
A Extended Related Work470

We address related work within two primary areas: dexterous high-dimensional control, and robotic471

pianists.472

Dexterous Manipulation and High-Dimensional Control The vast majority of the control lit-473

erature uses much lower-dimensional systems (i.e., single-arm, simple end-effectors) than high-474

dimensional dexterous hands. Specifically, only a handful of general-purpose policy optimization475

methods have been shown to work on high-dimensional hands, even for a single hand [10, 9, 12, 11,476

16, 14, 17, 7], and of these, only a subset has demonstrated results in the real world [10, 9, 12, 11, 16].477

Results with bi-manual hands are even rarer, even in simulation only [15, 18].478

As a benchmark, perhaps the most distinguishing aspect of ROBOPIANIST is in the definition of479

“task success”. As an example, general manipulation tasks are commonly framed as the continual480

application of force/torque on an object for the purpose of a desired change in state (e.g., SE(3) pose481

and velocity). Gradations of dexterity are predominantly centered around the kinematic redundancy482

of the arm or the complexity of the end-effector, ranging from parallel jaw-grippers to anthropomor-483

phic hands [44, 15]. A gamut of methods have been developed to accomplish such tasks, ranging484

from various combinations of model-based and model-free RL, imitation learning, hierarchical con-485

trol, etc. [45, 10, 13, 12, 46, 47]. However, the class of problems generally tackled corresponds486

to a definition of dexterity pertaining to traditional manipulation skills [19], such as re-orientation,487

relocation, manipulating simply-articulated objects (e.g., door opening, ball throwing and catching),488

and using simple tools (e.g., hammer) [20, 21, 15, 11, 22]. The only other task suite that we know of489

that presents bi-manual tasks, the recent Bi-Dex [15] suite, presents a broad collection of tasks that490

fall under this category.491

While these works represent an important class of problems, we explore an alternative notion of492

dexterity and success. In particular, for most all the aforementioned suite of manipulation tasks,493

the “goal” state is some explicit, specific geometric function of the final states; for instance, an494

open/closed door, object re-oriented, nail hammered, etc. This effectively reduces the search space495

for controls to predominantly a single “basin-of-attraction" in behavior space per task. In contrast,496

the ROBOPIANIST suite of tasks encompasses a more complex notion of a goal, which is encoded497

through a musical performance. In effect, this becomes a highly combinatorially variable sequence498

of goal states, extendable to arbitrary difficulty by only varying the musical score. “Success” is499

graded on accuracy over an entire episode; concretely, via a time-varying non-analytic output of500

the environment, i.e., the music. Thus, it is not a matter of the “final-state” that needs to satisfy501

certain termination/goal conditions, a criterion which is generally permissive of less robust execution502

through the rest of the episode, but rather the behavior of the policy throughout the episode needs to503

be precise and musical.504

Similarly, the literature on humanoid locomotion and more broadly, “character control", another im-505

portant area of high-dimensional control, primarily features tasks involving the discovery of stable506

walking/running gaits [48, 49, 50], or the distillation of a finite set of whole-body movement pri-507

ors [51, 52, 53], to use downstream for training a task-level policy. Task success is typically encoded508

via rewards for motion progress and/or reaching a terminal goal condition. It is well-documented that509

the endless pursuit of optimizing for these rewards can yield unrealistic yet “high-reward" behaviors.510

While works such as [51, 54] attempt to capture stylistic objectives via leveraging demonstration511

data, these reward functions are simply appended to the primary task objective. This scalarization512

of multiple objectives yields an arbitrarily subjective Pareto curve of optimal policies. In contrast,513

performing a piece of music entails both objectively measurable precision with regards to melodic514

and rhythmic accuracy, as well as a subjective measure of musicality. Mathematically, this translates515

as stylistic constraint satisfaction, paving the way for innovative algorithmic advances.516

Robotic Piano Playing Robotic pianists have a rich history within the literature, with several works517

dedicated to the design of specialized hardware [23, 24, 25, 26, 27, 28], and/or customized con-518

trollers for playing back a song using pre-programmed commands (open-loop) [29, 30]. The work519

13

in [31] leverages a combination of inverse kinematics and trajectory stitching to play single keys520

and playback simple patterns and a song with a Shadow hand [37]. More recently, in [32], the521

author simulated robotic piano playing using offline motion planning with inverse kinematics for522

a 7-DoF robotic arm, along with an Iterative Closest Point-based heuristic for selecting fingering523

for a four-fingered Allegro hand. Each hand is simulated separately, and the audio results are com-524

bined post-hoc. Finally, in [33], the authors formulate piano playing as an RL problem for a single525

Allegro hand (four fingers) on a miniature piano, and additionally leverage tactile sensor feedback.526

However, the tasks considered are rather simplistic (e.g., play up to six successive notes, or three527

successive chords with only two simultaneous keys pressed for each chord). The ROBOPIANIST528

benchmark suite is designed to allow a general bi-manual controllable agent to emulate a pianist’s529

growing proficiency on the instrument by providing a curriculum of musical pieces, graded in diffi-530

culty. Leveraging two underactuated anthropomorphic hands as actuators provides a level of realism531

and exposes the challenge of mastering this suite of high-dimensional control problems.532

14

B Detailed Reward Function533

Reward Formula Weight Explanation

Key Press 0.5 · g(||ks � kg||2) + 0.5 · (1� 1{false positive}) 1 Press the right keys and only the right keys
Energy Penalty |⌧joints|>|vjoints| -5e-3 Minimize energy expenditure
Finger Close to Key g(||pf � pk||2) 1 Shaped reward to bring fingers to key

Table 2: The reward function used to train ROBOPIANIST agents. ⌧ represents the joint torque, v is the joint
velocity, pf and pk represent the position of the finger and key in the world frame respectively, ks and kg
represent the current and the goal states of the key respectively, and g is a function that transforms the distances
to rewards in the [0, 1] range.

15

C Full Repertoire Results534

Figure 9: Results on the full repertoire of 150 songs.

16

D ROBOPIANIST Training details535

Computing infrastructure and experiment running time536

Our model-free RL codebase is implemented in JAX [55]. Experiments were performed on a Google537

Cloud n1-highmem-64 machine with an Intel Xeon E5-2696V3 Processor hardware with 32 cores538

(2.3 GHz base clock), 416 GB RAM and 4 Tesla K80 GPUs. Each “run”, i.e., the training and539

evaluation of a policy on one task with one seed, took an average of 5 hrs wall clock time. These540

run times are recorded while performing up to 8 runs in parallel.541

Network architecture542

We use a regularized variant of clipped double Q-learning [56, 57], specifically DroQ [41], for543

the critic. Each Q-function is parameterized by a 3-layer multi-layer perceptron (MLP) with ReLU544

activations. Each linear layer is followed by dropout [58] with a rate of 0.01 and layer normaliza-545

tion [59]. The actor is implemented as a tanh-diagonal-Gaussian, and is also parameterized by a546

3-layer MLP that outputs a mean and covariance. Both actor and critic MLPs have hidden layers547

with 256 neurons and their weights are initialized with Xavier initialization [60], while their biases548

are initialized to zero.549

Training and evaluation550

We first collect 5000 seed observations with a uniform random policy, after which we sample actions551

using the RL policy. We then perform one gradient update every time we receive a new environment552

observation. We use the Adam [61] optimizer for neural network optimization. Evaluation happens553

in parallel in a background thread every 10000 steps. The latest policy checkpoint is rolled out by554

taking the mean of the output (i.e., no sampling). Since our environment is “fixed”, we perform only555

one rollout per evaluation.556

Reward formulation557

The reward function for training the RL agent consists of three terms: 1) a key press term rkey, 2) a558

move finger to key term rfinger, and 3) an energy penalty term renergy.559

rkey encourages the policy to press the keys that need to be pressed and discourages it from pressing
keys that shouldn’t be pressed. It is implemented as:

rkey = 0.5 ·

1

K

KX

i

g(||ki
s
� 1||2)

!
+ 0.5 · (1� 1{false positive}),

where K is the number of keys that need to be pressed at the current timestep, ks is the normal-560

ized joint position of the key between 0 and 1, and 1{false positive} is an indicator function that is561

1 if any key that should not be pressed creates a sound. g is the tolerance function from the562

dm_control [50] library: it takes the L2 distance of ks and 1 and converts it into a bounded positive563

number between 0 and 1. We use the parameters bounds=0.05 and margin=0.5.564

rfinger encourages the fingers that are active at the current timestep to move as close as possible to
the keys they need to press. It is implemented as:

rfinger =
1

K

KX

i

g(||pi
f
� pi

k
||2),

where pf is the Cartesian position of the finger and pi is the Cartesian position of a point centered565

at the surface of the key. g for this reward is parameterized by bounds=0.01 and margin=0.1.566

Finally, renergy penalizes high energy expenditure and is implemented as:

renergy = |⌧joints|>|vjoints|,
where ⌧joints is a vector of joint torques and vjoints is a vector of joint velocities.567

The final reward function sums up the aforementioned terms as follows:

rtotal = rkey + rfinger � 0.005 · renergy

17

Other hyperparameters568

For a comprehensive list of hyperparameters used for training the model-free RL policy, see Table 3.569

Hyperparameter Value
Total train steps 5M
Optimizer

Type ADAM
Learning rate 3⇥ 10�4

�1 0.9
�2 0.999

Critic
Hidden units 256
Hidden layers 3
Non-linearity ReLU
Dropout rate 0.01

Actor
Hidden units 256
Hidden layers 3
Non-linearity ReLU

Misc.
Discount factor 0.99
Minibatch size 256
Replay period every 1 step
Eval period every 10000 step
Number of eval episodes 1
Replay buffer capacity 1M
Seed steps 5000
Critic target update frequency 1
Actor update frequency 1
Critic target EMA momentum (⌧Q) 0.005
Actor log std dev. bounds [�20, 2]
Entropy temperature 1.0
Learnable temperature True

Table 3: Hyperparameters for all model-free RL experiments.

E Multitask BC Results570

18

Figure 10: Caption for the figure.

F Baselines571

Computing infrastructure and experiment running time572

Our MPC codebase is implemented in C++ with MJPC [42]. Experiments were performed on a573

2021 M1 Max Macbook Pro with 64 GB of RAM.574

Algorithm575

We use MPC with Predictive Sampling (PS) as the planner. PS is a derivative-free sampling-based576

algorithm that iteratively improves a nominal sequence of actions using random search. Concretely,577

N candidates are created at every iteration by sampling from a Gaussian with the nominal as the578

mean and a fixed standard deviation �. The returns from the candidates are evaluated, after which579

the highest scoring candidate is set as the new nominal. The action sequences are represented with580

cubic splines to reduce the search space and smooth the trajectory. In our experiments, we used581

19

N = 10, � = 0.05, and a spline dimension of 2. We plan over a horizon of 0.2 seconds, use a582

planning time step of 0.01 seconds and a physics time step of 0.005 seconds.583

Cost formulation584

The cost function for the MPC baseline consists of 2 terms: 1) a key press term ckey, 2) and a move585

finger to key term cfinger.586

The costs are implemented similarly to the model-free baseline, but don’t make use of the g function,587

i.e., they solely consist in unbounded l2 distances.588

The total cost is thus:
ctotal = ckey + cfinger

Note that we experimented with a control cost and an energy cost but they decreased performance589

so we disabled them.590

Alternative baselines591

We also tried the optimized derivative-based implementation of iLQG [62] also provided by [42],592

but this was not able to make substantial progress even at significantly slower than real-time speeds.593

iLQG is difficult to make real time because the action dimension is large and the algorithm theoreti-594

cal complexity is O(|A|3 ·H). The piano task presents additional challenges due to the large number595

of contacts that are generated at every time step. This make computing derivatives for iLQG very596

expensive (particularly for our implementation which used finite-differencing to compute them). A597

possible solution would be to use analytical derivatives and differentiable collision detection.598

Besides online MPC, we could have used offline trajectory optimization to compute short reference599

trajectories for each finger press offline and then track these references online (in real time) using600

LQR. We note, however, that the (i) high dimensionality, (ii) complex sequence of goals adding601

many constraints, and (iii) overall temporal length (tens of seconds) of the trajectories pose chal-602

lenges for this sort of approach.603

20

