
A Appendix464

Further details and videos of experiments can be found on our project website: https://sites.465

google.com/view/cradle-multirobot466

A.1 Robotic Setup467

Our robot setups are shown above. For each robot, we collect data with both a wrist camera and468

exterior camera. The cameras are Logitech C920s and Zeds. Although these cameras do have slight469

differences in brightness and contrast, this does not seem to affect results..470

A.2 Dataset Collection471

We collect two types of datasets: a shared dataset containing data from similar tasks for all three472

robots and a target dataset containing a new task from one robot platform which we want to transfer473

to other platforms. For the purposes of evaluation, our shared dataset consists of the original tasks474

we defined above. For each variant, we collect data on 3 diverse scenes and backgrounds to ensure475

that the resulting policies have some degree of robustness to changes in the environment. In order to476

provide diversity to visual observations, we use cups, plates, and wallpapers with intricate patterns477

in the background. By collecting our datasets for each task over 3 variations of this scene, we ensure478

that our policy is robust to changes in lighting conditions. Overall, our dataset contains 6 tasks over479

3 robots with 3 different backgrounds per task and 50 demonstrations per (scene, robot, background)480

combination collected over the course of 60 hours.481

A.3 Higher-Level Environment Details482

Our higher-level environment has of a shared image server and action processor between robots.483

We use delta position control as our action space. This is parameterized by a 7-dimensional vector484

consisting of 3 translational dimensions, 3 rotational dimensions, and 1 dimension indicate the per-485

centage to close the parallel end-effector. The code for processing an action before sending it to the486

lower-level controller is shown below:487

d e f s t e p (s e l f , a c t i o n) :488

s t a r t _ t i m e = t ime . t ime ()489

490

P r o c e s s Ac t io n491

a s s e r t l e n (a c t i o n) == (s e l f . DoF + 1)492

a s s e r t (a c t i o n . max () <= 1) and (a c t i o n . min () >= −1)493

494

13

https://sites.google.com/view/cradle-multirobot
https://sites.google.com/view/cradle-multirobot
https://sites.google.com/view/cradle-multirobot

p o s _ a c t i o n , a n g l e _ a c t i o n , g r i p p e r = s e l f . _ f o r m a t _ a c t i o n (a c t i o n)495

l i n _ v e l , r o t _ v e l = s e l f . _ l i m i t _ v e l o c i t y (p o s _ a c t i o n , a n g l e _ a c t i o n)496

d e s i r e d _ p o s = s e l f . _ c u r r _ p o s + l i n _ v e l497

d e s i r e d _ a n g l e = a d d _ a n g l e s (r o t _ v e l , s e l f . _ c u r r _ a n g l e)498

499

s e l f . _ u p d a t e _ r o b o t (d e s i r e d _ p o s , d e s i r e d _ a n g l e , g r i p p e r)500

501

comp_time = t ime . t ime () − s t a r t _ t i m e502

s l e e p _ l e f t = max (0 , (1 / s e l f . hz) − comp_time)503

t ime . s l e e p (s l e e p _ l e f t)504

Given a delta position, angle, and gripper command, our environment first normalized and clips the505

commands to ensure that large actions are not sent to the robot. Then, we add the delta position to506

our current pose and the delta angle to our current angle. We pass the position and angle into our507

lower-level robot controller.508

A.4 Robot-Specific Controller Details509

Each robot-specific controller provides the following API to the higher-level environment:510

d e f u p d a t e _ p o s e (pos , a n g l e) :511

512

d e f u p d a t e _ j o i n t s (j o i n t s) :513

514

d e f u p d a t e _ g r i p p e r (c l o s e _ p e r c e n t a g e) :515

516

d e f g e t _ j o i n t _ p o s i t i o n s () :517

518

d e f g e t _ j o i n t _ v e l o c i t i e s () :519

520

d e f g e t _ g r i p p e r _ s t a t e () :521

522

d e f g e t _ e e _ p o s e () :523

The functions update_pose, update_joints and update_gripper set targets for moving the robot. For524

each lower-level controller, we use a shared inverse kinematics solver to take the target poses in525

update_pose and convert them into joint targets. We also use our ik solver to give us joint positions,526

joint velocities, gripper states, and end-effector poses. For each robot, we implement two controllers:527

a blocking version and a nonblocking version. The blocking controller waits for an entire movement528

command to finish before executing the next command. Meanwhile, the nonblocking or continuous529

controller continuously interrupts the robot with a new target pose every fixed period of time.530

A.5 Network Architecture531

Figure 4: Our encoder architecture. We parameterize our encoder as a CNN. The convolutional
layers are flattened and then fed into two MLP layers to get a representation z. In order to learn
correspondence between robots, we train this encoder with a contrastive loss. We use random crop
and color jitter as image augmentations for our encoder.

14

Figure 5: Our decoder architecture. The output of our encoder z is concatenated with a one-hot
task index and fed into the decoder. This task index specifies a task either in the shared buffer, or
a new task which we want to achieve. After passing the input through two MLP layers, we feed in
into three-robot specific heads for each of the robots we are evaluating on.

Attribute Value
Input Width 64
Input Height 64
Input Channels 3
Kernel Sizes [3, 3, 3]
Number of Channels [16, 16, 16]
Strides [1, 1, 1]
Paddings [1, 1, 1]
Pool Type Max 2D
Pool Sizes [2, 2, 1]
Pool Strides [2, 2, 1]
Pool Paddings [0, 0, 0]
Image Augmentation Random Crops/Color Jitter
Image Augmentation Padding 4

Table 5: CNN hyperparameters for our policy encoder. Our CNN uses 64 by 64 images, which
passes through through 3 convolutional layers. Each layer has a 3by3 kernel with 16 channels. We
augment our architecture with random crop and color jitter.

Hyperparameter Value
Batch Size 64
Number of Gradient Updates Per Epoch 1000
Learning Rate 3E-4
Optimizer Adam

Hyperparameter Value
Batch Size 64
Number of Gradient Updates Per Epoch 1000
Learning Rate 1E-4
Optimizer Adam

Table 6: Hyperparameters. The left table contains hyperparameters for behavior cloning, and the
right table contains hyperparameters for contrastive learning.

A.6 Contrastive Learning Details532

We train our encoder with a triplet loss of margin m = 0.5.

L(oa, o+, o�) = max(0,m+ ||f̃✓(oa)� f̃✓(o+)||
2
2 � ||f̃✓(oa)� f̃✓(o�)||

2
2)

We provide nearest neighbor lookup for our robot below. We first embed the left image via our533

encoder. Then, we embed all observations in a dataset for a different robot. For example, in the534

top-left image, we use the shelf manipulation dataset with only Franka data. Then, we compute the535

embedding with the closest l2 distance from the embedding of the left image. Note that our method536

also aligns trajectories with same robot.537

15

Figure 6: Contrastive Nearest Neighbors. This figure shows nearest neighbors examples across
the three robots for embeddings from our pretrained encoder. These examples are computed for both
shelf and pick/place trajectories.

A.7 Shelf Tasks538

Figure 7: Shelf Tasks. The original shelf tasks consists of placing the book on the top compartment.
The first target task requires doing the same from a reversed book container, while the second tasks
requires placing the book in the lower compartment. The tasks in the first column are part of the
shared dataset while the second and third are target tasks to test transfer.

16

A.8 Error between Commanded Delta Pose Target and Achieved Delta Pose539

The following figures depict a plot of the l2 norm between the translational components of the delta540

commanded pose targets and achieved delta poses for demonstration trajectories across 3 robots.541

At each timestep, the environment receives a delta commanded pose target, which gets added to542

the robot’s current pose then sent to the lower-level controller. Although the controller defines a543

trajectory to reach this target pose, due to errors in the inverse kinematics solver and limitations on544

movement imposed by the hardware, it may not reach the pose. We plot the error for each timestep545

across a trajectory from a Pick/Place task and one from a Shelf Manipulation task. Expectedly, the546

WidowX has the highest average error, followed by the Sawyer then the Franka. This error varies547

wildly between robots and timesteps, causing the commanded delta pose to be highly unpredictable548

from the achieved delta pose.549

Figure 8: Action interpretation error for the
Franka.

Figure 9: Action interpretation Error for the
Sawyer

Figure 10: Action interpretation error for the
Widow.

17

	Introduction
	Related Work
	Multi-Robot Generalization Through Domain Alignment
	Aligning the Observation Space
	Aligning the Action Space
	Aligning Internal Representations

	Experiment Setup
	Experimental Results
	Discussion
	Appendix
	Robotic Setup
	Dataset Collection
	Higher-Level Environment Details
	Robot-Specific Controller Details
	Network Architecture
	Contrastive Learning Details
	Shelf Tasks
	Error between Commanded Delta Pose Target and Achieved Delta Pose

