
A Resource scaling for quantum backpropagation methods503

What comprises classical memory and time complexity, is purposely left vague. The details depend504

on the constituent types of operations needed to compute a function and its gradients, as well as505

the memory access model available. But, details aside, backpropagation merely refers to gradient506

computation in a particular manner, and, any reasonably successful implementation of it incurs a507

constant overhead in relative complexity, as captured by Equations (1) and (2). With this in mind,508

we elaborate on the operational definition of quantum backpropagation scaling in terms of memory.509

Thereafter, we explain the failure of various current gradient methods to achieve backpropagation510

scaling.511

A.1 Memory complexity of the function512

Recall the function of interest F (✓) = F (✓) = tr[⇢(✓)O], where O is an observable and ⇢(✓) is513

a parameterized quantum state built from M parameters, acting either on an unknown initial state514

⇢ or simplified initial state ⇢ = |0ih0|. Classifying the memory used to compute the function as a515

combination of n qubits, plus storage for each of the M parameters with appropriate precision, �,516

implies517

MEMORY(F (✓)) = Õ(n+M log(1/�)). (10)

To derive the computational cost, assume unit cost access to any element of the circuit family {Uj}. If518

an incoherent measurement scheme is used, measuring O and estimating F (✓) to an acceptable fixed519

precision, ", on repeated preparations of ⇢(✓) incurs a cost that scales as TIME(F (✓)) = Õ(
M
"k ), for520

some integer k. This sets the scene for the computational requirements of computing F 0
(✓), which521

should, importantly, be achieved with a modest space overhead to truly replicate backpropagation.522

A.2 Current gradient methods523

Replicating classical backpropagation efficiency in a quantum setting requires more effort, which we524

elaborate on next by discussing how and why current gradient methods fail to achieve this efficiency.525

For further illustration, Figure 2 provides a hypothetical comparison between the popular gradient526

method – the parameter-shift rule – and true quantum backpropagation. The plot incorporates527

assumptions about time to compute native quantum operations taken from Babbush et al. [2021].528

A.2.1 Naive sampling529

The gradient of the function F (✓) expressed in Equation (4) also takes a simpler form using the530

parameter-shift rule and properties of Pauli generators [Mitarai et al., 2018, Schuld et al., 2019]531

[F 0
(✓)]✓k = F

�
✓ +

⇡

2
✓̂k
�
, (11)

where ✓̂k is a unit vector along the kth direction of ✓. Thus far, sampling schemes constructed to532

estimate (11), perform a destructive measurement that typically only retrieves a partial amount of533

information for one component of the gradient. As a result, reducing the infinity norm error in the534

gradient such that we expect ||F 0
(✓)� F̂ 0

(✓)||1  " with reasonable probability, has a cost that535

scales like converging each component, i.e.536

TIME(F 0
(✓)) /M logM TIME(F (✓)) (12)

= Õ(M2/"2). (13)

While this quadratic dependence on the number of parameters may not seem problematic, a linear537

dependence was the necessary catalyst in the age of modern deep learning, with overparameterized538

networks that perform exceedingly well on practical tasks.539

A.2.2 Fast gradient algorithm540

A method put forth by Jordan [2005] numerically estimates the gradient of a classical black-box541

function at a given point, using a quantum computer. The algorithm impressively requires a single542

black-box query to estimate the full gradient with a desired precision, whilst satisfying the memory543
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Quantum backpropagation

Parameter-shift rule

Figure 2: Quantum backpropagation scaling. The parameter-shift rule is plotted alongside true
quantum backpropagation scaling. On the x-axis is time in number of seconds required to compute a
single estimate of the gradient in log scale, with common time points stated explicitly. On the y-axis
is the number of parameters, also in log scale, that may be optimized using each method, for a given
amount of time. We make simple assumptions, motivated from the work in Babbush et al. [2021].
Namely, we assume a minimum system size of n = 100 qubits. Further, assuming a favourable time
of 10µs to compute one parameterised operation ( which is 1 order of magnitude less than the time to
compute one Toffoli gate), the time for one primitive is lower bounded by 100⇥ 10µs = Tq . Scaling
in time is then roughly M2 · Tq for the parameter-shift rule and M · polylog(M) · Tq for quantum
backpropagation. Furthermore, " = O(1).

requirement in (2). We elaborate on the connection between this approach and backpropagation544

on a quantum computer when the function considered is classical and reversible, in Appendix B.1.545

But, as shown by Gilyén et al. [2019], when parameters are considered to be rotation angles like546

those in variational circuits, a different query model needs to be applied and the original single-query547

advantage becomes unattainable. With the appropriate query model, the known bounds imply a548

computational cost of Õ(M
p
M/"2) using amplitude estimation, and, in a high precision regime,549

Õ(M
p
M/") is worst-case optimal even with commuting Pauli operators [Huggins et al., 2021]. This550

worst-case bound was proved in a setting where operators commute, indicating that commutativity551

need not be helpful in other settings.552

A.2.3 Simultaneous perturbation stochastic approximation (SPSA) algorithm553

A few studies have investigated the use of the simultaneous perturbation stochastic approximation554

(SPSA) algorithm to optimize parameterized quantum circuits [Benedetti et al., 2019, Hoffmann555

and Brown, 2022, Gacon et al., 2021]. It is argued that SPSA is computationally efficient since556

its requires two function evaluations to estimate the gradient, irrespective of M . This seemingly557

satisfies the scaling we require, however, the approximation of the gradient has limited accuracy558

which affects the number of optimization steps needed for SPSA to converge to a minimum. As559

M increases, the variance of the gradient estimate increases and, thus, to counteract this, a smaller560

learning rate must be used - increasing the number of optimization steps - or more samples are needed561

to estimate the gradient with an appropriate accuracy at every step. In either case, one cannot escape562

a dependence on M , which indirectly affects the number of function evaluations needed to estimate563

gradients or perform gradient-based optimization adequately. More formally, the gradient estimator564

for component j of a function, given by SPSA, is565

F̄ 0
(✓)j =

F (✓ + c�)� F (✓ � c�)

2c�j
(14)

where c is a step size constant and� 2 RM is a size M random variable with independent, zero-mean,566

bounded second moments, and bounded inverse moments, i.e. E(|�|�1
j ) is uniformly bounded for all567
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j. A common choice for� is a Bernoulli random variable with equal probabilities of being +1 or �1568

for every entry.569

Consider a special case, F , for pedagogical purposes such that the gradient at the point ✓ is a570

constant g along all coordinates, the function is nearly linear at the point examined, and the number571

of coordinates M is large in a central limit theorem sense. We then have, F 0
(✓)j = g for all j,572

and F (✓ + c�) ⇡ F (✓) + c F 0
(✓)T� = F (✓) + cg~1T� ⇡ F (✓) + N (0, cgM). On a quantum573

computer, the estimator will be constructed by taking independent measurements of F (✓ ± c�) and574

then rescaling the sample mean by 1/2c�j . We then see that the variance of an individual term in575

this case is given by576

Var[F̄ 0
(✓)j ] =

F (✓)

c
+ gM (15)

As such the number of samples required to reach a precision ✏ with high probability in even a single577

gradient component scales as578

Ns =
F (✓)/c+ gM

✏2
(16)

which clearly increases linearly with the number of components M , and does not achieve the desired579

scaling despite the estimator being constructed from only two function calls. It is also worth noting580

that the estimates for each component of the gradient are highly correlated across the vector, which581

can lead to larger errors than would be otherwise expected under alternative norms. This is intuitively582

expected, as it should not generally be possible to determine M independent random variables from583

a single value without increasing the precision of the estimates at least proportionately. We note in584

passing that generally to obtain an unbiased estimator one must also take c to be on the order of ✏, but585

this dependence can be improved with higher order formulas to ✏�k for some k > 1 [Spall, 2000],586

but this is not central to our study.587

B Classical backpropagation in quantum circuits588

In order to frame the discussion, it is worth considering a number of closely related setups as they589

would appear if performed on a quantum computer. In particular, in similar notation and cost models,590

its interesting to consider how classical backpropagation would look in a quantum circuit for a591

deterministic classical function and perhaps the closer classical analog, classical parameterized592

Markov processes on the space of probabilistic bits.593

B.1 Classical functions594

First we will look at an entirely classical function using reversible arithmetic for the purposes of595

analogy, using a simplified function but with simple generalizations available. This will be helpful for596

setting the stage in terms of notation and scaling, and also help make a connection with the gradient597

algorithm of Jordan [2005]. Consider a classical function f that depends on some set of parameters598

x 2 RM via more elementary functions fi. For this example, we assume a simple dependency599

graph for the overall function f : RM ! R is the simple composition of elementary functions,600

f = fN � fN�1 � ... � f1. Given this structure, we denote a set of intermediate variables zi, such that601

zi = xi for i 2 [1,M ] and zi = fi(z↵(i)) for i 2 [M + 1, n] where ↵(i) is the subset of variables602

needed to evaluate fi, noting that we are implicitly including a trivial set of elementary functions fi603

that are simply the identity operation. We also assume that no zi depends on itself, each zi appears604

exactly once, and derivatives of the elementary operations are readily available, that is a simple605

function for evaluating f 0
i(z) is available for any input z.606

Given these definitions, we are ready to describe the algorithm for obtaining the gradient rxf(x).607

We consider a universal precision � for all parameters and function values, such that classical numbers608

use O(log(1/�)) qubits for their representation. For initialization, we store each of the parameters609

xi in their own quantum register |ix to run the circuit fully within the quantum computer. In the610

first step, we run the function evaluation in the so-called forward pass and store the intermediate611

values zi each in their own quantum register |iz using the elementary implementations of fi as612

reversible circuits. Taking now an additional set of auxiliary registers, |i� with the same size as the613

intermediate variables, we assign �n = 1, and compute the backwards pass according to reversible614
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implementations of �j =
P

i2�(j) @zjfi(z↵(i)) where �(i) is the outgoing nodes for intermediate615

variables zi. In the final step, we may simply read off the � register to find rxf(x) = �1:M .616

Considering a general auxiliary register |iA, these steps may be written in quantum form as617

|xix |0iz |0i� |0iA !
Forward |xix |ziz |0i� |rf iA !

Backward |xix |ziz |�i� |rbiA (17)

where rf and rb denote the state of the arithmetic trash register after the forward and backwards pass618

respectively. Given our precision specification, the size of each of the x register is Õ(M) and the619

size of the z and � registers are Õ(N). This representation is a bit wasteful in that as the backwards620

pass proceeds one can overwrite the intermediate values z with � when they are no longer needed,621

but writing it this way clarifies the steps. If we assume a typical setup where the number of free622

parameters is roughly on par with the number of elementary functions, then we see that the total623

storage for the primary registers is Õ(M) and similar for the ancillary register. Similarly, the amount624

of computation required in both the forward and backwards pass is Õ(M), or approximately twice625

the cost of evaluating the function in the forward direction, meeting the scaling requirements of626

backpropagation with some small overhead for maintaining reversibility.627

It is useful to compare some aspects of this approach to the quantum algorithm of Jordan for evaluating628

gradients of classical functions using a single black box function query [Jordan, 2005]. Considering629

only the computation, if we approximate the forward pass and backwards pass to each be the same630

cost as one black box function query, then up to log factors in precision of evaluation this method is a631

constant factor of two more expensive. Said another way, there is no quantum advantage in evaluating632

the gradient when one has white box access to the classical function implementation and it satisfies633

the simple dependencies requirements. In terms of storage requirements, the algorithm of Jordan634

requires the same x register, but makes no use of the intermediate variable registers such as z or �635

(which can be combined in real implementations to be approximately the size of the x register). This636

use of intermediate storage is sometimes characterized as a form of dynamic programming, where the637

storage of intermediate variables reduces overall computational complexity. Moreover, this version638

takes advantage of analytical gradients of the subfunctions which can be evaluated to high precision639

more easily than depending on the finite difference formulations of gradient algorithms as in Jordan’s640

technique.641

So in summary, both a quantum implementation of classical backpropagation and Jordan’s technique642

have a computational cost that is constant in the number of parameters if our cost model considers643

overall function evaluations as the cost model. This represents an exponential improvement over644

naive finite difference computations or symbolic evaluation of derivatives one element at a time. The645

backpropagation technique utilizes an extra storage register and knowledge of the problem structure,646

as is common in dynamic programming, while Jordan’s algorithm needs only black-box queries.647

Both of the techniques assume bitwise access to the oracle as a classical function.648

B.2 Classical parameterized Markov chains649

In the previous section, the comparison of classical backpropagation and Jordan’s algorithm made650

use of bitwise access to a classical, deterministic function. The case of a classical function encoded in651

bits helps frame the discussion in not only scaling but also the sense in which classical parameterized652

functions are perhaps not the best analog for parameterized quantum circuits. A key aspect of this653

difference was highlighted in Gilyén et al. [2019] by showing that in the black box setting, it was654

more appropriate to consider current parameterized quantum circuits as a phase or amplitude oracle,655

in which case they prove a lower bound of at least M1/2 calls to the black box (in contrast to O(1)),656

ruling out the desired backpropagation scaling except for special cases. This contrast motivates657

asking whether the intuitive origin of this lower bound is related more to the black box nature of658

the access, the quantum nature of the parameterization, or merely the probabilistic features of the659

parameterization. Here we show that a classical analog to parameterized quantum circuits, namely660

parameterized Markov processes do indeed allow the analog of classical backpropagation which661

helps highlight that the difficulty in achieving constant scaling is due to the quantum nature of the662

problem.663

To draw an analogy between quantum and probabilistic classical states for our purposes, we will664

introduce a small number of analogous concepts that are considered in greater depth by Baez665

and Biamonte [2012]. A parameterized quantum state | (✓)i is an L2 normalized state such that666
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R
S ds | (s; ✓)|2 = 1, that is often formulated as a parameterized quantum circuit acting on667

a known initial state as | (✓)i = U(✓) |0i where U is a unitary transformation. In contrast, a668

parameterized classical probability vector | (✓)) is a positive L1 normalized probability vector such669

that
R
S ds  (s; ✓) = 1, that may be formulated as a parameterized classical circuit acting on a670

known reference state as | (✓)) = U(✓) |0) where U is a left-stochastic operation in this case. As a671

connection between the two, one may consider classical transformations as the set of transformations672

restricted to the diagonal of a quantum density matrix, and note that it is always possible to represent673

a classical probability process as a quantum process, albeit non-uniquely, but the converse is of course674

not true in general.675

The corresponding analog of expected values of Hermitian operators on quantum states will be676

expected values with diagonal operators O. Such operators are well defined for expected values on677

both classical and quantum states and are identical when the quantum populations are equal to the678

classical probabilities. In setting up for the computation of gradients with respect to the parameter679

vectors, we will consider objective functions defined by the same observable O and a sequence of680

operations that each depend on a single parameter. That is, the corresponding classical and quantum681

objectives with these assumptions may be concisely defined by682

f(✓) =

Z

S
ds O(s)|(

Y

i

Ui(✓i) 
0
)(s)|2 = hOiU(✓) 0 (18)

f(✓)c =

Z

S
ds O(s)(

Y

i

Ui(✓i) 
0
c )(s) = hOiU(✓) 0

c
. (19)

Our question here will be if the restriction to parameterized classical stochastic processes allows683

the desired scaling in determining gradients of an expected value with the given parameters. The684

evaluation of gradients with respect to parameters in quantum circuits relies largely on the fact685

that anti-Hermitian operators generate unitary evolutions, and we may exploit that relationship to686

determine gradients as expected values explicitly. There is a direct analogy to this for general687

stochastic operators, in that they are generated by so-called infinitesimal stochastic operators, defined688

by
P

i Hij = 0. With this definition, in finite dimensions they characterize the family of Markov689

semi-groups via exponentiation as U(t) = exp(Ht). For our purposes, it suffices that this yields a690

well defined operator for evaluation of single parameter derivatives.691

In order to properly compare the two settings, we need to make clear a number of assumptions on the692

operators Ui and corresponding operators Hi that mirror assumptions in the quantum case, allowing693

efficient implementation. To begin, we assume each Ui(✓i) is a simple operation, analogous to a694

quantum gate or Pauli operator, such that it is defined as a tensor product on a classical probabilistic695

bit space, and evaluating the transition probability between two basis states is efficient to do at high696

precision. In general, the basis could change between steps and the process could remain efficient,697

however for simplicity we consider the standard computational basis here. Moreover, we assume that698

the operation that generates the Ui, which we denote Hi is simple to evaluate between basis states,699

and has a bounded norm ||Hi|| = 1, so that parameters ✓i have consistent and reasonable scales.700

Similarly, we will restrict ourselves to observables O with reasonable norms, i.e. ||O|| = 1.701

With these assumptions, we investigate derivatives of a classical stochastic process under different702

sampling schemes. Let’s imagine we have a stochastic process U , much like a variational circuit,703

which we write as704

U(✓) =
Y

i

Ui(✓i) (20)

where each Ui is a stochastic process with a corresponding generator Hi, such that705

Ui(✓i) = exp(✓iHi) (21)
@✓iUi(✓i) = HiUi(✓i) (22)

We will be sampling the expected value of some observable O which is a diagonal matrix in our706

construction, and so the function value we are interested in optimizing, given a initial probability707

distribution  0 can be written in a number of ways, but some are708

f(✓) = hOiU(✓) 0
(23)

=

Z
OU(✓) 0 (24)
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Now if we take the gradient of this function with respect to the parameters, we find709

@✓if(✓) = @✓ihOiU(✓) 0
(25)

=

Z
O
Y

j<i

Uj@✓iUi

Y

k>i

Uk 0 (26)

=

Z
O
Y

j<i

UjHiUi

Y

k>i

Uk 0. (27)

Using this construction, one can store the trajectory and lean on a path-integral formalism to use710

a single sampling process to take independent samples of all the gradient components with each711

stochastic sample that is taken. One way to write this is to borrow the path-integral like formalism712

using resolutions of the identity as713

f(✓) =

Z
O
Y

j

Uj 0 (28)

=

X

i1,...,iN

Z
O |iN ) (iN |UN |iN�1) (iN�1|UN�1... (i1| 0

=

X

i1,...,iN

p(i1, ..., iN )O(iN )

where we use p(i1, ..., iN ) to represent the probability of a particular configuration that was sampled,714

and similarly O(iN ) for the value of the final configuration. We assume that for each individual715

configuration it is possible to compute the transition probability between individual configurations,716

e.g. (iN |UN |iN�1) which is typically true in the classical case as well. As a result, for a given path,717

we use re-weighting to make that path produce an unbiased sample for the gradient component we are718

interested in as well. In particular, writing the same for the shifted gradient estimator for component719

j merely requires substituting the relevant matrix element720

(ij |Uj |ij�1)! (ij |HjUj |ij�1) (29)

hence we can estimate the gradient using samples re-weighted by721

@✓jf(✓) =
X

i1,...,iN

p(i1, ..., iN )

✓
(ij |HjUj |ij�1)

(ij |Uj |ij�1)

◆
O(iN ) (30)

where the weighting factors we also assume to be efficiently computable by construction of the722

elementary operations Ui, which is analogous to the quantum generators typically used as well,723

defined as simple operations lifted into large spaces by tensor products. This suggests the following724

procedure for efficiently estimating gradients with respect to parameters in the classical analog of725

quantum variational circuits.726

1. Draw a sample from  0 and store this configuration as |ii), which may be represnted727

efficiently as a classical bit string.728

2. For each elementary operation Ui, sample the next classical configuration with probability729

determined by Ui, and store the configuration as |ij).730

3. Upon reaching the final configuration, evaluate O(iN ) from the definition of O to determine731

the value of the objective.732

4. Using the stored path, {|ij)}, for each elementary step, sample
⇣

(ij |HjUj |ij�1)
(ij |Uj |ij�1)

⌘
O(iN ) and733

store the value in a vector to be used in a running average that determines the gradient.734

5. Repeat this procedure until the uncertainty in the estimate for each gradient component is as735

low as desired.736

It is easy to see from the above procedure that the variance in the estimate of each individual gradient737

component does not have an explicit dependence on the number of elementary steps. This can be seen738

from Equation (30), which only has an explicit dependence on 3 points in the chain. Alternatively,739

from our assumptions designed to mirror the case of quantum circuits, we know the variance of740
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these estimators is controlled by the value of the product (ij |HjUj |ij�1)O(iN )  1, independent741

of the number of parameters or steps in the sampling process. It may appear that the quantity742

estimated could be unbounded, but if we move the denominator into p, the result is again a probability743

distribution multiplied only by values determined by the numerator here. As a result, analogous to744

backpropagation in the bitwise function case, by storing the intermediate configurations {|ij)} at745

a cost memory of O(M), we see that evaluating the gradient requires a number of samples that is746

independent of M .747

From this, we see that indeed the desired scaling is possible in the case of the analogous classical748

parameterized stochastic processes on tensor product spaces. The formulation as a sum over paths749

also allows us to make connection to the gentle measurement results in the main text, in that we are750

always promised to be in a computational basis state, making it possible to do a gentle measurement751

at intermediate steps with unit probability. This division allows us to help identify the origin of752

challenges in achieving backpropagation scaling as a problem with quantum measurement collapse753

and the inability to read out intermediate states while continuing a computation, rather than the754

probabilistic formulation of the problem. In addition, one may make the classical generators Hi755

non-commutative with each other and suffer no additional difficulties in estimating the gradient756

components, unlike in the quantum case. It remains an interesting question to better understand the757

performance separation on practical tasks between quantum variational methods and this type of758

classical analog, given the advantage in trainability of the classical construction.759

C Polynomial complexity circuits760

It is reasonable to ask if we can first rule out backpropagation when only given access to single761

copies of a state. A useful tool to rule out the possibility of certain tasks is information-theoretic762

bounds, however, we show here that these are not sufficient to rule out quantum backpropagation763

scaling on single copies as the task remains information-theoretically viable under the assumption764

of a polynomial length variational circuit, thanks to classical shadows. On the other hand, standard765

computational arguments illustrate the difficulty in acheiving the desired scaling.766

C.1 Information-efficiency with classical shadows767

The idea behind classical shadows is to create a classical representation of a state ⇢, that allows one to768

affordably estimate other properties of interest, like expectation values of observables [Huang et al.,769

2020]. In general, the number of samples, N , needed to predict say, Tr[E1⇢], ...,Tr[EK⇢] within770

additive error ", with high probability is771

N = ⌦(log(K) maxikEikshadow/✏
2
),

where kEikshadow is a norm influenced by the particular measurement primitive chosen to implement772

the classical shadow scheme. While general quantum states can be hard to determine, the additional773

constraint of a state being generated by a polynomial complexity variational circuit allows us to774

strengthen our statements.775

Definition 15 (Polynomial complexity circuit). We say a circuit is a polynomial complexity circuit if776

it is composed from a fixed gate set G that may be applied between any two qubits with a maximum777

number of gates scaling polynomially in n, the number of qubits. Additionally, we will call it a778

polynomial complexity parameterized circuit if each gate in the elementary set is defined by a bounded779

number of parameters.780

With this at hand, we have the following.781

Proposition 16 (Information-efficiency of polynomial complexity circuits). Let ⇢ = | ih | be the782

density matrix of a pure state generated from a quantum circuit of polynomial complexity built from783

a gate set of size G applied between any two qubits, with at most p(n) total gates, where p(n) is a784

polynomial in the number of qubits, n. With these definitions, there are at most K = (nG)
2p(n) of785

these circuits. Then, ⇢ can be explicitly determined using ⌦(log(K)/"2) = ⌦(2p(n) log(nG)/"2)786

single-copy measurements and a classical search procedure.787

Proof. Given that | i is generated from a polynomial complexity circuit, denote the possible states788

created by such a circuit as |�ii. With the above definitions it is easy to see that the total number of789
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possible states that can be generated by a single step is n2G, and hence with p(n) possible choices,790

the total number of states is K = (nG)
2p(n). If the underlying set of operations used to generate the791

state is unknown, it is still possible to cover the space of two-qubit operations to diamond distance792

error ✏ with a number of operations scaling polynomially in 1/✏ and p(n) [Caro et al., 2022]. If we793

denote this number of extended operations as G0, then the argument proceeds as before in terms of794

asymptotic scaling by replacing G with G0. Performing Clifford classical shadows with Ei = |�iih�i|795

for i = 1, ...,K, one can estimate the fidelity, i.e. Tr[Ei | ih |], for all i within additive error " using796

⌦(log(K)/"2) single copies of | i. Since | i is generated by one of the K circuits, searching for an797

Ei that provides the maximum fidelity, allows one to find Tr[Ei | ih |] = 1, with high probability,798

and thus, explicitly determine | i, and a circuit that generated it by using classical simulation of the799

family of circuits, that will generally scale both exponentially in n and K.800

With this knowledge, one may proceed to compute expectation values classically to determine801

gradients or indeed any desired expected value or feature of the state. Whilst this procedure allows us802

to determine | i and a circuit for creating it, executing it incurs quantum hardware costs dominated803

by the Clifford circuits needed for the classical shadow protocol – which are of polynomial depth, but804

contain entangling gates which are limiting in practice. Even more concerning, is the classical cost of805

post-processing. Obtaining the maximum fidelity involves storing K = (n+ p(n))O(p(n)) values and806

searching over them, which can be expensive. Additionally, the final computation of the expectation807

values needed for backpropagation, requires knowing and storing M exponentially large matrices,808

over and above the cost to compute the expectation values. And so, backpropagation scaling remains809

untenable with this implementation.810

C.2 Computational hardness on polynomial complexity circuits811

The result and algorithm (a brute force search) used in Proposition 16 demonstrate the information-812

theoretic efficiency of determining almost anything one would want to know about a state if we813

are guaranteed that it is both a pure state and generated by a polynomial complexity circuit. The814

classical computational procedure is clearly inefficient, but this begs the question of whether an815

efficient procedure might exist in general, especially given the existence of an efficient procedure for816

special cases. Here we argue that no efficient procedure can exist in the most general case, unless it is817

possible to efficiently clone pseudo-random quantum states.818

Proposition 17 (Computational hardness of polynomial complexity circuits). Under standard crypto-819

graphic assumptions, no efficient computational procedure exists to identify a pure state of polynomial820

complexity to trace distance ".821

Proof. A pseudo-random quantum state is defined to be a pure state of polynomial complexity that822

no efficient computational algorithm given a polynomial number of copies of the state can distinguish823

from the Haar random state. Using the procedure described in Proposition 16, a circuit that can824

recreate the state to trace distance ✏ can be found using a polynomial number copies of the state. If825

the procedure that finds this circuit is also computationally efficient, then the state can be cloned826

efficiently, violating the no-cloning theorem for pseudo-random states shown in Ji et al. [2018], which827

merely rests upon standard cryptographic assumptions.828

This result demonstrates that even if we know a state is a pure state generated from a polynomial829

complexity circuit, it is computationally infeasible to identify it under cryptographic assumptions830

despite the information-theoretic efficiency. This suggests that there are states and observables for831

which the backpropagation problem could remain challenging, and that the most effective strategies832

must make use of known structure in the observables and states to achieve computational efficiency833

in analogy to known special cases.834

D Shadow tomography protocol for gradients835

For much of this manuscript it has been assumed that one has complete white-box access to the input836

state ⇢ = | (✓)ih (✓)|. In a more traditional quantum setting, however, this may not be the case. One837

may be given access to unknown quantum states, or partially unknown states, and tasked to process838

them for some machine learning task. In such an instance, the input states are usually referred to as839
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quantum data, and insights pertaining to this model set up can be found in Huang et al. [2021]. In this840

section, we discuss some details around this model type, which we call a quantum neural network841

and is defined in Definition (8).842

D.1 Gradients as observables843

Before presenting our algorithm for performing quantum backpropagation, we begin with the follow-844

ing remark on quantum neural networks which allows us to exploit a shadow tomography procedure.845

Remark 18 (Gradient of a quantum neural network). The kth gradient component of the quantum846

neural network may be expressed as847

@✓kQNN~✓(|'i) = 2Re h0|h'|U†
(~✓)Z0@✓kU(~✓)|0i|'i

= 2Re h�k| ki
where848

| ki = (iPk)e
i✓kPkUk . . . e

i✓1P1U1|0i|'i
= ei(✓k+

⇡
2 )PkUk . . . e

i✓1P1U1|0i|'i
|�ki = U†

k+1e
�i✓k+1Pk+1 . . . U†

Me�i✓MPMZ0e
i✓MPMUM . . . ei✓1P1U1|0i|'i.

If one defines849

U ( )
k = ei(✓k+

⇡
2 )PkUk . . . e

i✓1P1U1,

U (�)
k = U †

k+1e
�i✓k+1Pk+1 . . . U†

Me�i✓MPMZ0e
i✓MPMUM . . . ei✓1P1U1,

then, given a copy of |'i, one may attach an ancilla qubit labelled ⇤ in the |+i state (in addition to850

the output qubit 0). In doing so, consider applying control-U ( )
k conditional on the ancilla being |0i,851

and control-U (�)
k conditional on the ancilla being |1i. This produces the state852

1p
2

�
|0i| ki+ |1i|�ki

�
.

Measuring X on the ancilla qubit, the expectation is853

1

2

�
h0|h k|+ h1|h�k|

�
X⇤

�
|0i| ki+ |1i|�ki

�
= Re h�k| ki

=
1

2
@✓kQNN~✓(|'i).

This implicitly gives an operator on |+i|0i|'iwhose expectation value is 1
2@✓kQNN~✓(|'i). Moreover,854

we can implement this measurement with O(M) quantum operations.855

D.2 Proof of Theorem 9856

In order to prove Theorem 9, we need to discuss and modify two concepts: online learning and857

threshold search [Aaronson et al., 2018, Bădescu and O’Donnell, 2021].858

D.2.1 Online learning of quantum states859

As in Aaronson et al. [2018], suppose we have access to a stream (E1, b1), . . . , (EM , bM ) where860

each bk = h |Ek| i. We want to compute hypothesis states !1, . . . ,!M , which are mixed states861

stored in classical memory, such that862

• !k depends only on (E1, b1), . . . , (Ek�1, bk�1) (the online condition)863

• |Tr(Ek!k)� h |Ek| i| > " for as few k as possible864

One may produce the following theorem.865

Theorem 19. [Aaronson et al., 2018, Theorem 1] In the above setting, there is an explicit strategy for866

outputting hypothesis states !1, . . . ,!M such that |Tr(Ek!k)� h |Ek| i| > " for at most O(
n
"2 )867

values of k. This holds even if the measurements bk are noisy, and only satisfy |bk � h |Ek| i|  "
3868
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Two remarks are in order: first, the problem setup and algorithm presented in Theorem 19 are both869

completely classical. Second, this theorem says nothing about computational runtime. Implementa-870

tion of the algorithm in Theorem 19 using techniques from convex optimization will require runtime871

polynomial in the dimension of the Hilbert space poly(2
n
).872

D.2.2 Quantum Threshold Search873

Bădescu and O’Donnell [2021] promote online learning to a shadow tomography protocol using874

a procedure which they call threshold search. This gives an improved version of the quantum875

private multiplicative weights algorithm proposed in Aaronson and Rothblum [2019]. The difference876

between the online learning setting from the previous section and general shadow tomography, is that877

in practice, we are typically not given the expectation values {bk} and must measure them ourselves.878

This is where threshold search comes in handy. Suppose we possess some copies | i⌦m of a quantum879

state and are given a stream (E1, a1), . . . , (EM , aM ) where each ak is supposed to be a guess such880

that ak ⇡ h |Ek| i. Threshold search is a subroutine which, given only logarithmically many copies881

of the state, can check in an online fashion whether there is an ak which errs by more than ". More882

formally, we have the following theorem.883

Theorem 20. [Bădescu and O’Donnell, 2021, Lemma 5.2] Given m copies of an n-qubit quantum884

state | i⌦m, M observables �1  E1, . . . , EM  1, and guesses a1, . . . , aM , there is an algorithm885

which outputs either886

• |ak � h |Ek| i|  " 8k.887

• Or |ak � h |Ek| i| > 3
4" when in fact |bk � h |Ek| i|  1

4" for a particular k and value888

bk.889

It does so using number of copies only890

m = O

✓
log

2 M

"2

◆
.

Furthermore, the algorithm is online in the sense that:891

• The algorithm is initially given only M and ". It then selects m and obtains | i⌦m.892

• Next, observable/threshold pairs (E1, a1), (E2, a2), . . . are presented to the algorithm in893

sequence. When each (Ek, ak) is presented, the algorithm must either ‘pass’, or else halt894

and output |ak � h |Ek| i| > 3
4".895

• If the algorithm passes on all (Ek, ak) pairs, then it ends by outputting |ak � h |Ek| i| 896

" 8k897

We stress that this subroutine requires quantum memory and multi-copy measurements, and uses898

gentle measurements in an essential way. One is able to check whether or not ak is inside the899

threshold without greatly disturbing the copies of the quantum state. We are now ready to state the900

full shadow tomography protocol from Bădescu and O’Donnell [2021]. The idea is to run the online901

learning algorithm from Theorem 19 in parallel with threshold search, and Bădescu and O’Donnell902

[2021, Theorem 1.4] tells us that this algorithm succeeds in outputting estimates |bk�h |Ek| i|  "903

with high probability.904

When applying Algorithm 1 to the observables corresponding to gradients described in Appendix905

D.1, we can exploit that the observables are related sequentially. In between each round k, we rotate906

both, the states stored in quantum memory and the classical online learner, so that implementing the907

measurement of the next gradient only requires runtime independent of M . Since these rotations908

are unitary and do not reduce the quality of any approximations, the same proof as Bădescu and909

O’Donnell [2021, Theorem 1.4] will apply. This establishes Theorem 9.910

By Bădescu and O’Donnell [2021, Theorem 1.4], this algorithm obtains estimates |bk �911
1
2@✓kQNN~✓(|'i)|  " for each k by taking the number of copies to be912

m = O

✓
n log

2 M

"4

◆
.
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Algorithm 1 Online and gentle shadow tomography
Input: m copies of the unknown input state | i⌦m, in m registers each with n qubits.
Output: Estimates bk ⇡ h |Ek| i

1. Set R = O(
n
"2 ) and m0 = O(

log2 M
"2 ). We need R batches, each with m0 copies, so

m = Rm0 copies in total. This gives in total

m = O

✓
n log

2 M

"4

◆

2. Initialize the online learner !1 according to the online learning algorithm.
3. Start with the first batch of copies | i⌦m0 .
4. For each k = 1, . . . ,M :

(a) Use the online learner to predict ak = Tr(Ek!k).
(b) Use threshold search to check |ak � h |Ek| i|.
(c) If threshold search passes |ak � h |Ek| i|  ",

i. Output estimate bk  ak.
ii. Leave the online learner unchanged !k+1  !k.

(d) If threshold search concludes |ak�h |Ek| i| > 3
4" and in fact |bk�h |Ek| i|  1

4",
i. Output estimate bk.

ii. Update online learner with bk ⇡ h |Ek| i to get !k+1.
iii. Discard the current batch and move onto a fresh batch | i⌦m0 .

Moreover, the required number of quantum operations is913

O(mM) = O

✓
nM log

2 M

"4

◆

This is quasi-linear in M . With naive storage of the entire density matrix of the hypothesis state !k,914

the classical cost is915

M · 2O(n)

Which is also linear in M , but unfortunately exponential in the input size n. We present the916

full algorithm for gradient estimation using online shadow tomography with threshold search in917

Algorithm 2.918
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Algorithm 2 Shadow tomography protocol for gradients of a quantum neural network
Input: m copies of the unknown input state |'i⌦m in m registers each with n qubits.
Output: Estimates bk ⇡ 1

2@✓kQNN~✓(|'i) for k = 1, . . . ,M

1. Set R = O(
n
"2 ) and m0 = O(

log2 M
"2 ). We need R batches, each with m0 copies, so

m = Rm0 copies in total. This gives

m = O

✓
n log

2 M

"4

◆

2. Define for each k = 1, . . . ,M

| ki =
1p
2

�
|0i| ki+ |1i|�ki

�

and recall from Remark 18 that

h k|X⇤| ki =
1

2
@✓kQNN~✓(|'i)

3. Attach the output qubit and an ancilla qubit in the |+i state to each register. Label the output
qubit 0 and the ancilla qubit ⇤.

4. To each register, do the following:

(a) Apply control-U ( )
1 conditional on the ancilla being |0i. This requires O(1) quantum

operations.
(b) Apply control-U (�)

1 conditional on the ancilla being |1i. This requires O(M) quantum
operations. This step is analogous to the initial forward pass in classical backpropaga-
tion.

(c) This produces the state | 1i⌦m.
5. Initialize the online learner !1 according to the online learning algorithm.
6. Start with the first batch of copies | 1i⌦m0

7. For k = 1, . . . ,M , do the following. This loop is analogous to the backward pass in classical
backpropagation.
(a) Use the online learner to predict ak = Tr(X⇤!k).
(b) Use threshold search to check |ak � h k|X⇤| ki|. This takes time independent of M .
(c) If threshold search passes |ak � h k|X⇤| ki|  ",

i. Output estimate bk  ak.
ii. Leave the online learner unchanged !k+1  !k.

(d) If threshold search concludes |ak�h k|X⇤| ki| > 3
4" and in fact |bk�h k|X⇤| ki| 

1
4",
i. Output estimate bk.

ii. Update online learner with bk ⇡ h k|X⇤| ki to get !k+1.
iii. Discard the current batch and move onto a fresh batch.

(e) To each register in the current batch and the unused batches, do the following:
i. Apply control-(ei(✓k+1+

⇡
2 )Pk+1Uk+1e�i⇡

2 Pk) conditional on the ancilla being |0i.
This implements U ( )

k+1(U
( )
k )

�1, and only requires O(1) quantum operations.
ii. Apply control-ei✓k+1Pk+1Uk+1 conditional on the ancilla being |1i. This imple-

ments U (�)
k+1(U

(�)
k )

�1, and only requires O(1) quantum operations.
iii. This produces in each batch (a noisy approximation to) the state | k+1i⌦m0 .

(f) Also apply the rotations in Step (e) to the hypothesis state !k+1 in classical memory.
The online learner now approximates | k+1ih k+1|.
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E Fully gentle gradient estimation919

In this section, we motivate for a need to perform sequential and gentle measurements to individual920

gradient states, as opposed to superpositions of them. Thereafter, we discuss general strategies based921

on gentle measurements alone, performed on single and multiple copies.922

E.1 Considering individual gradient states923

While we briefly motivated the need for a sequential reuse of information in measurements in the924

main text, here we further motivate such a construction as a necessary, but perhaps not sufficient925

condition for our purposes. Given that one can create a superposition over all the potential gradient926

components at a cost that only requires a single function call, it is natural to ask if this ability gives us927

any headway in achieving our goals. Consider exploiting the superposition over all gradient states928

| i =
MX

k=1

ck |Aki
Y

j2A

Uj |0i =
MX

k=1

ck |Aki | ki , (31)

using at most cM calls to the family {Uj} and some ancillary qubits |Aki associated with the929

kth gradient state.2 Creating such a superposition weakens our ability to extract each gradient930

component’s signal upon measurement, and thus, requires more samples to distinguish between931

gradient components with a desired precision. From a cost perspective, it remains optimal or932

equivalent to consider gradient states | ki individually. To make this more concrete, consider a state933

discrimination task, with the following lemma at hand.934

Lemma 21 (Optimal two-state discrimination). Any quantum algorithm that distinguishes two states935

⇢1 and ⇢2 using a single copy of each state with probability at least 0.9 requires936

1

2
+

1

2
k⇢1 � ⇢2ktr � 0.9. (32)

Now we may proceed to the state discrimination task, where it is clear a superposition is not helpful.937

Proposition 22. Consider the two-state discrimination task for two scenarios. First, given | mi and938

|�mi, where h m|�mi = 0, there is a measurement strategy that can distinguish the states with a939

single measurement. Second, given the states940

| i = 1p
M

MX

k=1

|Aki | ki , (33)

and941

|�i = 1p
M

MX

k=1

|Aki |�ki , (34)

where | ki = |�ki for every k except the mth component and h m|�mi = 0 as before, then ⌦(M)942

copies are required by any strategy aiming to discriminate | i from |�i with reasonably high success943

probability.944

Proof. The first scenario follows straightforwardly from Lemma (21) since there is no overlap945

between | mi and |�mi – hence, their trace distance is 1 and Equation (32) always holds. For states946

in uniform superposition over all M components, the overlap is 1 � 1/M which is close to unity947

for large M , indicating the difficulty of the task when the states mostly overlap. Given access to N948

copies of | i and |�i, to discriminate with probability at least 0.9 requires949

1

2
+

1

2

q
1� |h |�i|2N � 0.9, (35)

or equivalently950

�
1� 1

M

�2N  0.36, (36)

implying that N = ⌦(M) in order to discriminate successfully with the desired probability.951

2c is some small constant.
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From Proposition (22), we have the immediate corollary.952

Corollary 23. It is either optimal or equivalent in cost to consider gradient states individually, as953

opposed to a superposition over them all.954

Proof. Replacing the uniform superposition in Equations (33) and (34) to the more general, | i =955
PM

k=1 ck |Aki | ki and |�i =
PM

k=1 ck |Aki |�ki , the number of samples needed to discriminate956

the mth component scales as N ⇠ 1/c2m. Since c2m 2 [0, 1], it is clear that c2m = 1 is optimal. If957

there are M components, then c2m ⇠ 1/M and hence, N ⇠M . Assuming the superposition state | i958

incurs a cost proportional to M , the number of samples required to differentiate between components959

in the wave function will imply an overall cost that scales as M2.960

E.2 A case for sequential and gentle measurement961

Whilst the cost equivalence presented in Corollary 23 implies no benefit from a superposition of962

gradient states, it also suggests that, if one is to obtain backpropagation scaling, individual gradient963

states must be utilized in a more resource efficient manner. Drawing inspiration from backpropagation,964

if one could instead use the state | ki to make a measurement, then update it to | k+1i without965

substantially disturbing it, it would then be possible to perform all of the measurements at an966

overall cost scaling like O(M). We illustrate such a benefit by means of an example using fictitious967

non-destructive measurements in Algorithm 3.968

Algorithm 3 Gradient estimation with a modified, non-destructive swap test
Input: Three registers initialized to |+i |0i |0i
Output: Gradient vector estimate for F (✓)

1. Apply U(✓) = UM ...U1 to the second register, controlled on the first being 0. Cost ⇠M .
2. Apply OU(✓) to the third register, conditional on the first being 1. Cost ⇠M and the state

becomes
|+i |0i |0i ! 1p

2
(|0i | M i |0i+ |1i |0i |�i),

where | M i = UM ...U1 |0i and |�i = OUM ...U1 |0i. By assumption, all Uj and O are
hermitian and unitary.

3. For k in {M,M � 1, ..., 1}:
(a) Apply and update | ki = �iPk | ki conditioned on ancilla being 0. Cost ⇠ 1.
(b) Perform a non-destructive swap test on the state

1p
2
(|0i | ki |0i+ |1i |0i |�i)

to estimate [F 0
(✓)]✓k = �2 Im h�| ki with no damage to the state. Cost ⇠ 1.

(c) If k > 1 apply and update |�i = U †
k |�i conditional on ancilla being 1. Cost ⇠ 1.

(d) If k > 1 apply and update | k�1i = U†
k(iPk) | ki conditional on ancilla being 0. Cost

⇠ 1.

The procedure naturally breaks down in a real quantum computer at Step (3b) due to the reliance on969

non-destructive measurements. Substituting these for gentle measurements, which are only partially970

non-destructive but, at least, theoretically possible, one may still aspire to exploit the structure of the971

problem and achieve backpropagation scaling as in Algorithm 3.972

E.3 Gentle measurement on single copies973

The need to reuse a state enough times to extract every gradient component, imposes constraints on974

the gentleness of measurements made. While the use of multiple copies may enhance the ability975

to leverage gentle measurements, it is straightforward to see why this approach would not work in976

general, when given access to a single copy of ⇢. Using a scheme like the modified swap test in977
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Algorithm 3, implies that each measurement must be on average 1/M -gentle in order to reuse the978

state M times to extract each gradient component without damaging the state to the point that at least979

one observable on the state is completely wrong. Enforcing such a constraint, leads to measurements980

that are trivial – i.e. they barely depend on ⇢ and cannot yield enough information about gradients.981

We recap some useful lemmas whose proofs can be found in Aaronson and Rothblum [2019] to make982

this more concrete.983

Lemma 24 (Additivity of damage). Let ⇢ be some mixed state and let S1, S2, ..., SM be general984

quantum operations. Suppose for all j, we have985

kSj(⇢)� ⇢ktr  ↵j ,

then986

kSM (SM�1(...S1(⇢)))� ⇢ktr  ↵1 + ...+ ↵M .

Lemma 25 (Trivial measurement). Given a measurement M and parameter ⌘ � 0, suppose that for987

every two orthogonal pure states | i and |�i, and every possible outcome y of M , we have988

Pr[M(| i) outputs y]  e⌘ Pr[M(|�i) outputs y].
Then M is ⌘-trivial. Further, let E1 + ...+ Ek = I be the POVM elements of M . Assume without989

loss of generality that the outcome y corresponds to the element E = E1. Then,990

h |E | i  e⌘ h�|E |�i ,
holds for all states, not just all orthogonal | i , |�i.991

Lemma 26 (Triviality lemma). Suppose a measurement is ↵-gentle on all states. Then the measure-992

ment is ln
⇣

1+4↵
1�4↵

⌘
-trivial —so in particular, O(↵)-trivial, provided ↵  1

4.01 .993

Equipped with these lemmas, we proceed to demonstrate the difficulty of gentle gradient estimation994

with single-copy access to a pure state.995

Theorem 27. A sequence of M measurements on a single-copy pure state that is 1/M -gentle at996

every step to extract every gradient component, will be trivial.997

Proof. Choose a circuit such that gradient state differs substantially, i.e. k| iih i|� | jih j |ktr = 1998

for all measurements. In other words, there is a unitary that must be applied to advance from gradient999

component i to j, otherwise there will be a measurement that produces the incorrect result if no such1000

unitary is applied. Fix {⇤, I� ⇤} as the POVM elements of a gentle measurement. Assume without1001

loss of generality that the outcome of measuring the gradient component with respect to a given state1002

corresponds to the element ⇤ = A†A, and1003

kS(⇢)� ⇢ktr  ↵ (37)
where1004

S(⇢) =
A⇢A†

Tr[⇤⇢]
.

Using a single copy of ⇢ = | ih | to extract all M gradient components, requires advancing the state1005

after measuring gently at each step, and thus, each measurement step must be on average 1/M -gentle1006

to ensure1007 ���S(UMS(UM�1...S(U2S(U1⇢U
†
1 )U

†
2 )...U

†
M�1)U

†
M )� ⇢M

���
tr
< 1, (38)

where ⇢M is the density matrix representation of the advanced gradient state | M i = UM ...U2U1 | i.1008

If we allowed for any more damage at a particular step, we could eventually reach a point where1009

subsequent measurements yield incorrect results, as the cumulative damage to the state may exceed 1.1010

While the gentleness could be distributed across each gradient component in different ways, from the1011

above lemma, we see that the more gentle the operator, the more trivial it becomes. Hence, if we1012

had (M � 1) 0�gentle measurements, they would be infinitely trivial and provide no information1013

with 1 informative measurement. Hence, the least trivial set of measurements that achieve an average1014

of 1/M gentleness would be to have each measurement be 1/M gentle. By Lemma (26), then each1015

measurement will be O(1/M)-trivial, which implies1016

Tr[⇤⇢i]  e1/M Tr[⇤⇢i+1]

for any two gradient states ⇢i, ⇢i+1. As M increases, the estimates for all gradient components will1017

converge. Therefore, the measurement operator has an exponentially vanishing dependence on the1018

input states themselves and hence, provides little-to-no information about the gradient components.1019

1020
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E.4 Multiple copies and non-collapsing measurements1021

Non-adaptive, non-collapsing measurements are, by assumption, measurements that do not disturb the1022

state of a quantum system at all. Under this assumption, the complexity class, non-adaptive Collapse-1023

free Quantum Polynomial time (naCQP) was introduced. With this ability, searching through an1024

unstructured M -element list can be performed in Õ(M
1
3 ) time, which is faster than the optimal lower1025

bound of O(M
1
2 ) given by Grover’s search algorithm [Grover, 1996]. Importantly, time complexity in1026

naCQP is measured as the number of oracle queries plus the number of non-collapsing measurements.1027

This definition is considered more fitting, since any task in naCQP allows for exponentially many1028

non-collapsing measurements to be made and should thus, be accounted for.1029

Interestingly, one may still violate Grover’s bound by allowing for approximately non-collapsing1030

measurements. First, note that1031

k⇢� ⇢0ktr = 0

for non-collapsing measurements, where ⇢0 is the normalized state after measurement. In the1032

approximately non-collapsing regime, assume that a measurement operator can be applied to a tensor1033

product of the state ⇢ such that1034 ��⇢⌦m � ⇢0⌦m
��
tr
 ↵.

As ↵! 0, we recover the non-collapsing measurement regime. In the gradient setting, approximately1035

non-collapsing measurements are merely gentle measurements. This leads to the following.1036

Proposition 28. A sufficiently gentle measurement used for gradient extraction can solve an unstruc-1037

tured search problem in Õ(M
1
3 ) time.1038

Proof. Reformulating the gentle gradient task as a search problem, let M = 2
n. Consider the state1039

sin((2i+ 1)✓) |xi |1i+ cos((2i+ 1)✓)
X

y2{0,1}n ,y 6=x

2
�M�1

2 |yi |0i (39)

after applying i = M
1
3 Grover iterations, where |xi is the marked state. The probability of measuring1040

the marked state is | sin((2i+ 1)✓)|2 ⇡ 1/M
1
3 . Suppose we can create the state | i⌦m, where1041

m = O(log(M)) by using M
1
3 log(M) Grover queries. By having access to multiple copies of | i,1042

assume that one may implement a 1/M -gentle measurement on the copies as required for gradient1043

estimation. Then, the probability of observing the marked state after a single gentle measurement1044

is log(M)/M
1
3 . By performing M

1
3 gentle measurements on the log(M) copies, the probability of1045

obtaining the marked state at least once is greater than 1� e� log(M)
= 1� 1

M , using only Õ(M
1
3 )1046

Grover oracle queries and O(M
1
3 ) partially non-collapsing measurements, and thus, runs in time1047

Õ(M
1
3 ).1048
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