as submission to TMLR

0 2000 4000 6000 8000
0

2

4

6

8

10

||
t

* |
|

= 0.01

0 2000 4000 6000 8000

= 0.025

0 2000 4000 6000 8000

= 0.04

Algorithm
RQC-SGD
CMOM
GMOM

Figure 4: Evolution of ∥θt − θ⋆∥ (y-axis) against iteration t (x-axis) for the expectation estimation task,
averaged over 100 runs at different corruption levels η (bands widths correspond to the standard deviation
of the 100 runs). For η = 0.04, the evolution on a single run is also displayed. We observe good performance
for RQC-SGD for increasing η while CMOM and GMOM are more sensitive.

B.1 Mean estimation

Data generation We compute a matrix Σ = (AA⊤ + A⊤A)/2 where A ∈ Rd×d is a random matrix with
i.i.d centered Gaussian entries with variance 1/d sampled once and for all. We generate true samples as
X = 1 + ΣV where V is a vector of i.i.d symmetrized Pareto random variables with parameter 2 and 1 ∈ Rd

denotes the vector with all entries equal to 1.

We draw corrupted samples as qX = 10qV − 100×1 where qV is a vector of i.i.d symmetrized Pareto variables
with parameter 1.5. We use step size β = 10−3.

GMOM and CMOM The geometric and coordinatewise Median-Of-Means estimators (GMOM and
CMOM) optimize the following objectives respectively:

E
∥∥θ −XNb

∥2 and E
∥∥θ −XNb

∥∥
1,

where XNb
is the average of Nb independent copies of X. The block size is set to Nb = 10 in the whole

experiment. The above objectives are optimized by computing samples of XNb
in a streaming fashion so

that one step is made for each Nb samples. In order to compensate for this inefficiency we multiply the step
size by Nb for both GMOM and CMOM. For GMOM, we additionally multiply the step size by

√
d in order

to compensate the normalization included in the gradient formula.

RQC-SGD For mean estimation, we implement RQC-SGD (Algorithm 2) with buffer size S = 100, p = 0.2
and τunif = 10.

B.2 Linear regression

Data generation We choose the true parameter θ⋆ by independently sampling its coordinate uniformly
in the interval [−5,+5]. The true covariates are sampled as X = ΣV where Σ is a diagonal matrix with
entries sampled uniformly in the interval [σmin, σmax] (once and for all) and V is a vector of i.i.d symmetrized
Pareto random variables with parameter 2. The labels are sampled as Y = X⊤θ⋆ +ϵ where ϵ is a symmetrized
Pareto random variable with parameter 2.

The corrupted samples are obtained according to one of the following possibilities with equal probability:

• X = 1000(maxi Σii)v +W where v is a fixed unit vector and W is a standard Gaussian vector and
Y ∼ Bernoulli(1/2).

• X = 1000(maxi Σii)V with V a unit norm random vector with uniform distribution and Y =
1000(Z + U) where Z is a random sign and U is uniform over [−1/5, 1/5].
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• X = 10V with V a random vector with i.i.d entries following a symmetrized Log-normal distribution
and Y = X⊤θfake + ϵ with θfake a fake parameter drawn similarly to θ⋆ once and for all and ϵ a
standard Gaussian variable.

We use step size β = 10−3.

Huber parameter In order to tune the parameter δ of Huber’s loss function, we proceed as follows:

– For each corruption level η, we consider 10 candidate values δj = 10j/2−5 for 0 ≤ j < 10.

– For each candidate δj , we train 250 estimators
(
θ̂

(i)
δj

)
i∈J250K using 1000 samples each.

– We choose ĵ for which the average 1
250

∑
i∈J250K

∥∥θ̂(i)
δj
− θ⋆

∥∥ is minimal and use δ̂ = δ̂
j

as parameter.

RQC-SGD For linear regression, we run RQC-SGD with buffer size S = 100 and τunif = 10. The quantile
value was set to p = 0.1 for η ∈ {0.02, 0.06} and p = 0.05 for η = 0.1.

B.3 Logistic regression

Data generation The true parameter θ⋆ and covariates X are chosen similarly to linear regression. Given
X, the label Y is set to +1 with probability σ(X⊤θ⋆) where σ is the sigmoid function σ(x) = (1 + e−x)−1

and to −1 otherwise.

The corrupted covariates are determined similarly to linear regression while the labels are set as follows in
each respective case:

• Y is set to +1 or −1 with equal probability.

• Y = − sign(X⊤θ⋆).

• Y = sign(X⊤θfake) with θfake a fake parameter drawn similarly to θ⋆ once and for all.

We use step size β = 6× 10−3.

Huber parameter The same procedure is used to tune the parameter of the modified Huber loss as for
linear regression.

RQC-SGD For logistic regression, we run RQC-SGD with buffer size S = 100 and τunif = 10. The quantile
value was set to p = 1− η − 0.1 for η = 0.02 and p = 1− η − 0.05 otherwise.

B.4 Single hidden layer neural network classifier

We train a single hidden layer neural network classifier with 100 hidden neurones for all datasets. We use
one sample per iteration and step size β = 10−2 for all methods.

As previously, RQC-SGD is run with buffer size S = 100 and τunif = 10. The quantile value was set
to p = 0.9. We compute the gradient norms over a batch of samples of size S at the beginning of the
optimization and use the quantiles of order p = 0.25, 0.5 and 0.75 as the clipping level for the constant
clipping baselines.

Data We used publicly available datasets for our experiments. We provide details about their character-
istics and sources in Table 1.

We use a 10% share of each dataset as a test set in order to compute the test loss plotted in Figures 2 and 3.
We also ensure the test set contains at least 5000 elements. Optimization is run using the remaining train
set which is corrupted as specified next. The results are averaged over 20 runs for each datasets.
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Dataset # Samples # Features # Classes Source
Codrna (Uzilov et al., 2006) 488,565 8 2 OpenML
Sensorless (Bator, 2015) 58,509 48 11 UCI
Covtype (Blackard, 1998) 581,012 52 7 scikit-learn
Miniboone (Roe, 2010) 130,065 50 2 UCI
Phishing (Hannousse & Yahiouche, 2020) 11,430 87 2 Kaggle

Table 1: Main characteristics of the data sets used in experiments, including number of samples, number of
features, number of classes and sources.

Data corruption We corrupt train data samples at each iteration uniformly at random with probability
η = 0.02.

Although we run the optimization using one sample per iteration, the datasets we use are available offline so
that we have a data matrix denoted X ∈ Rn×(d+1) whose last column represents the labels. This corresponds
to n samples and d features.

For each feature j ∈ JdK, we compute µ̂j and σ̂j the empirical mean and standard deviation respectively. We
also sample a random unit vector u of size d and introduce corruption as follows:

• For the label column, we introduce corruption by changing the value uniformly at random among
the other possible modalities.

• For features, we introduce corruption by replacing the original values with one of the following
possibilities with equal probability:

– a vector ξ sampled coordinatewise according to ξj = rj +1000×σ̂jν where rj is a value randomly
picked in the column X•,j and ν is a sample from the Student distribution with 2.1 degrees of
freedom.

– a vector ξ sampled coordinatewise according to ξj = µ̂j + 1000× σ̂juj + z where z is a standard
Gaussian.

– a vector ξ sampled according to ξ = µ̂ + 1000 × σ̂ ⊗ w where w is a uniformly sampled unit
vector.

C Geometric convergence speed and relation to step size

The geometric Markov chain convergence stated in Theorem 1 occurs at a speed determined by the con-
traction factor ρ which mainly depends on the step size β and quantile p defining the iteration. Therefore,
an explicit formulation of this dependency is necessary to precisely quantify the convergence speed. This
question is lightly touched upon in (Yu et al., 2021) whose Proposition 2.1 is an analogous SGD ergodicity
result. Like Theorem 1, the latter relies on the Markov chain theory presented in (Meyn & Tweedie, 1993).
It is argued in (Yu et al., 2021) that a vanishing step size β → 0 causes ρ to be close to one, leading to
slow convergence but with smaller bias. However, these considerations remain asymptotic and do not quite
address the convergence speed issue.

More generally, the precise estimation of the factor ρ goes back to the evaluation of the convergence speed
of a Markov chain satisfying a geometric drift property. Near optimal results exist for chains with particular
properties such as stochastic order (Lund et al., 1996; Roberts & Tweedie, 2000), reversibility (Jerison,
2019) or special assumptions on the renewal distribution (Berenhaut & Lund, 2001). Unfortunately, such
properties do not hold for SGD. Let (θt)t≥0 be a Markov chain satisfying the drift property:

∆V (θ) ≤
{

(1− λ)V (θ) for θ /∈ C
b for θ ∈ C

with λ ∈ (0, 1), b < +∞, V a real function such that V (θ) ≥ 1 for all θ and C a (bounded) small set (see (Meyn
& Tweedie, 1993, Chapter 5)). Then, based on the available literature (Baxendale, 2005; Bednorz, 2013),
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(θt)t≥0 converges as in Theorem 1 with ρ ≈ 1−λ3, the latter estimation being unimprovable without further
information on (θt)t≥0 (see the discussion following (Baxendale, 2005, Theorem 3.2)). For the specific setting
of Theorem 1 (and more generally for SGD by setting p = 1), this only yields an excessively pessimistic
estimate

ρ ≈ 1− (pβµ)3 (17)

whereas it is reasonable to conjecture that ρ ≈ 1− pβµ. The suboptimality of (17) is felt in the uncorrupted
case in Proposition 2 and Corollary 1 where one is tempted to set β of order 1/T, with T the horizon,
reducing the bias to O(1/

√
T ). However, this results in an unacceptable sample cost of order T 3 before

convergence occurs. On the other hand, assuming the estimate ρ ≈ 1 − pβµ holds, using a step size of
order log(T )/T allows to combine fast convergence and near optimal statistical performance. Finally, note
that in the corrupted case, the optimal statistical rate is O(η1−1/q) so that striking such a compromise is
unnecessary.

D Proofs

D.1 Preliminary lemmas

Lemma 1. Grant Assumptions 1 and 2. For any θ, θ′ ∈ Rd and β ≤ 2
µ+L we have :∥∥θ − β∇L(θ)− (θ′ − β∇L(θ′))

∥∥2 ≤ (1− βµ)2∥θ − θ′∥2 (18)

Proof. For β ≤ 2
µ+L , we have:∥∥θ − β∇L(θ)−(θ′ − β∇L(θ′))

∥∥2

= ∥θ − θ′∥2 − 2β⟨θ − θ′,∇L(θ)−∇L(θ′)⟩+ β2∥∇L(θ)−∇L(θ′)∥2

≤ (1− β2µL)∥θ − θ′∥2 − β(2− β(µ+ L))⟨∇L(θ)−∇L(θ′), θ − θ′⟩)
≤ (1− β2µL)∥θ − θ′∥2 − β(2− β(µ+ L))µ∥θ − θ′∥2

= (1− β2µL− 2βµ+ β2µ(µ+ L))∥θ − θ′∥2

= (1− βµ)2∥θ − θ′∥2,

where we used the inequalities :∥∥∇L(θ)−∇L(θ′)
∥∥2 ≤ (µ+ L)⟨∇L(θ)−∇L(θ′), θ − θ′⟩ − µL∥θ − θ′∥2 (19)

µ∥θ − θ′∥2 ≤ ⟨∇L(θ)−∇L(θ′), θ − θ′⟩, (20)

valid for all θ, θ′. Inequality (19) is stated, for example, in (Nesterov, 2014, Theoerem 2.1.12) (see
also (Bubeck, 2015, Lemma 3.11) and (20) is just a characterization of strong convexity (see for instance (Nes-
terov, 2014, Theorem 2.1.9)).

Note that Lemma 1 is a simple generalization of the usual contraction property in strongly-convex optimiza-
tion where θ′ is usually taken as θ⋆. In that case, one has ∇L(θ′) = 0. An example of such a result is given
by (Bubeck, 2015, Theorem 3.10). A similar inequality to Lemma 1 was previously obtained in (Dieuleveut
et al., 2020, Proposition 2) where convergence of SGD as Markov chain was studied.

In the sequel we will write gradient samples G(θ, ζ) and G̃(θ, ζ) simply as G(θ) and G̃(θ) respectively in
order to lighten notation. The following lemma will be needed in the proof of Theorem 1.
Lemma 2. Let Assumptions 4 and 5 hold. Let θ ∈ Rd be fixed and let G̃(θ) ∼ DI(θ) be a non corrupted
gradient sample. Choosing the clipping threshold as τθ = Qp(∥G̃(θ)∥) for some p ∈ (0, 1) and denoting
αθ = min

(
1, τθ

∥G(θ)∥

)
the clipping factor and its average αθ = E

[
αθ|θ,G(θ)=G̃(θ)∼DI(θ)

]
we have:∥∥E[αθG̃(θ)]− αθ∇L(θ)

∥∥ ≤ (1− p)1−1/q
(
Aq∥θ − θ⋆∥+Bq

)
, (21)
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τθ ≤
∥∥∇L(θ)

∥∥ +Qp(∥εθ∥)
≤

∥∥∇L(θ)
∥∥ + (1− p)−1/q

(
Aq∥θ − θ⋆∥+Bq

)
. (22)

If Assumption 5 holds with q ≥ 2 then we also have

E
∥∥αθG̃(θ)− E[αθG̃(θ)]

∥∥2 ≤
(
Aq∥θ − θ⋆∥+Bq

)2 + 5(1− p)τ2
θ . (23)

Proof. We condition on the event that the sample G(θ) is not corrupted i.e. G(θ)= G̃(θ)∼DI(θ). Noticing
that 1∥G̃(θ)∥≤τθ

= 1− 1∥G̃(θ)∥>τθ
and using the equality E[G̃(θ)] = ∇L(θ), we find :

E[αθG̃(θ)]− αθ∇L(θ) = E
[
(αθ − αθ)

(
G̃(θ)−∇L(θ)

)]
= E

[
(1− αθ)

(
G̃(θ)−∇L(θ)

)
1∥G̃(θ)∥≤τθ

]
+ E

[
(αθ − αθ)

(
G̃(θ)−∇L(θ)

)
1∥G̃(θ)∥>τθ

]
= (αθ − 1)E

[(
G̃(θ)−∇L(θ)

)
1∥G̃(θ)∥>τθ

]
− αθE

[(
G̃(θ)−∇L(θ)

)
1∥G̃(θ)∥>τθ

]
+ E

[(
τθ/∥G̃(θ)∥

)(
G̃(θ)−∇L(θ)

)
1∥G̃(θ)∥>τθ

]
= −E

[(
1− τθ/∥G̃(θ)∥

)(
G̃(θ)−∇L(θ)

)
1∥G̃(θ)∥>τθ

]
.

Using our choice of τθ and Hölder’s inequality, we find :∥∥E[αθG̃(θ)]− αθ∇L(θ)
∥∥ ≤ E

[
1∥G̃(θ)∥>τθ

∣∣1− τθ/∥G̃(θ)∥
∣∣∥∥G̃(θ)−∇L(θ)

∥∥]
≤ E

[
1∥G̃(θ)∥>τθ

∥∥G̃(θ)−∇L(θ)
∥∥]

≤ (1− p)1−1/qE
[
∥G̃(θ)−∇L(θ)

∥∥q]1/q

≤ (1− p)1−1/q
(
Aq∥θ − θ⋆∥+Bq

)
,

where the second step corresponds to the inequality
∣∣1 − τθ/∥G̃(θ)∥

∣∣ ≤ 1 under the event
{
∥G̃(θ)∥ > τθ

}
.

Note also that we used Assumption 5 since θ is fixed. Inequality (21) is now proven. To show (22), we first
write the inequality:

τθ = Qp(∥G̃(θ)∥) = Qp(∥∇L(θ) + εθ∥) ≤ ∥∇L(θ)∥+Qp(∥εθ∥),

which holds since ∥G̃(θ)∥ is a positive random variable. Further, using Assumption 5, we have:

1− p = P
(
∥εθ∥ > Qp(∥εθ∥)

)
≤ E[∥εθ∥q]
Qp(∥εθ∥)q

≤
(Aq∥θ − θ⋆∥+Bq

Qp(∥εθ∥)

)q

.

It only remains to take the q-th root and plug the obtained bound on Qp(∥εθ∥) back above to obtain (22).

To show (23), we define the event E = {∥G̃(θ)∥ ≤ τθ} and denote E its complement such that P(E) = p =
1− P(E). We write

E
∥∥αθG̃(θ)− E[αθG̃(θ)]

∥∥2 = pE
[∥∥αθG̃(θ)− E[αθG̃(θ)]

∥∥2|E
]

+ (1− p)E
[∥∥αθG̃(θ)− E[αθG̃(θ)]

∥∥2|E
]

≤ pE
[∥∥αθG̃(θ)− E[αθG̃(θ)]

∥∥2|E
]

+ 4(1− p)τ2
θ

= pE
[∥∥αθG̃(θ)− E[αθG̃(θ)|E ]

∥∥2|E
]

+ p
∥∥E[αθG̃(θ)|E ]− E[αθG̃(θ)]

∥∥2 + 4(1− p)τ2
θ

= pE
[∥∥αθG̃(θ)− E[αθG̃(θ)|E ]

∥∥2|E
]

+ p
∥∥(1− p)E[αθG̃(θ)|E ]− (1− p)E[αθG̃(θ)|E ]

∥∥2 + 4(1− p)τ2
θ

≤ pE
[∥∥αθG̃(θ)− E[αθG̃(θ)|E ]

∥∥2|E
]

+ 4p(1− p)2τ2
θ + 4(1− p)τ2

θ

≤ pE
[∥∥αθG̃(θ)− E[αθG̃(θ)|E ]

∥∥2|E
]

+ 5(1− p)τ2
θ
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where we used the identity E[αθG̃(θ)] = pE[αθG̃(θ)|E ]+(1−p)E[αθG̃(θ)|E ] and the inequalities ∥αθG̃(θ)∥ ≤ τθ

and p(1− p) ≤ 1/4 which hold in all cases. In addition, we have

pE
[∥∥αθG̃(θ)− E[αθG̃(θ)|E ]

∥∥2|E
]

= pE
[∥∥G̃(θ)− E[G̃(θ)|E ]

∥∥2|E
]
≤ E

[∥∥G̃(θ)− E[G̃(θ)]
∥∥2]

≤ E
[∥∥G̃(θ)−∇L(θ)

∥∥q]2/q ≤
(
Aq∥θ − θ⋆∥+Bq

)2
.

The first inequality is obtained by applying Lemma 3 to each coordinate of G̃(θ) while conditioning on θ.
The second one uses Jensen’s inequality and the third results from Assumption 5.

The statement of Lemma 2 appears to be novel and is enabled by the specific choice of the gradient norm
quantile as clipping threshold.
Lemma 3. Let Y be a real random variable and E an event, then we have the inequality

P(E)E[(Y − E[Y |E ])2|E ] ≤ E(Y − E[Y ])2.

Proof. Define the conditional variance of a real random variable Y w.r.t. another variable Y as Var(Y |X) =
E[(Y − E[Y |X])2|X].

By Eve’s law(see for instance (Blitzstein & Hwang, 2019, Theorem 9.5.4)) we have the identity

Var(Y ) = E[Var(Y |X)] + Var(E[Y |X]),

which entails the inequality Var(Y ) ≥ E[Var(Y |X)]. Applying the latter with X = 1E yields

E(Y − E[Y ])2 = Var(Y ) ≥ P(E)E[(Y − E[Y |E ])2|E ] + (1− P(E))E[(Y − E[Y |E ])2|E ],

which implies the result.

We show the geometric ergodicity of the SGD Markov chain (θt)t≥0 by relying on (Meyn & Tweedie, 1993,
Theorem 15.0.1). We will show that the following function :

V (θ) := 1 + ∥θ − θ⋆∥2,

satisfies a geometric drift property. We define the action of the transition kernel Pβ,p on real integrable
functions f over Rd through:

Pβ,pf(θ) =
∫
f(θ′)Pβ,p(θ, dθ′) = E

[
f(θ − αθβG(θ))

]
.

We also define the variation operator:

∆f(θ) := Pβ,pf(θ)− f(θ).

In many of our proofs, we will make use of the following adjustable bound.
Fact 1. For any real numbers a, b and positive ϵ, we have the inequality

2ab ≤ a2ϵ+ b2/ϵ.

D.2 Preliminary properties for Markov chains

In order to prove Theorem 1, we set up the formalism we need from (Meyn & Tweedie, 1993) through the
following definitions.
Definition 2 (Small set). A set C ∈ B(Rd) is called a small set if there exists an m > 0, and a non-trivial
measure ν on B(Rd) such that for all θ ∈ C and B ∈ B(Rd),

Pm
β,p(θ,B) ≥ ν(B).

When this is the case, we say that C is (m, ν)-small.
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Minorization properties such as the one above are useful for proving the convergence of Markov chains. We
define an analogous one via the notion of sampled chain.
Definition 3 (Sampled chain). Let a be a probability measure on Z+ i.e. such that a(n) ≥ 0 for n ≥ 0 and∑∞

n=0 a(n) = 1. Then the transition kernel for the sampled Markov chain w.r.t. the distribution a is

Ka(θ,A) =
∞∑

n=0
Pn

β,p(θ,A)a(n) for x ∈ Rd, A ∈ B(Rd).

We define the notion of a petite set for a sampled Markov chain.
Definition 4 (Petite set). Let a be a probability measure on Z+ defining a sampled chain. A set C ∈ B(Rd)
is called a (a, ν)-petite if

Ka(θ,B) ≥ ν(B),

for all θ ∈ C and B ∈ B(Rd) where ν is a non-trivial measure on B(Rd).

Note that an (m, ν)-small set is also (a, ν)-petite with a = δm. Finally, we define the norm of a measure
w.r.t. a potential function.
Definition 5 (f -norm). Let f : Rd → R be a function such that f ≥ 1 and let ν be a signed measure on Rd.
We define the f -norm of ν as

∥ν∥f = sup
g:|g|≤f

|ν(g)| = sup
g:|g|≤f

∣∣∣ ∫
g(θ)ν(dθ)

∣∣∣.
In particular, we have ∥ν∥f ≥ ∥ν∥TV.

D.3 Proof of Theorem 1

We will assume in this proof that q ≥ 2. The case q ∈ (1, 2) will be treated in Appendix D.5.

First, we define τ = infθ τθ. Note that Assumption 4 excludes the existence of θ such that G̃(θ) = 0 almost
surely, therefore, we have τ > 0.

Thanks to Assumption 4 and conditioning on θt = θ ∈ Rd for t ≥ 0, the distribution of θt+1 has a strictly
positive density at least on a ball of radius βτ around θt. This implies that the chain is aperiodic since
Pβ,p(θt,Wθt

) > 0 for any neighborhood Wθt
contained in the previous ball. Moreover, by induction, the

distribution of θt+m has positive density at least on a ball of radius mβτ around θt. Thus for m high enough
we have Pm

β,p(θt, A) > 0 for any set A with non zero Lebesgue measure. It follows that the Markov chain is
irreducible w.r.t. Lebesgue’s measure and is thus ψ-irreducible (see (Meyn & Tweedie, 1993, Chapter 4)).

For fixed θ, condition (9) implies β < 2
µ+L and using Lemma 1 and denoting αθ and αθ as in Lemma 2, we

find:

Pβ,p∥θ − θ⋆∥2 = E∥θ − βαθG(θ)− θ⋆∥2

≤ ηE
(
∥θ − θ⋆∥+ βτθ

)2 + (1− η)E
[
∥θ − αθβG̃(θ)− θ⋆∥2]

≤ ηE
(
∥θ − θ⋆∥+ βτθ

)2 + (1− η)E
[
∥θ − αθβ∇L(θ)− θ⋆∥2−

2β⟨θ − αθβ∇L(θ)− θ⋆, αθG̃(θ)− αθ∇L(θ)⟩+ β2∥αθG̃(θ)− αθ∇L(θ)∥2]
≤ ηE

(
∥θ − θ⋆∥+ βτθ

)2 + (1− η)E
[(
∥θ − αθβ∇L(θ)− θ⋆∥

+ β
∥∥E[αθG̃(θ)]− αθ∇L(θ)

∥∥)2 + β2(
Aq∥θ − θ⋆∥+Bq

)2 + 5β2(1− p)τ2
θ

]
,

where the last step uses that E
∥∥αθG̃(θ)−αθ∇L(θ)

∥∥2 = E
∥∥αθG̃(θ)−E[αθG̃(θ)]

∥∥2 +
∥∥E[αθG̃(θ)]−αθ∇L(θ)

∥∥2

and Lemma 2.
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Using Lemmas 1 and 2 and Assumption 5 and grouping the terms by powers of ∥θ − θ⋆∥, we arrive at

Pβ,p∥θ − θ⋆∥2 ≤
(
η + (1− η)(1− αθβµ)2)

E∥θ − θ⋆∥2+
2βE

[
∥θ − θ⋆∥

(
ητθ + (1− η)(1− αθβµ)

∥∥E[αθG̃(θ)]− αθ∇L(θ)
∥∥)]

+

β2(
ητ2

θ + (1− η)
(∥∥E[αθG̃(θ)]− αθ∇L(θ)

∥∥2 + (Aq∥θ − θ⋆∥+Bq)2 + 5(1− p)τ2
θ

))
≤ E

[
A∥θ − θ⋆∥2 + 2βB∥θ − θ⋆∥

]
+ β2C

≤ (A + βκ)E
[
∥θ − θ⋆∥2]

+ βB2

κ
+ β2C, (24)

where we used Fact 1 and defined the quantities A,B,C which may be bounded as follows

A = η + (1− η)(1− αθβµ)2 + 2β(η(L+Aq(1− p)−1/q) + (1− η)(1− αθβµ)(1− p)−1/qAq)
+ β2((η + 5(1− p))(L+ (1− p)−1/qAq)2 + 4A2

q)
≤ 1− 2β

(
(1− η)αθµ− η(L+Aq(1− p)−1/q)− (1− η)(1− αθβµ)(1− p)1−1/qAq

)
+

β2(
(1− η)(αθµ)2 + 2(η + 5(1− p))

(
L+ (1− p)− 1

qAq

)2 + 4A2
q

)
≤ 1− 2β

(
(1− η)pµ− ηL− (1− p)− 1

qAq

(
1− p(1− η)

))
+ β2(

µ2 + 24ηL2 + 28A2
q

)
= 1− 2βκ+ β2(

µ2 + 24ηL2 + 28A2
q

)
,

B =
(
η(1− p)−1/q + (1− η)(1− αθβµ)(1− p)1−1/q

)
Bq

≤ (1− p)−1/qBq(η + (1− p))
C =

(
4 + 2(η + 5(1− p))(1− p)−2/q

)
B2

q

The above bounds use the simple properties p ≤ αθ ≤ 1, 0 ≤ η ≤ 1, 1− αθβµ ≤ 1 and (a+ b)2 ≤ 2a2 + 2b2

for all a, b.

Thanks to our choice of β, we get that A+βκ < 1. It is now easy to check that V (θ) = 1+∥θ−θ⋆∥2 satisfies
the contraction

Pβ,pV (θ) ≤ (A + βκ)︸ ︷︷ ︸
=:̃λ<1

V (θ) + 1− (A + βκ) + βB2

κ
+ C︸ ︷︷ ︸

=:̃b

.

We now define the set C =
{
θ ∈ Rd , V (θ) ≤ 2b̃/(1− λ̃)

}
for which we have:

∆V (θ) ≤ −1− λ̃
2 V (θ) + b̃1θ∈C . (25)

For such C, let ∆C = diam(C) be its diameter and set mC =
⌈

∆C
βτ

⌉
. As previously mentioned in the beginning

of the proof, conditioning on θt = θ, the distribution of θt+m admits a positive density at least over a ball of
radius mβτ around θ i.e. there exists h+m

θ (ω) ≥ 0 satisfying

h+m
θ (ω) > 0 for ∥θ − ω∥ < mβτ and Pm

β,p(θ,A) ≥
∫

A

h+m
θ (ω)dω for A ∈ B(Rd).

We then let hC(ω) = infθ∈C h
+mC
θ (ω) and define the measure νC by:

νC(A) =
∫

A∩C
hC(θ)dθ.

The above measure is non trivial since our choice of mC ensures that hC defines a non zero density at least
on C. It follows that for all θ0 ∈ C, we have the following minorization property:

PmC
β,p (θ0, A) ≥ νC(A) for all A ∈ B(Rd), (26)
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which implies that the set C is (mC , νC)-small and also (δmC , νC)-petite as a result. We have previously
shown that the Markov chain (θt) is irreducible and aperiodic. Moreover, we have exhibited a petite set C
(via (26)) towards which the geometric drift property (25) holds. Thus, condition (iii) of (Meyn & Tweedie,
1993, Theorem 15.0.1) is fulfilled.

By the latter result, it follows that the chain (θt) admits a unique invariant probability measure πβ,p and
there exist r > 1 and M <∞ such that:∑

t≥0
rt

∥∥Pβ,p(θ0, ·)− πβ,p

∥∥
V
≤MV (θ0). (27)

Taking ρ = r−1 and using that ∥ν∥V ≥ ∥ν∥TV for any signed measure ν concludes the proof.

D.4 Proof of Proposition 1

We consider the case q ≥ 2. Since the distribution πβ,p is invariant by the transition kernel Pβ,p, we can
deduce that for θ ∼ πβ,p, we have

E∥θ − θ⋆∥2 = E∥θ − βαθG(θ)− θ⋆∥2.

From here, we can follow similar computations to those leading to (24) in the proof of Theorem 1. By setting
p = 1− η and using that q ≥ 2, we additionally have the bounds B ≤ 3η1−1/qBq and C ≤ 16B2

q .

Hence, we have that:

E∥θ − θ⋆∥2 ≤ (A + βκ)E∥θ − θ⋆∥2 + βB2

κ
+ β2C

=⇒ E∥θ − θ⋆∥2 ≤ βB2

κ(1− A− βκ) + β2C

1− A− βκ
. (28)

Note that (9) entails
1− A− βκ ≥ βκ− β2(µ2 + 24ηL2 + 28A2

q) ≥ 3βκ/4. (29)

Plugging this into (28) and using (10), we find

E∥θ − θ⋆∥2 ≤
12η2−2/qB2

q

κ2 +
64βB2

q

3κ ≤
34η2−2/qB2

q

κ2

which implies the result.

D.5 The case q ∈ (1, 2)

Similar results hold for the case q ∈ (1, 2) but require a different proof given below.
Proposition 4. Let Assumptions 1-5 hold with q ∈ (1, 2) and let QC-SGD be run with quantile p ∈ [η, 1−η].
Assume that

κ′ := (1− η)pµ− qηL− q(η(1− p)−1/q + (1− p)1−1/q)Aq > 0, (30)

and take a step-size satisfying

β ≤
( κ′

86(L+Aq)q

) 1
q−1

. (31)

then the generated Markov chain (θt)t converges geometrically to a unique invariant measure πβ,1−η as in
Theorem 1. In addition, for p = 1− η, β ≤ η/κ′ and θ ∼ πβ,1−η, we have

E∥θ − θ⋆∥q ≤ 128
(η1−1/qBq

κ′

)q

.
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Proof. We first need to prove that convergence holds as stated in Theorem 1. We establish the properties
of irreducibility, aperiodicity and exhibit a petite similarly as before. However, the demonstration of a
geometric drift property such as (25) requires a different approach.

In this proof, we will use the following inequalities valid for all positive x, y and ε and q ∈ (1, 2)

(x+ y)q ≤ 2q−1(xq + yq), (32)

(x+ y)q ≤ xq + qxq−1y + yq, (33)

(a consequence of the inequality (1 + a)q ≤ 1 + qa+ aq for a > 0),

(x+ y)q−1 ≤ xq−1 + yq−1, (34)

and
xy ≤ (xε)q

q
+ q − 1

q
(y/ε)q/(q−1) (35)

which is a consequence of Young’s inequality applied to the pair xε and y/ε with exponent q and its conjugate.
We first write

Pβ,p∥θ − θ⋆∥q = E∥θ − βαθG(θ)− θ⋆∥q ≤ ηE
(
∥θ − θ⋆∥+ βτθ

)q + (1− η)E∥θ − αθβG̃(θ)− θ⋆∥q

Defining the notation Eθ[·] = E[·|θ], we have

E∥θ − αθβG̃(θ)− θ⋆∥q = E
[(
∥θ − αθβ∇L(θ)− θ⋆∥2−

2β⟨θ − αθβ∇L(θ)− θ⋆, αθG̃(θ)− αθ∇L(θ)⟩+ β2∥αθG̃(θ)− αθ∇L(θ)∥2)q/2]
≤ E

[(
∥θ − αθβ∇L(θ)− θ⋆∥2 − 2β⟨θ − αθβ∇L(θ)− θ⋆, αθG̃(θ)− αθ∇L(θ)⟩+

β2(∥αθG̃(θ)− Eθ[αθG̃(θ)]∥2 + 2⟨αθG̃(θ)− Eθ[αθG̃(θ)],Eθ[αθG̃(θ)]− αθ∇L(θ)⟩+

∥Eθ[αθG̃(θ)]− αθ∇L(θ)∥2)
)q/2]

≤ E
[∣∣∥θ − αθβ∇L(θ)− θ⋆∥2 − 2β⟨θ − αθβ∇L(θ)− θ⋆, αθG̃(θ)− αθ∇L(θ)⟩+

β2(2⟨αθG̃(θ)− Eθ[αθG̃(θ)],Eθ[αθG̃(θ)]− αθ∇L(θ)⟩+ ∥Eθ[αθG̃(θ)]− αθ∇L(θ)∥2)
∣∣q/2]

+ βqE∥αθG̃(θ)− Eθ[αθG̃(θ)]∥q

≤ E
[∣∣∥θ − αθβ∇L(θ)− θ⋆∥2 − 2β⟨θ − αθβ∇L(θ)− θ⋆,Eθ[αθG̃(θ)]− αθ∇L(θ)⟩+

β2∥Eθ[αθG̃(θ)]− αθ∇L(θ)∥2∣∣q/2]
+ βqE∥αθG̃(θ)− Eθ[αθG̃(θ)]∥q

≤ E
(
∥θ − αθβ∇L(θ)− θ⋆∥+ β∥Eθ[αθG̃(θ)]− αθ∇L(θ)∥

)q + βqE∥αθG̃(θ)− Eθ[αθG̃(θ)]∥q,

where we used (34), conditioned on θ, then used Jensen’s inequality for Eθ and a Cauchy-Schwarz inequality.
We focus on the last term. Defining the event E = {∥G̃(θ)∥ ≤ τθ} such that P(E) = p, we have

E∥αθG̃(θ)− Eθ[αθG̃(θ)]∥q = (1− p)E[∥αθG̃(θ)− Eθ[αθG̃(θ)]∥q|E ]
+ pE[∥αθG̃(θ)− Eθ[αθG̃(θ)]∥q|E ]
≤ (1− p)(2τθ)q + pE[∥αθG̃(θ)− Eθ[αθG̃(θ)]∥q|E ].

In addition, using (34) twice, we find

E[∥αθG̃(θ)− Eθ[αθG̃(θ)]∥q|E ] ≤ 2q−1(
E[∥αθG̃(θ)− αθ∇L(θ)∥q|E ]+

∥αθ∇L(θ)− Eθ[αθG̃(θ)]∥q
)

≤ 2q−1(
2q−1E[∥G̃(θ)−∇L(θ)∥q|E ] + 2q−1(1− αθ)q∥∇L(θ)∥q+

∥αθ∇L(θ)− Eθ[αθG̃(θ)]∥q
)
.
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Therefore, from the two previous displays and using Assumption 1, Lemma 2 and the inequality pE[∥G̃(θ)−
∇L(θ)∥q|E ] ≤ E[∥G̃(θ)−∇L(θ)∥q], we get

E∥αθG̃(θ)− Eθ[αθG̃(θ)]∥q ≤ (1− p)(2τθ)q + 22q−2p(1− αθ)qLq∥θ − θ⋆∥q

+ (22q−2 + 2q−1p(1− p)q−1)(Aq∥θ − θ⋆∥+Bq)q.

We also have

(1− p)τ q
θ ≤ (1− p)((L+ (1− p)−1/qAq)∥θ − θ⋆∥+ (1− p)−1/qBq)q

≤ ((L+Aq)∥θ − θ⋆∥+Bq)q.

Plugging into the previous display and simplifying leads to

E∥αθG̃(θ)− Eθ[αθG̃(θ)]∥q ≤ 22q−2((L+Aq)∥θ − θ⋆∥+Bq)q + 22q−2p(1− αθ)q(L∥θ − θ⋆∥)q

+ (22q−2 + 2q−1p(1− p)q−1)(Aq∥θ − θ⋆∥+Bq)q

≤ 22q−1((L+Aq)∥θ − θ⋆∥+Bq)q + (22q−2 + 2q−1p(1− p)q−1)(Aq∥θ − θ⋆∥+Bq)q

≤ 14((L+Aq)∥θ − θ⋆∥+Bq)q. (36)

Using these inequalities along with Lemma 2 to bound E∥θ − θ⋆∥q, we find that

Pβ,p∥θ − θ⋆∥q ≤ ηE
(
∥θ − θ⋆∥+ βτθ

)q + (1− η)βqE∥αθG̃(θ)− Eθ[αθG̃(θ)]∥q

+ (1− η)E
(
∥θ − αθβ∇L(θ)− θ⋆∥+ β∥Eθ[αθG̃(θ)]− αθ∇L(θ)∥

)q

≤ ηE
(
∥θ − θ⋆∥q + βqτ q

θ + qβ∥θ − θ⋆∥q−1τθ

)
+ (1− η)E

(
(1− αθβµ)q∥θ − θ⋆∥q

+ βq∥Eθ[αθG̃(θ)]− αθ∇L(θ)∥q + qβ∥θ − θ⋆∥q−1∥Eθ[αθG̃(θ)]− αθ∇L(θ)∥
)

+ (1− η)βqE∥αθG̃(θ)− Eθ[αθG̃(θ)]∥q

≤ E
[
(1− (1− η)αθβµ)∥θ − θ⋆∥q

]
+ qβE

[
∥θ − θ⋆∥q−1(

ητθ

+ (1− η)∥Eθ[αθG̃(θ)]− αθ∇L(θ)∥
)

+ βq
(
ητ q

θ

+ (1− η)
(
∥Eθ[αθG̃(θ)]− αθ∇L(θ)∥q + ∥αθG̃(θ)− Eθ[αθG̃(θ)]∥q

))]
≤

(
1− β((1− η)pµ− qη(L+ (1− p)−1/qAq)− q(1− η)(1− p)1−1/qAq)

+ βq2q−1(η(L+ (1− p)−1/qAq)q + (1− η)14(L+Aq)q

+ (1− η)(1− p)q−1Aq
q)

)
E∥θ − θ⋆∥q + qβE∥θ − θ⋆∥q−1(

(1− η)(1− p)1−1/qBq

+ η(1− p)−1/qBq

)
+ βq2q−1(

η(1− p)−1Bq
q + (1− η)(1− p)q−1Bq

q + 14Bq
q

)
≤ AE∥θ − θ⋆∥q + qβBE∥θ − θ⋆∥q−1 + βq2q−1Cq (37)

where the second inequality uses Lemma 1 and (33) twice, the third inequality rearranges according to
powers of ∥θ− θ⋆∥, the fourth one applies Lemma 2 and (36) and the last inequality defines the factors A,B
and C. Since p ≤ 1− η, these satisfy:

A ≤ 1− βκ′ + βq2q−1(16)(L+Aq)q, B ≤ 2Bq and C ≤ 24/qBq

Applying (35), we have for all ε > 0 that

BE∥θ − θ⋆∥q−1 ≤ ε
q

q−1 E∥θ − θ⋆∥q

q/(q − 1) + B/ε)q

q
≤ κ′E∥θ − θ⋆∥q

8q + Bq

q

( κ′

8(q − 1)

)1−q

, (38)

where the second inequality corresponds to the choice ε =
(

κ′

8(q−1)

) q−1
q . Plugging back into (37) and using

condition (31) ensures that A+βκ′/8 < 1. Defining V (θ) = 1+∥θ−θ⋆∥q, we get that satisfies the contraction

Pβ,pV (θ) ≤ (A + βκ′/8)︸ ︷︷ ︸
=:̃λ<1

V (θ) + 1− (A + βκ′/8) + βBq
( κ′

8(q − 1)

)1−q

+ βq2q−1Cq︸ ︷︷ ︸
=:̃b

.
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From here, we use the same argument as the previous proof of Theorem 1 to deduce that the Markov chain
converges to a unique invariant distribution πβ,p. Now, since convergence occurs to a limit distribution πβ,p,
we have, as before, for θ ∼ πβ,p the identity

E∥θ − θ⋆∥q = E∥θ − βαθG(θ)− θ⋆∥q.

By setting p = 1 − η, we can show that in fact B ≤ 2η1−1/qBq. Plugging back into (37) and using (38)
and (31), we find

E∥θ − θ⋆∥q ≤
(
1− (7/8)βκ′ + 32βq(L+Aq)q

)
E∥θ − θ⋆∥q + β

(
2η1−1/qBq

)q
( κ′

8(q − 1)

)1−q

+ 32βqBq
q

≤
(
1− (3/8)βκ′)E∥θ − θ⋆∥q + β

(
2η1−1/qBq

)q
( κ′

8(q − 1)

)1−q

+ 32βqBq
q

Now using the condition β ≤ η/κ′ and rearranging the inequality, we finally arrive at

E∥θ − θ⋆∥q ≤ 8
3

(η1−1/qBq

κ′

)q(
2(8(q − 1))q−1 + 32

)
≤ 128

(η1−1/qBq

κ′

)q

,

which is the desired result.

D.6 Proof of Proposition 2

We use the invariance of πβ,p by the transition kernel Pβ,p. For real λ, this implies the equality

E exp
(
λ2∥θ − θ⋆∥2)

= E exp
(
λ2∥θ − αθβG(θ)− θ⋆∥2)

. (39)

We then write:∥∥θ − αθβG(θ)− θ⋆
∥∥2 =

∥∥θ − αθβ∇L(θ)− θ⋆
∥∥2 + β2∥∥αθG(θ)− αθ∇L(θ)

∥∥2

−2β
〈
θ − αθβ∇L(θ)− θ⋆, αθG(θ)− E[αθG(θ)] + E[αθG(θ)]− αθ∇L(θ)

〉
.

We also have the inequality∥∥αθG(θ)− αθ∇L(θ)
∥∥2 ≤ 2

∥∥αθG(θ)− E[αθG(θ)]
∥∥2 + 2

∥∥E[αθG(θ)]− αθ∇L(θ)
∥∥2
.

Conditioning upon θ, we have that ∥αθG(θ) − E[αθG(θ)]∥ ≤ 2τθ ≤ 2τ . Moreover, the vector αθG(θ) −
E[αθG(θ)] is centered, therefore it is sub-Gaussian with constant 2τ (see (Vershynin, 2018, Proposition
2.5.2)). Still conditioning on θ, using these two properties and a Cauchy-Schwarz inequality, we find:

E exp
(
λ2(

2β2∥∥αθG(θ)− E[αθG(θ)]
∥∥2 − 2β

〈
θ − αθβ∇L(θ)− θ⋆, αθG(θ)− E[αθG(θ)]

〉))
≤ exp

(
8λ2β2τ2 + 16λ4β2τ2∥∥θ − αθβ∇L(θ)− θ⋆

∥∥2)
.

Putting everything together in (39), we get:

E exp(λ2∥θ − θ⋆∥2) ≤ E exp
(
λ2(

(1 + 16λ2β2τ2)
∥∥θ − αθβ∇L(θ)− θ⋆

∥∥2 + 8β2τ2

+ 2β2∥∥E[αθG(θ)]− αθ∇L(θ)
∥∥2 + 2β

∥∥θ − αθβ∇L(θ)− θ⋆
∥∥∥∥E[αθG(θ)]− αθ∇L(θ)

∥∥))
≤ E exp

(
λ2(

(1 + 16λ2β2τ2 + ϵ)
∥∥θ − αθβ∇L(θ)− θ⋆

∥∥2 + 8β2τ2

+ 2β2(1 + 1/(2ϵ))
∥∥E[αθG(θ)]− αθ∇L(θ)

∥∥2))
,
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where we used Fact 1. Now, recalling that αθ ≥ p, we set ϵ = αθβµ/2 and restrict λ to λ ≤ (4τ
√

2β/pµ)−1

to find:

E exp
(
λ2∥θ − θ⋆∥2)

≤ E exp
(
λ2(

(1 + 16λ2β2τ2 + ϵ)∥θ − αθβ∇L(θ)− θ⋆∥2 + 8β2τ2

+ 2β2(1 + 1/(2ϵ))∥E[αθG(θ)]− αθ∇L(θ)∥2))
≤ E exp

(
λ2

(
(1+αθβµ)

∥∥θ−αθβ∇L(θ)−θ⋆
∥∥2 + 8β2τ2 + 4β

αθµ

∥∥E[αθG(θ)]− α∇L(θ)
∥∥2

))
≤ E exp

(
λ2

(
(1 + αθβµ)(1− αθβµ)2∥θ − θ⋆∥2 + 8β2τ2 + 4β

αθµ

(
(1− p)1−1/qBq

)2
))

≤ E exp
(
λ2(

(1− αθβµ)(1− (αθβµ)2)∥θ − θ⋆∥2 + 4β2(2τ2 +B
2
q/p)

))
,

where we used Lemma 1, inequality (21) from Lemma 2 (recall that η = 0 in this context) and the imposed
bound relating β and p.

Finally, using Jensen’s inequality and the fact that αθ ≥ p ≥ 1/2 we get:

E exp
(
λ2∥θ − θ⋆∥2)

≤ exp
( 8λ2β2(

τ2 +B
2
q

)
αβµ+ (αβµ)2 − (αβµ)3

)
≤ exp

(8λ2β
(
τ2 +B

2
q

)
pµ

)
,

which concludes the first part of the proof. We now consider the corrupted case η > 0. Let λ > 0 and write
:

E
[

exp
(
λ∥θ − θ⋆∥

)]
= E

[
exp

(
λ∥θ − αθβG(θ)− θ⋆∥

)]
≤ ηE

[
exp

(
λ∥θ−αθβ qG(θ)−θ⋆∥

)]
+ (1−η)E

[
exp

(
λ∥θ−αθβG̃(θ)−θ⋆∥

)]
≤ ηE

[
exp

(
λ(∥θ − θ⋆∥+ βτθ)

)]
+ (1− η)E

[
exp

(
λ

∥∥θ − αθβ∇L(θ)− θ⋆
∥∥

+ λβ
(∥∥αθG̃(θ)− E[αθG̃(θ)]

∥∥ +
∥∥E[αθG̃(θ)]− αθ∇L(θ)

∥∥))]
≤ ηE

[
exp

(
λ∥θ − θ⋆∥

)]
eλβτ

+ (1− η)E
[

exp
(
λ(1− pβµ)∥θ − θ⋆∥

)]
exp

(
λβ(2τ + (1− p)1−1/qBq)

)
,

where we used Lemma 1, the inequality αθ ≥ p, the inequality
∥∥αθG̃(θ)− E[αθG̃(θ)]

∥∥ ≤ 2τθ ≤ 2τ and (21)
from Lemma 2. Using Hölder’s inequality, this leads to :

E
[

exp
(
λ∥θ − θ⋆∥

)]
≤

( 1− η
1− ηeλβτ

)1/(pβµ)
exp

(
λ(2τ + (1− p)1−1/qBq)/(pµ)

)
Now we use the inequality log

( 1−η
1−ηeλβτ

)
≤ βτλ/ log(1/η)2

1−βτλ/ log(1/η) valid for λ ≥ 0 which leads to:( 1− η
1− ηeλβτ

)1/(pβµ)
≤ exp

( 2λτ
pµ log(1/η)2

)
for 0 ≤ λ ≤ log(1/η)

2βτ .

Using that η < 1/2, we find that for 0 ≤ λ ≤ log(1/η)
2βτ , the following inequality holds :

E[exp(λ∥θ − θ⋆∥)] ≤ exp
( λ

pµ

(
2τ

(
1 + 1

log(1/η)2

)
+ (1− p)1−1/qBq

))
≤ exp

( λ

pµ

(
7τ + (1− p)1−1/qBq

))
.

Noticing that β ≤ 1
µ allows to finish the proof.

D.7 Unimprovability of the sub-exponential property for η > 0

We consider the Markov chain

Xt+1 =
{
αXt + ξ w.p. 1− η
Xt + τ w.p. η
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Assuming that the distribution of the noise ξ has a density, one can show that the chain is aperiodic and
satisfies a minorization property as in the proof of Theorem 1 (see Appendix D.3).

Defining V (x) = 1 +x, we can show that V verifies a geometric drift property similar to (25). Consequently,
Theorem 15.0.1 of (Meyn & Tweedie, 1993) applies to the chain (Xt)t≥0 and implies that it converges
geometrically to a limit distribution π analogously to the claim of Theorem 1.

We denote Mk
k = E|X|k the absolute moments of X for k ≥ 1 and show that Mk = Ω(k) (we merely provide

a sketch and do not attempt to explicitly compute the involved constants). For X ∼ π following the invariant
measure, using the recursion defining Xt and the positivity of ξ, it is easy to establish the inequality for
k ≥ 1

(1− η)(1− αk)Mk
k ≥ η

k∑
j=1

(
k

j

)
τ jMk−j

k−j

where one may use the convention that M0 = 1. We now postulate the induction hypothesis Mj ≥ Cj up to
j = k − 1 for some k > 1 and C > 0. Using Stirling’s formula, we find:

(1− η)(1− αk)
η

Mk
k ≥

k∑
j=1

(
k

j

)
τ j

(
C(k − j)

)k−j =
k∑

j=1

k!
j!(k − j)!τ

j
(
C(k − j)

)k−j

≳
k∑

j=1

√
k

j(k − j)
kkτ j

(
C(k − j)

)k−j

jj(k − j)k−j
=

k∑
j=1

√
k

j(k − j)

(τ
j

)j

kkCk−j

≥ τ

C
(Ck)k

where ≳ denotes an inequality up to a universal constant and we took the term j = 1 in the last step. It is
only left to set C small enough such that τη

C(1−η)(1−α) ≥ 1 in order to finish the induction. It follows that
Mk = Ω(k) implying that π may be sub-exponential but cannot be sub-Gaussian since that would require
Mk = O(

√
k) (see (Vershynin, 2018, Chapter 2) for a reference).

D.8 Proof of Corollary 1

We need the following lemma.
Lemma 4. Let X be a real sub-Gaussian random variable with constant K then, with probability at least δ,
we have :

|X| ≤ K
√

log(e/δ)

Proof. Using Chernoff’s method, we find for t > 0 and λ > 0:

P
(
|X| > t

)
= P

(
λ2X2 > λ2t2

)
= P

(
exp(λ2X2) > exp(λ2t2)

)
≤ E exp(λ2X2)e−λ2t2

≤ exp
(
λ2(K2 − t2)

)
.

Choosing λ=1/K, we have exp
(
1−(t/K)2)

≤δ⇐⇒ t≥K
√

log(e/δ) and the result follows.

By Theorem 1, the Markov chain (θt)t≥0 is geometrically converging to the invariant distribution πβ,p w.r.t.
the Total Variation distance so that for any event E ∈ B(Rd), we have:∣∣P(

θT ∈ E
)
− Pθ∼πβ,p

(
θ ∈ E

)∣∣ ≤MρTV (θ0). (40)

Proposition 2 states that, in the absence of corruption, for θ ∼ πβ,p, the variable ∥θ − θ⋆∥ is sub-Gaussian
with constant K = 4

√
2β(B2

q +τ2)
pµ . It is only left to combine this conclusion with Lemma 4 in order to obtain

the claimed bound.
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D.9 Proof of Corollary 2

We assume without loss of generality that T is a multiple of N. Note that according to the assumptions,
the estimators θ(n)

T for n ∈ JNK are independent and for each n. For positive ϵ < 1 define the events

En :=
{
∥θ(n)

T − θ⋆∥ ≤ η
1− 1

q Bq

√
20

κϵ

}
. We first assume that

∑N
n=1 1En

> N/2 then there exists i′ ∈ JNK such
that

r
(̂i)
N/2 =

∥∥θ(̂i)
T − θ

(i′)
T

∥∥ ≤ ∥∥θ(̂i)
T − θ

⋆
∥∥ +

∥∥θ(i′)
T − θ⋆

∥∥ ≤ 2η
1− 1

qBq

√
20

κϵ
.

Moreover, among the N/2 estimators closest to θ
(̂i)
T , at least one of them θ

(i′′)
T satisfies ∥θ(i′′)

T − θ⋆∥ ≤
η

1− 1
q Bq

√
20

κϵ thus we find :

∥∥θ̂ − θ⋆
∥∥ =

∥∥θ(̂i)
T − θ

⋆
∥∥ ≤ ∥∥θ(̂i)

T − θ
(i′′)
T

∥∥ +
∥∥θ(i′′)

T − θ⋆
∥∥

≤ r(̂i)
N/2 + η1− 1

qBq

√
20

κϵ
≤ 3η

1− 1
qBq

√
20

κϵ
. (41)

Notice that setting ϵ = 1/2 immediately yields (13). We now show that
∑N

n=1 1En > N/2 happens with
high probability. Thanks to Theorem 1 and Proposition 1, we have:

P(En) ≤ ϵ2 +MρT/N
(
1 + ∥θ0 − θ⋆∥2)︸ ︷︷ ︸

ϵ′

.

Consequently, the variables 1En
are stochastically dominated by Bernoulli variables with parameter ϵ2 +ϵ′ so

that their sum is stochastically dominated by a Binomial random variable S := Bin(N, ϵ2 + ϵ′). We compute
:

P
( N∑

n=1
1En

< N/2
)

= P
( N∑

n=1
1En

> N/2
)
≤ P

(
S − ES > N/2− (ϵ2 + ϵ′)N

)
≤ exp

(
− 2N(1/2− ϵ2 − ϵ′)2)

≤ exp
(
− 2N(1/2− 1/4−MρT/N (1 + ∥θ0 − θ⋆∥2))2)

≤ exp
(
− 2N(1/4− 1/15)2)

≤ exp
(
− log(1/δ)

)
= δ

where we used Hoeffding’s inequality, the choice ϵ = 1/2 and the fact that our condition on T implies
MρT/N (1 + ∥θ0 − θ⋆∥2))2 ≤ 1/15. The last inequalities result from our condition on N .

D.10 Proof of Theorem 2

As previously done in the proof of Theorem 1, we show that the Markov chain is aperiodic. Note that since
L has finite lower bound infθ L, we can replace it with 1 +L(θ)− infθ L and assume it is positive in the rest
of the proof without loss of generality. We will now show that it satisfies a drift property. Let θ ∈ Θ be
fixed, using Assumptions 1 and 3, we have :

E
[
L

(
θ − αθβG(θ)

)]
− L(θ) ≤ E

[
− β

〈
∇L(θ), αθG(θ)

〉
+ Lβ2

2
∥∥αθG(θ)

∥∥2
]

≤ E
[
η
(
− β

〈
∇L(θ), αθ

qG(θ)
〉

+ Lβ2

2
∥∥αθ

qG(θ)
∥∥2

)
+

(1− η)
(
− β

〈
∇L(θ), αθG̃(θ)

〉
+ Lβ2

2
∥∥αθG̃(θ)

∥∥2
)]
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Note that we have ∥αθG̃(θ)∥, ∥αθ
qG(θ)∥ ≤ τθ, therefore

E
[
L

(
θ − αθβG(θ)

)]
− L(θ) ≤ E

[
η
(
− β

〈
∇L(θ), αθ

qG(θ)
〉)

+

(1− η)
(
− β

〈
∇L(θ), αθG̃(θ)

〉)]
+ Lβ2τ2

θ

2 .

Further, we write

E
[〈
∇L(θ), αθG̃(θ)

〉]
=

〈
∇L(θ),E[αθG̃(θ)]− αθ∇L(θ) + αθ∇L(θ)

〉
= αθ

∥∥∇L(θ)
∥∥2 +

〈
∇L(θ),E[αθG̃(θ)]− αθ∇L(θ)

〉
.

Plugging back and using Cauchy-Schwartz and the inequality ∥αθ
qG(θ)∥ ≤ τθ leads to

E
[
L

(
θ − αθβG(θ)

)]
− L(θ) ≤ −ηβ

〈
∇L(θ),E[αθ

qG(θ)]
〉
− β(1− η)αθ

∥∥∇L(θ)
∥∥2−

β(1− η)
〈
∇L(θ),E[αθG̃(θ)]− αθ∇L(θ)

〉
+ Lβ2τ2

θ

2
≤ ηβτθ∥∇L(θ)∥ − β(1− η)αθ∥∇L(θ)∥2+

β(1− η)∥∇L(θ)∥
∥∥E[αθG̃(θ)]− αθ∇L(θ)

∥∥ + Lβ2τ2
θ

2 .

We now use the inequalities τθ ≤ ∥∇L(θ)∥+Qp(∥εθ∥) (see Lemma 2) and (a+ b)2 ≤ 2a2 + 2b2, to find that

E
[
L

(
θ − αθβG(θ)

)]
− L(θ) ≤ −β∥∇L(θ)∥2(

(1− η)αθ − Lβ − η
)

+ Lβ2Qp(∥εθ∥)2+
β∥∇L(θ)∥

(
ηQp(∥εθ∥) + (1− η)

∥∥E[αθG̃(θ)]− αθ∇L(θ)
∥∥)
.

Next, letting ϵ > 0, and using Fact 1 gives

∥∇L(θ)∥
(
ηQp(∥εθ∥) + (1− η)

∥∥E[αθG̃(θ)]− αθ∇L(θ)
∥∥)
≤ ϵ∥∇L(θ)∥2/2+(

ηQp(∥εθ∥) + (1− η)
∥∥E[αθG̃(θ)]− αθ∇L(θ)

∥∥)2
/(2ϵ).

We now plug back with the choice ϵ = p(1− η)/2 and use that αθ ≥ p to find

E
[
L

(
θ − αθβG(θ)

)]
− L(θ) ≤ −β∥∇L(θ)∥2(

3p(1− η)/4− Lβ − η
)

+ Lβ2Qp(∥εθ∥)2+

β
(
ηQp(∥εθ∥) + (1− η)

∥∥E[αθG̃(θ)]− αθ∇L(θ)
∥∥)2

p(1− η) .

Finally, we use Lemma 2 to bound the terms Qp(∥εθ∥) and
∥∥E[αθG̃(θ)]− αθ∇L(θ)

∥∥ leading to

E
[
L

(
θ − αθβG(θ)

)]
− L(θ) ≤ −β∥∇L(θ)∥2(

3p(1− η)/4− Lβ − η
)

+ Lβ2(1− p)− 2
qB2

q +

βB2
q

(
η(1− p)− 1

q + (1− η)η1− 1
q
)2

p(1− η)
≤ −β∥∇L(θ)∥2(

3p(1− η)/4− Lβ − η
)
+

βB2
q

(
(1− p)− 2

q (Lβ + 2η2) + 2η2− 2
q
)

p(1− η) . (42)

By assumption, we have 3p(1− η)/4− Lβ − η > 0. Define the quantity ξ = B2
q

(
(1−p)− 2

q (Lβ+2η2)+2η
2− 2

q

)
p(1−η) and

the set C :=
{
θ ∈ Rd : 1

2∥∇L(θ)∥2 ≤ ξ
3p(1−η)/4−Lβ−η

}
. By assumption, C is bounded and it is clear that the

right hand side in (42) is negative outside C. Define the function V (θ) = L(θ)/(βξ), which is positive and
satisfies:

∆V (θ) ≤ −1 + 2 · 1θ∈C . (43)
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In addition, we show similarly to Theorem 1 that the set C is small and, therefore, also petite according
to the definitions of (Meyn & Tweedie, 1993, Chapter 5). Since V is everywhere finite and bounded on
C (because the latter is compact), the conditions of (Meyn & Tweedie, 1993, Theorem 11.3.4) are fulfilled
implying that the chain is Harris recurrent.

We have shown that the Markov chain verifies the fourth condition of (Meyn & Tweedie, 1993, Theorem
13.0.1). This allows us to conclude that the Markov chain is ergodic i.e. we have for any initial measure λ
that ∥λP t − πβ,p∥TV → 0 and the following sum is finite∑

t

∥∥λP t
β,p − πβ,p

∥∥
TV <∞.

In addition, by (Meyn & Tweedie, 1993, Proposition 13.3.2) the terms in the above sum are non-increasing
which implies that

∥∥λP t
β,p − πβ,p

∥∥
TV = O(t−1) and the result follows.

D.11 Proof of Proposition 3

By Theorem 2, the assumptions imply that the Markov chain (θt)t≥0 converges to an invariant distribution
πβ,p. For θ ∼ πβ,1−η, by invariance of πβ,1−η, we have that the variables L(θ − αθβG(θ)) and L(θ) are
identically distributed. Taking the expectation w.r.t. θ, this implies the identity E[L(θ−αθβG(θ))] = E[L(θ)].
Plugging into Inequality (42) from the proof of Theorem 2, we find

E
[
∥∇L(θ)∥2]

≤
B2

q

(
(1− p)− 2

q (Lβ + 2η2) + 2η2− 2
q
)

p(1− η)
(
3p(1− η)/4− Lβ − η

)
≤

B2
q

(
3(1− p)− 2

q η2 + 2η2− 2
q
)

p(1− η)
(
3p(1− η)/4− Lβ − η

)
≤

5B2
qη

2− 2
q

p(1− η)
(
3p(1− η)/4− Lβ − η

)
where we used the choices β ≤ η2

L and p = 1− η.
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