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ABSTRACT
Maximizing the marginal log-likelihood is a crucial aspect of learning latent vari-
able models, and variational inference (VI) stands as the commonly adopted
method. However, VI can encounter challenges in achieving a high marginal log-
likelihood when dealing with complicated posterior distributions. In response to
this limitation, we introduce a novel variational importance sampling (VIS) ap-
proach that directly estimates and maximizes the marginal log-likelihood. VIS
leverages the optimal proposal distribution, achieved by minimizing the for-
ward χ2 divergence, to enhance marginal log-likelihood estimation. We apply
VIS to various popular latent variable models, including mixture models, vari-
ational auto-encoders, and partially observable generalized linear models. Re-
sults demonstrate that our approach consistently outperforms state-of-the-art base-
lines, in terms of both log-likelihood and model parameter estimation. Code:
https://github.com/JerrySoybean/vis.

1 INTRODUCTION

Given the latent variables z and the observed variablesx, how to find the optimal parameter set θ that
produces the maximum marginal likelihood p(x; θ) =

∫
p(x, z; θ) dz is essential in a wide range

of downstream applications. However, when the problem is complicated, we only know the explicit
form of p(x, z; θ) and it is intractable to compute the marginal p(x; θ) analytically. Therefore, we
turn to approximation methods such as variational inference (VI) (Blei et al., 2017) and importance
sampling (IS) (Kloek & Van Dijk, 1978) to learn the model parameter θ and infer the intractable
posterior p(z|x; θ).
VI uses a variational distribution q(z|x;ϕ) to approximate the posterior p(z|x; θ) with the difference
as their reverse KL divergence KL(q(z|x;ϕ)∥p(z|x; θ)), where minimizing the KL divergence is
equal to maximizing the evidence lower bound ELBO(x; θ, ϕ) of ln p(x; θ). However, maximizing
ln p(x; θ) using ELBO may not be a good choice when dealing with complex posterior distributions,
such as heavy-tailed or multi-modal distributions. There is chance that KL(q(z|x;ϕ)∥p(z|x; θ)) is
very small, but in fact both q(z|x;ϕ) and p(z|x; θ) are far from the true posterior p(z|x; θtrue),
leading to a higher ELBO but a lower marginal log-likelihood (e.g., Section 4.1).

Although other bounds such as α divergence-based lower bound (Li & Turner, 2016; Hernandez-
Lobato et al., 2016) and χ2 divergence-based upper bound (Dieng et al., 2017) can be used for better
posterior approximation, a more straightforward approach is to estimate ln p(x; θ) by IS. Ideally,
IS could have a good estimation if choosing a proper proposal distribution q(z|x;ϕ) and a large
number of Monte Carlo samples. In practice, however, there is often a lack of clear guidance on
how to choose q(z|x;ϕ) and limited indicators to verify the quality of q(z|x;ϕ). Su & Chen (2021)
showed that the variational distribution found by VI could serve as a proposal distribution for IS, but
it is not the optimal choice (Jerfel et al., 2021; Saraswat, 2014; Sason & Verdú, 2016; Nishiyama &
Sason, 2020). Besides, Pradier et al. (2019) noticed the numerical and scalability issue in minimizing
forward χ2 divergence Finke & Thiery (2019), which should be treated rigorously.

To address these issues, we propose a novel learning method named variational importance sampling
(VIS). We demonstrate that an optimal proposal distribution q(z|x;ϕ) for IS can be achieved by
minimizing the forward χ2 divergence in log space, which is numerically stable. Furthermore, with
enough Monte Carlo samples, the estimated marginal log-likelihood ln p̂(x; θ) is an asymptotically
tighter lower bound than ELBO, and hence ln p(x; θ) could be maximized more effectively. In the
experiment section, we apply VIS to several models including the most general case when there is
no explicit decomposition p(x, z; θ) = p(x|z; θ)p(z; θ), with both synthetic and real-world datasets
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Figure 1: (a): The bias between the marginal log-likelihood ln p(x; θ) and the expectation of its
IS estimator Eq[ln p̂(x; θ, ϕ)], the ELBO(x; θ, ϕ), and the expectation of the ELBO’s estimator
Eq[ÊLBO(x; θ, ϕ)]. When estimating ln p(x; θ), the down-biased IS estimator Eq[ln p̂(x; θ, ϕ)] is
a tighter lower bound than the down-biased ELBO estimator Eq[ELBO(x; θ, ϕ)]. (b): Empirical
visualization of the four quantities in (a) with different Monte Carlo samples K ∈ {1, 2, 3, 4, 5}.
Each box in (b) is based on 500 repeats and the hollow circle on the box is their average. An asymp-
totic difference occurs when increasing K. (c): Different q(z|x;ϕ) are obtained by minimizing the
forward χ2 divergence, which is optimal for doing IS v.s. by minimizing the reverse KL divergence.

to demonstrate its superiority over the most widely used VI and three other state-of-the-art methods:
CHIVI (Dieng et al., 2017), VBIS (Su & Chen, 2021), and IWAE (Burda et al., 2015). Appendix
A.8 summarizes the related works and our corresponding contributions in a table.

2 BACKGROUND OF VARIATIONAL INFERENCE

Here we give a brief introduction to the variational inference (VI), its empirical estimator, and its
bias. VI starts from the reverse KL divergence:

KL(q(z|x;ϕ)∥p(z|x; θ)) =
∫
q(z|x;ϕ) ln q(z|x;ϕ)

p(z|x; θ)
dz = −ELBO(x; θ, ϕ) + ln p(x; θ), (1)

with ELBO(x; θ, ϕ) := Eq[ln p(x, z; θ)−ln q(z|x;ϕ)]. Since ELBO is a lower bound of ln p(x; θ),
the problem of maximizing ln p(x; θ) is converted to maximizing ELBO(x; θ, ϕ). VI is often fa-
vored for several reasons, such as: 1) The ELBO is formulated in terms of expectations of log-
likelihood, making it numerically more stable compared to working directly with the original like-
lihood; 2) when the model can be factored as p(x, z; θ) = p(x|z; θ)p(z; θ), the ELBO can be
reformulated as ELBO(x; θ, ϕ) = Eq[ln p(x|z; θ)] − KL(q(z|x;ϕ)∥p(z; θ)). This formulation is
advantageous because the second KL term often has a closed-form expression for specific choices of
the prior distribution p(z; θ) and the variational distribution family q(z|x;ϕ), such as the Gaussian
distribution.

In practice, the target function ELBO in Eq. 1 still requires numerical estimation, resulting in an
empirical estimator

ÊLBO(x; θ, ϕ) =
1

K

K∑
k=1

[
ln p

(
x, z(k); θ

)
− ln q

(
z(k)

∣∣∣x;ϕ)] , (2)

where
{
z(k)

}K
k=1

are K Monte Carlo samples from the variational distribution q(z|x;ϕ). Now,

we convert maximizing ln p(x; θ) w.r.t. θ to maximizing ÊLBO(x; θ, ϕ) w.r.t. θ and ϕ. The score
function and pathwise gradient estimator of ELBO are shown in Appendix A.1.

Bias of the ELBO estimator. Note that although ÊLBO(x; θ, ϕ) is an unbiased estimator of
ELBO, it is a strictly down-biased estimator of the marginal log-likelihood ln p(x; θ) (Fig. 1(a)):
Eq

[
ÊLBO(x; θ, ϕ)− ln p(x; θ)

]
= ELBO(x; θ, ϕ)− ln p(x; θ) = −KL(q(z|x;ϕ)∥p(z|x; θ)).

(3)
As mentioned before, there is a chance that both q(z|x;ϕ) and p(z|x; θ) are far from the true
posterior p(z|x; θtrue), resulting in a higher ELBO but a lower marginal log-likelihood ln p(x; θ).

3 VARIATIONAL IMPORTANCE SAMPLING

To tackle this problem, we use importance sampling (IS) to estimate the marginal log-likelihood
ln p(x; θ) directly. However, the approximation quality of IS depends on the choice of the pro-
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posal distribution and the number of Monte Carlo samples. We first show that using IS can get an
asymptotically tighter estimator of ln p(x; θ) than ÊLBO(x; θ, ϕ). Then, we prove that the bias and
effectiveness (variance) of this estimator are both related to the forward χ2 divergence and the num-
ber of Monte Carlo samples. This provides guidance on how to select the proposal distribution and
the number of Monte Carlo samples. Finally, we derive the numerically stable gradient estimator
used for obtaining the optimal proposal distribution.

Down-biased IS estimator of the marginal log-likelihood. With importance sampling (IS), the
marginal is approximated via a proposal distribution q(z|x;ϕ), i.e.,

p(x; θ) =

∫
p(x, z; θ) dz ≈ 1

K

K∑
k=1

p
(
x, z(k); θ

)
q
(
z(k)

∣∣x;ϕ) =: p̂(x; θ, ϕ), (4)

where
{
z(k)

}K
k=1

are K Monte Carlo samples from the proposal distribution q(z|x;ϕ). For numer-
ical stability, we need to work with it in log space,

ln p̂(x; θ, ϕ) = logsumexp
[
ln p

(
x, z(k); θ

)
− ln q

(
z(k)

∣∣∣x;ϕ)]− lnK, (5)

where the logsumexp trick can be utilized. Appendix A.2 shows that the gradient of ln p(x; θ) w.r.t.
θ can be estimated as ∂ ln p(x; θ)

∂θ
≈ ∂ ln p̂(x; θ, ϕ)

∂θ
. (6)

Since
Eq[p̂(x; θ, ϕ)] =

1

K

K∑
k=1

Eq

[
p(x, z; θ)

q(z|x;ϕ)

]
=

∫
p(x, z; θ) dz = p(x; θ), (7)

p̂(x; θ, ϕ) is an unbiased estimator of p(x; θ). However, ln(·) is a concave function, thus
Eq[ln p̂(x; θ, ϕ)] ⩽ lnEq[p̂(x; θ, ϕ)] = ln p(x; θ) from Jensen’s inequality. This means the esti-
mator in log space ln p̂(x; θ) is a down-biased estimator of ln p(x; θ).

Bias of the IS estimator. Similar to ÊLBO(x; θ, ϕ), we can derive the bias of ln p̂(x; θ, ϕ) with
the Delta method (Oehlert, 1992; Struski et al., 2022),

Eq[ln p̂(x; θ, ϕ)− ln p(x; θ)] = Eq

[
ln

(
1

K

K∑
k=1

p
(
z(k)

∣∣x; θ)
q
(
z(k)

∣∣x;ϕ)
)]

≈− 1

2K
Varq

[
p(z|x; θ)
q(z|x;ϕ)

]
= − 1

2K

{
Eq

[(
p(z|x; θ)
q(z|x;ϕ)

)2
]
− E2

q

[
p(z|x; θ)
q(z|x;ϕ)

]}

=− 1

2K

(∫
p(z|x; θ)2

q(z|x;ϕ)
dz − 1

)
= − 1

2K
χ2(p(z|x; θ)∥q(z|x;ϕ)),

(8)

where χ2(p∥q) is the forward χ2 divergence between p and q (Fig. 1(a)). Since Eq. 8 converges to 0
as K → ∞, ln p̂(x; θ, ϕ) is an asymptotically tighter lower bound than ÊLBO(x; θ, ϕ) (Fig. 1(a)).
Particularly when K = 1, ln p̂(x; θ, ϕ) = ÊLBO(x; θ, ϕ). To verify this relationship empirically,
we repeat the estimation of ln p̂(x; θ, ϕ) and ÊLBO(x; θ, ϕ) based on K Monte Carlo samples 500
times, and plot their empirical distributions w.r.t. K in Fig. 1(b). With more Monte Carlo samples
K, both ln p̂ and ÊLBO become stable, but the empirical expectation indicated by the hollow circle
in each box implies that only ln p̂(x; θ, ϕ) converges to the marginal log-likelihood ln p(x; θ).

Fig. 1 demonstrates that IS can have a much better ln p(x; θ) estimation by setting a large K,
which means using IS is a more direct way to maximize ln p(x; θ) than ELBO. Besides, to have
a faster convergence, we also need to choose the proposal distribution q(z|x;ϕ) that minimizes
χ2(p(z|x; θ)∥q(z|x;ϕ)) since this forward χ2 divergence could serve as an indicator of whether
the proposal distribution is good: if the forward χ2 divergence is small, then the bias (the absolute
value of Eq. 8) of the IS estimator is small.

On the other hand, we can write down the effectiveness (Freedman et al., 1998) of the estimator
p̂(x; θ, ϕ), i.e.,

Varq [p̂(x; θ, ϕ)] =
1

K2
K Varq

[
p(z|x; θ)p(x; θ)

q(z|x;ϕ)

]
=
p(x; θ)2

K
χ2(p(z|x; θ)∥q(z|x;ϕ)), (9)
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Algorithm 1 VIS
1: for i = 1:N do
2: Sample

{
z(k)

}K
k=1

from q(z|x;ϕ).
3: Update θ by maximizing ln p̂(x; θ, ϕ) via Eq. 6.
4: Update ϕ by minimizing χ2(p(z|x; θ)∥q(z|x;ϕ)) via Eq. 12 or Eq. 24.
5: end for

which is the variance of the estimator. Eq. 8 and Eq. 9 coincide to indicate that for a small bias of
ln p̂(x; θ, ϕ) and a high effectiveness of p̂(x; θ, ϕ), we want a small χ2(p(z|x; θ)∥q(z|x;ϕ)) and
a large K. In other words, we need as many Monte Carlo samples as possible; and the optimal
choice of the proposal distribution for IS is the q(z|x;ϕ) with the minimum forward χ2 divergence
χ2(p(z|x; θ)∥q(z|x;ϕ)) rather than reverse KL divergence KL(q(z|x;ϕ)∥p(z|x; θ)) (Fig. 1(c)).

The algorithm of the variational importance sampling (VIS) is summarized in Alg. 1. We first
perform IS to maximize ln p̂(x; θ, ϕ) w.r.t. θ, given a fixed proposal distribution q(z|x;ϕ); then
we fix θ and minimize χ2(p(z|x; θ)∥q(z|x;ϕ)) w.r.t. ϕ to obtain a better proposal distribution for
doing IS. However, minimizing χ2(p(z|x; θ)∥q(z|x;ϕ)) w.r.t. ϕ is non-trivial since we don’t know
p(z|x; θ). We derive a stable gradient estimator for minimizing the forward χ2 divergence in the
following.

Gradient estimator. Rewrite the forward χ2 divergence as

χ2(p(z|x; θ)∥q(z|x;ϕ)) = 1

p(x; θ)2

∫
p(x, z; θ)2

q(z|x;ϕ)
dz − 1 =:

1

p(x; θ)2
V (x; θ, ϕ)− 1. (10)

So, minimizing χ2(p(z|x; θ)∥q(z|x;ϕ)) is equivalent to minimizing V (x; θ, ϕ) :=
∫ p(x,z;θ)2

q(z|x;ϕ) dz

w.r.t. ϕ. It still needs to be estimated and minimized in log space for numerical stability (Pradier
et al., 2019; Finke & Thiery, 2019; Geffner & Domke, 2020; Yao et al., 2018). In Appendix A.3, we
derive that lnV (x; θ, ϕ) can be estimated as

lnV (x; θ, ϕ) ≈ logsumexp
[
2 ln p

(
x, z(k); θ

)
− 2 ln q

(
z(k)

∣∣∣x;ϕ)]− lnK =: ln V̂ (x; θ, ϕ).

(11)
The score function gradient estimator of lnV (x; θ, ϕ) w.r.t. ϕ at ϕ0 is

∂ lnV (x; θ, ϕ)

∂ϕ
≈ ∂

∂ϕ

1

2
ln V̂ (x; θ, ϕ). (12)

When the reparameterization trick can be utilized, z|x;ϕ = g(ϵ|x;ϕ) where ϵ ∼ r(ϵ), then we
have the transformation q(z|x;ϕ) dz = r(ϵ) dϵ (Schulman et al., 2015). Now, we can get the
pathwise gradient estimator ∂ lnV (x;θ,ϕ)

∂ϕ ≈ ∂
∂ϕ ln V̂ (x; θ, ϕ), where we sample ϵ ∼ r(ϵ) and use

z(k) = g
(
ϵ(k)

∣∣x;ϕ) in ln V̂ (x; θ, ϕ). The derivations are shown in Appendix A.3.

4 EXPERIMENTS

Baselines for comparison. We will apply VIS on three different models and compare it with four
alternative methods:
• VI: The most widely used variational inference that maximizes ELBO.
• CHIVI (Dieng et al., 2017): When updating ϕ, use both an upper bound CUBO (based on
forward χ2 divergence) and a lower bound ELBO (based on reverse KL divergence) to squeeze the
approximated posterior q(z|x;ϕ) to the posterior p(z|x; θ).
• VBIS (Su & Chen, 2021): Use the q(z|x;ϕ) learned from VI as the proposal distribution of IS.
• IWAE (Burda et al., 2015): The importance-weighted autoencoder. It uses IS rather than VI to
learn an autoencoder. An additional competitor for the VAE model only.

Metrics. For all models and datasets, we train the model with different methods on xtrain and
evaluate on xtest by: marginal log-likelihood (LL) p(xtest; θ), which can be evaluated on both
synthetic datasets and real-world datasets; complete log-likelihood (CLL) p(xtest, ztest; θ), which
can be only evaluated on synthetic datasets, since we have the ztest when generated the data; and
hidden log-likelihood (HLL) q(ztest|xtest;ϕ), which can be only evaluated on synthetic datasets for
the same reason above.

4



Published as a conference paper at ICLR 2024

(a) (b)

(c) Posterior VI

Posterior VBIS

Posterior CHIVI

Posterior VIS

VI

CH
IVI

VBIS

VIS

Figure 2: (a): LL, CLL, and HLL evaluated on the test dataset. (b): Convergence curves of the
parameter set θ learned by different methods. The dashed curves are the true parameters used for
generating the data, and the solid curves are the learned parameters. (c): The posterior distribution
given x = 0 and x = 1 in different methods. The dashed curves are the true posterior p(z|x; θtrue),
the solid curves are the learned posterior p(z|x; θ), and the dotted curves are the approximated
posterior q(z|x;ϕ) learned in the variational/proposal distribution.

4.1 A TOY MIXTURE MODEL

Model. We first use a toy mixture model to illustrate some representative behaviors of differ-
ent methods. Consider the generative model p(z; θ) =

∑4
i=1 πi N (z;µi, 1

2) with π1 = π2 =
1−π
2 , π3 = π4 = π

2 ; and p(x|z; θ) = Bern(x; logistic(z)). The parameter set is θ = {π}∪{µi}4i=1,
the latent variable is z ∈ R, and the observed variable is x ∈ {0, 1}. Choosing the varia-
tional/proposal distribution family as q(z|x;ϕ) = N (z; cx, σ

2
x) for x ∈ {0, 1}, and the varia-

tional/proposal parameter set is ϕ = {c0, c1, σ0, σ1}. The simplicity of this model enables the
visualization of p(z|x; θ) for us to understand the behaviors of different methods.

Experimental setup. Both the training set and the test set consist of 1,000 samples simulated from
the p(x, z; θtrue). We use Adam (Kingma & Ba, 2014) as the optimizer and the learning rate is set
at 0.002. We run 200 epochs for each method, and in each epoch, 100 batches of size 10 are used
for optimization. The number of Monte Carlo samples used for sampling the latent is K = 5000.
We repeat 10 times with different random seeds for each method and report the performance.

Results. Quantitatively, VIS performs consistently better than all other methods in terms of all
three metrics (Fig. 2(a)). In Fig. 2(b), we plot the convergence curves of the parameter set θ learned
by different methods. Clearly, VIS achieves a more accurate parameter estimation. This further
validates that a better parameter estimation corresponds to a higher test marginal log-likelihood.

To understand the effects of the approximated posterior q(z|x;ϕ) learned by different methods, we
plot the true posterior p(z|x; θtrue) (dashed curves), the learned posterior p(z|x; θ) (solid curves), and
the approximated posterior q(z|x;ϕ) (dotted curves) conditioned on x = 0 and x = 1 respectively
in Fig. 2(c). First, we can tell that the true posterior p(z|x; θtrue) conditioned on both x = 0 and
x = 1 are multi-modal shaped, with at least two distinct bumps. For example, p(z|x = 0; θtrue) has
one large bump centered at about z = −8, one large bump centered at about z = −2, and one small
bump centered at about z = 1 (see the purple dashed curve in Fig. 2(c)). Then we check the learned
posterior p(z|x = 0; θ) and the approximated posterior q(z|x = 0;ϕ).
• For VI, the zero-forcing/mode-seeking behavior of minimizing the reverse KL divergence in
VI makes the two large bumps on the left collapse into one. And the support of q(z|x = 0;ϕ) only
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Figure 3: (a): The marginal log-likelihood on the test set w.r.t. the training epoch. (b): Examples of
raw images and the reconstructed images by different methods.

covers the left large bump of p(z|x = 0; θtrue), which leads to p(z|x = 0; θ) have very different shape
to the p(z|x = 0; θtrue). This is the case that the reverse KL divergence KL(q(z|x;ϕ)∥p(z|x; θ))
is very small, but in fact both q(z|x;ϕ) and p(z|x; θ) are far from the true posterior p(z|x; θtrue),
leading to a higher ELBO but a lower marginal log-likelihood.
• For VBIS, through importance sampling, the learned posterior p(z|x = 0; θ) maintains two
large bumps but the small bump centered at about z = 1 is still not covered by q(z|x = 0;ϕ) due
to the zero-forcing behavior of minimizing the reverse KL divergence. Besides, since the q(z|x;ϕ)
learned by minimizing the reverse KL divergence is not the optimal proposal distribution for doing
IS, the learned p(z|x; θ) is not good enough to match the true p(z|x; θtrue) well.
• For CHIVI, both the reverse KL and the forward χ2 divergences are considered, so that the
support of q(z|x = 0;ϕ) becomes much wider to make sure the density under both of the two large
bumps can be sampled. However, it is still not wide enough to cover the small bump centered at
about z = 1 compared with VIS. Besides, since CHIVI optimizes ELBO rather than the marginal
log-likelihood w.r.t. θ, the learned θ is not better than VIS.
• For VIS, the mass-covering/mean-seeking behavior of minimizing the forward χ2 divergence
makes the q(z|x = 0;ϕ) wide enough to cover both the two large bumps and the small bump
centered at about z = 1. Moreover, since we have shown in Eq. 8 and Eq. 9 that the q(z|x;ϕ)
learned by minimizing the forward χ2 divergence is the optimal proposal distribution for doing IS,
the shape of the learned posterior p(z|x; θ) matches the shape of the true posterior p(z|x; θtrue) the
best compared with other methods.

4.2 VARIATIONAL AUTO-ENCODER

Model. The generative model of a variational auto-encoder (VAE) (Kingma & Welling, 2013)
can be expressed as p(z; θ) = N (z;0, I); and p(x|z; θ) = Bern(x; logistic(MLPdec(z))). The
parameter set θ consists of all parameters of the MLP decoder. The variational/proposal distribution
is parameterized as q(z|x;ϕ) = N (x;µ(x),σ2(x)I), where µ(x) and σ(x) are the output of the
MLP encoder given input x. The parameter set ϕ consists of all parameters of the MLP encoder.

Experimental setup. We apply the VAE model on the MMIST dataset (LeCun et al., 1998). There
are 60,000 samples in the training set and 10,000 samples in the test set. Each sample is a 28 × 28
grayscale hand-written digit, so x ∈ [0, 1]784. For visualization, we set z ∈ R2. Similar to (Kingma
& Welling, 2013), we set the encoder and decoder structure as

MLPdec(z) =Wdec,2hdec + bdec,2, hdec = tanh (Wdec,1z + bdec,1) , hdec ∈ R128,{
µ(x) =Wµhenc + bµ
lnσ(x) =Wσhenc + bσ

, henc = tanh (Wencx+ benc) , henc ∈ R128.
(13)

We use Adam (Kingma & Ba, 2014) as the optimizer and the learning rate is set at 0.005. We run
20 epochs for each method. The batch size is set as 64. The number of Monte Carlo samples used
for sampling the latent is K = 500. We repeat 5 times with different random seeds for each method
and report the test log-likelihood.

Results. Fig. 3(a) plots the marginal log-likelihood on the test set during learning. As the typical
solver, VI performs roughly the same as CHIVI and VBIS, but the convergence curve of VI is a
bit more stable. When comparing them with IWAE and VIS, however, IWAE is better and VIS is
the best. The reconstruction images shown in Fig. 3(b) also imply that VAE solved by VIS could
provide good reconstructions similar to the corresponding raw images. The learned latent manifolds
by different methods are shown in Appendix A.4.
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4.3 PARTIALLY OBSERVABLE GENERALIZED LINEAR MODELS

Model. We first present the classical generalized linear model (GLM) (Pillow et al., 2008), which
studies multi-neuron interaction underlying neural spikes. We denote a spike train data as Y ∈
NT×N recorded from N neurons across T time bins, yt,n as the number of spikes generated by the
n-th neuron in the t-th time bin. When provided with Y , a classic GLM predicts the firing rates ft,n
of the n-th neuron at the time bin t as

ft,n = σ

(
bn +

N∑
n′=1

wn←n′ ·

(
L∑

l=1

yt−l,n′ψl

))
, with spike yt,n ∼ Poisson(ft,n), (14)

where σ(·) is a non-linear function (e.g., Softplus); bn is the background intensity (bias) of the n-th
neuron whose vector form is b ∈ RN ; wn←n′ is the weight of the influence from the n′-th neuron
to the n-th neuron whose matrix form is W ∈ RN×N ; ψ ∈ RL

+ is the pre-defined basis function
summarizing history spikes from t− L to t− 1.

The classic GLM is not a latent variable model. However, we can extend a GLM to a partially
observable GLM (POGLM) (Pillow & Latham, 2007), which becomes a latent variable model.
Specifically, POGLM studies neural interaction when the spike data is partially observable, which
is often the case in neuroscience since it is usually unrealistic to collect all neurons in a target
brain region. Consider a group of N neurons where V of them are visible neurons and H of
them are hidden neurons (with N = V + H). Given the spike train Y , we denote its left V
columns as X = Y1:T,1:V ∈ NT×V containing the visible spike train, and the right H columns as
Z = Y1:T,V+1:N ∈ NT×H containing the hidden spike train. Then the firing rate is

ft,n = σ

(
bn +

V∑
n′=1

wn←n′ ·

(
L∑

l=1

xt−l,n′ψl

)
+

N∑
n′=1+V

wn←n′ ·

(
L∑

l=1

zt−l,n′−V ψl

))
, (15)

for both visible and hidden neurons. Since the hidden spike train is not observable, POGLM be-
comes a latent variable model with observed variable xt,n and hidden variable zt,n. The model
parameter θ is defined to be {b,W }. The graphical model of POGLM is sketched in Fig. 4(a) top.

To do VI, VIS, or others on POGLM, a commonly used variational/proposal distribution (Rezende
& Gerstner, 2014; Kajino, 2021) is q(zt,n|x1:t−1,1:V , z1:t−1,1:H) = Poisson(ft,n), where ft,n is de-
fined in Eq. 15. Note that when using Eq. 15 to define the variational/proposal distribution, {b,W }
forms the variational/proposal parameter set ϕ. The graphical model of the variational/proposal is
sketched in Fig. 4(a) bottom.

4.3.1 SYNTHETIC DATASET

Experimental setup. We randomly generate 10 different parameter sets θ of the GLM models for
data generation, corresponding to 10 trials. There are N = 5 neurons in total, where the first V = 3
neurons are visible and the remaining H = 2 neurons are hidden. For each trial, we simulate 40
spike trains for training and 20 spike trains for testing. The length of each spike train is T = 100
time bins. The linear weights and biases of the model used for learning are all initialized as 0s. We
use Adam (Kingma & Ba, 2014) as the optimizer and the learning rate is set at 0.01. We run 20
epochs for each method, and in each epoch, 4 batches of size 10 are used for optimization. The
number of Monte Carlo samples used for sampling the hidden spikes is K = 2000. We repeat 10
times with different random seeds for each method and report the performance.

Results. From the barplot in Fig. 4(b), we can see that VIS performs significantly better than the
other three methods in terms of all three metrics (LL, CLL, and HLL). Similar to the toy mixture
model, we can also check the parameter estimation and compare them with the true parameter set
used for generating the data. The average weight and bias error are presented in the rightmost two
bar plots in Fig. 4(b). The weight error of the VIS is the smallest. For the bias error, both VBIS and
VIS are the smallest and are significantly smaller than VI and CHIVI.

In Fig. 4(c), we also visualize the parameter recovery results from different methods. For the bias
vector, we can visually see that VI and CHIVI are worse than VBIS and VIS. For example, the
bias of neuron 2 is positive, but only VIS recovers this positive value. For the visible-to-visible
weights (the top-left block of the weight part), all four methods can match the true well. For the
hidden-to-visible weights (the top-right block of the weight part), VI and CHIVI do not get enough
gradient due to maximizing ELBO, so these weights are still kept around 0. For the visible-to-hidden
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Figure 4: (a): Graphical model of p(X,Z; θ) and q(Z|X;ϕ). (b): The LL, CLL, HLL on the test
set, and the average parameter error of the weights and biases in the linear mapping. (c): True and
estimated parameters by different methods of the first trial. For each matrix, the leftmost column is
the bias b, and the remaining block is the weight matrix W . The top-left block of the weight part
represents visible-to-visible, the top-right block represents hidden-to-visible, the bottom-left block
represents visible-to-hidden, and the bottom-right block represents hidden-to-hidden. (d): Predictive
firing rates on a spike train from different methods. Specifically, given a complete test spike train
Y = [X,Z], we can predict the firing rates by the complete model p(X,Z; θ) via Eq. 14 for
both visible neurons (e.g., neuron 1) and hidden neurons (e.g., neuron 4). For hidden neurons (e.g.,
neuron 4), we can also predict the firing rates by q(Z|X;ϕ).

weights (the bottom-left block of the weight part), VI, CHIVI, and VBIS provide random-like and
non-informative estimations, but VIS matches the true better. For the hidden-to-hidden weights (the
bottom-right block of the weight part), none of the four methods gives acceptable results. The worse
performances on the hidden-to-visible and hidden-to-hidden blocks also reflect the limitation of the
variational/proposal distribution family.

In Fig. 4(d), we visualize the predictive firing rates ft,n learned by different methods. The top panel
and the middle panel of Fig. 4(d) show that the firing rates predicted by p(X,Z; θ) obtained from
VIS for both visible neurons and hidden neurons are the most accurate to the true firing rates among
all four methods. Particularly, since only VIS learns acceptable visible-to-hidden weights, the firing
rates predicted by VI, CHIVI, and VBIS are significantly worse than by VIS (the middle panel of
Fig. 4(d)). These correspond to the CLL bar plot in Fig. 4(b). The bottom panel of Fig. 4(d) indicates
that the proposal distribution of VIS can sample hidden spikes much closer to the true hidden spikes,
which improves the learning effects and results in a better parameter recovery. Moreover, methods
except VIS in the middle panel and the bottom panel of Fig. 4(d) reveal the case that q(Z|X; θ) and
p(Z|X; θ) are close in terms of the reverse KL divergence, but both of them are far from the true
posterior, resulting in higher ELBO but lower marginal log-likelihood than VIS.

4.3.2 RETINAL GANGLION CELL (RGC) DATASET

Dataset. We run different methods on a real neural spike train recorded from V = 27 retinal
ganglion neurons while a mouse is performing a visual test for about 20 mins (Pillow & Scott,
2012). Neurons 1-16 are OFF cells, and neurons 17-27 are ON cells.

Experimental setup. We use the first 2
3 segment as the training set and the remaining 1

3 segment
as the test set. The original spike train is converted to spike counts in every 50 ms time bins. For
applying the stochastic gradient descent algorithm, we break the whole sequence into several pieces.
The length of each piece is 100 time bins. First, we learn a fully observed GLM as a baseline. Then,
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Figure 5: (a): The marginal log-likelihood on the test segment with different numbers of hidden
neurons. (b): The estimated weight matrices from different methods. (c): 20 predictive firing rates
generated from 20 hidden spikes sampled from different variational/proposal distributions.

we assume there areH ∈ {1, 2, 3} hidden representative neurons and learn the POGLM by different
methods. We use Adam (Kingma & Ba, 2014) as the optimizer and the learning rate is set at 0.01.
We run 10 epochs for each method. The batch size is set as 32. The number of Monte Carlo samples
used for sampling the hidden are 1,000, 2,000, and 3,000 for H = 1, 2, 3 respectively. We repeat 10
times with different random seeds for each method and report the performance.

Results. Compared with the fully observed GLM (the dashed line in Fig. 5(a)), adding hidden neu-
rons significantly improves the capability of predicting spiking events on the test set, when learned
by VBIS and VIS. This is reflected in the high test marginal log-likelihood of VBIS or VIS shown
in Fig. 5(a). Particularly, VIS always obtains the highest test marginal log-likelihood compared with
the three alternative methods.

We also visualize the learned weight matrix with one hidden neuron from the four methods in
Fig. 5(b). With one hidden neuron learned by VIS, the weights from the hidden neuron to nearly all
OFF cells are positive, and the weights to all ON cells are negative. This implies that this hidden
representative neuron behaves like an OFF cell. The signs of the weights from this hidden represen-
tative neuron to the visible neurons clearly tell us the type of those visible post-synaptic neurons. All
other methods do not have such a significant differentiation in the last column of the weight matrix.

Since we do not have the true hidden spike train in the real-world dataset, we sample hidden spike
trains from the variational/proposal distribution q(Z|X;ϕ), and compute the corresponding firing
rates that are used for sampling the hidden spike trains. In Fig. 5(c), we plot 20 randomly sampled
predictive firing rates of the hidden neuron in the one-hidden-neuron model. Clearly, the predic-
tive firing rates generated by VIS provide a wider effective support range for sampling, due to the
mass-covering/mean-seeking behavior of minimizing the forward χ2 divergence. This variability
improves the effectiveness of learning ln p(X; θ). Compared with VIS, the variational/proposal
distributions learned by VI and VBIS are very restricted and concentrative, providing less variabil-
ity in sampling hidden spikes. Since CHIVI minimizes both the forward χ2 and the reverse KL
divergences, the variability of the variational/proposal distribution is at a medium position.

5 DISCUSSION

In this paper, we introduce variational importance sampling (VIS), a novel method for efficiently
learning parameters in latent variable models, based on the forward χ2 divergence. Unlike varia-
tional inference (VI), which maximizes the evidence lower bound (ELBO), VIS directly estimates
and maximizes the marginal log-likelihood to learn model parameters. Our analyses demonstrate
that the quality of the estimated marginal log-likelihood is assured with a large number of Monte
Carlo samples and an optimal proposal distribution characterized by a small forward χ2 divergence.
This highlights the statistical significance of choosing the proposal distribution. Experimental results
across three different models validate VIS’s ability to achieve both a higher marginal log-likelihood
and a better parameter estimation. This underscores VIS as a promising learning method for ad-
dressing complex latent variable models. Nevertheless, it is worth noting that while this choice of
the proposal distribution is statistically optimal for importance sampling, its practical significance
in certain real-world applications might require further investigation and validation.
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A APPENDIX

A.1 GRADIENT ESTIMATORS IN THE VARIATIONAL INFERENCE

The derivative of ELBO(x; θ, ϕ) w.r.t. θ is estimated by
∂ ELBO(x; θ, ϕ)

∂θ
=

∫
∂ ln p(x, z; θ)

∂θ
q(z|x;ϕ) dz

≈ 1

K

K∑
k=1

∂ ln p
(
x, z(k); θ

)
∂θ

=
∂

∂θ

1

K

K∑
k=1

ln p
(
x, z(k); θ

)
.

(16)

For the derivative of ELBO(x; θ, ϕ) w.r.t. ϕ at ϕ0, the score function gradient estimator is
∂ ELBO(x; θ, ϕ)

∂ϕ
=

∫
[ln p(x, z; θ)− ln q(z|x;ϕ0)]

∂q(z|x;ϕ)
∂ϕ

− q(z|x;ϕ0)
∂ ln q(z|x;ϕ)

∂ϕ
dz

=

∫
[ln p(x, z; θ)− ln q(z|x;ϕ0)] q(z|x;ϕ0)

∂ ln q(z|x;ϕ)
∂ϕ

dz

− ∂

∂ϕ

∫
q(z|x;ϕ) dz

≈ 1

K

K∑
k=1

[
ln p

(
x, z(k); θ

)
− ln q

(
z(k)

∣∣∣x;ϕ0)] ∂ ln q (z(k)∣∣x;ϕ)
∂ϕ

− 0

=
∂

∂ϕ

−1

2K

K∑
k=1

[
ln p

(
x, z(k); θ

)
− ln q

(
z(k)

∣∣∣x;ϕ)]2 .
(17)

When the parameterization trick can be utilized, z|x;ϕ = g(ϵ|x;ϕ) where ϵ ∼ r(ϵ), then
q(z|x;ϕ) dz = r(ϵ) dϵ. (18)

Now, we can get the pathwise gradient estimator,
∂ ELBO(x; θ, ϕ)

∂ϕ
=
∂

∂ϕ

∫
q(z|x;ϕ) [ln p(x, z; θ)− ln q(z|x;ϕ)] dz

=
∂

∂ϕ

∫
r(ϵ) [ln p(x, g(ϵ|x;ϕ))− ln q(g(z|x;ϕ)|x;ϕ)] dϵ

≈ ∂

∂ϕ

1

K

K∑
k=1

[
ln p

(
x, g

(
ϵ(k)

∣∣∣x;ϕ) ; θ)− ln q
(
g
(
ϵ(k)

∣∣∣x;ϕ)∣∣∣x;ϕ)] .
(19)

A.2 GRADIENT ESTIMATOR OF THE IMPORTANCE SAMPLING

The derivative of ln p(x; θ) w.r.t. θ at θ0 is estimated by
∂ ln p(x; θ)

∂θ
=

1

p(x; θ0)

∫
∂p(x, z; θ)

∂θ
dz

=
1

p(x; θ0)

∫
p(x, z; θ0)

∂ ln p(x, z; θ)

∂θ
dz

≈ 1

p̂(x; θ0)

1

K

K∑
k=1

p
(
x, z(k); θ0

)
q
(
z(k)

∣∣x;ϕ0) ∂ ln p
(
x, z(k); θ

)
∂θ

=
1

p̂(x; θ0)

∂

∂θ

1

K

K∑
k=1

exp
[
ln p

(
x, z(k); θ

)
− ln q

(
z(k)

∣∣∣x;ϕ)]
=

1

p̂(x; θ0)

∂p̂(x; θ)

∂θ
=
∂ ln p̂(x; θ)

∂θ
.

(20)
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Due to the appearance of p̂(x; θ0) in the denominator, ∂ ln p̂(x;θ,ϕ)
∂ϕ is a magnitude up-biased estimator

of ∂ ln p(x;θ)
∂ϕ . However, the direction of ∂ ln p̂(x;θ,ϕ)

∂ϕ is unbiased:

Eq

[
∂p̂(x; θ, ϕ)

∂θ

]
=Eq

[
1

K

K∑
k=1

1

q
(
z(k)

∣∣x;ϕ) ∂p
(
x, z(k); θ

)
∂θ

]

=Eq

[
1

q(z|x;ϕ)
∂p(x, z; θ)

∂θ

]
=

∫
∂p(x, z; θ)

∂θ
dz

=
∂

∂θ

∫
p(x, z; θ) dz =

∂p(x; θ)

∂θ
.

(21)

A.3 GRADIENT ESTIMATOR FOR UPDATING THE PROPOSAL DISTRIBUTION IN VIS

In this section, we derive the score function gradient estimator and the pathwise gradient estimator
for minimizing the forward χ2 divergence, which is equivalent to minimizing lnV (x; θ, ϕ) in Eq. 11.

First, we show the derivation of Eq. 11.

lnV (x; θ, ϕ) ≈ ln
1

K

K∑
k=1

p
(
x, z(k); θ

)2
q
(
z(k)

∣∣x;ϕ)2
= logsumexp

[
2 ln p

(
x, z(k); θ

)
− 2 ln q

(
z(k)

∣∣∣x;ϕ)]− lnK

=: ln V̂ (x; θ, ϕ).

(22)

The score function gradient estimator of lnV (x; θ, ϕ) in Eq. 11 is

∂ lnV (x; θ, ϕ)

∂ϕ
=

1

V (x; θ, ϕ0)

∫
p(x, z; θ)2

∂

∂ϕ

1

q(z|x;ϕ)
dz

=
1

V (x; θ, ϕ0)

∫
−p(x, z; θ)

2

q(z|x;ϕ0)
∂

∂ϕ
ln q(z|x;ϕ) dz

≈ 1

V̂ (x; θ, ϕ0)

1

K

K∑
k=1

−
p
(
x, z(k); θ

)2
q
(
z(k)

∣∣x;ϕ0)2 ∂ ln q
(
z(k)

∣∣x;ϕ)
∂ϕ

=
1

V̂ (x; θ, ϕ0)

1

K

K∑
k=1

1

2

∂

∂ϕ
exp

[
2 ln p

(
x, z(k); θ

)
− 2 ln q

(
z(k)

∣∣∣x;ϕ)]
=
∂

∂ϕ

1

2
ln V̂ (x; θ, ϕ).

(23)

When the reparameterization trick can be utilized, z|x;ϕ = g(ϵ|x;ϕ) where ϵ ∼ r(ϵ), then we
have the transformation q(z|x;ϕ) dz = r(ϵ) dϵ (Schulman et al., 2015). Then,

∂ lnV (x; θ, ϕ)

∂ϕ
=

1

V (x; θ, ϕ0)

∂

∂ϕ

∫
q(z|x;ϕ)p(x, z; θ)

2

q(z|x;ϕ)2
dz

=
1

V (x; θ, ϕ0)

∂

∂ϕ

∫
r(ϵ)

p(x, z; θ)2

q(z|x;ϕ)2
dϵ

≈ 1

V (x; θ, ϕ)

∂

∂ϕ

1

K

K∑
k=1

exp
[
2 ln p

(
x, z(k); θ

)
− 2 ln q

(
z(k)

∣∣∣x;ϕ)]
=
∂

∂ϕ
ln V̂ (x; θ, ϕ).

(24)
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A.4 LATENT MANIFOLD OF THE MNIST DATASET

The following figures are the latent manifolds of the MNIST dataset learned by different methods.

manifold learned by VI

manifold learned by VBIS

manifold learned by IWAE

manifold learned by CHIVI

manifold learned by VIS

Figure 6: Latent manifolds of the MNIST dataset learned by different methods.
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A.5 COMPARISON OF DIFFERENT GRADIENT ESTIMATORS OF EQ. 11

Considering that the numerical issue in minimizing the forward χ2 divergence is widely discovered
by a lot of previous works (Pradier et al., 2019; Finke & Thiery, 2019; Geffner & Domke, 2020;
Yao et al., 2018), we run VIS on the toy mixture model again (Sec. 4.1) using the {score function,
pathwise} gradient estimator in {log, original} space for minimizing the forward χ2 divergence.
Results in Fig. 7 show that the score function gradient estimator is better than the pathwise gradient
estimator for minimizing the forward χ2 divergence. Besides, it is important to estimate it in log
space so that the numerical stability of the score function gradient estimator can be promised.

Posterior score log Posterior score original

Posterior pathwise log Posterior pathwise original

score
log

score
orig

path
log

path
orig

(a) (b)

(c)

Figure 7: (a): LL, CLL, and HLL evaluated on the test dataset. (b): Convergence curves of the
parameter set θ learned by different gradient estimators. The dashed curves are the true parameters
used for generating the data, and the solid curves are the learned parameters. (c): The posterior
distribution given x = 0 and x = 1 learned by different gradient estimators. The dashed curves are
the true posterior p(z|x; θtrue), the solid curves are the learned posterior p(z|x; θ), and the dotted
curves are the approximated posterior q(z|x;ϕ) learned in the variational/proposal distribution.
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A.6 RUNNING TIME OF DIFFERENT METHODS

Fig. 8 shows the test LL and corresponding running time of different methods w.r.t. the number
of Monte Carlo K on the synthetic POGLM dataset (Sec. 4.3). In general, the running times of
all methods are linear to the number of Monte Carlo samples. With more Monte Carlo samples, all
methods perform better, and VIS is consistently better than others especially whenK is large. When
K is small, all methods fail because of the complex nature of the POGLM problem. This implies
that for complicated graphical models and high dimensional latent space, we do need enough Monte
Carlo samples for all these sampling-based methods to become effective. Therefore, the number of
Monte Carlo should be suitable to the complexity of the model/problem, rather than which method
we choose.
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Figure 8: Test LL (left) and corresponding running time (right) of different methods w.r.t. the
number of Monte Carlo K, on the synthetic POGLM dataset (Sec. 4.3).
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A.7 FORWARD KL DIVERGENCE

(Jerfel et al., 2021) considers forward KL divergence as the target function for updating the proposal
distribution since they noticed the drawback of the reverse KL divergence. According to (Sason &
Verdú, 2016) and (Nishiyama & Sason, 2020), however, KL(p∥q) can be bounded by χ2(p∥q):

KL(p∥q) ⩽ ln
(
1 + χ2(p∥q)

)
⩽ χ2(p∥q), (25)

but not vice versa. Therefore, minimizing the forward KL divergence might not be able to get the
optimal proposal distribution, which should be obtained by minimizing the forward χ2 divergence.
To validate this empirically, we compare minimizing the forward χ2 divergence (VIS) to minimizing
the forward KL divergence (forward KL) on the toy mixture model again (Sec. 4.1), and the results
are shown in Fig. 9.

(a) (b)

(c)
VIS forward KL

forward KLVIS

forw
ard KL

Figure 9: (a): LL, CLL, and HLL evaluated on the test dataset. (b): Convergence curves of the
parameter set θ learned by VIS and forward KL. The dashed curves are the true parameters used for
generating the data, and the solid curves are the learned parameters. (c): The posterior distribution
given x = 0 and x = 1 learned by different gradient estimators. The dashed curves are the true
posterior p(z|x; θtrue), the solid curves are the learned posterior p(z|x; θ), and the dotted curves are
the approximated posterior q(z|x;ϕ) learned in the variational/proposal distribution.
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A.8 RELATED WORKS AND CONTRIBUTIONS TABLE

Here, we aim to offer a concise summary of our contributions and related works.

Table 1: Contributions.
Contributions Previous literatures

Motivate from the effectiveness of IS [3] [5] [6] [7]
Aim at learning θ [1] [3] [4] [5] [6] [7]
No restrictions on the q distribution families [1] [2] [3]
Directly minimizing forward χ2 divergence without surrogate [2] [3] [5] [7]
Motivate from the bias of IS in log space
Numerically stable gradient estimator in log space
Extensive experiments on cases where no explicit decomposi-
tion p(x, z; θ) = p(x|z; θ)p(z; θ) exists
Visualization for inferred latent and parameter θ’s recovery

• Motivate from the bias of IS in log space: We start by comparing the bias of the ln p̂(x; θ, ϕ)

and ÊLBO(x; θ, ϕ) to analyze why doing IS and the optimal way of doing IS. And the conclusion
about minimizing the forward χ2 divergence coincides with improving the effectiveness of the IS
estimator (Fig. 1).
• Numerically stable gradient estimator in log space: Previous work already derived the gradi-
ent estimator for minimizing the χ2 divergence in the original space but not in log space. This leads
to the numerical instability issue and scaling to the high dimensionality issue. We argue that it is
critical to estimate its gradient in log space to obtain a numerically stable and succinct form of the
gradient estimator, especially for the score function estimator (Fig. 7).
• Extensive experiments on cases where no explicit decomposition p(x, z; θ) =
p(x|z; θ)p(z; θ) exists: Most of the previous work only do experiments on generative models with
explicit decomposition p(x, z; θ) = p(x|z; θ)p(z; θ), unlike the POGLM. However, when such an
explicit decomposition does not exist or when the generative posterior distribution p(z|x; θ) and
the approximating posterior distribution q(z|x;ϕ) are not Gaussian, ELBO cannot be reformulated
as ELBO(x; θ, ϕ) = Eq[ln p(x|z; θ)] − KL(q(z|x;ϕ)∥p(z; θ)), and hence ELBO lost a lot of ad-
vantages. Therefore, we do need a variety of graphical models to understand the performance of
different methods.
• Visualization for inferred latent and parameter θ’s recovery: Although theoretical materials
in this paper have shown the superiority of VIS, practical visualization of the behavior of different
methods is still necessary for us to get an intuition of how and why VIS performs better than others.

[1] Burda et al. (2015)
[2] Dieng et al. (2017)
[3] Finke & Thiery (2019)
[4] Jerfel et al. (2021)
[5] Domke & Sheldon (2018)
[6] Su & Chen (2021)
[7] Akyildiz & Mı́guez (2021)
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