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Abstract

Visual generative AI models often encounter challenges related to text-image
alignment and reasoning limitations. This paper presents a novel method
for selectively enhancing the signal at critical diffusion steps, optimizing
image generation based on input semantics. Our approach addresses the
shortcomings of early-stage signal modifications, demonstrating that adjust-
ments made at later stages yield superior results. We conduct extensive
experiments to validate the effectiveness of our method in producing seman-
tically aligned images, achieving state-of-the-art performance. Our results
highlight the importance of a judicious choice of sampling stage to improve
diffusion performance and overall image alignment.1

1 Introduction

Visual Generative AI Models usually rely on diffusion models (Ho et al., 2020) that are
conditioned by a textual prompt to guide the diffusion process during the inference, resulting
in visually pleased images (Rombach et al., 2022; Podell et al., 2023; Ramesh et al., 2022;
Saharia et al., 2022). Although these models show impressive semantic and compositional
capacities, even the best models still suffer from text-image alignment and reasoning lim-
itations (e.g. spatial, counting). Some works address these issues by improving the noisy
captions in training datasets (Chen et al., 2023; 2024a; Segalis et al., 2023) or improving
the architecture (Peebles & Xie, 2022), while others adopt an attention-based Generative
Semantic Nursing (GSN) approach (Chefer et al., 2023; Rassin et al., 2023; Guo et al., 2024)
that avoids retraining the whole model by correcting it at inference or adding conditioning
to better guide the generation.

Catastrophic Neglect Subject Mixing Attribute Binding and Leaking
a photo of a giraffe and a banana a photo of a giraffe and a bear a photo of a car and a blue cat

Stable Diffusion Ours Stable Diffusion Ours Stable Diffusion Ours

Figure 1: Comparison of samples generated by Stable Diffusion and Ours.

Early research has identified several text-image alignment issues (Ramesh et al., 2022; Saharia
et al., 2022; Chefer et al., 2023; Feng et al., 2023). These issues (Figure 1) include catastrophic
neglect, where one or more elements of the prompt fail to be generated; subject mixing, where
distinct elements are improperly combined; attribute binding, where attributes (e.g. color)
are incorrectly assigned to the wrong entities while neglecting the correct ones; and attribute
leaking, where attributes are correctly bound to the specified elements but are erroneously
applied to additional, unintended elements in the scene.

1The code will be publicly released.
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To improve generation, training-free methods (Chefer et al., 2023; Rassin et al., 2023; Li
et al., 2023b; Guo et al., 2024; Agarwal et al., 2023) have emerged. These methods leverage
the text-image relationship in the models diffusion features to optimize the latent image that
the diffusion model is denoising to adjust it. However, these approaches require testing and
carefully selecting multiple sensitive hyperparameters (e.g. choosing various diffusion steps
to perform optimization or setting different loss thresholds to reach for each diffusion step),
which can lead to potential failures during the optimization process. In addition, although
multiple refinement steps are commonly employed along the diffusion path, the necessity
for their repeated use and the reasoning behind their placement have been determined
largely through experimental results, without clear explanation. We argue that a closer
examination of the location of refinement steps would not only improve performance but also
provide a better understanding of the optimal location of these steps. To mitigate the risk of
under/over optimization, InitNO (Guo et al., 2024) optimizes multiple initial latent images
solely at the first diffusion step, where latent images are pure Gaussian noise. However, the
diffusion models reverse process reconstructs the signal gradually during image generation,
making early-stage optimization less effective due to the weak signal at that point. As the
signal becomes stronger in later diffusion steps, it provides more useful information for the
refinement of the latent image. A deeper understanding of signal degradation dynamics can
be used to improve generation capacity. In this work, we examine the impact of selecting the
optimal diffusion steps to enhance the signal based on semantic content and demonstrate that
carefully selecting these steps leads to substantial improvements in text-to-image alignment.

Our main contributions are the followings: 1) We propose a method for selectively enhancing
the signal at a key diffusion step, optimizing image generation based on the input semantics.
2) We demonstrate that early-stage signal modification is less effective and show that later
adjustments lead to improved results. 3) We validate our approach through extensive
experiments, demonstrating its effectiveness in producing semantically aligned images and
achieving state-of-the-art results while also studying the placement of the refinement steps.

2 Related work

New controls and GSN Li et al. (2023a) and Mou et al. (2023) introduce trainable
modules to enable the addition of new conditions to the frozen models. Similarly, Zhang
et al. (2023) incorporate a trainable copy of the model that can be conditioned on various
control inputs, such as a drawing, a bounding box, or a depth map. Recent research focuses
on conditioning models by working on the noisy latent image. SDEdit (Meng et al., 2022)
adds varying levels of noise to an image, balancing between fidelity to the original image
and creative variation. Sun et al. (2024) create pseudo-guide images by placing objects on a
background, adding noise, and then denoising them to maintain object placement during
generation. Choi et al. (2021) inject down-sampled guide images during diffusion to create
variations of the guided image.

Generative Semantic Nursing (GSN) was introduced by Attend&Excite (Chefer et al., 2023),
aiming to optimize the latent image during inference to better consider semantic information
without having to retrain models. The latent image xt at step t is modified by applying
gradient descent step w.r.t a loss L on the extracted features produced by the model with
the input xt : xt′ ← xt − αt · ∇xt

L (αt the learning rate). Hence, it shifts the latent
image to achieve the objective conceptualized by the loss function. Attend&Excite considers
the cross-attention features, which establish a link between image and text features, to
ensure that the model adequately generates the subjects in the prompt. Building upon this
approach, Syngen (Rassin et al., 2023), Divide and Bind(Li et al., 2023b), InitNO (Guo
et al., 2024) and A-Star (Agarwal et al., 2023) design other loss functions to better enhance
the alignment of the prompts while Chen et al. (2024b); Xie et al. (2023) combine layout
information to textual information to force objects placement. The closest work to ours is
InitNO, which performs a warm-up multi-round optimization on the initial latent image
(initial noise). That is, they attempt to shift the initial latent image to reach a desired loss
score, aiming to find an initial noise that will perform better during the generation process.
The term “multi-round” applies because this process can take up to five rounds if the target
loss score is not met, with a new initial latent image being resampled and optimized each
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time. In contrast, we argue that the optimization of the latent image is more effective at a
later step than at the initial step. As the partial information of the latent image becomes
progressively more accurate, it is beneficial to refine the information at a distant step, where
the latent image is easier to distinguish from the noise, where the diffusion has a more
accurate understanding of the signal in the latent image. In addition, our method is more
efficient without the use of multi-round optimization.

Signal leak in diffusion models Lin et al. (2024) reveal that Stable Diffusion 1.4 and
some other diffusion models exhibit signal leakage, meaning the signal does not completely
vanish even in the final steps of the forward process. Everaert et al. (2024) exploit this signal
leakage to gain control over the generated images, biasing the generation towards desired
styles, enhancing image variety, and influencing colors and brightness. Grimal et al. (2024)
demonstrate that certain noises during inference perform better for generating multiple
objects. We hypothesize that this performance arises from a signal in the initial noise, which
is more consistent to make multiple objects appear. Based on the signal construction during
the denoising, we identify the diffusion step where we can improve the signal and align it
with the text.

3 Methodology

3.1 Preliminary: Diffusion models

Diffusion models involve two processes: a forward process q that progressively degrades
images, and a reverse process p that iteratively removes noise by retracing the forward
steps. In this work, we adopt the variance-preserving approach from the Denoising Diffusion
Probabilistic Model (DDPM) (Ho et al., 2020) in discrete time. The forward process is a
Markov chain of length T that adds small Gaussian noise to the data, described by q(xt|xt−1),
and ultimately results in xT ∼ N (0, I). This process can be reparameterized as q(xt|x0) to
estimate any xt directly from x0:

xt =
√
ᾱtx0 +

√
1− ᾱtǫ, where ǫ ∼ N (0, I) (1)

which can be interpreted as an interpolation between the signal x0 and the noise ǫ . The
noise scheduler defines the predetermined variance schedule, and consequently, the value of
ᾱt, which determines how the signal x0 will be degraded. As ᾱt increases, the signal becomes
harder to distinguish from the noise.

A neural network pθ learns the reverse process. The model can be reparameterized in ǫθ to
predict directly the added noise with the corresponding objective:

L = E
x,ǫ∼N (0,I),t

[

‖ǫ− ǫθ(xt, t)‖2
]

(2)

To condition the generation with text, the models of Rombach et al. (2022); Podell et al.
(2023); Saharia et al. (2022); Chen et al. (2023); Balaji et al. (2023) adopt a cross-attention
mechanism consisting of using the embedding of a prompt p from a frozen textual encoder τ(·)
like T5 (Raffel et al., 2020) or CLIP (Radford et al., 2021). The textual encoder generates
an embedding of N tokens, which the model utilizes across different cross-attention layers.
Within these layers, a linear projection is applied to the intermediate features Q and the
text embedding K. Attention maps are then computed as A = softmax(QKT /

√
d). These

attention maps can be reshaped into R
h×w×N , where h and w represent the dimensions of the

attention maps in the cross-attention layer, and N denotes the sequence length of the prompt
embedding. As demonstrated by (Hertz et al., 2022; Tang et al., 2023), cross-attention maps
reveal meaningful semantic relationships between the spatial layout and corresponding words,
which can be utilized for visualization and control. With the text-conditioning, the training
objective becomes:

L = E
x,p,ǫ∼N (0,I),t

[

‖ǫ− ǫθ(xt, t, τ(p))‖2
]

(3)

To reduce the computational cost of diffusion, Rombach et al. (2022) developed a Latent
Diffusion Model (LDM) that operates within a smaller perceptual latent space. This model
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Figure 2: Value of ᾱt as a function of the diffusion step t. The estimated x̂0 during the
generation of “a photo of a tiger on a boat arriving in new york” at various steps is displayed.
A coarse-to-fine generation is observed; as the denoising process progresses, the scene becomes
increasingly distinguishable. Generate with Stable Diffusion 1.4.

generates an initial latent noise zT , denoises it iteratively to obtain z0, and then projects the
latent image into pixel space to produce the final image x0. Although our experiments use
an LDM, our approach is equally applicable in pixel space. For clarity, we will describe the
method using xt, even though our experiments are conducted in the latent space.

During inference, we can generate an image without following the full training steps by
using a sampling scheduler that discretizes the diffusion process into a reduced number of
steps. For example, with the DDPM scheduler and 50 sampling steps, the first sampling
step 0 corresponds to step 981 of the original diffusion process, significantly reducing the
number of steps required while maintaining generation quality. To improve the process,
recent approaches adopt two processes that can be combined but have different purposes.
First, they adopt GSN guidance (GSNg) such that the latent image xt at step t is shifted by
applying a (unique) gradient descent step w.r.t a loss L that favors the alignment with the
prompt, thus xt : xt′ ← xt − αt · ∇xt

L, with αt, the learning rate. Second, the process can
be repeated at each of some predefined diffusion steps t1 . . . tk until either L reach sufficient
threshold or a specified maximum number of shifts has been made. This process is called
iterative refinement (IterRef) step. We argue that choosing carefully the step at which
IterRef is performed allows us to do it once only, without needing to compare to a threshold,
thus reducing the number of hyperparameters to set while leading to better results.

3.2 Choose the right IterRef steps to enhance the content

Our method focuses on selecting the appropriate diffusion steps to enhance the signal within
the noise, thereby generating more faithful final images. Previous studies have shown the
coarse-to-fine behavior of diffusion models (Park et al., 2023). During the reverse process, the
model reconstructs the low-frequency structure of the image first, before progressively refining
the fine details towards the end. This behavior can be understood from the interpolation
in Equation 1, where, as the forward process progresses, the signal x0 diminishes while the
noise ǫ increases. Importantly, at each diffusion step, we can estimate the final image and
obtain an approximation of the underlying signal. Given any xt at a particular diffusion
step, the final image x0 can be estimated as:

x̂0 = (xt −
√
1− ᾱtǫθ(xt))/

√
ᾱt (4)

In Figure 2, we visualize the estimated signal during the diffusion process, alongside the
value of

√
ᾱt. As the process progresses, the signal becomes more defined, allowing the

general structure of the final image to emerge even in the early stages. The degradation
and reconstruction of the signal x0 are controlled by the noise scheduler. Previous studies
(Choi et al., 2022; Chen, 2023) have emphasized the importance of carefully selecting the
noise schedule to allocate sufficient time for the model to construct the main content of the
image. This ensures that the model has ample opportunity to build the scene accurately. In
the context of semantic image generation, this explains why attention to the text prompt
is stronger at earlier noise levels when the core elements of the image are still being
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Figure 3: The diffusion process is paused at a key step (determined on a validation subset)
to enhance the signal in the latent image. By amplifying the signal at this critical point, we
ensure that the model can correctly construct the main components of the image, leading to
a more accurate final result.

formed (Balaji et al., 2023; Park et al., 2023). At later stages, text input has less influence,
the model focusing on refining details while the general spatial structure remains the same.

Our method leverages this understanding by enhancing the signal at the critical diffusion
steps: neither too early, when the signal is weak, nor too late, when the scene is already
defined. This ensures that the signal remains sufficiently strong throughout the reverse
process, guiding the model to semantically construct the final image accurately. By carefully
choosing the step, we can amplify the signal in the latent image, allowing for better semantic
alignment with the text prompt. To select the best-performing steps automatically, we
propose a validation method to test multiple steps on an evaluation metric (see 4.1). Our
approach is summarized in Figure 3.

Since the latent space of diffusion models inherently lacks semantic meaning (Kwon et al.,
2023; Park et al., 2023), making it unsuitable for direct manipulation to control the generated
results, we rely on the model’s ability to interpret the latent representation to assign semantic
relevance and we use a single IterRef step to enhance the signal and ensure faithful alignment
between text and image. In other words, we modify the signal interpreted by the model
to enhance its quality, ensuring that the model receives an appropriate signal for a correct
generation. Additionally, our only-one IterRef step approach is versatile and can be integrated
with methods like GSNg for further improvement in image generation.

3.3 Enhance the signal according to the text-to-image alignment task

Considering a prompt p with a list of subject tokens S = {s1, . . . , sk}, we extract attention
features for each subject. Following (Chefer et al., 2023), we use the cross-attention maps
from the resolutions 16× 16 pixels, averaging across heads and layers, followed by Gaussian
smoothing. This results in a set of attention maps A ∈ R16×16×n with n number of tokens
(more details in Appendix). To encourage, we combine two losses. To ensure an attention
for each subject token, we leverage the criterion from (Chefer et al., 2023):

LCN = max
s∈S

(1−max
i,j

(As
i,j)) (5)

where As
i,j represents the cross-attention value at position i, j for the subject token s. This

loss encourages the token with minimal activation to be more excited. Additionally, we
implement an Intersection Over Union (IoU) loss, already used in (Agarwal et al., 2023), to
mitigate catastrophic mixing by fostering subject separation. For all combinations of subject
token pairs C, the loss is defined as:

LIoU =
1

|C|
∑

∀(m,n)∈C







∑

i,j

min(Am
i,j , A

n
i,j)

∑

i,j

(Am
i,j +An

i,j)






(6)
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Table 1: Overview of methods. Steps are given in terms of sampling scheduler. Max Shift
indicates the maximum predefined shifts applied if no threshold is met or if no threshold is
used. Max Gradient Updates refers to the maximum number of times the latent image is
updated during the generation.

Methods IterRef IterRef IterRef GSNg Max Gradient
Which Step Reach Threshold Max Shift Updates of xt

Syngen ø ø ø 25 first steps 25

Attend&Excite 0 10 20 ✓ 20 25 first steps 85

Divide&Bind 0 10 20 ✓ 50 25 first steps 175

InitNO 0 ✓up to 4 restart if it fails 50 ø 250

InitNO+
0 ✓up to 4 restart if it fails 50

25 first steps 315
10 20 ✓ 20

Ours 8 ø 50 ø 50

Ours+ 2 ø 50 from 3 to 25 73

where As
i,j denotes the cross-attention value at position i, j for subject token s. In summary,

our joint loss is defined as L = LCN + LIoU, which we minimize using 50 shifting steps of
the latent image xt with the Adam optimizer (Kingma & Ba, 2017) and a learning rate of
1×10−2. These hyperparameters are fixed according to previous studies for a fair comparison.

4 Empirical Analysis and Results

4.1 Experimental settings

Implementations We mainly use Stable Diffusion 1.4 (SD 1.4) as all hyperparameters
methods are based on this model. Images are generated using the DDPM Scheduler with
50 inference steps, on an Nvidia A100 80GB in Float 32 precision, with a Classifier-Free
Guidance (Ho & Salimans, 2022) of 7.5. We compare our approach against the standard
inference of Stable Diffusion, Attend&Excite, Divide&Bind (Li et al., 2023b), InitNO, and
Syngen. We exclude A-Star due to a lack of an official implementation and because InitNO
reports superior results. The authors of InitNO propose to couple their methods with GSNg
and IterRef steps, which we refer to as InitNO+. We refer to our method as Ours and its
variant incorporating the GSNg from Syngen as Ours+, where the GSNg is applied after the
iterative refinement step. We also compare the results of Stable Diffusion 3 (SD 3) (Esser
et al., 2024) with and without our approach. We summarize the differences between the
methods in Table 1 and give more details on each method in the Appendix.

Evaluation To estimate prompt-image alignment, we report the TIAM score (Grimal
et al., 2024), which assesses the model’s ability to generate requested entities. The score
reflects the proportion of correctly generated images. Following the recommended sampling
method, we generated prompts for all possible combinations of two and three subject entities
using 24 COCO labels (Lin et al., 2014). Each prompt generated multiple images, which were
automatically evaluated to ensure the correct appearance of the requested entities and, where
applicable, their attributes such as color. We created four datasets: two entities, two colored
entities, three entities, three colored entities. For each dataset, 300 prompts were sampled, and
16 images per prompt were generated using the same 16 seeds to create the test set. In addition,
we create four validation datasets by sampling 10 prompts, different from the 300 ones, that
are used to determine the suitable IterRef step. We compute the CLIP Score (Radford et al.,
2021) to measure the average alignment between text and image embeddings. Additionally,
we employ the CLIP-based metrics proposed by Chefer et al. (2023), referred in this paper as
the Similarity Score, which includes Full Prompt Similarity, Minimum Object Similarity, and
Text-Text Similarity. However, caution is necessary when using CLIP-based metrics, as they
often struggle with relational understanding, can misassociate objects with their attributes,
and exhibit a significant lack of order sensitivity(Yuksekgonul et al., 2023). Finally, we use
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Figure 4: Accumulated TIAM scores without (left) and with (right) GSNg. The dataset
with three colored entities is excluded on the left due to its low scores. Steps 821 and 941
are identified as optimal.

LAIONs aesthetic predictor2 (Schuhmann et al., 2022) to estimate aesthetic quality on a
scale from 1 to 10. Further details about the evaluation metrics in the Appendix.

Optimal IterRef step selection To select the optimal IterRef step, we evaluate 11
sampling steps, spaced every two steps (i.e. 0, 2, 4,. . . , 24) out of the 50 sampling steps for
SD 1.4. We focus on the first 25 steps, as prior research shows limited benefit beyond this
point (Chefer et al., 2023). For each validation dataset, we generate 16 images per prompt
using the same 16 seeds and compute the TIAM score. We standardize the scores using a
min-max scaler for each dataset and present the accumulated standardized TIAM across the
IterRef step for Ours and Ours+ in Figure 4. Based on the scores, we find that step 821
(sampling step 8) is optimal without GSNg, while step 941 (sampling step 2) produces better
results with GSNg. This difference can be explained by the need for changes to occur later
in the process without GSNg, ensuring that the adjusted signal is strong enough to persist
through random sampling. In contrast, GSNg enables continuous signal refinement, allowing
for corrections even at later stages. Moreover, we calculate the aesthetic score and observe
no degradation whatever the IterRef step chosen, confirming the choice (values available in
the Appendix). We will use these selected steps in subsequent experiments. Our validation
method is computationally efficient, requiring only 10 prompts with a limited number of
samples to determine the optimal IterRef step. We applied the same approach to select the
best step for SD 3 (details in Appendix).

4.2 Results

4.2.1 Quantitative results

TIAM We present in Table 2 the TIAM, CLIP and aesthetics scores of our method and
other approaches. With SD 1.4, our method outperforms InitNO across all configurations
in both TIAM and CLIP scores, using a single IterRef step without GSNg. This indicates
that a single IterRef step is more effective when the signal is stronger than at the initial
diffusion step, as expected by our approach. When combined with GSNg, we surpass all
other methods in terms of TIAM scores, showing that GSNg leads to better results with our
carefully chosen IterRef step. We achieve superior CLIP scores in all configurations, except
for the three colored entities, where TIAM alignment scores are generally very low across all
methods. For a fair comparison, we tried to add an IterRef step for the Syngen approach,
referred as Syngen+, but obtained an even lower score. More details in the Appendix. With
SD 3, our method mitigates catastrophic neglect, showing improved TIAM and CLIP scores
for two and three entities. We note a slight decrease in performance for two colored entities
but nearly identical TIAM scores with a better CLIP score for three colored entities.

Similarity Score We present the scores for the dataset with two entities in Table 3.
For SD 1.4, without GSNg our method consistently outperforms InitNO, confirming the
importance of carefully selecting the diffusion step to perform the IterRef steps. With
GSNg, we surpass all competing methods. While we achieve slightly better performance on
datasets with two and three entities, Ours+ is marginally lower for datasets that include

2https://laion.ai/blog/laion-aesthetics/
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Table 2: TIAM performance for prompts containing two or three entities, with and without
color specifiers. The subscripts refer to CLIP/aesthetic scores. Best values are in bold, with
second-best underlined for SD 1.4. For SD 3, only best values are in bold.

IterRef GSNg Methods
w/o colors with colors

2 entities 3 entities 2 entities 3 entities

S
D

1
.4

0 ✗ Stable Diffusion 45.432.2/5.5 8.433.5/5.5 3.934.6/5.4 0.134.5/5.4

1 ✗
InitNO 62.133.1/5.5 14.234.3/5.4 7.235.7/5.4 0.235.5/5.3
Ours 65.833.7/5.5 23.135.4/5.5 8.736.4/5.4 0.436.3/5.4

3 ✓

Divide&Bind 69.933.7/5.5 33.635.9/5.4 11.336.1/5.4 0.536.1/5.3
Attend&Excite 71.434.0/5.5 32.035.9/5.4 10.536.9/5.4 0.636.9/5.3
InitNO+ 75.034.1/5.5 34.236.0/5.4 11.937.1/5.4 1.037.3/5.3

0 ✓ Syngen 78.534.1/5.4 39.236.5/5.4 20.437.1/5.3 2.436.8/5.3

1 ✓
Syngen+ 75.833.8/5.3 36.236.2/5.4 20.137.1/5.3 1.936.9/5.3
Ours+ 81.134.2/5.4 45.836.7/5.4 20.537.1/5.3 2.837.1/5.3

S
D

3 0 ✗ Stable Diffusion 82.834.8/5.5 63.437.9/5.5 27.338.2/5.4 9.6939.4/5.3

1 ✗ Ours 84.534.9/5.6 70.738.2/5.6 24.238.1/5.4 9.7139.6/5.4

Table 3: Similarity scores based on (Chefer et al., 2023) for two entities. Best values are in
bold, with second-best underlined for SD 1.4. For SD 3, only best values are in bold.

IterRef GSNg Methods Full Prompt Minimum Object Text-Text

S
D

1
.4

0 ✗ Stable Diffusion 0.3313 0.2400 0.7682

1 ✗
InitNo 0.3411 0.2512 0.7901
Ours 0.3470 0.2564 0.7979

3 ✓

Divide&Bind 0.3468 0.2597 0.8065
Attend&Excite 0.3509 0.2634 0.8032
InitNO+ 0.3520 0.2638 0.8076

0 ✓ Syngen 0.3518 0.2640 0.8122

1 ✓ Ours+ 0.3522 0.2643 0.8133

S
D

3 0 ✗ Stable Diffusion 0.3529 0.2616 0.8181

1 ✗ Ours 0.3535 0.2619 0.8190

color specifications. This may be attributed to the limitations of CLIP-based metrics in
capturing precise syntactic relations (Yuksekgonul et al., 2023). Ours outperforms SD 3 on
all datasets, with a minor drop in one metric for two colored entities. Results for the other
datasets and further discussion on the limits of this score are reported in the Appendix.

User Study We conducted a subjective user study to evaluate human preferences across
various methods on SD 1.4, including 37 candidates. For each comparison, we presented
images generated by each method using the same randomly selected prompt and seed,
with participants asked to choose the best matches or select none if applicable. The study
consisted of two phases. In the first phase, we compared InitNO with Ours, followed by a
second phase where we evaluated Syngen, InitNO+, and Ours+. As shown in Table 4, our
method demonstrates a significant improvement over InitNO in the one-step IterRef setup,
further validating the effectiveness of our approach. Additionally, in Table 5 with guidance,
participants chose Ours+ more frequently than the others, indicating superior alignment
with the text prompts. Further details about the study are provided in the Appendix.

Table 4: User study: methods without GSNg.

Ours InitNO

Frequency Selection 43.1% 36.9%

Table 5: User study: methods with GSNg.

Ours+ Syngen InitNO+

Frequency Selection 57.4% 51.9% 43.3%
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Figure 5: Qualitative comparison between samples generated with methods without GSNg.
Images generated with the same set of seeds across the different approaches, using SD 1.4.
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Figure 6: Qualitative comparison between samples generated with methods with GSNg.
Images generated with the same set of seeds across the different approaches, using SD 1.4.

4.3 Qualitative comparison

We present a qualitative comparison of image generation using the same two seeds with
different prompts for methods without GSNg in Figure 5. Our method better mitigates
catastrophic neglect e.g. InitNO struggles to clearly represent both entities in the prompt a
photo of an elephant and a bench. Even with challenging prompts containing three entities,
our approach yields superior results, as the later IterRef step helps to distinguish the entities
more effectively. In Figure 6, we present results for methods employing GSNg. Our method
significantly enhances the separation of three objects. For instance, Syngen and InitNO+
fail sometimes to generate certain entities (e.g. Syngen: car in the first prompt, bird in
the third prompt; InitNO+: refrigerator in the first prompt, carrot in the last prompt).
Furthermore, our approach better differentiates the entities (e.g. Syngen: sheep in the
second prompt are not distinguishable, while InitNO+ mixes sheep with zebra in the second
image of the second prompt and bird with bear in the first image of the third prompt). Our
approach demonstrates superior performance in effectively generating and distinguishing
entities compared to existing approaches. We provide further examples for SD 1.4/3 in the
Appendix.

4.4 Study of the IterRef placement

We conducted an exhaustive study on the optimal diffusion steps to do the IterRef step
(Figure 7). The candidate steps identified in subsection 4.1 align well with the results, as they
consistently demonstrate good performance across all datasets. This reinforces the validity
of our validation approach for determining IterRef step candidates. We remark that among
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Figure 7: TIAM score according to IterRef step for entities with color (right) and w/o (left).

the configurations tested, optimizing too early was less effective than making adjustments at
later stages. However, delaying corrections too much is detrimental, indicating the necessity
for a careful trade-off in timing when modifying the signal. We noted that the use of GSNg
follows similar trends but consistently yields better results by facilitating slight, continuous
adjustments to the signal. We also found that for datasets with color, one can obtain better
results by setting different IterRef steps. This conclusion stems from the understanding that
color modifications should be implemented early in the diffusion process, as colors appear
to be defined at the outset. Making adjustments later may hinder effective integration. In
contrast, modifying the signal for entities is more advantageous at later stages, allowing for
greater precision in distinguishing between different entities.

5 Limitations

The GSN approach is constrained by the model’s inherent knowledge, although we can
incorporate external information through well-designed GSNs loss. This limitation affects
our ability to optimize effectively, as challenges persist e.g. rare concept, object confusion,
reasoning, counting (Udandarao et al., 2024; Paiss et al., 2023). Consequently, we may
encounter failures due to the model’s out-of-distribution behavior. Our work has demon-
strated that a thorough understanding of signal construction during diffusion allows for the
selection of optimization steps that enhance image generation while limiting the number of
hyperparameters and the number of IterRef steps, such as optimization thresholds according
to the step of diffusion. However, we believe that despite the challenges associated with
testing numerous thresholds and hyperparameters, an approach utilizing well-engineered
optimization thresholds could improve performance, particularly when considering signal
construction. Finally, like other GSN methods, our approach requires back-propagation
through the U-net, which is computationally intensive.

6 Conclusion

In this study, we improve the application of GSN criteria by exploring how the signal
evolves during the diffusion process. We presented a method for identifying and validating
an optimal refinement step. Our findings show that while early-stage signal modifications
are less effective, timely adjustments can lead to significant performance improvements,
enabling the generation of semantically aligned images and achieving state-of-the-art results,
as demonstrated through extensive experiments. Furthermore, this approach reduces the
number of hyperparameters and IterRef compared to some SOTA methods e.g. InitNO,
simplifying the model setup and enhancing overall efficiency. We observed that the position
of the IterRef step depends on the specific elements we are seeking to correct. For example,
color modifications should occur earlier in the process, while adjustments to entities can be
made slightly later. Future developments of GSN methods could build on these insights by
selecting refinement steps tailored to the particular aspects being adjusted. Additionally,
incorporating a reminder loss (Agarwal et al., 2023) could further enhance the approach by
providing the model with a memory of the signal across diffusion steps.
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A Appendix

The appendix is summarized as follows:

• Section A.1: detailed descriptions of the implementations and methods used,

• Section A.2: detailed description of the use of Stable Diffusion 3 with results on
validation datasets,

• Section A.3: an overview of the TIAM evaluation process,

• Section A.4: a summary of the evaluation framework from Attend&Excite, along
with additional results,

• Section A.5: detailed information about the user study,

• Section A.6: additional comparative sample outputs,

• Section A.7: values for the figures in the main document and supplementary results,
including Section A.7.1 for the validation set and Section A.7.2 for the test set.
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A.1 Text-to-Image Methods Setup For Stable Diffusion 1.4

We provide here some implementation details about Stable Diffusion 1.4. and methods used.

Stable-Diffusion version 1.4 (SD 1.4) We use the model hosted on HuggingFace3

with the DDPM Scheduler4 and 50 sampling steps. All the methods were performed with a
Classifier Free Guidance (Ho & Salimans, 2022) of 7.5.

Attend&Excite We utilize the implementation provided by the Diffusers library5. The
iterative refinement occurs at the sampling steps 0, 10, and 20, where the loss must reach
specified thresholds of 0.05, 0.5, and 0.8, respectively. A maximum of 20 iterative refinement
steps is performed. The learning rate decreases progressively with each sampling step,
starting at an initial value of 20. They perform the GSN guidance for the 25 first sampling
steps.

Divide and Bind We utilize the official implementation6. We follow the authors’ recom-
mendation and use the tv loss for the prompts without colors and the tv bind loss for the
prompts with colors. The iterative refinement occurs at the sampling steps 0, 10, and 20,
where the losses must reach specified thresholds of 0.05, 0.2, and 0.3, respectively. A maxi-
mum of 50 iterative refinement steps is performed. The learning rate decreases progressively
with each sampling step, starting at an initial value of 20. They perform the GSN guidance
for the 25 first sampling steps.

InitNO We utilize the official implementation provided in the repository7. The authors
designed a loss function comprising three components: self-attention loss, cross-attention loss,
and KL divergence loss. During the multi-round step, an iterative refinement is performed.
If the defined thresholds for the cross-attention and self-attention losses are not met, the
optimization is repeated by sampling a new starting latent, up to a maximum of five
attempts. If the objectives remain unattainable, inference is conducted using the optimized
starting latent representation that achieves the best score relative to the objectives. The
KL divergence loss is applied exclusively during the boosting step, where optimization is
performed after each back-propagation on the attention losses to ensure that the starting
latent image remains within an appropriate interval. Iterative refinement steps are also
conducted at sampling steps 10 and 20. For both the boosting step and iterative refinement,
the losses must meet specified thresholds of 0.2 for the cross-attention loss and 0.3 for
the self-attention loss. The learning rate decreases progressively with each sampling step,
beginning at an initial value of 20. Additionally, GSN guidance is applied for the first 25
sampling steps.

Additionally, we discovered in the code that the implementation includes a clean cross-
attention loss, which applies a specialized processing of the attention maps using Otsu
thresholding during the multi-round step and GSNg. The code also incorporates a cross-
attention alignment loss for the GSNg, seemingly designed to encourage consistency in token
activation zones across diffusion steps. To the best of our knowledge, these details are not
mentioned in the main paper.

Syngen We utilize the official implementation8. They apply only a GSN guidance for the
first 25 sampling steps. They use a learning rate of 20.

Syngen is designed to accept prompts that consist solely of entities with attributes. For
instance, when the prompt is “a photo of a cat and a dog”, the cross-attention maps
corresponding to “a photo of” are utilized. To enhance the results, we remove the cross-
attention maps associated with the initial tokens. This adjustment led to an approximate

3https://huggingface.co/CompVis/stable-diffusion-v1-4
4https://huggingface.co/docs/diffusers/api/schedulers/ddpm
5https://huggingface.co/docs/diffusers/api/pipelines/attend_and_excite
6https://github.com/boschresearch/Divide-and-Bind
7https://github.com/xiefan-guo/initno
8https://github.com/RoyiRa/Linguistic-Binding-in-Diffusion-Models
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increase of 1 in performance during the experiments. The scores reported for Syngen in the
paper reflect these beneficial modifications.

Table 6: TIAM score on the different datasets with Syngen and an iterative refinement step
using the Syngen criterion.

n shift of
latent image Methods

w/o colors with colors
2 entities 3 entities 2 entities 3 entities

20 Syngen+ 77.8133.98/5.38 36.1736.32/5.39 20.0837.07/5.3 1.8836.85/5.27

50 Syngen+ 75.8133.78/5.33 36.2336.17/5.35 18.2337.06/5.26 1.936.97/5.25

We attempted to introduce one refinement step for Syngen. Specifically, we applied a refine-
ment step at the first sampling step, similar to InitNO, and conducted 20 and 50 optimization
iterations using the loss function of Syngen. The Adam optimizer was employed with a learn-
ing rate of 1× 10−2. The TIAM scores are reported in Table 6. However, we did not achieve
better results compared to configurations without refinement steps. While improvements
may be possible, further research is required to identify optimal hyperparameters.

Ours Following the Attend&Excite framework, we apply Gaussian smoothing to the
attention maps using a kernel size of 3 and a standard deviation of 0.5. During the iterative
refinement step, we conduct 50 latent image shifts without aiming to achieve a specific
threshold. For the configuration utilizing GSN guidance, we incorporate the Syngen GSN
guidance after proceeding with the iterative refinement step.
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A.2 Stable Diffusion 3

We use the implementation available on Hugging Face9 with the default scheduler, Flow-
MatchEulerDiscreteScheduler10, configured with 28 sampling steps, a Classifier-Free Guidance
(Ho & Salimans, 2022) of 7.0, and bfloat16 precision for image generation. For IterRef, we
apply an Adam optimizer with a learning rate of 1× 10−2 and 50 steps of optimization.

Stable Diffusion 3 (SD 3) is a Flow Matching model designed to construct a probabilistic path
between two distributions, p0 and p1, where p0 is the target distribution and p1 ∼ N (0, I).
The model learns to transport points from one distribution to another. The latent image
transport path can be interpreted as a denoising process, with noise progressively removed
in a manner analogous to image destruction. Specifically, the latent image xt is sampled
using the reparameterization trick, involving the interpolation of the image and noise. As
demonstrated by Rissanen et al. (2023), isotropic noise suppresses frequency components in
the data that have a lower power spectral density than the variance of the noise. Consequently,
the model initially reconstructs lower frequencies and subsequently refines higher frequencies,
similar to the process observed in diffusion models. During denoising, the signal can be
refined to ensure alignment with the desired output using the GSN approach. Additionally,
our method can be applied to select the optimal step in the denoising process. While
feature extraction in Stable Diffusion models 1.4 and 1.5 is well-documented, to the best
of our knowledge, this has not been extensively explored for Stable Diffusion 3, which uses
a transformer-based architecture. In this architecture, T5 and CLIP serve as two distinct
encoders for guidance. The model incorporates two independent transformers, each operating
within its own modality space (image patches and text), while taking the other modality
into account when processing the attention. We first describe how we process and extract
attention maps and secondly, how we select a potential nice step to refine the latent image.

Extraction of the attention maps Stable Diffusion 3 consists of 24 transformer blocks.

The latent image, represented as xt ∈ R
H×W×c, where c is the number of channels in the

latent space, and H,W are the height and width, is patchified to produce a sequence of

tokens z ∈ R
hw×d, where hw = 1

2H × 1
2W , and d is the token embedding dimension.

The textual embedding t is formed by concatenating the embeddings from CLIP and T5 and

projecting them into the same dimension d. This results in t ∈ R
(nCLIP+nT5)×d, where nCLIP

and nT5 represent the number of tokens from CLIP and T5, respectively.

When processing attention, the resulting attention maps A are of size A ∈
R

(hw+nCLIP+nT5)
2
×nhead , where nhead is the number of attention heads. We extract the

attention maps and focus on the subset where the image patches serve as the queries, and
the text embeddings act as the keys. This subset is crucial as it captures the relationship
between the image latent and textual concepts, ensuring the signal within the latent image
aligns with the semantic meaning of the tokens.

To simplify the attention maps, we average across the attention heads and transformer

blocks, yielding A ∈ R
hw×(nCLIP+nT5). We further refine these maps by excluding the special

tokens (e.g., the start and end tokens) for both CLIP and T5, as these tend to dominate the
attention distribution without contributing meaningful semantic information. The attention
maps are reweighted using a softmax operation and Gaussian smoothing, as proposed by
Chefer et al. (2023) for Stable Diffusion 1.4. For subject tokens that span multiple tokens
(e.g., due to subword tokenization), we average their respective attention maps. Finally,
the attention maps from CLIP and T5 are aligned and combined by averaging, producing

the final attention maps, A ∈ R
hw×S , used to guide the latent space adjustment. The

loss function described in the main paper is applied to modify the latent representation
accordingly. However, further investigation is required to determine whether extracting
attention maps from all transformer blocks is necessary. Preliminary observations suggest
that the first and last transformer blocks lack clear semantic correspondence with spatial
features, as revealed through visualizations. A selective approach to choosing transformer

9https://huggingface.co/stabilityai/stable-diffusion-3-medium-diffusers
10https://huggingface.co/docs/diffusers/api/schedulers/flow_match_euler_discrete
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Figure 8: On the left, the image generated by Stable Diffusion 3 for the prompt “a photo of
a cat next to a dog and a giraffe”. On the right, extracted attention maps for CLIP and T5
tokens, averaged across all diffusion steps and transformer blocks. For words represented by
multiple tokens, the attention maps are further averaged.
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Figure 9: Accumulated TIAM scores for Stable Diffusion 3.

blocks, based on a detailed analysis, could lead to more effective results. This refined
attention extraction process may also serve as a foundation for future work in developing
semantic map extraction techniques such as Tang et al. (2023). We include an example of
the extracted attention maps without any processing, averaged across blocks and generation
steps in the Figure 8. The semantic correspondence between text representations and visual
representations can be observed.

Optimal IterRef step selection We evaluate the first 5 sampling steps. For each
validation dataset, we generate 8 images per prompt using the same 8 seeds and compute
the TIAM score. The scores are standardized using a min-max scaler for each dataset, and
the accumulated standardized TIAM across the IterRef steps is shown in Figure 9. The
third sampling step is optimal as it performs consistently well across all datasets. The
non-standardized values are presented in Figure 9.
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Table 7: TIAM score for Stable Diffusion 3 according to the steps used for the refinement with
datasets with 10 prompts (when color TIAM score ground truth colors that is displayed).

step of iterative
refinement

2 entities 3 entities
wo color color wo color color

945.4 88.75 28.75 62.50 13.75
960.1 85.00 22.50 62.50 17.50
974.1 87.50 22.50 66.25 16.25
987.4 83.75 20.00 66.25 13.75
1000 81.25 27.50 61.25 12.50
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A.3 TIAM

We use the following set of 24 COCO labels O = bicycle, car, motorcycle, truck, donut,
bench, bird, cat, dog, horse, sheep, cow, elephant, bear, zebra, giraffe, banana, apple, broccoli,
carrot, chair, couch, oven, refrigerator. The templates are :

• two entities: “a photo of det(o1) o1 and det(o2) o2”

• three entities: “a photo of det(o1) o1” next to det(o2) o2 and det(o3) o3”

with oi ∈ O and det(.) the correct article depending on the object oi.

With attribute, we retake the same set of objects O with the following set of attributes
A = {red , green, blue, purple, pink , yellow}. We used the following templates:

• two colored entities : “a photo of det(a1) a1 o1 and det(a2) a2 o2 ”

• three colored entities : “a photo of det(a1) a1 o1, det(a2) a2 o2 and det(a3) a3 o3”

with oi ∈ O, ai ∈ A and det(.) the correct article depending on the attribute ai.

We then generate all the combinations and following Grimal et al. (2024), we can obtain
an approximation by sampling 300 prompts and generate 16 images per prompt using the
same seeds. We follow the main implementation, we detect the presence of an object with
YOLOv8 (Jocher et al., 2023) and accept the presence of the object if confidence ≥ 0.25. For
an image to be considered well-generated, the requested entities must be correctly detected.
Additionally, in the case of colored entities, both the entity detection and the color attribution
must be accurate.

In comparison with the Attend&Excite evaluation setup, in the case of attribute binding,
each entity is qualified by an attribute. In Table 8 and Table 9, we present the distribution
of couple and trio of meta-class of entities following this classification of different labels :

• Animal : bird, cat, dog, horse, sheep, cow, elephant, bear, zebra, giraffe.

• Objects : bicycle, car, motorcycle, truck, donut, bench, banana, apple, broccoli,
carrot, chair, couch, oven, refrigerator.

For reproduction of the experiments, we release the datasets11.

Table 8: Number of associations of classes in the datasets of prompts with two entities.

Dataset Animal-Animal Animal-Object Object-Object

2 entities 47 151 102
2 colored entities 45 140 115

2 entities + 2 colored entities 92 291 217

Table 9: Number of associations of classes in the datasets of prompts with three entities.

Dataset Animal-Animal Animal-Animal Animal-Object Object-Object

Animal Object Object Object

3 entities 17 98 135 50
3 colored entities 12 87 139 62

3 entities + 3 colored entities 29 185 274 112

11https://huggingface.co/datasets/anonymous4review
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A.4 Attend&Excite evaluation

Attend&Excite uses CLIP12 (Radford et al., 2021) and BLIP13 (Li et al., 2022) for evaluation.
They compute scores using the cosine similarity of CLIP embedding. To have an average
semantic embedding to compute, they create 80 derived of the prompt using 80 templates
such as

"a bad photo of a {}", "a photo of many {}", "a sculpture of a {}"

available on their github14. Then they fill out the {} with the entities in the original prompt.
After that, they compute the CLIP embedding and average among the 80 created prompts.

We detail how they compute each score:

• Full Prompt Similarity: Cosine similarity between the CLIP embedding of the
generated image and the average embedding from the 80 templates.

• Minimum Object Similarity: Average text CLIP embedding for each entity is com-
puted from the templates. Cosine similarity between the generated image and
each average embedding corresponding to an entity and the minimum similarity is
reported.

• Text-Text Similarity: The caption of the generated image (with BLIP) is compared
with the average embedding of the 80 templates of the original prompt using cosine
similarity.

Table 10: Similarity scores based on (Chefer et al., 2023) for two entities. The exponents
present the standard deviations. Best values are in bold, with second-best underlined for SD
1.4. For SD 3, only best values are in bold.

IterRef GSNg Methods Full Prompt Minimum Object Text-Text

S
D

1
.4

0 ✗ Stable Diffusion 0.3313±0.0375 0.2400±0.0377 0.7682±0.1017

1 ✗
InitNo 0.3411±0.0350 0.2512±0.0328 0.7901±0.1012

Ours 0.3470±0.0336 0.2564±0.0308 0.7979±0.0990

3 ✓

Divide&Bind 0.3468±0.0295 0.2597±0.0246 0.8065±0.0962

Attend&Excite 0.3509±0.0296 0.2634±0.0226 0.8032±0.0964

InitNO+ 0.3520±0.0285 0.2638±0.0211 0.8076±0.0951

0 ✓ Syngen 0.3518±0.0282 0.2640±0.0231 0.8122±0.0970

1 ✓ Ours+ 0.3522±0.0270 0.2643±0.0213 0.8133±0.0960

S
D

3 0 ✗ Stable Diffusion 0.3529±0.0294 0.2616±0.0244 0.8181±0.0921

1 ✗ Ours 0.3535±0.0281 0.2619±0.0226 0.8190±0.0928

In our case, we compute the score for each dataset. In addition to the results presented
in the main paper, we provide average evaluations for the all datasets with the standard
deviation:

• two entities Table 10,

• three entities Table 11,

• two colored entities Table 12,

• three colored entities Table 13.

12https://huggingface.co/openai/clip-vit-base-patch16
13https://huggingface.co/Salesforce/blip-image-captioning-base
14https://github.com/yuval-alaluf/Attend-and-Excite/
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Table 11: Similarity scores based on (Chefer et al., 2023) for three entities. The exponents
present the standard deviations. Best values are in bold, with second-best underlined for SD
1.4. For SD 3, only best values are in bold.

IterRef GSNg Methods Full Prompt Minimum Object Text-Text
S

D
1

.4

0 ✗ Stable Diffusion 0.3450±0.0381 0.2063±0.0293 0.7322±0.1012

1 ✗
InitNo 0.3528±0.0364 0.2106±0.0302 0.7408±0.1041

Ours 0.3639±0.0356 0.2204±0.0305 0.7568±0.1013

3 ✓

Divide&Bind 0.3687±0.0341 0.2282±0.0281 0.7618±0.1038

Attend&Excite 0.3708±0.0326 0.2327±0.0252 0.7582±0.1026

InitNO+ 0.3719±0.0324 0.2331±0.0240 0.7594±0.1048

0 ✓ Syngen 0.3750±0.0311 0.2320±0.0277 0.7660±0.1066

1 ✓ Ours+ 0.3772±0.0299 0.2349±0.0253 0.7698±0.1056

S
D

3 0 ✗ Stable Diffusion 0.3833±0.0309 0.2346±0.0255 0.7876±0.0966

1 ✗ Ours 0.3863±0.0281 0.2373±0.0226 0.7908±0.0951

Table 12: Similarity scores based on (Chefer et al., 2023) for two colored entities. The
exponents present the standard deviations. Best values are in bold, with second-best
underlined for Stable Diffusion 1.4. For Stable Diffusion 3, only best values are in bold.

IterRef GSNg Methods Full Prompt Minimum Object Text-Text

S
D

1
.4

0 ✗ Stable Diffusion 0.3527±0.0343 0.2483±0.0393 0.7208±0.1130

1 ✗
InitNo 0.3639±0.0337 0.2618±0.0363 0.7329±0.1120

Ours 0.3720±0.0330 0.2699±0.0329 0.7420±0.1143

3 ✓

Divide&Bind 0.3688±0.0303 0.2711±0.0297 0.7317±0.1180

Attend&Excite 0.3767±0.0298 0.2782±0.0267 0.7422±0.1150

InitNO+ 0.3787±0.0289 0.2792±0.0256 0.7453±0.1129

0 ✓ Syngen 0.3784±0.0309 0.2774±0.0296 0.7534±0.1175

1 ✓ Ours+ 0.3780±0.0304 0.2784±0.0280 0.7483±0.1196

S
D

3 0 ✗ Stable Diffusion 0.3863±0.0273 0.2806±0.0259 0.7731±0.1225

1 ✗ Ours 0.3864±0.0262 0.2812±0.0241 0.7708±0.1238

In the context of one-step refinement, our method consistently outperforms InitNO. With
GSN guidance, we observe slight improvements for the three-entities datasets compared
to other approaches; however, our scores are lower for datasets that include colors, which
may be explained by the limitations of CLIP-based metrics, as they have a bags-of-words
behavior(Yuksekgonul et al., 2023): inadequate relational understanding, frequent errors
in associating objects with their attributes, and a significant lack of sensitivity to the
order of elements. In addition, the close similarity of the scores, along with the large
standard deviations, suggests that this evaluation used might not be accurately detecting
significant differences between methods. This brings into question whether the results
are truly meaningful, highlighting the need for further research to assess the validity and
reliability of this metric in evaluating text-image alignment performance.
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Table 13: Similarity scores based on (Chefer et al., 2023) for three colored entities. The
exponents present the standard deviations. Best values are in bold, with second-best
underlined for Stable Diffusion 1.4. For Stable Diffusion 3, only best values are in bold.

IterRef GSNg Methods Full Prompt Minimum Object Text-Text

S
D

1
.4

0 ✗ Stable Diffusion 0.3519±0.0331 0.2148±0.0297 0.6505±0.1017

1 ✗
InitNo 0.3633±0.0317 0.2211±0.0305 0.6578±0.1026

Ours 0.3707±0.0313 0.2274±0.0299 0.6621±0.1043

3 ✓

Divide&Bind 0.3689±0.0298 0.2305±0.0279 0.6542±0.1016

Attend&Excite 0.3772±0.0292 0.2388±0.0261 0.6557±0.1024

InitNO+ 0.3809±0.0297 0.2403±0.0256 0.6565±0.1048

0 ✓ Syngen 0.3754±0.0305 0.2308±0.0294 0.6715±0.1065

1 ✓ Ours+ 0.3776±0.0302 0.2346±0.0290 0.6673±0.1065

S
D

3 0 ✗ Stable Diffusion 0.3998±0.0253 0.2460±0.0231 0.6726±0.1104

1 ✗ Ours 0.4025±0.0242 0.2486±0.0211 0.6744±0.1104
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A.5 User study

(a) First phase (b) Second phase

Figure 10: Screenshots of the user study interface.

To compare the methods, we conducted a user study in which participants were shown
images generated using the same seed and prompt. The images were randomly sampled from
the generated test set. Note that the InitNO method may resample new seeds due to its
multi-round iterative refinement step.

Participants were asked to select images that best matched the given prompt. They could
choose one, multiple, or none of the images. The study consisted of two phases:

• The first phase involved presenting images from Ours and InitNO, representing
methods without GSN guidance. Images were shown from the two entities and three
entities datasets.

• The second phase involved presenting images from Ours+, InitNO+, and Syngen,
representing methods with GSN guidance. Images were shown from the two entities,
two colored entities, and three entities datasets.

The selection of the presented datasets is based on the TIAM score. Without guidance,
methods perform too poorly on the two and three colored datasets. With guidance, methods
still perform poorly on the three colored dataset.

Each participant was asked to respond to 16 prompts in the first phase and 21 prompts in
the second phase. The results from 22 participants, who were shown the same set of images,
were used to compute inter-rater reliability using Fleiss’ kappa (Fleiss et al., 1971), where
0.5 indicates fair agreement (Landis & Koch, 1977). Figure 10 shows the interface used by
participants to select the images.

In total, we had 37 participants, of whom 7 were experts in computer vision. The distribution
of participants’ age categories is shown in Figure 11.
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Figure 11: Distribution of participants’ ages in the study.
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A.6 More qualitative samples

We provide more examples of generated images with Stable Diffusion 1.4:

• without GSN guidance in Figure 12, Figure 13, Figure 14, Figure 15, Figure 16,

• with GSN guidance in Figure 17, Figure 18, Figure 19, Figure 20, Figure 21.

We provide examples of generated images with Stable Diffusion 3 in Figure 22, Figure 23,
Figure 24, Figure 25 and Figure 26.
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Figure 12: Qualitative comparison between samples generated with methods without GSNg.
Images generated with the same set of seeds across the different approaches, using SD 1.4.
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Figure 13: Qualitative comparison between samples generated with methods without GSNg.
Images generated with the same set of seeds across the different approaches, using SD 1.4.
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Figure 14: Qualitative comparison between samples generated with methods without GSNg.
Images generated with the same set of seeds across the different approaches, using SD 1.4.
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Figure 15: Qualitative comparison between samples generated with methods without GSNg.
Images generated with the same set of seeds across the different approaches, using SD 1.4.
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Figure 16: Qualitative comparison between samples generated with methods without GSNg.
Images generated with the same set of seeds across the different approaches, using SD 1.4.
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Figure 17: Qualitative comparison between samples generated with methods with GSNg.
Images generated with the same set of seeds across the different approaches, using SD 1.4.
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Figure 18: Qualitative comparison between samples generated with methods with GSNg.
Images generated with the same set of seeds across the different approaches, using SD 1.4.
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Figure 19: Qualitative comparison between samples generated with methods with GSNg.
Images generated with the same set of seeds across the different approaches, using SD 1.4.
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Figure 20: Qualitative comparison between samples generated with methods with GSNg.
Images generated with the same set of seeds across the different approaches, using SD 1.4.
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Figure 21: Qualitative comparison between samples generated with methods with GSNg.
Images generated with the same set of seeds across the different approaches, using SD 1.4.
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Figure 22: Qualitative comparison between samples generated with SD 3. Images generated
with the same set of seeds across the different approaches.
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Figure 23: Qualitative comparison between samples generated with SD 3. Images generated
with the same set of seeds across the different approaches.
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Figure 24: Qualitative comparison between samples generated with SD 3. Images generated
with the same set of seeds across the different approaches.
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Figure 25: Qualitative comparison between samples generated with SD 3. Images generated
with the same set of seeds across the different approaches.
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Figure 26: Qualitative comparison between samples generated with SD 3. Images generated
with the same set of seeds across the different approaches.
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A.7 Reporting the scores values and additional results

A.7.1 Validation set

We report the TIAM scores on the validation dataset in Table 14 and we represent the scores
as a function of refinement steps used in Figure 27. Additionally, we present the CLIP Score
(in Figure 28) and Aesthetic score (Figure 29) according to the refinements steps used.

Table 14: TIAM score according to the steps used for the refinement with datasets with 10
prompts (when color TIAM score ground truth colors that is displayed).

step of
iterative

refinement

2 entities 3 entities
wo color color wo color color

ø GSNg ø GSNg ø GSNg ø GSNg

981 44.38 69.38 7.50 20.00 5.00 32.50 0.00 2.50
941 53.12 73.12 8.75 18.75 4.38 35.62 0.00 3.75
901 55.00 76.88 14.38 21.88 6.25 36.88 0.00 1.88
861 56.88 78.13 15.62 17.50 11.25 34.38 0.00 0.62
821 56.88 74.38 18.75 16.88 11.88 38.12 0.00 0.62
781 60.00 76.25 14.38 17.50 10.63 33.13 0.00 1.25
741 58.13 75.00 18.13 16.25 9.38 40.63 0.00 0.62
701 61.25 73.75 15.00 15.00 11.25 29.38 0.00 1.88
661 57.50 70.62 14.38 13.75 14.38 24.38 0.62 1.25
621 59.38 70.62 11.25 8.75 12.50 21.25 0.00 1.25
581 53.75 65.62 12.50 11.88 6.25 16.88 0.62 0.62
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Figure 27: TIAM score of datasets of 10 prompts with 2 and 3 objects as a function of the
refinement step used. On the right, entities are bound with colors, we then use the TIAM
score with color ground truth.

A.7.2 Test set

For our methods, we report the TIAM score according to the iterative refinement steps used
for the line plot in the main paper, as shown in Table 15. Additionally, we present the CLIP
Score (Figure 30) and Aesthetic Score (Figure 31) corresponding to the refinement steps
applied in our methods. Notably, we observe that the Aesthetic Score remains constant
regardless of the iterative refinement steps used. Furthermore, we observe similar trends to
those reported in the main paper regarding the TIAM score. Specifically, applying iterative
refinement at slightly later diffusion steps appears to improve the CLIP score. However,
delaying the refinement too much results in a decline in performance over time.

We aggregate the TIAM scores per seed across all datasets and methods, with the results
shown in Figure 32. The accuracy of InitNO and InitNO+ is somewhat inflated due to their
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Figure 28: CLIP score according to the iter-
ative refinement step used for the validation
datasets.
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Figure 29: Aesthetic score according to the
iterative refinement step used for the valida-
tion. The Aesthetic score is between 1 and
10.

Table 15: TIAM score as a function of different iterative refinement steps.

step of
iterative

refinement

2 entities 3 entities
w/o colors colors w/o colors colors
ø GSNg ø GSNg ø GSNg ø GSNg

981 58.77 78.83 7.81 19.46 13.25 43.02 0.33 2.85
941 62.00 81.10 8.42 20.54 17.08 45.79 0.29 2.77
901 65.10 81.46 9.67 20.08 20.29 47.69 0.40 2.29
861 65.77 81.02 9.13 19.46 22.02 49.52 0.38 2.48
821 65.81 80.56 8.71 18.21 23.12 48.98 0.38 2.25
781 66.56 79.10 8.42 16.48 25.21 48.65 0.38 1.88
741 66.42 78.25 8.38 15.17 25.40 47.50 0.38 1.52
701 65.38 77.23 8.35 12.83 24.54 44.35 0.46 1.35
661 64.77 74.40 7.60 11.58 23.67 41.10 0.31 0.88
621 63.31 71.60 7.21 10.19 23.17 38.15 0.38 0.54
581 61.81 69.62 6.71 8.62 22.19 33.96 0.31 0.58

multi-round optimization process, where they resample noise if the initial seed does not
perform well, leading to artificially improved results. Our best setup, Ours+, consistently
achieves higher average scores than our closest competitor, Syngen. We observe greater
robustness across seeds, reflected in a lower interquartile range across all datasets, indicating
a higher success rate.

Grimal et al. (2024) observed that entities positioned earlier in a prompt tend to appear
more frequently than those listed later. In Figure 33, we report the proportion of occurrences
of entities based on their position in the prompt. This trend persists across most methods,
with the exception of Ours+ and Syngen, particularly for prompts involving two or three
colored entities, where this bias is less pronounced.
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Figure 30: CLIP score according to the itera-
tive refinement step used for the test datasets.
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Figure 31: Aesthetic score according to the
iterative refinement step used for the valida-
tion. The Aesthetic score is between 1 and
10.
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Figure 32: TIAM aggregate per seed for the 16 seeds per dataset. + shows the mean.
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Figure 33: The proportion of occurrences for each entity based on its position within the
prompt across all datasets. Here, we focus solely on the detection of entities, regardless of
whether their colors are incorrectly attributed.
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