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Abstract
Large multimodal models (LMMs) have shown remarkable perfor-
mance in the visual commonsense reasoning (VCR) task, which
aims to answer a multiple-choice question based on visual common-
sense within an image. However, the ability of LMMs to correct
potential visual commonsense errors in the distractor upon their
occurrence is yet under-explored. Drawing inspiration from how a
human teacher crafts challenging distractors to test students’ com-
prehension of the concepts or skills and assists them in identifying
and correcting errors toward the answer, we are the pioneering
research for LMMs to simulate this error correction process. To
this end, we employ GPT-4 as a “teacher” to collect the explainable
feedback dataset VCR-DF for error correction, which serves as a
benchmark to evaluate the ability of LMMs to identify misconcep-
tions and clarify reasons behind the error in VCR distractors toward
final answers. In addition, we propose an LMM-based Pedagogical
Expert Instructed Feedback Generation (PEIFG) model to incorpo-
rate the learnable expert prompts and multimodal instruction as
guidance for feedback generation. Experimental results show that
our PEIFG significantly outperforms existing LMMs. We believe
that our benchmark provides a new direction for evaluating the
capabilities of LMMs. 1
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1 Introduction
Visual commonsense reasoning (VCR) task aims to predict the an-
swer to the multiple-choice question and provide a convincing
rationale [11, 24, 44, 45, 49] about the image. In recent years, it has
gained considerable attention from computer vision (CV) and natu-
ral language processing (NLP) communities due to the advancement
of large multimodal models (LMMs) [3, 14, 24, 41, 46, 51]. Specifi-
cally, inferring a reliable answer in VCR requires LMMs to not only
recognize objects and scenes but also deeply understand the un-
derlying visual commonsense (e.g., likely intents, goals, and social
dynamics of people) in the image.

Scrutinizing existing LMMs [3, 14, 24, 51], we identify their com-
mon paradigm as two stages: pre-training and instruction tuning
with a large language model. Specifically, they are first pre-trained
on large-scale image-text pairs for modality alignment and then
construct instruction data that combines both visual and language
features, which is fed into the large language model to infer the
answer. By this training paradigm, they often demonstrate strong
reasoning and generalization capabilities attributed to the expo-
nential increase in both data size and model scale. In the field of
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Figure 1: A sample of original VCR and our VCR-DF datasets.

pedagogy [7, 31], a human teacher often designs challenging dis-
tractors to evaluate students’ cognitive skills in multiple-choice
questions and guide them in identifying and rectifying potential
errors toward correct answers. While the capability of LMMs for
straightforward reasoning has advanced, we further investigate
whether LMMs can emulate the error correction process, which re-
mains unexplored in previous LMM studies. Therefore, we generate
feedback as error correction based on the multiple-choice question
of VCR, which mainly includes the misconception and explanation
about the distractor. However, distractors from the original VCR
dataset [49] are inadequate for evaluating the error correction abil-
ity of LMMs since the inherent bias in these distractors. Specifically,
the sample from the original VCR dataset frequently exhibits a
higher overlap between the correct answer and entities than with
distractors, where merely choosing the option based on the rule
of maximum entity overlap can achieve over 60% accuracy. More-
over, the content of the distractors frequently lacks any pertinent
relevance to the image in the original VCR dataset. As shown in
Fig. 1, elements “playdate”, “test” and “racing” from VCR dataset
have no connection to the image. Consequently, LMMs may easily
dismiss these distractors without comprehensively understanding
the visual commonsense, leading to a lack of visual commonsense
errors for feedback generation.

To address the aforementioned issues, we construct the VCR-DF
dataset including new distractors and explainable feedback, which
can serve as a benchmark to evaluate the error correction ability

of LMMs. Specifically, we first utilize the language-only GPT-4 to
classify the educational level of the current question with Bloom’s
taxonomy [2], which can be categorized into “remember”, “under-
stand”, “apply”, “analyze”, “evaluate” and “create” levels. This clas-
sification prevents the subsequent generation of distractors from
deviating from the corresponding educational level. Next, follow-
ing [27], given the input information (i.e., event, question, answer,
and objects) and educational level, GPT-4 generates new distractors
related to the content of the image, which are subject to further
manual screening. Finally, we employ GPT-4 again as a “teacher” to
annotate the corresponding misconception and explanation about
the distractor. As shown in Fig. 1, the distractors from our VCR-DF
contain visual commonsense errors, which are more relevant to the
image. The feedback from VCR-DF includes the educational level,
misconception and explanation of the distractor.

In this paper, we propose a feedback generation task for VCR
distractors to evaluate the error correction ability of LMMs. Diverg-
ing from the forward reasoning, LMMs often overlook the potential
mismatched image-text information between the distractor and
image since they typically learn from image-text pairs during train-
ing. Moreover, data specific to error correction is often absent in
pre-training datasets, resulting in models’ inability to rectify errors
when encountered. Experimental results also show that LMMs do
not exhibit the same proficiency in error correction as they do in
reasoning. Therefore, we argue that equipping LMMs with strong
reasoning abilities to perform error correction requires special-
ized prompts as guidance of the LMM. Building upon this analysis,
we introduce Pedagogical Expert Instructed Feedback Generation
(PEIFG), an LMM engineered for error correction by feedback gen-
eration, which consists of three key components: a visual feature
extractor (VFE), an expert prompt selector (EPS), and a text genera-
tor. Specifically, the VFE first utilizes the visual marker perceiver
(VMP) and CLIP [34] image encoder to extract region-level and
global-level visual features, which are concatenated as the image
representation. To address the challenge of aligning textual infor-
mation with multiple instances of the same object category (e.g.,
person0 and person1) within the image, we add object boxes as
visual markers for corresponding objects and then incorporate the
SAM-based [20] VMP with a language model (i.e., OPT-350M [50])
for object coordinates prediction. Subsequently, we develop the
EPS to select expert prompts from a learnable prompt pool, rep-
resenting specialized expert knowledge as guidance for feedback
generation. Technically, we combine language instructions with
image representations to select the most relevant expert prompts.
Finally, we integrate the text prompt, visual features from VFE
and expert prompts into the multimodal instruction, which guides
the large language model for feedback generation. Furthermore,
a refinement step employs reinforcement learning to ensure the
generated feedback is explainable and faithful, maintaining logical
consistency with the input information. Considering our model
effectively identifies visual commonsense errors within distractors,
we can further utilize PEIFG to capture these potential errors and
generate distractors without modifying the model architecture.

Our main contributions can be summarized as follows:

• To the best of our knowledge, we are the first to investigate the
error correction capabilities of large multimodal models (LMMs).
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Additionally, we construct a benchmark and introduce the feed-
back generation task for evaluation.

• To engage the LMM with strong reasoning abilities in error cor-
rection, we propose the Pedagogical Expert Instructed Feedback
Generation (PEIFG) model, which effectively integrates visual
features and learnable expert prompts into the multimodal in-
struction for feedback generation.

• Extensive experiments on our benchmark show the proposed
PEIFG model significantly surpasses the existing LMMs, and
offers a new direction to evaluate the capabilities of LMMs.

2 Related Work
Equipping machines with multimodal reasoning ability is a long-
standing goal of artificial intelligence (AI) systems [28, 48, 53].
This form of reasoning empowers machines to emulate human-like
cognition and commonsense understanding of the world. Recent
progress in multimodal learning has been driven by incorporating
visual features with pre-trained large language models as large
multimodal models (LMMs) [8, 17, 27, 54]. The current paradigm
for training LMMs primarily comprises two stages (image-text
pre-training and instruction tuning). Specifically, during the image-
text pre-training stage, these LMMs are initially trained on a large
scale of image-text pairs for cross-modal alignment [1, 21, 22, 47].
This process ensures that both visual and textual input informa-
tion are effectively mapped into a unified semantic space. For
example, BLIP-2 [22] design a Q-Former to align visual and tex-
tual features in the pre-trained stage. During instruction tuning,
LMMs fine-tune onmultimodal instruction datasets to enhance their
instruction-following ability and tackle more complex multimodal
tasks. These instruction datasets originate frommanually annotated
data [5, 9, 15, 30, 38] and data generated by GPT-4 [4, 23, 26, 27, 47].
InstructBLIP [8] builds upon the BLIP-2 framework by fine-tuning
Q-Former with instruction data. MiniGPT-4 [54] directly employs
a linear layer to project visual features into the semantic space of
language, leveraging instruction data for this process. LLaVA [27] is
the first LMM to fine-tune through self-instruction, which employs
language-only GPT-4 to generate instruction-following data with
some manual samples for fine-tuning. Hong et al. [17] propose
an 18B LMM CogAgent for graphical user interfaces (GUI) under-
standing and navigation, which utilizes both low-resolution and
high-resolution image encoders. Meanwhile, it achieves the state-
of-the-art on various reasoning benchmarks. Moreover, some other
works [6, 16, 29, 39] use the large language models as the controller,
which aims to control various visual modules with code generation
for reasoning. Specifically, VisProg [16] and ViperGPT [39] utilize
predefined APIs to access available modules, and compose them
by generating Python code for execution without any task-specific
training. Existing LMMs primarily focus on forward reasoning ca-
pabilities in multimodal tasks. However, their ability to analyze the
causes of errors and rectify them is yet under-explored. To the best
of our knowledge, we are the first to investigate LMMs for error
correction in the visual commonsense reasoning task.

3 Dataset Construction
Existing datasets for visual commonsense reasoning (VCR) [11, 49]
are mainly structured as multiple-choice questions. However, they

are inadequate for comprehensively assessing models’ visual com-
monsense reasoning capability and their proficiency in error correc-
tion. The reasons are as follows: i) The original distractors within
these datasets contain inherent bias, where excessive overlap be-
tween the entities of the image and answer, and the distractors
often lack relevance to the question and image. It results in a defi-
ciency of visual commonsense errors within these distractors. ii)
They are deficient in feedback mechanisms to identify and address
errors within distractors, which is essential for timely correction.
Inspired by cognitive-developmental theory in the field of peda-
gogy [31], teachers often employ Bloom’s taxonomy [2] to identify
questions at various levels and then craft corresponding distracors,
aiming to probe students’ potential cognitive challenges. Moreover,
they provide feedback to assist students in understanding and cor-
recting their errors after failing to solve a problem. Therefore, we
construct the VCR-DF dataset as a benchmark for evaluating the
error correction ability of large multimodal models (LMMs) in vi-
sual commonsense reasoning. In total, the VCR-DF dataset contains
22,401 data samples and splits 20,163 and 2,238 samples for training
and testing respectively.

Specifically, our VCR-DF dataset is derived from the original VCR
dataset [49], which leverages GPT-4 [32] for the new distractors
and feedback data collection. For the input image 𝐼 , question𝑄 , and
correct answer𝐴, we prompt GPT-4 to generate multiple distractors
{𝐷𝑖 }𝑁𝑖=1 and corresponding feedback {𝐹𝑖 }𝑁𝑖=1. The prompts for GPT-
4 are shown in the Supplementary. In the following subsection, we
will detail the procedure of data collection.

3.1 Distractor and Feedback Collection
To avoid the laborious demand of human annotation, we design
a data reformation pipeline assisted by language-only GPT-4 and
a manual filtering process for distractor and feedback collection.
Specifically, the source images are from the original VCR dataset [49].
We also preserve questions, correct answers and object boxes pro-
vided in VCR.

3.1.1 Distractor Collection. For distractor data collection, we
guide GPT-4 to identify the Bloom’s taxonomy level of the ques-
tion with the given answer, and generate five distractors with the
corresponding Bloom’s taxonomy level for each QA pair based on
the given inputs (i.e., manually annotated image events and places,
questions, answers, and object boxes).

Considering the potential mistakes in annotations with GPT-4,
we develop a web page for manual distractor filtering to remove
those of lower quality. We first ask a group of trained annotators to
assess whether each distractor is related to the question and image.
Upon confirming relevance, they need to review the distractor
against the image, answer, and question for inaccuracies, where
distractors without errors are discarded. Finally, annotators rank
the distractors and select the top-3 of them.

3.1.2 Feedback Collection. Given the above input information
and each filtered distractor, we instruct GPT-4 to identify the mis-
conception and explain the error in the distractor, serving as the
preliminary feedback data. Subsequently, we manually classify feed-
back meeting the following quality criteria as the final feedback
data. (i) Accuracy: must precisely pinpoint and correct the error
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within the distractor, ensuring the rectification is directly relevant
to the identified mistake. (ii) Clarity: The explanation provided in
the feedback should be clear and understandable, avoiding ambigu-
ity or overly complex language that could hinder comprehension.
After our manual evaluation, over 90% of the preliminary samples
are both meet the above two criteria. Finally, we integrate synthetic
Bloom’s taxonomy levels, misconceptions and explanations about
the error as feedback data, as shown in Fig. 1.

4 Methodology
Our goal is to develop a large multimodal model (LMM) for explain-
able feedback generation, which simulates the teaching process of
educators. Specifically, given the input image 𝐼 , question 𝑄 , correct
answer 𝐴, and 𝑁 distractors {𝐷𝑖 }𝑁𝑖=1, we identify the correspond-
ing Bloom’s taxonomy level of the question, and then generate the
misconception and explanation as feedback {𝐹𝑖 }𝑁𝑖=1. The overall
architecture of our proposed Pedagogical Expert Instructed Feed-
back Generation (PEIFG) model is shown in Fig. 2, which consists
of three components: (i) visual feature extractor (VFE), which adds
the object box information as visual markers into the image and
obtains the contextually enriched visual features. (ii) expert prompt
selector (EPS), which incorporates language instructions and vi-
sual features to select the most relevant expert prompts as expert
knowledge from a learnable prompt pool. (iii) text generator, which
constructs a multimodal instruction for the large language model
(LLM), integrating the visual features, expert prompts and language
instruction to generate the feedback. The details of each component
are shown in the following subsections.

4.1 Visual Feature Extractor
Different from previous visual question answering datasets (e.g.,
VQA v2.0, OKVQA and so on), where the input is an image and ques-
tion. The VCR dataset provides the model with additional object
boxes including multiple instances of the same object category (e.g.,
person0 and person1). Consequently, we first automatically anno-
tate the objects within the image with the provided boxes as visual
markers, as shown in Fig. 2. Then, we introduce a visual marker
perceiver (VMP) to comprehend the visual markers information
(i.e., object boxes and object text annotation) in the image by stage
1 training, as shown in Fig. 2. The region-level features from the
VMP and global-level features from CLIP [34] image encoder are
concatenated as final visual features.

4.1.1 Visual Marker Perceiver. Given the image with visual
markers, we enable the visual marker perceiver (VMP) to under-
stand the object with markers in stage 1 training. Specifically, we
initially reshape the image into high resolution (i.e., 1024 × 1024)
and use the SAM-base [20] backbone with two convolution layers
as VMP to obtain the region-level visual features.

Following [43], we fed the region-level features and detection in-
struction into a language model (i.e., OPT-350M) [50] to effectively
enhance the VMP capability in discerning object spatial information
through visual markers. Technically, we employ a multilayer per-
ception (MLP) to map region-level visual features into the semantic
space of language. For the input of OPT model, we fill them into
the pre-defined detection instruction template, i.e., “<img> Detect
all objects in the image”. The special token “<img>” is replaced

by the region-level visual features. The coordinates of the object
boxes are provided for prediction by the OPT model. Specifically,
we normalize the coordinates of top-left and bottom-right corners
to the range of [0, 1] according to the image size, which provides
the OPT [50] model for prediction. The language modeling loss is
utilized to optimize both the VMP and OPT models concurrently,
facilitating object perception with visual markers.

4.1.2 Visual Features Extraction. After stage 1 training, we
employ the trained VMP and CLIP image encoder to obtain region-
level and global-level features, respectively. Specifically, given the
high-resolution image with visual markers 𝐼ℎ , VMP extracts the
region-level visual features. Meanwhile, we utilize the CLIP image
encoder [34] to encode the low-resolution image 𝐼𝑟 ∈ R224×224, and
then obtain the global-level visual features. Subsequently, we map
both types of visual features into the semantic space of language,
enhancing their compatibility with the input format of the large
language model for further feedback generation, denoted as 𝑣𝑟 and
𝑣𝑔 respectively. The process of visual feature extraction can be
formulated as:

𝑣𝑟 = MLP𝑟 (𝑓𝑟 (𝐼ℎ)),
𝑣𝑔 = MLP𝑔 (𝑓𝑔 (𝐼𝑟 )),

(1)

where 𝑓𝑟 and 𝑓𝑔 represent the VMP module and CLIP image en-
coder. MLP𝑟 and MLP𝑔 are multilayer perception (MLP) layers.
𝑣𝑟 ∈ R𝐿𝑑×𝑑 and 𝑣𝑔 ∈ R𝐿𝑑×𝑑 . 𝐿𝑑 is the length of image patches and
the dimension of features 𝑑 is 1024. Finally, we concatenate 𝑣𝑟 and
𝑣𝑔 as the integrated visual features, denoted by 𝑣 = [𝑣𝑟 ; 𝑣𝑔], where
𝑣 ∈ R𝐿𝑑×2𝑑 and [; ] is the concatenation operation.

4.2 Expert Prompt Selector
The introduction of the expert prompt selector (EPS) is motivated
by the desire to enable our model to emulate the diverse exper-
tise of teachers as expert knowledge in generating feedback. Thus,
we maintain a learnable prompt pool representing diverse expert
knowledge and employ instruction-aware visual features (i.e., inte-
grating both visual and language instruction) to select the relevant
expert prompts from the pool.

4.2.1 Instruction-aware Visual Feature. We design manually
crafted natural language instructions to align with the integrated
visual features for further expert prompt selection. Additionally, we
supplement these instructions with the corresponding question and
answer as auxiliary information. Following [8], we use the Query
Transformer (Q-Former) [22] module to extract the instruction-
aware visual features. Technically, within the Q-Former, learnable
query tokens align with the language instructions by self-attention
mechanisms and align with the integrated visual features by cross-
attention mechanisms. Next, the output sequence of Q-Former is
fed into an average-pooling layer to obtain instruction-aware visual
features 𝑣𝑠 . The computation of this process can be expressed as:

𝑣𝑠 = Avg(Q-Former(𝑋𝑞, 𝑋𝑛, 𝑣)), (2)

where 𝑣𝑠 ∈ R768. 𝑋𝑞 ∈ R𝐿𝑞×768 is the learnable query tokens
and 𝑋𝑛 ∈ R𝐿𝑛×768 denotes embeddings of the manually crafted
instruction. 𝐿𝑞 and 𝐿𝑛 correspond to the lengths of the query tokens
and instruction, respectively.Q-Former(·) andAvg(·) represent the
Q-Fromer module and average-pooling layer respectively.
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Figure 2: Overview of our PEIFG model. It contains three components: (i) the visual feature extractor (VFE), (ii) the expert
prompt selector (EPS), (iii) the text generator. <img> and <expert> indicate the integrated visual features and top-𝐾 selected
expert prompts, respectively.

4.2.2 Expert Prompt Selection. To select the expert prompts rel-
evant to the current input information (i.e., the image, question and
answer), we use the instruction-aware visual features as guidance
for selection. We first build a learnable prompt pool to maintain
diverse expert knowledge which can be formulated as:

P = {𝑃1, 𝑃2, ..., 𝑃𝑆 }, (3)

where 𝑃𝑖 ∈ R𝐿𝑝×768 and 𝐿𝑝 is the length of each expert prompt. 𝑆
denotes the size of the prompt pool. Given the necessity for the pool
to encompass a wide array of expert prompts, we consider that each
prompt should retains its distinct expertise. Each prompt should be
jointly independent in the sense that each of them contains unique
information. To this end, we design the expert correlation loss to
reduce the correlation among the expert prompts in the pool by
minimizing their inner product:

L𝑐𝑜𝑟 =



PP𝑇 − diag

(
PP𝑇

)


2
𝐹
, (4)

where diag(·) only preserves diagonal entries and | | · | |2
𝐹
is the

square of the Frobenius norm. Subsequently, we employ the query
and match key-value based strategy for expert prompt selection.
Concretely, we utilize the average pooling result of each expert
prompt as its corresponding key, denoted as {𝑘1, 𝑘2, ..., 𝑘𝑆 }, where
𝑘𝑖 ∈ R768. Importantly, the keys are updated corresponding to the
expert prompts during training. Given the input information, we
aim to find out the top-𝐾 keys {𝑘𝑚1 , 𝑘𝑚2 , ..., 𝑘𝑚𝐾 }, making them
closer to the input sample, where {𝑚 𝑗 }𝐾𝑗=1 denotes a subset of 𝐾
(1 ≤ 𝐾 ≤ 𝑆) indices of keys in the pool. Specifically, we calculate the
cosine similarity 𝑠𝑖𝑚(·) between keys and the instruction-aware vi-
sual features 𝑣𝑠 to select top-𝐾 keys and calculate the key matching

loss for selection:

𝑘 = argmin
{𝑚𝑖 }𝐾𝑖=1⊆[1,𝑆 ]

𝐾∑︁
𝑖=1

𝑠𝑖𝑚
(
𝑣𝑠 , 𝑘𝑚𝑖

)
, (5)

L𝑠𝑒 = −
∑︁
𝑘

𝑠𝑖𝑚(𝑘𝑚𝑖 , 𝑣𝑠 ), (6)

where 𝑘 is the set of top-𝐾 keys. Finally, we obtain the top-𝐾 expert
prompts from the pool corresponding to the selected keys:

𝑃 = [𝑃𝑚1 ; 𝑃𝑚2 ; ...; 𝑃𝑚𝐾 ], (7)

where 𝑃 ∈ R(𝐾×𝐿𝑝 )×768,𝑚𝑖 denotes indices of selected prompts 𝑃
and [; ] is the concatenation operation.

4.3 Text Generator
Upon acquiring the integrated visual features and top-𝐾 expert
prompts, we fuse them into the LLM-based text generator (i.e.,
QWen1.5) for feedback generation. Specifically, we adopt the widely
used instruction tuningmethod to incorporate the language prompt,
integrated visual features, and expert prompts into multimodal in-
struction. We first utilize a multilayer perception (MLP) to project
the expert prompts into a 2𝑑 dimensional space, meeting the input
requirement of the LLM. The multimodal instruction is defined
as: “Image: <img>. Expert: <expert>. Please generate the feedback
based on the question: {Question}, answer: {Answer}, distractor:
{Distractor}”. The special tokens “<img>” and “<expert>” are re-
placed by integrated visual features and selected expert prompts,
respectively. “{Question}”, “{Answer}” and “{Distractor}” are the
input question, answer and distractor of a specific sample. The mul-
timodal instruction is directly fed into the frozen large language
model with learnable LoRA layers [18] for language modeling. The
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cross-entropy loss of language modeling can be formulated as:

L𝑙𝑎𝑛 = −
𝑇∑︁
𝑡=1

log𝑝𝜃 (𝑤𝑡 | 𝑤<𝑡 , Ins) , (8)

where log𝑝𝜃 (·) is the negative log-likehood, Ins is the multimodal
instruction, and𝑤<𝑡 represents the words before the 𝑡-th word.

Given our method’s proficiency in identifying visual common-
sense errors in distractors, we can utilize the PEIFGmodel to further
capture these potential errors and generate distractors.

4.3.1 Refinement. To ensure the logical coherence between the
feedback and input information, we leverage the trained PEIFG
model to generate pseudo training feedback data, which is then
used to refine the model performance with the assistance of GPT-4.
Specifically, we randomly sample from the VCR-DF training data
and employ the top-p sampling method to generate 𝑀 feedback
instances for each sample, denoted as {𝐹1, 𝐹2, ..., 𝐹𝑀 }. Given the
question, ground truth distractor, feedback, and the generated feed-
back, we formulate five diagnostic questions for GPT-4 to ascertain
whether the generated feedback meets the specified criteria. For
each diagnostic question, feedback thatmeets the criteria is awarded
1 point, otherwise 0 point. Therefore, the final diagnostic score 𝑠𝑑
for each generated feedback ranges from 0 to 5. Finally, we rank
the generated feedback as pairs based on the diagnostic score and
design a refinement loss L𝑟𝑒 , which utilizes the direct preference
optimization (DPO) [36] as reinforcement learning algorithm to fur-
ther optimize the LLM. More details about the refinement process
are shown in the Supplementary.

4.4 Training Objective
In our setting, we treat the generation of feedback as two distinct
tasks. Specifically, feedback generation, we generate feedback for
error correction for each given distractorwithin the VCR-DF dataset.
The objective of our PEIFG model is to minimize the total loss, i.e.,
key matching loss in Eq. 6, correlation loss in Eq. 4 and language
modeling loss in Eq. 8. The definition of total loss is:

L =
1
𝐷

𝐷∑︁
𝑡=1

(L𝑙𝑎𝑛 + 𝜆1L𝑐𝑜𝑟 + 𝜆2L𝑠𝑒 ), (9)

where 𝐷 is the total number of training samples, 𝜆1 and 𝜆2 stand
for hyperparameters. It is worth noting that the refinement loss
L𝑟𝑒 is applied to optimize the model’s parameters after the PEIFG
has been trained.

5 Experiment
5.1 Implementation Details
We implement our PEIFG model with Pytorch and train it on two
RTX 3090 cards. For the visual feature extraction, we employ the
SAM-base [20] backbone and two convolution layers as the visual
marker perceiver (VMP). Furthermore, in this stage 1 training for
the VMP module, we use AdanW [19] optimizer with an initial
learning rate of 5e-5. The ViT-L/14 [12] pre-trained in CLIP [34]
is used for the image encoder, where ViT-L/14 denotes ViT-Large
model with the patch size 14× 14. Thus, the length of image tokens
𝐿𝑑 = 256 and the dimension of features 𝑑 is 1024. When selecting
the expert prompt, we set the size of the prompt pool 𝑆 to 10 and

the length of each expert prompt 𝐿𝑑 to 5. The number of selected
prompts 𝐾 is 3. The application of expert prompts differs in dis-
tractor and feedback generation. Specifically, we leverage top-3
expert prompts, which allows for a more comprehensive analy-
sis by incorporating diverse expert knowledge into multimodal
instruction. For distractor generation, within single forward, we
aim to generate 3 distractors. To achieve this, each of the three
expert prompts is utilized to generate one corresponding distractor,
ensuring a tailored approach to leverage the distinct expertise of
each expert prompt. We choose the QWen1.5-1.8B as the LLM for
distractor and feedback generation. The LoRA layers are inserted
into each self-attention layer of the LLM for optimization. During
training, we use Adam optimizer with cosine scheduler and the
initial learning rate of 8e-5 to optimize the total loss function L.
We only fine-tune the learnable query tokens of Q-Former, expert
prompt pool, multilayer perception (MLP) and LoRA layers of LLM,
while freezing other parameters. For LoRA, we set the rank to 8.
The batch size is 24 and we train 3 epochs. The hyperparameters
𝜆1 and 𝜆2 for the total loss function in Eq. 9 are both 0.1.

5.2 Baseline and Ablation Models
5.2.1 Baseline Models. In this paper, we evaluate our proposed
PEIFG by comparing it with two types of baseline models.

• Explanation-Enhanced visual question answering models in-
cluding NLX-GPT [37] and KICNLE [42]. Specifically, NLX-GPT
adopts the pre-trained CLIP encoder and GPT-2 [35] language
model for feedback and distractor generation. KICNLE incorpo-
rates external knowledge and designs a multi-iteration generative
approach to ensure logical consistency between the generated
distractor and feedback.

• Multimodal large language models (LMMs) with different pa-
rameter scales from 3B to 18B, including BLIP-2 [22], Instruct-
BLIP [8], VisualGLM [13], LLaVA-v1.5 [27] and CogAgent [17].
Specifically, we integrate the LoRA layers into the self-attention
mechanisms of LLMs. Furthermore, we randomly select 200 sam-
ples for comparison between our model and the GPT-4 with
vision (GPT-4V) [32], which boasts parameter scales above 175B
and has the best performance on various multimodal tasks.

More implementation details of baseline models are provided in
the Supplementary.

5.2.2 Ablation Models. To investigate the performance effect
of each module in PEIFG, we compare the following variants of
our method on VCR-DF dataset. We independently conduct corre-
sponding ablation experiments for each module.

• PEIFG w/o stage 1: PEIFG without stage 1 training for visual
marker percevier.

• PEIFG w/o VMP: PEIFG without visual marker percevier for
visual feature extraction.

• PEIFG w/o CLIP: PEIFG without CLIP image encoder for visual
feature extraction.

• PEIFG w/o EPS: PEIFG without expert prompt selector, which
removes expert prompts from the multimodal instruction.

• PEIFG w/o Ref: PEIFG without refinement for generation.
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Table 1: Main automatic metrics results of baselines and our model. Bold: the maximum value in the column.

Task Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE𝐿 CIDEr BERTScore

Feedback

NLX-GPT [37] 42.59 25.32 16.29 10.87 33.69 32.61 3.08 63.71
KICNLE [42] 41.05 24.37 14.94 10.12 33.46 32.84 4.23 63.67
BLIP-2 [22] 42.59 26.47 18.15 13.88 33.25 39.70 17.92 69.50

InstructBLIP [8] 43.80 28.92 20.44 14.95 34.35 40.84 16.34 70.52
VisualGLM [13] 44.72 28.32 19.47 13.93 30.54 37.72 19.71 70.54
LLaVA-v1.5 [27] 43.79 26.87 17.25 10.74 29.77 35.55 21.71 68.59
CogAgent [17] 46.47 30.95 20.79 13.07 33.40 38.81 31.65 70.95

PEIFG w/o stage 1 45.74 30.78 22.45 16.61 35.20 39.91 28.75 70.40
PEIFG w/o VMP 46.41 30.84 22.18 15.95 34.40 40.07 26.77 69.84
PEIFG w/o CLIP 46.37 31.03 22.66 16.89 34.85 40.40 25.51 70.50
PEIFG w/o EPS 44.38 29.20 22.89 15.15 34.10 39.64 26.72 70.62
PEIFG w/o Ref 45.73 30.57 22.11 16.20 34.49 39.88 29.27 70.77

PEIFG 46.53 31.77 23.45 17.69 35.77 41.08 32.10 71.60

Distractor

NLX-GPT [37] 10.31 7.10 5.04 3.67 20.21 31.46 2.18 43.82
KICNLE [42] 10.72 7.62 5.54 4.15 20.97 33.17 5.39 43.74
BLIP-2 [22] 32.59 17.18 10.06 5.62 34.75 30.00 21.60 68.90

InstructBLIP [8] 31.94 16.82 9.84 5.49 34.51 29.92 20.19 68.62
VisualGLM [13] 44.29 29.19 20.76 14.62 39.51 39.40 78.84 74.97
LLaVA-v1.5 [27] 39.14 27.35 20.19 13.61 38.58 38.25 68.59 73.65
CogAgent [17] 42.23 30.94 22.67 15.29 40.82 40.54 78.23 74.81

PEIFG w/o stage 1 46.13 33.03 22.71 17.09 43.84 43.49 66.62 75.12
PEIFG w/o VMP 44.90 31.77 22.49 16.68 43.12 43.49 67.34 74.69
PEIFG w/o CLIP 46.09 32.82 23.46 17.73 43.17 42.62 67.49 75.49
PEIFG w/o EPS 43.97 30.54 20.68 16.25 41.78 41.12 62.81 74.59

PEIFG 47.46 34.33 24.53 18.41 44.00 43.90 78.98 76.35

Table 2: Comparison of automatic metrics between PEIFG
and GPT-4V on 200 randomly sampled feedback.

Method BLEU-4 METEOR CIDEr BERTScore
GPT-4V 7.69 33.57 24.47 71.07
PEIFG 15.23 34.38 29.44 70.98

5.3 Evaluation Metric
5.3.1 Automatic Evaluation Metrics. We evaluate the perfor-
mance with eight standard metrics, including BLEU-(1 to 4) [33],
ROUGE𝐿 [25], METEOR [10], CIDEr [40], and BERTScore [52].
These metrics are commonly used for evaluating text generation
and we compute metric values using the publicly available code2.

5.4 Results and Analysis
5.4.1 Performance Comparison. Table 1 and 2 show the auto-
matic evaluation results of baselines and our model on feedback and
distractor generation. We find that: i) Experimental results in Table
1 provide evidence that our PEIFG also surpasses the open-source
baselines on feedback generation task. Specifically, compared with
two explanation-enhanced visual question answering models (i.e.,
NLX-GPT and KICNLE) trained with full fine-tuning, the feedback
generated by them often fails to produce lengthy textual content of
the feedback, while merely providing the correct answer. It suggests

2https://github.com/huggingface/evaluate

that these small models encounter limitations in generating feed-
back for error correction. By comparing our model with existing
LMMs with parameters ranging from 3B to 18B, our performance
still surpasses theirs, which indicates that these general-purpose
LMMs are not ideally suited for error correction in visual common-
sense reasoning without specific prompt information to instruct the
LLM. Worse still, VisualGLM and LLaVA-v1.5 exhibit a bias towards
predicting the “understand” level for almost all samples, since in-
stances of this level are the most in the training data. Conversely,
our model achieves a prediction accuracy of 88% for educational
levels. ii)Notably, Table 2 shows that our PEIFGmodel achieves bet-
ter performance in automatic evaluation metrics when compared
with GPT-4V in feedback generation. Additionally, we observe that
feedback generated by GPT-4 tends to be overly verbose, which
is not conducive to human learning from the feedback and leads
to lower N-gram metric scores. iii) We also evaluate the quality
of generated distractors. As shown in Table 1, our PEIFG model
consistently outperforms all baselines with significant margins on
all metrics. For example, PEIFG outputforms CogAgent model by
margin of “+3.12” and “+1.54” in BLEU-4 and BERTScore scores,
respectively. These results indicate that the distractors produced
by PEIFG more closely align with the ground truth, which can be
attributed to PEIFG’s more effective capture of visual commonsense
errors within distractors during the feedback generation process.

5.4.2 Ablation Study. We conduct ablation experiments to ver-
ify the effectiveness of different components in our PEIFG model.
Experimental results are also shown in Table 1. We observed that: i)
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By removing the stage 1 training for visual marker perceiver (VMP),
we notice an inferior performance on both feedback and distrac-
tor generation. It demonstrates that our PEIFG becomes adept at
understanding objects with visual markers for more accurate error
analysis and correction in the distractor. ii)When comparing the
results of PEIFG w/o VMP, PEIFG w/o CLIP with PEIFG respec-
tively, it becomes evident that both visual branches (i.e., VMP and
CLIP image encoder) for two types of visual features contribute to
the performance improvement. iii) When applying expert prompts
to PEIFG, we obtain a significant improvement in feedback and
distractor generation. Specifically, the performance increases from
15.15 to 17.69 and 39.64 to 41.08 on BLEU-4 and ROUGE𝐿 metrics re-
spectively. This outcome indicates the success of the expert prompt
selection strategy and how expert prompts effectively aid the LLM
in understanding and correcting errors to generate corresponding
feedback. iv) Finally, we investigate the impact of the refinement
operation assisted bv GPT-4 on feedback generation. After refine-
ment, we find this step can improve the performance on all metrics,
which further ensures the logical coherence between the feedback
and input information. In particular, the prediction accuracy of
educational levels is improved from 86% to 88%.

5.5 Case Study
Fig. 3 shows the feedback generated by VisualGLM, CogAgent and
our model PEIFG. Intuitively, PEIFG generates more grounded feed-
back compared to other baseline models. Specifically, we find that:
i) The feedback generated by VisualGLM frequently lacks crucial
information in its explanations that would lead to the correct an-
swer. Specifically, as shown in Fig. 3, the explanation generated
by VisualGLM incorrectly classifies the educational level and rec-
ognizes the location of person9 as being ‘in the ring’ rather than
the actual “by the ring”. Worse still, it merely states the reason for
the error without further elaborating on the correct answer that
“person9 is a commentator”. In contrast, both CogAgent and our
PEIFG accurately recognize the location of “person9” and correctly
conclude that “person9 is a commentator”. ii) Compared our PEIFG
with CogAgent, the explanations generated by CogAgent overlook
the visual clue ‘mic’, which may hinder to logically deduce the cor-
rect answer that ‘person9 is a commentator’. Although CogAgent
contains eight times the number of parameters as our PEIFG model,
our model still manages to more accurately capture visual clues “by
the ring” and “mic” for error correction. This can be attributed to
the efficacy of our expert prompts, which effectively instruct the
LLM to focus more on visual clues relevant to error correction.

6 Conclusion
In this paper, we present a pioneering work to investigate the error
correction capabilities in visual commonsense reasoning of exist-
ing large multimodal models (LMMs), noted for their exceptional
reasoning skills. Therefore, we leverage GPT-4 to construct the
VCR-DF benchmark for evaluation of error correction by feedback
generation task. Additionally, we propose the PEIFG model to iden-
tify visual commonsense errors and provide explainable feedback.
Specifically, we first design a visual feature extractor to obtain the
integrated visual features. Subsequently, the integrated visual fea-
tures and language instruction are jointly used to select the relevant

Figure 3: Case study of the generated feedback by VisualGLM,
CogAgent and our model PEIFG.

expert prompts from the pool. Finally, we effectively integrate the
visual features and learnable expert prompts into multimodal in-
struction and design a refinement strategy for feedback generation.
The experimental results indicate that our PEIFG outperforms ex-
isting LMMs. We hope this learning to correction process would
chart a new direction to evaluate the capabilities of LMMs.

Acknowledgments
This research is supported by the National Natural Science Foun-
dation of China (62076100), the Fundamental Research Funds for
the Central Universities, South China University of Technology
(x2rjD2240100), the Science and Technology Planning Project of
Guangdong Province (2020B0101100002), Guangdong Provincial
Fund for Basic and Applied Basic Research—Regional Joint Fund
Project (Key Project) (2023B1515120078), Guangdong Provincial
Natural Science Foundation for Outstanding Youth Team Project
(2024B1515040010), the China Computer Federation (CCF)-Zhipu
AI Large Model Fund, the Hong Kong Polytechnic University’s
Postdoc Matching Fund (project no. P0049003).



Learning to Correction: Explainable Feedback Generation for Visual Commonsense Reasoning Distractor MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia

References
[1] Jinze Bai, Shuai Bai, Shusheng Yang, ShijieWang, Sinan Tan, PengWang, Junyang

Lin, Chang Zhou, and Jingren Zhou. 2023. Qwen-VL: A Frontier Large Vision-
Language Model with Versatile Abilities. CoRR abs/2308.12966 (2023).

[2] Benjamin S Bloom, Max D Engelhart, Edward J Furst, Walker H Hill, David R
Krathwohl, et al. 1956. Taxonomy of educational objectives: The classification of
educational goals. Handbook 1: Cognitive domain. Longman New York.

[3] Mu Cai, Haotian Liu, Siva Karthik Mustikovela, Gregory P. Meyer, Yuning Chai,
Dennis Park, and Yong Jae Lee. 2023. Making Large Multimodal Models Under-
stand Arbitrary Visual Prompts. CoRR abs/2312.00784 (2023).

[4] Delong Chen, Jianfeng Liu, Wenliang Dai, and Baoyuan Wang. 2024. Visual
Instruction Tuning with Polite Flamingo. In Proc. of AAAI, Michael J. Wooldridge,
Jennifer G. Dy, and Sriraam Natarajan (Eds.). AAAI Press, 17745–17753.

[5] Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakrishna Vedantam, Saurabh Gupta,
Piotr Dollár, and C. Lawrence Zitnick. 2015. Microsoft COCO Captions: Data
Collection and Evaluation Server. CoRR abs/1504.00325 (2015).

[6] Zhenfang Chen, Rui Sun, Wenjun Liu, Yining Hong, and Chuang Gan. 2023.
GENOME: GenerativE Neuro-symbOlic visual reasoning by growing and reusing
ModulEs. CoRR abs/2311.04901 (2023).

[7] Rui Dai, Joseph C Fritchman, Qiaoyi Liu, Yang Xiao, Haibo Yu, and Lei Bao. 2019.
Assessment of student understanding on light interference. Physical Review
Physics Education Research 15, 2 (2019), 020134.

[8] Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao,
Weisheng Wang, Boyang Li, Pascale Fung, and Steven C. H. Hoi. 2023. In-
structBLIP: Towards General-purpose Vision-Language Models with Instruction
Tuning. In Proc. of NeurIPS, Alice Oh, Tristan Naumann, Amir Globerson, Kate
Saenko, Moritz Hardt, and Sergey Levine (Eds.).

[9] Abhishek Das, Satwik Kottur, Khushi Gupta, Avi Singh, Deshraj Yadav, José M. F.
Moura, Devi Parikh, and Dhruv Batra. 2017. Visual Dialog. In Proc. of CVPR. IEEE
Computer Society, 1080–1089.

[10] Michael J. Denkowski and Alon Lavie. 2014. Meteor Universal: Language Specific
Translation Evaluation for Any Target Language. In Proc. of ACL Workshop.
376–380.

[11] Qingxiu Dong, Ziwei Qin, Heming Xia, Tian Feng, Shoujie Tong, Haoran Meng,
Lin Xu, Zhongyu Wei, Weidong Zhan, Baobao Chang, Sujian Li, Tianyu Liu, and
Zhifang Sui. 2022. Premise-based Multimodal Reasoning: Conditional Inference
on Joint Textual and Visual Clues. In Proc. of ACL, Smaranda Muresan, Preslav
Nakov, and Aline Villavicencio (Eds.). Association for Computational Linguistics,
932–946.

[12] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-
aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. 2021. An Image is
Worth 16x16 Words: Transformers for Image Recognition at Scale. In Proc. of
ICLR. 1–12.

[13] Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding, Jiezhong Qiu, Zhilin Yang, and
Jie Tang. 2022. GLM: General Language Model Pretraining with Autoregressive
Blank Infilling. In Proc. of ACL, Smaranda Muresan, Preslav Nakov, and Aline
Villavicencio (Eds.). Association for Computational Linguistics, 320–335.

[14] Jiaxin Ge, Sanjay Subramanian, Trevor Darrell, and Boyi Li. 2023. From Wrong
To Right: A Recursive Approach Towards Vision-Language Explanation. In Proc.
of EMNLP, Houda Bouamor, Juan Pino, and Kalika Bali (Eds.). Association for
Computational Linguistics, 1173–1185.

[15] Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Batra, and Devi Parikh.
2017. Making the V in VQAMatter: Elevating the Role of Image Understanding in
Visual Question Answering. In Proc. of CVPR. IEEE Computer Society, 6325–6334.

[16] Tanmay Gupta and Aniruddha Kembhavi. 2023. Visual Programming: Composi-
tional visual reasoning without training. In Proc. of CVPR. IEEE, 14953–14962.

[17] Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Junhui Ji,
Yan Wang, Zihan Wang, Yuxuan Zhang, Juanzi Li, Bin Xu, Yuxiao Dong, Ming
Ding, and Jie Tang. 2023. CogAgent: A Visual Language Model for GUI Agents.
CoRR abs/2312.08914 (2023).

[18] Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean
Wang, Lu Wang, and Weizhu Chen. 2022. LoRA: Low-Rank Adaptation of Large
Language Models. In Proc. of ICLR. OpenReview.net.

[19] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-
mization. In Proc. of ICLR.

[20] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloé Rolland, Laura
Gustafson, Tete Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr
Dollár, and Ross B. Girshick. 2023. Segment Anything. In Proc. of ICCV. IEEE,
3992–4003.

[21] Junyan Li, Delin Chen, Yining Hong, Zhenfang Chen, Peihao Chen, Yikang Shen,
and Chuang Gan. 2023. CoVLM: Composing Visual Entities and Relationships
in Large Language Models Via Communicative Decoding. CoRR abs/2311.03354
(2023).

[22] Junnan Li, Dongxu Li, Silvio Savarese, and Steven C. H. Hoi. 2023. BLIP-2: Boot-
strapping Language-Image Pre-training with Frozen Image Encoders and Large
Language Models. In Proc. of ICML (Proceedings of Machine Learning Research,

Vol. 202), Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt,
Sivan Sabato, and Jonathan Scarlett (Eds.). PMLR, 19730–19742.

[23] Lei Li, Yuwei Yin, Shicheng Li, Liang Chen, Peiyi Wang, Shuhuai Ren, Mukai Li,
Yazheng Yang, Jingjing Xu, Xu Sun, Lingpeng Kong, and Qi Liu. 2023. M3IT: A
Large-Scale Dataset towards Multi-Modal Multilingual Instruction Tuning. CoRR
abs/2306.04387 (2023).

[24] Yunxin Li, Baotian Hu, Xinyu Chen, Yuxin Ding, Lin Ma, and Min Zhang. 2023.
A Multi-Modal Context Reasoning Approach for Conditional Inference on Joint
Textual and Visual Clues. In Proc. of ACL, Anna Rogers, Jordan L. Boyd-Graber,
and Naoaki Okazaki (Eds.). Association for Computational Linguistics, 10757–
10770.

[25] Chin-Yew Lin. 2004. Rouge: A package for automatic evaluation of summaries.
In Proc. of ACL Workshop. 74–81.

[26] Fuxiao Liu, Kevin Lin, Linjie Li, Jianfeng Wang, Yaser Yacoob, and Lijuan Wang.
2023. Aligning Large Multi-Modal Model with Robust Instruction Tuning. CoRR
abs/2306.14565 (2023).

[27] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. 2023. Visual Instruc-
tion Tuning. In Proc. of NeurIPS, Alice Oh, Tristan Naumann, Amir Globerson,
Kate Saenko, Moritz Hardt, and Sergey Levine (Eds.).

[28] Pan Lu, Swaroop Mishra, Tanglin Xia, Liang Qiu, Kai-Wei Chang, Song-Chun
Zhu, Oyvind Tafjord, Peter Clark, and Ashwin Kalyan. 2022. Learn to Explain:
Multimodal Reasoning via Thought Chains for Science Question Answering. In
Proc. of NeurIPS 2022, Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave,
K. Cho, and A. Oh (Eds.).

[29] Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-Wei Chang, Ying Nian
Wu, Song-Chun Zhu, and Jianfeng Gao. 2023. Chameleon: Plug-and-Play Com-
positional Reasoning with Large Language Models. In Proc. of NeurIPS, Alice
Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey
Levine (Eds.).

[30] Kenneth Marino, Mohammad Rastegari, Ali Farhadi, and Roozbeh Mottaghi.
2019. OK-VQA: A Visual Question Answering Benchmark Requiring External
Knowledge. In Proc. of CVPR. Computer Vision Foundation / IEEE, 3195–3204.

[31] Carl Ed Murchison. 1930. A history of psychology in autobiography Vol. I. Russell
& Russell/Atheneum Publishers.

[32] OpenAI. 2023. GPT-4 Technical Report. CoRR abs/2303.08774 (2023).
[33] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. Bleu:

a Method for Automatic Evaluation of Machine Translation. In Proc. of ACL.
311–318.

[34] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,
Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,
Gretchen Krueger, and Ilya Sutskever. 2021. Learning Transferable Visual Models
From Natural Language Supervision. In Proc. of ICML (Proceedings of Machine
Learning Research, Vol. 139), Marina Meila and Tong Zhang (Eds.). PMLR, 8748–
8763.

[35] Alec Radford, JeffreyWu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever,
et al. 2019. Language models are unsupervised multitask learners. OpenAI blog
1, 8 (2019), 9.

[36] Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D. Manning, Stefano
Ermon, and Chelsea Finn. 2023. Direct Preference Optimization: Your Language
Model is Secretly a RewardModel. In Proc. of NeurIPS, Alice Oh, Tristan Naumann,
Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (Eds.).

[37] Fawaz Sammani, Tanmoy Mukherjee, and Nikos Deligiannis. 2022. NLX-GPT: A
Model for Natural Language Explanations in Vision and Vision-Language Tasks.
In Proc. of CVPR. IEEE, 8312–8322.

[38] Dustin Schwenk, Apoorv Khandelwal, Christopher Clark, Kenneth Marino, and
Roozbeh Mottaghi. 2022. A-OKVQA: A Benchmark for Visual Question Answer-
ing Using World Knowledge. In Proc. of ECCV (Lecture Notes in Computer Science,
Vol. 13668), Shai Avidan, Gabriel J. Brostow, Moustapha Cissé, Giovanni Maria
Farinella, and Tal Hassner (Eds.). Springer, 146–162.

[39] Dídac Surís, Sachit Menon, and Carl Vondrick. 2023. ViperGPT: Visual Inference
via Python Execution for Reasoning. In Proc. of ICCV. IEEE, 11854–11864.

[40] Ramakrishna Vedantam, C. Lawrence Zitnick, and Devi Parikh. 2015. CIDEr:
Consensus-based image description evaluation. In Proc. of CVPR. 4566–4575.

[41] Guangzhi Wang, Yixiao Ge, Xiaohan Ding, Mohan S. Kankanhalli, and Ying Shan.
2023. What Makes for Good Visual Tokenizers for Large Language Models? CoRR
abs/2305.12223 (2023).

[42] Jiayuan Xie, Yi Cai, Jiali Chen, Ruohang Xu, Jiexin Wang, and Qing Li. 2024.
Knowledge-Augmented Visual Question Answering with Natural Language Ex-
planation. IEEE Transactions on Image Processing (2024).

[43] Shiyu Xuan, Qingpei Guo, Ming Yang, and Shiliang Zhang. 2023. Pink: Un-
veiling the Power of Referential Comprehension for Multi-modal LLMs. CoRR
abs/2310.00582 (2023).

[44] Da Yin, Feng Gao, Govind Thattai, Michael Johnston, and Kai-Wei Chang. 2023.
GIVL: Improving Geographical Inclusivity of Vision-Language Models with Pre-
Training Methods. In Proc. of CVPR. IEEE, 10951–10961.

[45] Da Yin, Liunian Harold Li, Ziniu Hu, Nanyun Peng, and Kai-Wei Chang. 2021.
Broaden the Vision: Geo-Diverse Visual Commonsense Reasoning. In Proc. of



MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia Jiali Chen et al.

EMNLP, Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-
tau Yih (Eds.). Association for Computational Linguistics, 2115–2129.

[46] Haoxuan You, Rui Sun, Zhecan Wang, Long Chen, Gengyu Wang, Hammad A.
Ayyubi, Kai-Wei Chang, and Shih-Fu Chang. 2023. IdealGPT: Iteratively Decom-
posing Vision and Language Reasoning via Large Language Models. In Proc. of
EMNLP Findings, Houda Bouamor, Juan Pino, and Kalika Bali (Eds.). Association
for Computational Linguistics, 11289–11303.

[47] Tianyu Yu, Jinyi Hu, Yuan Yao, Haoye Zhang, Yue Zhao, Chongyi Wang, Shan
Wang, Yinxv Pan, Jiao Xue, Dahai Li, Zhiyuan Liu, Hai-Tao Zheng, and Maosong
Sun. 2023. Reformulating Vision-Language Foundation Models and Datasets
Towards Universal Multimodal Assistants. CoRR abs/2310.00653 (2023).

[48] Li Yuan, Yi Cai, Haopeng Ren, and Jiexin Wang. 2024. A Logical Pattern Memory
Pre-trained Model for Entailment Tree Generation. In Proc. of COLING, Nicoletta
Calzolari, Min-Yen Kan, Véronique Hoste, Alessandro Lenci, Sakriani Sakti, and
Nianwen Xue (Eds.). ELRA and ICCL, 759–772.

[49] Rowan Zellers, Yonatan Bisk, Ali Farhadi, and Yejin Choi. 2019. From Recognition
to Cognition: Visual Commonsense Reasoning. In Proc. of CVPR. Computer Vision
Foundation / IEEE, 6720–6731.

[50] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui
Chen, Christopher Dewan, Mona T. Diab, Xian Li, Xi Victoria Lin, TodorMihaylov,
Myle Ott, Sam Shleifer, Kurt Shuster, Daniel Simig, Punit Singh Koura, Anjali
Sridhar, Tianlu Wang, and Luke Zettlemoyer. 2022. OPT: Open Pre-trained
Transformer Language Models. CoRR abs/2205.01068 (2022).

[51] Shilong Zhang, Peize Sun, Shoufa Chen, Min Xiao, Wenqi Shao, Wenwei Zhang,
Kai Chen, and Ping Luo. 2023. GPT4RoI: Instruction Tuning Large Language
Model on Region-of-Interest. CoRR abs/2307.03601 (2023).

[52] Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. Weinberger, and Yoav Artzi.
2020. BERTScore: Evaluating Text Generation with BERT. In Proc. of ICLR.
OpenReview.net.

[53] Ge Zheng, Bin Yang, Jiajin Tang, Hong-Yu Zhou, and Sibei Yang. 2023. DDCoT:
Duty-Distinct Chain-of-Thought Prompting for Multimodal Reasoning in Lan-
guage Models. In Proc. of NeurIPS, Alice Oh, Tristan Naumann, Amir Globerson,
Kate Saenko, Moritz Hardt, and Sergey Levine (Eds.).

[54] Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. 2023.
MiniGPT-4: Enhancing Vision-Language Understanding with Advanced Large
Language Models. CoRR abs/2304.10592 (2023).


	Abstract
	1 Introduction
	2 Related Work
	3 Dataset Construction
	3.1 Distractor and Feedback Collection

	4 Methodology
	4.1 Visual Feature Extractor
	4.2 Expert Prompt Selector
	4.3 Text Generator
	4.4 Training Objective

	5 Experiment
	5.1 Implementation Details
	5.2 Baseline and Ablation Models
	5.3 Evaluation Metric
	5.4 Results and Analysis
	5.5 Case Study

	6 Conclusion
	Acknowledgments
	References

