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ABSTRACT

Recent advancements in multiple kernel clustering (MKC) have highlighted the
effectiveness of late fusion strategies, particularly in enhancing computational ef-
ficiency to near-linear complexity while achieving promising clustering perfor-
mance. However, existing methods encounter three significant limitations: (1)
reliance on fixed base partition matrices that do not adaptively optimize during
the clustering process, thereby constraining their performance to the inherent rep-
resentational capabilities of these matrices; (2) a focus on adjusting kernel weights
to explore inter-view consistency and complementarity, which often neglects the
intrinsic high-order correlations among views, thereby limiting the extraction of
comprehensive multiple kernel information; (3) a lack of adaptive mechanisms
to accommodate varying distributions within the data, which limits robustness
and generalization. To address these challenges, this paper proposes a novel al-
gorithm termed Dynamic LatE Fusion Multiple Kernel Clustering with Robust
Tensor Learning via min-max optimization (DLEFT-MKC), which effectively
overcomes the representational bottleneck of base partition matrices and facili-
tates the learning of meaningful high-order cross-view information. Specifically,
it is the first to incorporate a min-max optimization paradigm into tensor-based
MKC, enhancing algorithm robustness and generalization. Additionally, it dy-
namically reconstructs decision layers to enhance representation capabilities and
subsequently stacks the reconstructed representations for tensor learning that pro-
motes the capture of high-order associations and cluster structures across views,
ultimately yielding consensus clustering partitions. To solve the resultant opti-
mization problem, we innovatively design a strategy that combines reduced gradi-
ent descent with the alternating direction method of multipliers, ensuring conver-
gence to local optima while maintaining high computational efficiency. Extensive
experimental results across various benchmark datasets validate the superior ef-
fectiveness and efficiency of the proposed DLEFT-MKC.

1 INTRODUCTION

Multiple Kernel Clustering (MKC) has emerged as a crucial technique in machine learning, aimed
at analyzing complex linearly-inseparable data by projecting data features into higher-dimensional
or even infinite-dimensional spaces, Reproducing Kernel Hilbert Space (RKHS), thus transform-
ing data into linearly separable entities (Filippone et al., 2008; Marin et al., 2017; Blanco Valencia
et al., 2017). Given today’s era of big data, where almost all data encompass multiple distinct rep-
resentations or views, MKC algorithms have naturally garnered considerable attention and study
in the field. They integrate multi-source information within the kernel space, subsequently assign-
ing samples to distinct clusters (Gönen & Alpaydın, 2011; Kumar & Daumé, 2011; Chitta et al.,

∗corresponding author

1



Published as a conference paper at ICLR 2025

2012; Tang et al., 2022).Specifically, MKC primarily learns an optimally combined kernel by min-
ing information from multiple views, subsequently serving the clustering tasks. This methodology
is particularly beneficial across various real-world applications, including image recognition, natural
language processing, anomaly detection, and bioinformatics (Peng et al., 2019; Zhou et al., 2020;
Zhang et al., 2022a; Wang et al., 2022; Yu et al., 2023b;a; Tang et al., 2023; Yu et al., 2024).

Some representative MKC algorithms believe that the optimal kernel is a linear combination of base
kernels (Huang et al., 2012; Gönen & Margolin, 2014; Bang et al., 2018). The neighborhood kernel
learning methods seek a non-linear combination of base kernels for better representability of the
optimal kernel (Liu et al., 2017; 2020). A matrix-induced regularization is introduced to consider
the selection of kernels (Liu et al., 2016; Hu et al., 2019). Recently, a min-max framework has been
introduced to seek optimism in pessimism (Liu, 2023b), and some variants are proposed (Liu et al.,
2021c; Liu, 2023a). An overall process fusion manner is proposed to deepen the degree of fusion
between views (Zhang et al., 2022b). Furthermore, tensor-based multi-view clustering algorithms
also received a lot of attention due to their capability to study the high-order correlations among
views and achieve encouraging performance. Wu et al. (2019) reorganize the affinity matrices into
tensor form and learn its intrinsic tensor based on low-rank tensor approximation. The weighted
t-TNN is introduced to reflect the importance of different eigenvalues (Gao et al., 2020), A new
graph learning paradigm is proposed to enable the affinity graph propagated from KKM to enjoy the
valuable block diagonal and sparse property through an explicit theoretical connection between the
clustering indicator matrix and affinity graph (Ren et al., 2021). Chen et al. (2022c) stacks multiple
affinity representations in a low-rank constrained tensor to recover their comprehensiveness and
higher-order correlations. Late fusion MKC methods propose to first cluster each individual view
and then fuse these results into a cohesive solution (Wang et al., 2019b). The development of late
fusion strategies has further transformed MKC techniques (Zhang et al., 2021; Liu et al., 2021b);
these approaches not only benefit exploring cluster structures during the fusion process but also
significantly enhance computational efficiency, achieving near-linear complexity.

Despite the encouraging improvement in clustering performance, several critical challenges remain
unaddressed in MKC. First, late fusion MKC relies on fixed initial base partitions that do not adap-
tively optimize during the clustering process, presenting a bottleneck in performance due to their
inherent representational limitations; suboptimal starting points can severely compromise final out-
comes. Additionally, many existing MKC algorithms focus on adjusting kernel weights to explore
inter-view consistency and complementarity, and often overlook the intrinsic high-order correlations
among views, thereby limiting the extraction of comprehensive multiple kernel information. Fur-
thermore, existing MKC methods frequently lack adaptive mechanisms that accommodate varying
distributions within the data, thus limiting their robustness and generalization.

To tackle these issues, we propose a novel algorithm termed Dynamic LatE Fusion Multiple Kernel
Clustering with Robust Tensor Learning via Min-Max Optimization (DLEFT-MKC). Specifically,
we, for the first time, incorporate a min-max optimization paradigm into tensor-based MKC, rep-
resenting a pioneering exploration aimed at enhancing both performance robustness and general-
ization in clustering. Additionally, DLEFT-MKC dynamically reconstructs and calibrates the base
partitions, effectively overcoming the representational bottleneck of initial base partitions. Further-
more, stacking the dynamically adjusted partition matrices into tensors while applying t-TNN con-
straints promotes the learning of meaningful higher-order correlations and cluster structures across
views. We design an innovative and efficient strategy that combines the reduced gradient descent
method (RGDM) with the alternating direction method of multipliers (ADMM) to solve the resultant
max-min-max optimization problem, ensuring convergence to local optima while maintaining high
computational efficiency. For evaluating the proposed algorithm, we conduct comprehensive exper-
imental studies in terms of clustering performance, evolution and convergence, cluster partitions,
parameter sensitivity, ablation study, and time complexity. Extensive experimental results across
various benchmark datasets validate the effectiveness and efficiency of our proposed DLEFT-MKC.

The primary contributions of this paper are summarized as follows,

• This study is the first to incorporate a min-max optimization paradigm into tensor-based
MKC, which represents a pioneering exploration of min-max optimization aimed at en-
hancing both performance and robustness in clustering.

• We propose a groundbreaking approach for the dynamical reconstruction and calibration
of base partition matrices from LFMVC, effectively overcoming their representational bot-
tleneck and enhancing clustering performance.
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• We stack the reconstructed representations into tensors and optimize dynamic partitions
using tensor techniques, significantly enhancing our ability to learn high-order correlations
and uncover latent structures across views.

• To solve the resultant optimization problem, We design an innovative and efficient strategy
to combine the RGDM with ADMM. Extensive experimental results across various bench-
mark datasets validate both the effectiveness and efficiency of our proposed algorithm.

2 RELATED WORK

2.1 MULTIPLE KERNEL k-MEANS CLUSTERING (MKKM)

The k-means clustering algorithm aims to partition data points into k clusters by minimizing intra-
cluster distances and maximizing inter-cluster distances. Its objective can be articulated as follows:

min
S, c

∑n

i=1

∑k

j=1
Sij∥xi − cj∥2, s.t. S1 = 1, (1)

where xi represents the i-th data sample,cjdenotes the center of the j-th cluster,S ∈ Rn×k serves as
the clustering assignment matrix. If the i-th sample is assigned to the j-th cluster, then Sij = 1. and
n and k denote the number of samples and clusters, respectively.

Many approaches capture structural information by mapping features into Reproducing Kernel
Hilbert Space (RKHS) to address complex data that is linearly inseparable. Notably, the dimen-
sionality of mapped features can be extremely high or even infinite; therefore, kernel methods are
typically employed to compute the kernel matrix, thereby avoiding explicit mapping. By defining
F = SL( 1

2
) the clustering assignment matrix S is relaxed into the real domain, where L ∈ Rk×k is a

diagonal matrix with each diagonal element representing the reciprocal of the sum of its correspond-
ing column in matrix S. Consequently, the kernel K-means clustering algorithm can be articulated
as follows:

min
F

Tr
(
K(I − FF⊤)

)
, s.t. F⊤F = I, (2)

where K denotes the kernel matrix calculated using an implicit mapping function ϕ(·).

Following the framework of multiple kernel learning (Rakotomamonjy et al., 2008), the kernel K-
means method can be extended to multi-view scenarios, assuming that an optimal consensus kernel
matrix can be derived as a linear combination of predefined base kernel matrices. Therefore, the
framework of multiple kernel K-means clustering can be formally articulated as follows:

min
F ,γ

Tr
(
Kγ(I − FF⊤)

)
, s.t. F⊤F = I, γ ∈ ∆, (3)

where Kγ =
∑m

p=1 γ
2Kp denotes a combination of kernel matrices from different views, Kp is the

kernel matrix of p-th view, γp serve as the corresponding weight coefficient for each kernel view with
∆ = {γ ∈ Rm|

∑m
p=1 γp = 1, γq ≥ 0, ∀p},m denotes the number of views. According to the existing

literature, the optimization problem of MKKM can typically be solved using coordinate descent
optimization techniques that iteratively optimize specific variables while keeping others fixed.

2.2 LATE FUSION MULTI-VIEW CLUSTERING

Recently, the literature(Wang et al., 2019b) has proposed a method known as Late Fusion Multi-view
Clustering (LFMVC) to address the computational complexity challenges associated with MKC.
Unlike traditional multiple kernel K-means methods that represent distribution information from
different views through a weighted combination of kernel matrices {Kp}mp=1 ∈ Rn×n, LFMVC
integrates information at the decision level by utilizing smaller base partition matrices {Fp}mp=1 ∈
Rn×k to capture data distributions for each kernel view. This strategy significantly reduces both
time and memory overhead during the MKC process. Specifically, Late fusion MKC aims to learn
a consensus clustering partition matrix F ∗ ∈ Rn×k by integrating individual base partition matrices
{Fp}mp=1. Its objective function emphasizes maximizing alignment between weighted base partitions
generated from different views and the consensus partition:

max
F ,Tp,γ

Tr
(
F⊤

∑m

p=1
γpFpTp

)
, s.t. F⊤F = I,T⊤

p Tp = I, ∀p,γ ∈ ∇, (4)

where γ denotes the weight coefficients of various kernel views,∇ = {γ ∈ Rm |
∑m

p=1 γ
2
p = 1, γp ≥

0, ∀p}, and Tp ∈ Rk×k is the p-th permutation matrix, for the better alignment among base partitions
from various views.
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We can observe from Eq.(4) that LFMVC aims to optimize its objective function by maximizing all
involved variables. To achieve this objective, a coordinate descent method has been developed for
optimization purposes. As analyzed in previous studies (Wang et al., 2019b), LFMVC’s near-linear
computational complexity and efficiency enable it to handle large-scale clustering tasks effectively.

2.3 PRELIMINARIES OF 3-ORDER TENSOR

2.3.1 TENSOR SINGULAR VALUE DECOMPOSITION (T-SVD)

For a tensor A ∈ Rn1×n2×n3 , its t-SVD can be factorized as A = U ∗ S ∗ V⊤, where U ∈ Rn1×n1×n3

and S ∈ Rn1×n2×n3 are orthogonal tensors, and V ∈ Rn1×n2×n3 is an f-diagonal tensor, whose each
frontal slices is a diagonal matrix. According to the literature (Kilmer et al., 2013; Kilmer & Martin,
2011), the above t-SVD problem can be efficiently settled by matrix SVD in the Fourier domain,
i.e., Ak = UkSkV

⊤
k , k = 1, 2, · · · , n3.

2.3.2 T-SVD BASED TENSOR NUCLEAR NORM (T-TNN)

For a tensor A ∈ Rn1×n2×n3 , its t-TNN can be expressed as,||A||⊛ =
∑n3

k=1 ||Ak||∗ =∑n3
k=1

∑min(n1,n2)
i=1 σi(Ak), where σi(Ak) denotes the i-th largest singular value of Ak.

Note that according to (Zhang et al., 2014; Semerci et al., 2014), t-TNN is proven to be valid and
the tightest convex relaxation to l1-norm of the tensor multi-rank.

3 PROPOSED

3.1 FORMULATION

We propose a novel dynamic late-fusion multiple kernel clustering algorithm based on robust ten-
sor learning through min-max optimization, effectively addressing the representational bottleneck
of base partition matrices and facilitating the acquisition of meaningful high-order cross-view in-
formation. Specifically, we first incorporate a min-max optimization paradigm into tensor-based
MKC, which represents a pioneering exploration of min-max optimization designed to enhance
both performance and robustness in clustering. Additionally, the proposed algorithm dynamically
reconstructs and calibrates the base partition matrix, effectively overcoming constraints imposed by
initial representational limitations. Furthermore, stacking the dynamically adjusted partition matri-
ces into tensors while applying t-TNN constraints promotes the learning of higher-order correlations
and cluster structures across views.

To do so, we first introduce the dynamic partitions {F̂p}mp=1 to reconstruct the base partition ma-
trices {Fp}mp=1 of late fusion strategy based MKC. Next, We maximize the alignment between the
reconstructed and base partitions to ensure the quality of reconstruction, and dynamically optimize
this alignment during the subsequent iterations. Furthermore, to explore and capture higher-order
intrinsic correlations across views, we stack the dynamic reconstruction {F̂p}mp=1 into a tensor F̂
and optimize it with t-TNN. Additionally, we impose an orthogonal constraint on it to preserve its
capacity to reveal the clustering structure. Thus we can obtain the following expression:

max
F̂, F̂p

∑m

p=1
Tr(F̂⊤

p Fp)− ρ||F̂||⊛, s.t. F̂⊤
p F̂p = I, ∀p. (5)

Next, we attempt to directly learn the consensus clustering partition by incorporating Eq.(5) and
permutation matrices {Tp}mp=1 with the paradigm of LFMVC. In addition, due to the different contri-
butions of various views, we assign kernel weight coefficients γ to each view in order to sufficiently
mine and learn each kernel view with particular emphasis.

Finally, we pioneeringly introduce the min-max paradigm into the resultant objective function,
which minimizes the function w.r.t. γ and maximizes it w.r.t. F̂,F ∗, F̂p and Tp. Therefore, the
final objective function can be expressed as follows,

max
F̂, F̂p,Tp

min
γ

max
F ∗

Tr(F ∗⊤(
∑m

p=1
γ2
pF̂pTp)) + λ

∑m

p=1
γ2
pTr(F̂

⊤
p Fp)− ρ||F̂||⊛,

s.t. F̂⊤
p F̂p = I,Tp

⊤Tp = I, ∀p,γ ∈ ∆,F ∗⊤F ∗ = I.

(6)

This max-min-max paradigm denotes that we maximize the alignment between the consensus clus-
tering partition and base partitions while optimizing the kernel weight coefficients to minimize the
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objective function, preventing premature convergence to local optima. In this way, the proposed
algorithm can robustly learn the optimal consensus clustering partition even under challenging con-
ditions.

3.2 OPTIMIZATION

To solve the resultant max-min-max optimization problem of DLEFT-MKC in Eq.(6), we combine
the optimization strategies of the reduced gradient descent method (RGDM) and Alternating Direc-
tion Method of Multipliers (ADMM), updating one specific variable while keeping others fixed. To
facilitate the divisibility of F, we introduce an auxiliary tensor variable A according to the principles
of ADMM and obtain the augmented Lagrangian function as follows,

L(A, F̂p,Tp,γ,F
∗) =

m∑
p=1

γ2
pTr(F

∗⊤F̂pTp + λF̂⊤
p Fp)− ρ||A||⊛ −

µ

2
||A− (F̂̂F̂F +

Y
µ
)||2F ,

s.t. F̂⊤
p F̂p = I,Tp

⊤Tp = I,∀p,γ ∈ ∆,F ∗⊤F ∗ = I,

(7)

where, Y ∈ Rn×k×m represents the Lagrange multiplier, with µ > 0 acting as the penalization factor.
An alternating optimization strategy allows for the decomposition of the problem in Eq.(7) into five
distinct sub-problems. Each sub-problem independently optimizes its respective variables while
keeping others fixed.

update {F̂p}mp=1: By fixing the other variables, {F̂p}mp=1 can be updated as follows,

max
F̂p

∑m

p=1
γ2
pTr(F

∗⊤F̂pTp + λF̂⊤
p Fp)−

µ

2
||A− (F̂̂F̂F +

Y
µ
)||2F , s.t. F̂⊤

p F̂p = I. (8)

Then by expanding the Frobenius norm and simplifying this problem, we can obtain the following
problem w.r.t. each F̂p:

max
F̂p

Tr(F̂⊤
p (γ2

pF
∗T⊤

p + λγ2
pFp + µAp − Yp)), s.t. F̂

⊤
p F̂p = I, (9)

where Ap and Yp represent the p-th slice of A and Y, respectively. By setting Mp = γ2
pF

∗T⊤
p +

λγ2
pFp + µAp − Yp, the problem in Eq.(9) can be effectively addressed by applying the economic

rank-k SVD of Mp. Assume that the matrix Mp possesses a rank-k truncated SVD representation
given by Mp = UkΣkV

⊤
k , where Uk ∈ Rn×k, Σk ∈ Rk×k, Vk ∈ Rk×k. Then, the problem in Eq.(9)

has a closed-form optimal solution given by,
F̂p = UkV

⊤
k . (10)

update γ and F ∗: By fixing the other variables, we derive a min-max optimization problem w.r.t.
γ and F ∗ as follows,

min
γ

max
F ∗

∑m

p=1
γ2
pTr(F

∗⊤F̂pTp + λF̂⊤
p Fp), s.t. γ ∈ ∆,F ∗⊤F ∗ = I. (11)

To solve it, we begin by rewriting it as an optimal value function of the maximization problem as
follows,

min
γ∈∆

G(γ), G(γ) =
{
max
F ∗

Tr(F ∗⊤(
∑m

p=1
γ2
pF̂pTp) + λ

∑m

p=1
γ2
pF̂

⊤
p Fp)

}
. (12)

According to Theorem 4.1 in the literature (Bonnans & Shapiro, 1998), the optimal value fun-
tion G(γ) in Eq.(12) is differentiable, and ∂G(γ)

∂γp
= 2γpTr

(
F ∗⊤F̂pTp + λF̂⊤

p Fp

)
, where F ∗ ={

argmaxF∈Γ Tr
(
F ∗

(∑m
p=1 γ

2
pF̂pTp

))}
. Therefore, a reduced gradient descent strategy can be

employed to address the optimization problem in Eq.(12). According to the literature (Liu, 2023b),
we firstly calculate the gradient of G(γ) w.r.t. γ, and subsequently optimize γ along a descent direc-
tion while satisfying the constraint γ ∈ ∆, with the optimal F ∗.

To do so, we should guarantee the equality constraint and positivity constraint of γ. First, we
designate γu as a non-zero component of γ and▽G(γ) as the reduced gradient of G(γ). By following
Rakotomamonjy et al. (2008); Liu (2023b), ▽G(γ) can be expressed as follows,

[▽G(γ)]p =
∂G(γ)
∂γp

− ∂G(γ)
∂γu

∀ p ̸= u, [▽G(γ)]u =
∑m

p=1,p ̸=u

(
∂G(γ)
∂γu

− ∂G(γ)
∂γp

)
, (13)

where u typically denotes the index of the largest component of γ, as suggested by Rakotomamonjy
et al. (2008), which is regarded as providing improved numerical stability.

Next, to ensure that γ remains positive at all times, we design the calculation strategy of the descent
direction for updating γ as follows,

5



Published as a conference paper at ICLR 2025

vp =


0 if γp = 0 and [▽G(γ)]p > 0,

− [▽G(γ)]u if p = u,

− [▽G(γ)]p otherwise.
(14)

After deriving the descent direction V = [v1, · · · , vm]⊤ from Eq.(14), we can then update the weights
γ using γ ← γ + αV , where α is a chosen step size that could be determined using line search
strategies such as Armijo’s rule. Overall, the algorithm for solving the optimization problem in
Eq.(12) is outlined in Algorithm 1 in the appendix.

update A: By fixing the other variables, the A sub-problem constitutes a t-TNN minimization
problem and can be articulated as follows,

min
A

ρ||A||⊛ +
µ

2
||A− (F̂̂F̂F +

Y
µ
)||2F . (15)

Let B = F̂ + Y
µ

, the sub-problem 15 can be addressed using the tensor tubal-shrinkage of B, as
detailed in Theorem 1.

Theorem 1 (Zhou et al., 2019a) Given A,B ∈ Rn1×n2×n3 , l = min(n1, n2), we can have
A = U ∗ S ∗ V⊤ by t-SVD. The global optimal solution to minA ρ||A||⊛ + 1

2
||A − B||2F is pro-

vided by the tensor tubal-shrinkage operator, i.e., A = Γτ (B) = U ∗ ifft(Pτ (B)) ∗ V⊤, where
B = fft(B, [], 3), and Pτ (B) is a tensor whose i-th frontal slice is Pτ (Bi) = diag(ξ1, ξ2, · · · , ξl)
with ξi = sign(σi(Bi))max(σi(Bi)− τ, 0).

update {Tp}mp=1: By fixing the other variables, {Tp}mp=1 sub-problems can be addressed as fol-
lows,

max
Tp

m∑
p=1

γ2
pTr(F

∗⊤F̂pTp) s.t. T̂p
⊤
T̂p = Tp

⊤Tp = I, (16)

which can be readily solved in a manner similar to that of the problem in Eq.(9).

update Y and µ: The penalty factor µ and the Lagrange multiplier Y are updated as follows,
Y = Y + µ(F− A), µ = τ × µ, (17)

where the literature typically sets τ > 1 to enhance convergence speed (Chen et al., 2020), and we
set τ = 2 in this paper.

In conclusion, we present the algorithm process of DLEFT-MKC in Algorithm 2 in the appendix.

4 EXPERIMENT

4.1 EXPERIMENT SETTING

Dataset #Samples #kernel #clusters
Liver 345 6 2
Bbcsport 544 2 5
ProteinFold 694 12 27
Willow 911 3 7
Plant 940 69 4
PsortNeg 1444 69 5
Scene15 4485 3 15
CCV 6773 3 20
Flower102 8189 4 102
Reuters 18758 5 6

Table 1: Summary of datasets used.

We utilize multiple benchmark datasets to evalu-
ate the clustering performance of DLEFT-MKC,
including: Liver1 BBCSport2, ProteinFold3, Wil-
low4, Plant5, PsortNeg5, Scene15 (Lazebnik et al.,
2006), CCV6, Flower1027, Reuters8. Tab. 1 sum-
marizes the detailed information regarding the uti-
lized datasets. These datasets exhibit considerable
variation in sample sizes (345 to 18,758), kernel
counts (2 to 69), and cluster numbers (2 to 102),
thereby offering a balanced experimental platform
for evaluating the clustering performance of dif-
fering algorithms. For all datasets, the true number of clusters k is predetermined and provided

1
https://archive.ics.uci.edu/dataset/

2
http://mlg.ucd.ie/datasets/

3
http://mkl.ucsd.edu/dataset/protein-fold-prediction

4
https://github.com/wangsiwei2010/awesome-multi-view-clustering

5
https://bmi.inf.ethz.ch/supplements/protsubloc/

6
www.ee.columbia.edu/ln/dvmm/CCV/

7
https://www.robots.ox.ac.uk/˜vgg/data/flowers/

8
https://kdd.ics.uci.edu/databases/reuters21578/

6

https://archive.ics.uci.edu/dataset/
http://mlg.ucd.ie/datasets/
http://mkl.ucsd.edu/dataset/protein-fold-prediction
https://github.com/wangsiwei2010/awesome-multi-view-clustering
https://bmi.inf.ethz.ch/supplements/protsubloc/
www.ee.columbia.edu/ln/dvmm/CCV/
https://www.robots.ox.ac.uk/~vgg/data/flowers/
https://kdd.ics.uci.edu/databases/reuters21578/
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as input. We apply four commonly used criteria: clustering accuracy (ACC), normalized mutual
information (NMI), purity (PUR), and rand index (RI). We evaluate the proposed DLEFT-MKC in
terms of clustering performance, evolution and convergence, cluster partitions, parameter sensitiv-
ity, ablation study, and time complexity. The complete experimental results, along with sufficient
instructions for reproducibility, are provided in the appendix.

Along with DLEFT-MKC, we compare it against numerous MKC algorithms selected from recent
literature. Specifically, Avg-KKM and SB-KKM serve as baselines that perform KKM on average
kernel and single kernel without additional operations. We also include classical MKC algorithms
such as MKKM (Huang et al., 2012), LMKKM (Gönen & Margolin, 2014), ONKC (Liu et al.,
2017), MKKM-MR (Liu et al., 2016), and LKAM (Li et al., 2016). Furthermore, we incorpo-
rate some recent methods including subspace-based, graph-based, and tensor-based approaches, i.e.,
LFMVC (Wang et al., 2019b), NKSS (Zhou et al., 2019b), SPMKC (Ren & Sun, 2020), HMKC
(Liu et al., 2021a), SMKKM (Liu, 2023b), OPLFMVC (Liu et al., 2021b), LSMKKM (Liu et al.,
2021c), AIMC (Chen et al., 2022a), OMSC (Chen et al., 2022b), HFLSMKKM (Liu, 2023a),
GMC (Wang et al., 2019a), LTBPL (Chen et al., 2022c), UGLTL (Wu et al., 2019), WTNNM
(Gao et al., 2020), KCGT (Ren et al., 2021).

For all algorithms, we adhere to guidelines in the literature for parameter configuration. In addition,
each experiment is conducted 20 times using k-means to reduce the adverse impact of randomness.
The average results, along with standard deviations, are then reported.

4.2 EXPERIMENTAL RESULTS

4.2.1 CLUSTERING PERFORMANCE

Tab.2 presents a comparison of ACC among the aforementioned algorithms, where ’-’ signifies that
the results are unavailable due to an out-of-memory error, with the top three results being high-
lighted. Note that comparisons regarding NMI, PUR, and RI are included in the appendix. Then the
following observations can be drawn:

(1) Recent advancements in clustering algorithms have demonstrated that tensor-based clustering
methods yield significant performance improvements, particularly when compared to traditional
MKC algorithms. For instance, the algorithms LTBPL, UGLTL, WTNNM, and KCGT, which
are based on tensor learning, consistently outperformed conventional methods like SMKKM and
HMKC across all ten datasets. Specifically, UGLTL and WTNNM achieved average ACC improve-
ments of approximately 14.8% and 7.8%, respectively, over the best-performing traditional MKC.

(2) Despite these advancements, these tensor-based approaches still face challenges related to com-
putational efficiency and scalability. For example, LTBPL, UGLTL, and WTNNM are unable to
handle the Reuters dataset effectively. In contrast, our proposed DLEFT-MKC demonstrates a sig-

Algorithms Liver BBCSport ProteinFold Willow Plant PsortNeg Scene15 CCV Flower102 Reuters

Avg-KKM 54.2± 0.0 63.2± 1.4 29.0± 1.5 22.2± 0.3 61.3± 0.9 41.0± 1.4 43.2± 1.8 19.6± 0.6 27.1± 0.8 45.5± 1.5

SB-KKM 57.9± 0.1 71.4± 0.1 33.8± 1.3 26.8± 0.3 51.2± 1.1 55.3± 0.0 39.3± 0.2 20.1± 0.2 33.0± 1.0 47.2± 0.0

MKKM 55.0± 0.3 63.0± 1.5 27.0± 1.1 22.0± 0.2 56.1± 0.6 51.9± 0.3 41.2± 0.1 18.0± 0.5 22.4± 0.5 45.4± 1.5

LMKKM 53.7± 1.1 63.9± 1.4 22.4± 0.7 22.6± 0.2 - - 40.9± 0.1 18.6± 0.1 - -
ONKC 52.9± 1.9 63.4± 1.4 36.3± 1.5 22.6± 0.4 41.4± 0.2 40.2± 0.6 39.9± 1.4 22.4± 0.3 39.5± 0.7 41.8± 1.2

MKKM-MR 51.3± 0.0 63.2± 1.5 34.7± 1.8 22.9± 0.4 50.3± 0.8 39.7± 0.5 38.4± 1.1 21.2± 0.9 40.2± 0.9 46.2± 1.4

LKAM 60.0± 0.0 73.9± 0.5 37.7± 1.2 27.1± 0.1 47.6± 0.0 40.5± 0.4 41.4± 0.5 20.4± 0.3 41.4± 0.8 45.5± 0.0

LFMVC 54.5± 0.0 76.4± 2.9 33.0± 1.4 26.4± 0.5 59.5± 0.6 45.5± 0.3 45.8± 1.0 25.1± 0.5 38.4± 1.2 45.7± 1.6

NKSS 55.9± 0.0 64.1± 1.2 36.4± 0.7 25.5± 0.6 39.2± 0.1 48.2± 1.0 40.4± 0.3 20.0± 0.2 41.7± 0.8 37.7± 1.4

SPMKC 54.5± 0.0 51.3± 1.9 17.8± 0.5 26.3± 0.2 51.4± 0.1 25.0± 0.6 38.0± 0.1 16.2± 0.2 25.6± 0.4 26.8± 0.0

HMKC 55.4± 0.0 91.1± 3.7 35.3± 1.5 32.7± 0.5 64.2± 0.1 49.1± 0.0 50.5± 0.1 32.8± 0.5 47.7± 1.3 46.8± 0.3

SMKKM 53.9± 0.0 64.2± 1.6 34.7± 1.9 22.4± 0.4 49.5± 0.5 41.5± 0.0 43.6± 1.0 22.2± 0.7 42.5± 0.8 45.5± 0.7

OPLFMVC 54.6± 0.1 89.2± 3.2 31.1± 2.6 27.3± 1.0 47.3± 3.1 46.1± 2.3 43.9± 1.8 23.7± 0.9 30.4± 1.0 43.9± 1.0

LSMKKM 58.3± 0.0 73.4± 1.0 36.3± 1.5 24.8± 0.2 57.1± 0.8 45.7± 0.1 44.5± 1.6 21.5± 0.9 43.8± 1.0 47.1± 1.0

AIMC 52.8± 0.0 70.4± 0.0 33.6± 0.0 25.5± 0.0 47.9± 0.0 45.4± 0.0 44.5± 0.0 24.5± 0.0 41.0± 0.0 43.2± 0.0

OMSC 53.0± 0.0 89.0± 0.0 31.8± 0.0 28.1± 0.0 56.5± 0.0 39.5± 0.0 41.7± 0.0 25.1± 0.0 38.9± 0.0 42.4± 0.0

HFLSMKKM 57.4± 0.0 51.6± 1.3 33.8± 1.1 24.2± 0.5 43.6± 0.1 31.3± 0.6 41.7± 0.4 18.5± 0.3 35.8± 0.8 37.5± 0.8

GMC 51.0± 0.2 88.2± 0.0 29.3± 0.0 21.2± 0.5 39.4± 0.0 25.2± 0.0 26.9± 0.6 16.8± 0.4 34.1± 0.0 -
LTBPL 58.3± 0.0 96.5± 0.0 32.1± 1.1 28.8± 0.0 48.2± 0.0 29.1± 0.0 40.1± 0.7 - - -
UGLTL 53.6± 0.0 99.1± 0.2 51.1± 1.7 37.1± 2.0 68.6± 1.2 92.2± 0.0 94.4± 5.1 43.7± 1.3 65.8± 2.3 -
WTNNM 53.3± 0.0 95.2± 0.0 43.2± 1.7 32.0± 0.2 68.0± 0.1 64.8± 0.0 76.1± 1.2 47.7± 0.0 61.7± 0.9 -
KCGT 54.8± 0.2 74.4± 1.2 33.4± 1.2 26.1± 0.4 52.4± 0.6 44.9± 0.4 45.5± 0.9 23.9± 0.5 39.5± 0.8 43.0± 0.8

DLEFT-MKC 86.4± 0.086.4± 0.086.4± 0.0 99.2± 0.199.2± 0.199.2± 0.1 66.5± 2.966.5± 2.966.5± 2.9 84.9± 0.484.9± 0.484.9± 0.4 94.1± 0.194.1± 0.194.1± 0.1 96.0± 0.096.0± 0.096.0± 0.0 96.2± 0.196.2± 0.196.2± 0.1 81.5± 2.781.5± 2.781.5± 2.7 79.9± 2.279.9± 2.279.9± 2.2 97.0± 4.097.0± 4.097.0± 4.0

Table 2: Empirical comparison of the proposed DLEFT-MKC with dozens of recent MKC algo-
rithms on ten benchmark datasets in terms of ACC. The best result is bolded and highlighted in red,
the second-best and third-best ones are represented in blue and orange, respectively.
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nificant performance enhancement by surpassing UGLTL and WTNNM in terms of ACC by 32.8%,
0.1%, 15.4%, 47.8%, 25.5%, 3.8%, 1.8%, 37.8%, 14.1% as well as 33.1%, 4%, 23.3%, 52.9%,
26.1%, 31.2%, 20.1%, 33.8%, 18.2% across all datasets.

(3) The comparative analysis of various algorithms reveals that while late fusion strategies have
improved clustering performance, they are not without limitations; for instance, LFMVC and
OPLFMVC showed reduced complexity but struggled with unstable performance due to their
heavy reliance on initial base partitions too much. Through dynamic restructuring of partitions,
DLEFT-MKC significantly enhances performance; it exceeds LFMVC and OPLFMVC by 43.1%
and 44.4%, respectively when averaged over ten datasets.

In summary, these results validate the effectiveness of our proposed DLEFT-MKC in enhancing clus-
tering performance across multiple datasets; significant improvements in ACC—averaging around
10% over existing state-of-the-art algorithms—underscore its potential as a leading solution in multi-
view clustering research domains. By leveraging tensor learning alongside a min-max optimization
framework, our approach addresses existing challenges and sets a new benchmark for future re-
search in this domain. DLEFT-MKC’s ability to maintain high accuracy while significantly reducing
computational complexity demonstrates its robustness and efficiency, qualities that are particularly
essential for real-world applications requiring large-scale data processing.

4.2.2 EVOLUTION AND CONVERGENCE

We calculate the error value and clustering performance at each iteration to analyze the evolution of
DLEFT-MKC, as illustrated in Fig. 1. As observed, the error curve initially oscillates, followed by
a sharp decrease, and ultimately converges rapidly. The corresponding clustering performance im-
proves significantly during the initial oscillation phase (learning process) before stabilizing, thereby
effectively demonstrating both the necessity and efficacy of the learning process. This analysis
highlights how DLEFT-MKC adapts over iterations, leading to enhanced clustering results.
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Figure 1: The evolution of error values and clustering performance during the clustering learning
process of our proposed DLEFT-MKC across iterations.

4.2.3 CLUSTER PARTITIONS ANALYSIS

We further analyze the learned cluster partition and illustrate the visual results in Figure 2. As ob-
served, through the learning process of DLEFT-MKC, the cluster partition becomes increasingly
clear and distinguishable, manifested as a more pronounced block diagonal structure. This obser-
vation further reinforces the effectiveness of our proposed DLEFT-MKC in achieving well-defined
clusters. These results demonstrate that DLEFT-MKC not only enhances clustering performance but
also facilitates better interpretability of the clustered data.

4.2.4 PARAMETERS SENSITIVITY ANALYSIS

In order to further investigate the impact of two parameters on DLEFT-MKC, we conducted a sep-
arate experiment to analyze their sensitivity and effectiveness, as illustrated in Figure 3. As shown,
two trade-off parameters introduced by DLEFT-MKC exert significant effects, demonstrating regu-
larity and consistency across various datasets. This indicates that each term in Eq.(6) plays a crucial
role, suggesting that DLEFT-MKC exhibits stability within small ranges of parameters while main-
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Figure 2: The leftmost figure denotes the clustering partition learned by avg-KKM. The four right
figures represent the clustering partitions of DLEFT-MKC during the learning process.

taining good generalization ability. In addition, this analysis can guide the adjustment strategies for
DLEFT-MKC across different datasets.
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Figure 3: The effect on clustering performance with varying parameter λ (1st line) and ρ (2nd line)
of the proposed DLEFT-MKC.

4.2.5 ABLATION STUDY

To investigate the factors contributing to the superior performance of the proposed DLEFT-MKC, we
conducted a series of ablation experiments focusing on four key components: the active reconstruc-
tion of the base partitions, tensor learning guidance, the alignment strategy utilizing permutation
matrices, and the min-max optimization paradigm. Specifically in Tab.3, L1 denotes ρ = λ = 0,
L2 denotes ρ = 0, L3 denotes λ = 0, L4 denotes the exclusion of the permutation, and L5 denotes
the absence of the min-max paradigm. As shown, our proposed DLEFT-MKC always achieves ei-
ther superior or competitive performance, while L5, although performing well but lacking stability,
indicates the robustness afforded by the min-max paradigm. Additionally, L4 also demonstrates a
significant performance drop, highlighting the importance of the permutation matrix. Furthermore,
L1, L2, and L3 remain inferior to DLEFT-MKC, thereby underscoring the efficacy of our proposed
dynamic restriction late fusion strategy utilizing tensor learning. These findings collectively vali-
date the effectiveness of our proposed algorithm and underscore the importance of integrating these
components for optimal clustering performance.
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Algorithms Liver BBCSport ProteinFold Willow Plant PsortNeg Scene15 CCV Flower102 Reuters

L1 54.1± 0.2 63.4± 1.3 30.0± 2.1 22.2± 0.3 56.0± 0.5 38.5± 0.6 43.8± 1.6 19.6± 0.6 27.2± 0.9 45.1± 0.3

L2 62.3± 0.0 84.8± 8.7 66.766.766.7± 2.9 71.2± 0.5 93.7± 0.0 95.8± 0.0 93.8± 4.3 77.2± 2.5 74.6± 2.1 96.9± 0.0

L3 51.0± 0.0 43.1± 0.7 13.7± 0.7 19.5± 0.6 31.9± 1.0 44.4± 3.2 54.6± 2.7 25.5± 1.1 60.6± 1.5 51.7± 0.0

L4 82.3± 0.0 86.8± 0.3 44.6± 2.4 79.2± 2.5 72.7± 0.1 89.6± 0.0 86.3± 5.2 73.0± 1.7 80.4± 1.8 87.1± 2.2

L5 60.6± 0.0 96.6± 0.1 56.1± 2.3 76.7± 4.3 91.0± 0.0 94.6± 0.0 95.1± 2.9 72.4± 1.6 81.781.781.7± 2.7 94.8± 1.7

Proposed 86.486.486.4± 0.0 99.299.299.2± 0.1 66.5± 2.9 84.984.984.9± 0.4 94.194.194.1± 0.1 96.096.096.0± 0.0 96.296.296.2± 0.1 81.581.581.5± 2.7 79.9± 2.2 97.097.097.0± 4.0

Table 3: Ablation study of the proposed DLEFT-MKC. The best result are highlighted in bold.

4.2.6 RUNNING TIME COMPARISON

Finally, to evaluate the complexity of the algorithms, we report the time consumption in Fig. 4
and Tab. 9 in the appendix. The analysis of running times across various clustering algorithms
reveals significant disparities in computational efficiency. For instance, LFMVC takes 77.1s and
41.4s on Flower102 and Reuters; in contract, tensor-based clustering like WTNNM and KCGT
exhibit markedly higher running times, with taking 34717s and 5976s on Flower102 and KCGT
reaching 11424s on Reuters. This stark difference highlights the computational demands associated
with existing tensor learning approaches, which seriously undermines their application prospects in
real-world scenarios. Notably, our proposed DLEFT-MKC addresses this important problem caused
by tensor learning while delivering superior clustering accuracy in less than a minute on the same
datasets. Overall, DLEFT-MKC not only demonstrates advanced clustering performance but also
significantly reduces computational overhead, thereby validating its effectiveness for large-scale
clustering tasks.
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Figure 4: Time complexity comparison of all algorithms on benchmark datasets. For better clarity,
we scaled the values and adopted logarithmic values in second.

4.2.7 ADDITIONAL EXPERIMENT

To further validate the robustness of DLEFT-MKC, we conducted additional experiments with noisy
data. The visual comparisons of clustering results are presented in Fig.7 in the appendix. As shown,
DLEFT-MKC not only outperforms baseline algorithms in terms of clustering performance but also
shows minimal fluctuation when subjected to noise interference, highlighting its superior robustness.

5 CONCLUSION

This paper introduces a novel Multiple Kernel clustering framework known as Dynamic LatE-
Fusion Multiple Kernel Clustering with Robust Tensor Learning (DLEFT-MKC) via min-max op-
timization, which is simple yet effective and efficient. Specifically, For the first time, DLEFT-MKC
integrates a min-max optimization paradigm into tensor-based MKC, enhancing both performance
and robustness; the framework dynamically reconstructs base partitions from LFMVC, effectively
overcoming their representational bottleneck. Additionally, tensor learning is employed to cap-
ture the high-order correlations and uncover latent structures across views. To solve the resultant
optimization problem, we design an innovative and efficient strategy to combine the RGDM with
ADMM. Experimental results demonstrate that our proposed DLEFT-MKC significantly outper-
forms other state-of-the-art MKC algorithms in terms of clustering performance and computation
efficiency across benchmark datasets.
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A APPENDIX

We include the main notations used in this manuscript 4, Algorithm 1 (Min-Max Optimization For γ
and F ∗), Algorithm 2 (DLEFT-MKC), the complete experimental results in terms of ACC (Tab. 5),
NMI (Tab. 6), PUR (Tab. 7) and RI (Tab. 8), running time comparison (Tab. 9), clustering evolution
(Fig. 5), parameter analysis (Fig. 6), noise experiments (Fig. 7) and theframework diagram (Fig. 8)
in the appendix due to the space limitation of the paper.

⊤Notation Explanation Notation Explanation

n, k,m The number of samples, clusters, and views Kp ∈ Rn×n The p-th base kernel matrix
ρ,λ The trade-off parameters F ∗ ∈ Rn×k The consensus partition matrix
xi The i-th data sample Fp ∈ Rn×k The p-th base partition matrix
σi(·) The i-th largest singular value F̂p ∈ Rn×k The p-th reconstructed partition matrix
|| ··· ||⊛ The t-SVD based tensor nuclear norm Tp ∈ Rk×k The p-th perturbation matrix
γ ∈ Rm The kernel weight coefficient In ∈ Rn×n The n-th order identity matrix

∆ {γ ∈ Rm |
∑m

p=1 γp = 1, γq ≥ 0,∀p} F̂ ∈ Rn×k×m The tensor by stacking the matrices F̂
∇ {γ ∈ Rm |

∑m
p=1 γ

2
p = 1, γp ≥ 0,∀p} A ∈ Rn×k×m The auxiliary tensor variable

Table 4: Main notations used in this manuscript.

Algorithm 1 Min-Max Optimization For γ and F ∗

Input: F ∗, {F̂p,Fp,Tp}mp=1,γ, k, λ.
Ouput: Weight coefficients γ and consensus clustering partition F ∗.

1: while not converge do
2: calculate H(t) via a kernel k-means with Kγ(t) .
3: Calculate the reduced gradient [▽G(γ)]p via Eq.(13).
4: Calculate the descent direction V in Eq.(14).
5: Update weight coefficients γ ← γ + αV with the step size α.
6: if max |γ − γold| ≤ 10−4 then
7: Converge.
8: end if
9: end while

Algorithm 2 DLEFT-MKC
Input: Base partition matrices {Fp}mp=1, the number of clusters k, trade-off parameters λ and ρ.
Output: Consensus clustering partition F ∗.

1: Initialize F̂ = Φ(F1, . . . ,Fm), F̂p = Fp,Tp = I, γp = 1
m ,∀p,A = F̂,Y = 000, µ = 0.1, τ = 2.

2: Calculate F ∗ = argmaxF ∗⊤F ∗=I Tr
(
F ∗

(∑m
p=1 γ

2
pF̂pTp

))
.

3: while not converge do
4: Update reconstructed partitions {F̂p}mp=1 via Eq.(10).
5: Update weight coefficients γ and consensus parition F ∗ by solving Algorithm 1.
6: Update permutation matrices {Tp}mp=1 by solving Eq.(16).
7: Update auxiliary tensor A by solving Eq.(15).
8: Update the Lagrange multiplier Y and the penalty factor µ via Eq.(17).
9: end while
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