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A SUPPLEMENTARY MATERIAL FOR WEAKLY SUPERVISED
UNDERSTANDING OF SKILLED HUMAN ACTIVITY IN VIDEOS

A.1 FRAMEWORK VISUALIZATION

We present an in-depth visualization of our proposed approach in Figure 3.
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Figure 3: Framework of the proposed approach. Given query and comparison videos, they are
partitioned into segments and features are extracted using a video encoder. These video segment
representations are then passed through a shallow Transformer encoder, where a token sparsification
module is inserted between layers to prune segments of the query video that are less informative of
skill. A contrastive loss is enforced between the query and comparison video over the final Trans-
former outputs of the remaining video segment (local) tokens and [cls] (global) token. A clas-
sification head is attached to the global token output to predict demonstrator proficiency. Through
attention rollout of the Transformer (Abnar & Zuidema, 2020), the most salient segments for skill
prediction of low proficiency query videos are retrieved and their efficacy is evaluated via error
detection.

A.2 ADDITIONAL IMPLEMENTATION DETAILS

For the Ego-Exo4D (Cooking) and JIGSAWS datasets consisting of longer-form videos, we set the
number of video partitions (N ) as 32, frames per segment (K) as 16, and temporal stride (f ) as 4.
For the shorter-form FineDiving dataset, we set N = 4, K = 4, and f = 1. The only exception
to this was the TimeSformer setup on Ego-Exo4D, for which we set N = 8, K = 8, and f = 32.
This configuration was chosen to maintain the same frame sampling strategy used during pretraining
while ensuring that the total duration covered by the sampled frames remained consistent with the
V-JEPA setup. We utilized the Adam optimizer with a weight decay of 0.1 for Ego-Exo4D and 0.01
for FineDiving and JIGSAWS. The learning rate was set to 1e-5 for Ego-Exo4D and JIGSAWS and
5e-5 for FineDiving. We train all models for 300 epochs.
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A.3 ADDITIONAL DATA DETAILS

We provide statistics (number of samples and average video duration) for all dataset tasks in Table 4.

Table 4: Details about dataset tasks. Note that the JIGSAWS suturing and needle-passing tasks are
only used for training and not evaluation.

Dataset Task #Samples Avg. Dur.

Ego-Exo4D
(Cooking)

Cooking an Omelet 44 7.24m
Cooking Tomato & Eggs 28 16.3m
Cooking Scrambled Eggs 20 7.21m
Making Cucumber & Tomato Salad 55 3.82m
Making Sesame-Ginger Asian Salad 32 14.71m
Cooking Noodles 41 18.83m
Making Milk Tea 34 5.74m
Making Coffee Latte 16 6.79m

FineDiving

Forward 0.5 Som.Pike 22 9.44s
Forward 1.5 Soms.Pike 36 8.79s
Forward 3.5 Soms.Pike 324 9.08s
Forward 3.5 Soms.Tuck 16 10.35s
Forward 4.5 Soms.Tuck 158 9.30s
Back 0.5 Som.Pike 68 8.54s
Back 2.5 Soms.Pike 204 8.45s
Back 2.5 Soms.Tuck 16 7.37s
Back 3.5 Soms.Pike 72 8.58s
Back 3.5 Soms.Tuck 159 8.60s
Reverse 0.5 Som.Pike 87 8.66s
Reverse 2.5 Soms.Pike 84 9.27s
Reverse 1.5 Soms.Tuck 56 8.81s
Reverse 3.5 Soms.Tuck 233 8.74s
Inward 0.5 Som.Pike 36 8.49s
Inward 1.5 Soms.Pike 24 8.10s
Inward 2.5 Soms.Pike 133 8.08s
Inward 2.5 Soms.Tuck 16 7.66s
Inward 3.5 Soms.Tuck 347 8.18s
Arm.Back 3 Soms.Pike 25 8.90s
Arm.Back 3 Soms.Tuck 53 8.51s
Back 0.5 Twist 1.5 Soms.Pike 12 8.49s
Back 1.5 Twists 2.5 Soms.Pike 209 8.59s
Back 2.5 Twists 2.5 Soms.Pike 79 8.57s
Reverse 3.5 Twists 1.5 Soms.Pike 23 8.88s
Reverse 1.5 Twists 2.5 Soms.Pike 31 8.93s
Arm.Fwd 1 Twist 2 Soms.Pike 10 8.49s
Arm.Back 1.5 Twists 2 Soms.Pike 107 8.37s
Arm.Back 2.5 Twists 2 Soms.Pike 32 9.00s
Forward 2.5 Soms.Pike 1 Twist 2.5 Soms.Pike 94 9.19s
Forward 2.5 Soms.Pike 2 Twists 2.5 Soms.Pike 114 8.80s
Forward 2.5 Soms.Pike 3 Twists 2.5 Soms.Pike 38 9.23s

JIGSAWS
Knot-Tying 36 57.26s
Suturing 39 1.88m
Needle-Passing 28 1.81m
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