
CriticLean: Critic-Guided Reinforcement Learning for Mathematical
Formalization

Anonymous ACL submission

Abstract001

Translating natural language mathematical002
statements into formal, executable code is a003
fundamental challenge in automated theorem004
proving. While prior work has focused on gen-005
eration and compilation success, little attention006
has been paid to the critic phase—the evalua-007
tion of whether generated formalizations truly008
capture the semantic intent of the original prob-009
lem. In this paper, we introduce CriticLean,010
a novel critic-guided reinforcement learning011
framework that elevates the role of the critic012
from a passive validator to an active learning013
component. Specifically, first, we propose the014
CriticLeanGPT, trained via supervised fine-015
tuning and reinforcement learning, to rigor-016
ously assess the semantic fidelity of Lean 4 for-017
malizations. Then, we introduce CriticLean-018
Bench, a benchmark designed to measure mod-019
els’ ability to distinguish semantically correct020
from incorrect formalizations, and demonstrate021
that our trained CriticLeanGPT models can sig-022
nificantly outperform strong open- and closed-023
source baselines. Building on the CriticLean024
framework, we construct FineLeanCorpus, a025
dataset comprising over 509K problems that026
exhibits rich domain diversity, broad difficulty027
coverage, and high correctness based on human028
evaluation. Overall, our findings highlight that029
optimizing the critic phase is essential for pro-030
ducing reliable formalizations and we hope our031
CriticLean will provide valuable insights for032
future advances in formal mathematical reason-033
ing.034

1 Introduction035

The formalization of mathematical statements036

(Yang et al., 2024) is a critical task in modern math-037

ematical computation, particularly in the context of038

theorem provers like Lean 4 (Leanprover Commu-039

nity, 2023). The translation of natural language040

mathematical problems into formal, executable041

code remains a significant challenge, as it requires042

not only syntactical accuracy but also a deep un- 043

derstanding of the problem’s semantics (Scholze, 044

2022; Tao, 2023). Existing approaches have shown 045

progress, but they often face limitations in accu- 046

racy, especially in the context of complex, high- 047

level problems that involve sophisticated mathe- 048

matical reasoning (Zheng et al., 2021; Azerbayev 049

et al., 2023; Welleck et al., 2021, 2022; Lewkowycz 050

et al., 2022). In contrast to existing works, we ar- 051

gue that the critic phase—the step where the se- 052

mantic correctness of generated formalizations is 053

evaluated—is not only underexplored but also fun- 054

damentally essential to the success of mathematical 055

autoformalization. 056

Therefore, in this paper, we systematically inves- 057

tigate and optimize the critic component and intro- 058

duce CriticLean, a comprehensive framework that 059

places the critic model at the center of the formal- 060

ization pipeline. Unlike prior work that primarily 061

focuses on generation quality or compiler validity, 062

CriticLean introduces the reinforcement learning- 063

based CriticLeanGPT models explicitly trained 064

to evaluate whether the Lean 4 output truly reflects 065

the intent of the original mathematical statement., 066

and we present a full methodology for training, and 067

evaluating CriticLeanGPT model. Specifically, as 068

shown in Figure 1, for each natural language state- 069

ment, we apply the autoformalization iteratively 070

based on the feedback from the Lean compiler 071

and the CriticLeanGPT models, which is trained to 072

critically assess whether a generated formalization 073

accurately represents the semantics of the origi- 074

nal mathematical statement. In each iteration, the 075

feedback provides valuable signals that drive an 076

iterative refinement process, further improving the 077

quality of the final Lean code output. 078

Additionally, we present CriticLeanBench, a 079

benchmark designed to evaluate the performance 080

of CriticLeanGPT models, which contain 500 081

natural language and Lean 4 language statement 082

pairs (i.e., 250 correct and 250 incorrect pairs). 083

1

Through extensive experiments, we demonstrate084

that our trained CriticLeanGPT models outperform085

the SOTA open-source models (Bai et al., 2023;086

Grattafiori et al., 2024; Guo et al., 2025a) and many087

closed-source API models (Google, 2023; OpenAI,088

2023; Guo et al., 2025b) greatly.089

Furthermore, building upon our critic-centric090

CriticLean pipeline, we propose the high-quality091

open-source Lean 4 statement dataset FineLean-092

Corpus, comprising 509,356 fully verified en-093

tries. When compared to the previous related094

datasets (e.g., LeanWorkBook (Ying et al., 2025)),095

FineLeanCorpus is distinguished by its diversity096

in mathematical domains, difficulty distribution,097

and strict semantic validation via critical feedback098

loops. Notably, its difficulty distribution and tar-099

geted domain enrichment create a more structurally100

balanced training environment, mitigating over-101

fitting and transforming sparse topics into well-102

supported sub-domains. Furthermore, to foster re-103

search into the upper echelons of mathematical104

reasoning, we have curated the specialized subset105

called FineLeanCorpus-Diamond, comprising over106

36,000 high-difficulty problems.107

2 Related Works108

2.1 Autoformalization109

Autoformalization (Szegedy, 2020; Wu et al., 2022;110

Yu et al., 2025c) refers to the process by which AI111

systems parse natural language (NL) contents and112

translate them into machine-verifiable formal rep-113

resentations, such as those in theorem provers like114

Lean4 (Moura and Ullrich, 2021) or Isabelle (Nip-115

kow et al., 2002). Recent advances leverage large116

language models (LLMs) (Zhang et al., 2024a) to117

tackle this problem through two primary paradigms:118

(1) In-context learning (Wei et al., 2022), where119

models utilize annotated examples (Wu et al., 2022;120

Liu et al., 2023; Lu et al., 2024) to generate for-121

malizations without explicit fine-tuning, (2) Su-122

pervised fine-tuning (e.g., (Lin et al., 2025; Xin123

et al., 2024a; Yu et al., 2025b)), which adapts124

general-purpose LLMs into domain-specific aut-125

oformalization experts. To assess correctness, prior126

works (Lin et al., 2025; Xin et al., 2024a; Yu et al.,127

2025b) employ LLM-as-judge (Zheng et al., 2023)128

to verify semantic alignment between formal and129

informal statements. We advance this by training130

the first open-sourced, domain-specific light LLM131

on top of Qwen (Team, 2025a) family for critiquing132

Lean4 statement alignment via reinforcement learn-133

ing (Shao et al., 2024b), enhancing both critique 134

capability and formalization robustness. 135

2.2 RL for LLM Reasoning 136

The exploration of complex reasoning capabilities 137

in Large Language Models (LLMs) has achieved 138

significant advancements (Liu et al., 2024b, 2025a; 139

Wang et al., 2025b; Huang et al., 2025; Liu 140

et al., 2024a; He et al., 2025a), with Reinforce- 141

ment Learning (RL) establishing itself as a critical 142

paradigm for transcending the constraints inherent 143

to Supervised Fine-Tuning (SFT) (Yu et al., 2025a; 144

Yue et al., 2025b; Wang et al., 2025c; Liu et al., 145

2025b, 2024a). Notable methodologies, includ- 146

ing GRPO (Shao et al., 2024b; Guo et al., 2025a), 147

DAPO (Yu et al., 2025a) have demonstrated sub- 148

stantial gains in mathematical reasoning and in- 149

tricate problem-solving domains. However, the 150

underlying mechanisms by which RL enhances 151

reasoning capabilities remain insufficiently charac- 152

terized. Empirical analyses increasingly indicate 153

that RL primarily functions to activate, refine, or 154

optimize the sampling of latent reasoning compe- 155

tencies rather than generating entirely novel cogni- 156

tive frameworks de novo. For example, Yue et al. 157

(2025a) interrogate whether current reinforcement 158

learning frameworks incorporating verifiable re- 159

wards (RLVR) genuinely expand the frontier of 160

reasoning performance or merely enhance the effi- 161

ciency of retrieving pre-existing solutions. 162

3 CriticLeanGPT 163

3.1 CriticLeanBench 164

3.1.1 Overview of CriticLeanBench 165

CriticLeanBench aims to evaluate the critical rea- 166

soning of LLMs in key aspects such as translat- 167

ing natural language mathematical statements into 168

formally verified theorem declarations in Lean 4, 169

including critique and correction. By integrating 170

these core dimensions, CriticLeanBench can com- 171

prehensively measure the performance of models in 172

Formalization tasks. In this section, we will elabo- 173

rate on the construction principles and processes of 174

CriticLeanBench. More details about CriticLean- 175

Bench see Appendix C. the construction process is 176

shown in Figure 2. 177

CriticLeanBench is constructed following the 178

following principles: (1) It covers various types 179

of errors, aiming to thoroughly evaluate the com- 180

prehensive capabilities of LLMs in capturing the 181

semantic intent of formalized statements, using 182

2

Demonstrate that the number of
permutations
p = (p₁, p₂, ..., p₁₃)
of the set {1, 2, ..., 13}
satisfying the condition:
p(p(n)) ∈ {1, 2, ..., n−1} ∪ {n+1}
for all n < 13, is exactly 309.
Provide a combinatorial proof
justifying this count.

Natural Language
Statements

AutoFormalizer

Verify

Semantic meaning variables
Common mistake patterns
Logical Consistency Checks
...

CriticLeanGPT
 The conversion is
assessed as successful.
Here's a step-by-step
explanation ...

Compliation Error

Verify

Syntax Checking
Name Resolution
Type Checking & elaboration
...

Lean Formal
Language Statements

import Mathlib

theorem permutation_count_309 :
 Set.ncard {p : Equiv.Perm (Fin 13)
|
 ∀ n : Fin 12, p (p n) ∈ (Icc 0 (n
- 1)) ∪ {n + 1}} = 309 := by sorry

Critique Error

Lean
Complier

Success or
Exceeding Max Retries

Figure 1: Illustration of CriticLean framework based on Critic-Guided Reinforcement Learning for Mathematics
Autoformalization.

Template L for systematic assessment; (2) It in-183

corporates diverse data sources to enhance the di-184

versity and representativeness of evaluation data;185

and (3) It ensures the reliability and validity of the186

evaluation benchmark through a combination of187

expert review and automated verification. See Ap-188

pendix B for detailed sample selection criteria and189

comprehensive error type coverage.190

3.1.2 Automatically verified191

This section outlines the methodology employed to192

apply the Automatic Validation Filter , guided by193

predefined criteria for compiler and model-based194

verification.195

Data Collection We selected Math Statements196

from data sources (Perez et al., 2025; Mahdavi197

et al., 2025a; Yu et al., 2025a; He et al., 2025c;198

LI et al., 2024; Online Math Contest; AI Research199

Group of TAL Education Group), such as Omni-200

MATH (Gao et al., 2024), AIME (Zheng et al.,201

2021), U-MATH (Chernyshev et al., 2024), DEMI-202

MathAnalysis (Demidovich, 1964), HARDMath203

(Fan et al.), OlympiadBench (He et al., 2024), and204

BlueMO (Zhang et al., 2024b), along with their cor-205

responding Lean 4 Statements from public dataset206

(Yu et al., 2025b).207

Compiler Verified We submitted the Lean 4208

statements from the above dataset to the Lean 4209

compiler. If the compilation succeeded, the results210

were passed to the DeepSeek R1 (Guo et al., 2025a)211

model for further processing.212

• Compile false: For statements that failed to213

compile, we randomly sampled 50 entries214

and retained the compiler feedback messages,215

which were included as part of our CriticLean- 216

Bench benchmark. 217

LLM Verified For the data that has passed com- 218

pilation, we utilize a template L to process each 219

sample’s Math Statement and its corresponding 220

Lean 4 Code Statement through the DeepSeek R1 221

large language model. The model is tasked with 222

determining whether the Lean 4 Code Statement 223

is consistent with the Math Statement, producing 224

for each sample a tag indicating consistency or in- 225

consistency along with a reasoning statement. The 226

results are then submitted to human reviewers for 227

further validation. 228

3.1.3 Human Validation Filter 229

This section outlines the methodology employed 230

to apply the Human Validation Filter, guided by 231

predefined criteria(detailed in Appendix H). 232

We categorize the data into two groups based on 233

whether the Lean-compiled autoformalization out- 234

put semantically aligns with the refined statement. 235

Therefore, a Lean-compiled autoformalization falls 236

into the following: 237

• Human Check right: If the autoformalized 238

statement both compiles and accurately cap- 239

tures the mathematical meaning, logic, and 240

intended behavior of the original problem, it 241

satisfies the semantic consistency criteria. 242

• Human Check false: If the autoformalized 243

statement compiles but fails to accurately rep- 244

resent the original mathematical problem’s 245

semantics. It violates one or more of the se- 246

mantic consistency criteria, despite being syn- 247

tactically valid Lean code. This often happens 248

3

(Math,Lean4)

Mathematical Statement

Lean 4 Statement

Lean 4 Verification Prompt

Prove that 572 is not a juggling sequence.

Lean4 Code Statement
import Mathlib

def juggling_sequence (n : ℕ) : ℕ :=
 ...

theorem olympiad_ref_base_3400 :
∃ n, juggling_sequence n = 572
:= by sorry

Response Label

compile_right is_false

Bad Reason
The term "juggling sequence' is not defined
inthe problem statement.

Source Dataset
Omni-MATH

1 2 CriticLeanBench

Omni-MATH AoPS DeepMath-103k OlympiadBench
BlueMO DAPO-Math-17k NuminaMath-TIR IneqMath
TAL-SCQ5K OnlineMathContest AIME U-MATH

29.229.2

18.818.8

15.815.8

1111

77

5.25.2

4.84.8
3.63.6

1.81.8

1

Mathematical Statement
2

DeepSeek-R1

Manual Filtering Criteria

1.Integrity & Accuracy of Mathematical
Content

2.Clarity & Correctness of Logical
Structure

3.Lean Conventions & Technical Accuracy
4.Problem Comprehension & Consistency
5.Formalization Strategy
6.......

{

}

"reasons": "The Lean code fails to
capture the true mathematical intent
of the problem. While the original
question concerns proving that 572
is not a valid juggling sequence,
the formalization uses an unrelated
recursive definition based on number
parity, with no clear connection to
the combinatorial concept of
juggling sequences."
"is_correct": "Incorrect"

Response

Lean
Complier

Prompt

(a) Automatic Filtering

Responses

(b) Manual Filtering

Figure 2: An overview for the CriticLeanBench construction.

when there’s a mismatch between the code’s249

logic and the intended mathematical meaning.250

3.1.4 Data Statistics251

Statistics Number

#Problems 500
Correct Pairs 250
- human check 250

Incorrect Pairs 250
- human/compiler check 200/50

Question Tokens Length
- max/min/avg 1, 583/495/700.94

Table 1: Dataset statistics of CriticLeanBench.

Table 1 shows CriticLeanBench contains 500252

problems (250 correct/incorrect Q/GT pairs). Ques-253

tions range from 495–1,583 tokens (Qwen2.5 to-254

kenizer), averaging 700.94 tokens. This length255

makes it a complex benchmark requiring models256

to process lengthy inputs compared to standard257

datasets.258

4 CriticLeanInstruct259

To enhance the CriticLeanGPT model’s efficacy in260

critically evaluating the transformation of mathe-261

matical statements into Lean code, we construct a262

comprehensive training dataset comprising 48,000263

samples. This dataset integrates three complemen- 264

tary components: (1) human-annotated seed data, 265

(2) augmented samples from formalized mathemat- 266

ics corpora, and (3) domain-specific code and math 267

data. More details about seed data and data aug- 268

mentation see Appendix D. 269

To significantly broaden the CriticLeanGPT 270

model’s knowledge coverage, we also integrates 271

three times additional code and math (Hugging 272

Face, 2025) datasets, enabling it to more compre- 273

hensively understand mathematical concepts and 274

Lean code structures. 275

Specifically, the Seed Data, with a 1:3 mix 276

of math and code, is termed CriticLeanIn- 277

struct(16K). When combined with data augmenta- 278

tion while retaining the same ratio, it forms the full 279

CriticLeanInstruct dataset. 280

4.1 Training Paradigm 281

Supervised fine-tuning (SFT). These models 282

are instruction-tuned versions based on their re- 283

spective pre-trained Qwen2.5 checkpoints, with a 284

focus on improving their ability to interpret and 285

formalize complex mathematical statements ex- 286

pressed in natural language. The CriticLeanInstruct 287

4 dataset includes Critic data consisting of mathe- 288

matical statements converted into formally verified 289

theorem declarations in Lean 4, along with three 290

times as much code and mathematics data for SFT 291

4

(Supervised Fine-Tuning). We used the LLaMA-292

Factory (Zheng et al., 2024) framework to facilitate293

the fine-tuning process and optimize model perfor-294

mance.295

Reinforcement Learning Optimization (RL).296

The recent success of R1-style methods has demon-297

strated the effectiveness of online RL using discrete,298

rule-based rewards (Shao et al., 2024a). In our299

pipeline, Qwen2.5 series and Qwen3 (Team, 2025a)300

series are further refined using reinforcement learn-301

ing signals derived from both format validation of302

the generated critic data and consistency check-303

ing between model predictions and expert-labeled304

ground truth (GT) labels . Specifically, the RL train-305

ing data consists of 4,000 Seed Data D.1, where306

each example transforms a mathematical statement307

into a corresponding formal proof in Lean 4. Based308

on this dataset, we apply a rule-based RL approach309

to optimize the model’s capability in judgment rea-310

soning. More specifically, we mainly utilize the311

GRPO (Shao et al., 2024b) algorithm within the312

VeRL (Sheng et al., 2024) reinforcement learning313

framework, whose optimization objective is:314315

Jonline(πθ;D) =316

Ex∼D,{yi}Gi=1∼πθold
(y|x)

[
1

G

G∑
i=1

min

(
πθ(yi|x)
πθold(yi|x)

Ai,317

clip
(

πθ(yi|x)
πθold(yi|x)

, 1− ϵ, 1 + ϵ

)
Ai

)
− βDKL(πθ||πref)

]
(1)

318

319 where G is group size, and Ai is advantage. The320

reward function is designed as follows1:321

raccuracy =

{
1, if judgement = label
0, if judgement ̸= label

(2)322

rformat =

{
1, if format is right
0, if format is wrong

(3)323

rfinal = min(raccuracy, rformat) (4)324

325

5 Experiments326

5.1 Experimental Setup327

Baseline Models. For the closed-sourced328

API models, we select the following models:329

Claude35_Sonnet2 (Anthropic, 2024), Doubao-330

1.5-pro-32k (Guo et al., 2025b), Gemini 2.5331

Pro (Team et al., 2023), GPT-4o-2024-11-20332

(OpenAI, 2023). We select a group of the333

most advanced open-source LLMs to serve as334

1We do not include a length penalty in rewards to encour-
age longer thinking.

critic models for evaluation, which includes 335

various reasoning models (DeepSeek-R1 (Guo 336

et al., 2025a), QwQ-32B (Team, 2025b), Qwen3- 337

8B (Team, 2025a), Qwen3-14B (Team, 2025a), 338

Qwen3-32B (Team, 2025a)), DeepSeek-Prover 339

models (Xin et al., 2024b) (DeepSeek-Prover-V1.5- 340

RL, DeepSeek-Prover-V1.5-SFT), Llama-3.3-70B- 341

Instruct (Grattafiori et al., 2024) and several 342

Qwen models (Qwen2.5-Coder-7B-Instruct (Hui 343

et al., 2024), Qwen2.5-Coder-32B-Instruct (Hui 344

et al., 2024), Qwen2.5-7B-Instruct (Team, 2024), 345

Qwen2.5-14B-Instruct (Team, 2024) and Qwen2.5- 346

32B-Instruct (Team, 2024)). 347

CriticLeanGPT Models. We further evaluate 348

three variants from the Qwen2.5 series and Qwen3 349

series. These are instruction-based models fine- 350

tuned specifically on either the CriticLeanInstruct 351

4 dataset or the RL-based clean critic Seed Data 352

D.1. All open-source models are inferred using the 353

vLLM (Kwon et al., 2023) framework with default 354

inference parameters. 355

5.2 Main Results 356

5.2.1 Evaluation of Critic Capability 357

Model ACC TPR FPR TNR FNR

SOTA LLMs

Gemini-2.5-Pro 89.2 95.6 4.4 82.8 17.2
QwQ-32B 86.4 93.6 6.4 79.2 20.8

Qwen3-32B 85.6 96.0 4.0 75.2 24.8
Qwen3-235B-A22B 84.8 90.4 9.6 79.2 20.8

DeepSeek-R1 84.0 90.8 9.2 77.2 22.8
Qwen3-14B 83.6 92.4 7.6 74.8 25.2
Qwen3-8B 79.8 94.4 5.6 65.2 34.8

Doubao-1.5-pro-32k 78.4 95.2 4.8 61.6 38.4

Claude35-Sonnet 74.2 97.2 2.8 51.2 48.8
Qwen2.5-32B-Instruct 73.0 91.6 8.4 54.4 45.6

Qwen2.5-Coder-32B-Instruct 71.6 91.6 8.4 51.6 48.4
Llama-3.3-70B-Instruct 68.2 95.2 4.8 41.2 58.8

GPT-4o-2024-11-20 67.8 95.6 4.4 40.0 60.0
Qwen2.5-14B-Instruct 66.6 80.4 19.6 52.8 47.2

Qwen2.5-Coder-7B-Instruct 65.4 88.4 11.6 42.4 57.6
Qwen2.5-7B-Instruct 60.8 89.6 10.4 32.0 68.0

DeepSeek-Prover-V1.5-SFT 52.4 78.8 21.2 26.0 74.0
DeepSeek-Prover-V1.5-RL 50.0 76.4 23.6 23.6 76.4

CriticLeanGPT (Ours)

Qwen3-8B-RL 79.8 90.0 10.0 72.0 28.0
Qwen3-14B-RL 84.8 91.6 8.4 78.0 22.0

Qwen3-32B-RL 87.0 88.4 11.6 85.6 14.4

Qwen2.5-7B-Instruct-RL 68.6 85.6 14.4 51.6 48.4
Qwen2.5-14B-Instruct-RL 69.4 85.2 14.8 53.6 46.4
Qwen2.5-32B-Instruct-RL 72.0 60.4 39.6 83.6 16.4
Qwen2.5-7B-Instruct-SFT 69.8 94.4 5.6 45.2 54.8

Qwen2.5-14B-Instruct-SFT 70.6 83.6 16.4 57.6 42.4
Qwen2.5-32B-Instruct-SFT 76.2 85.2 14.8 67.2 32.8

Qwen2.5-7B-Instruct-SFT-RL 68.2 90.4 9.6 46.0 54.0
Qwen2.5-14B-Instruct-SFT-RL 74.6 81.6 18.4 67.6 32.4
Qwen2.5-32B-Instruct-SFT-RL 78.6 88.0 12.0 69.2 30.8

Table 2: Performance on CriticLeanBench. The best,
the second-best and the third-best scores for each indi-
cator are shown in box , bold and underlined, respec-
tively.

As indicated in Table 2, the experimental results 358

clearly demonstrate the effectiveness of the Crit- 359

icLeanGPT models trained on our CriticLeanIn- 360

struct, in converting natural language mathemati- 361

5

cal statements into Lean 4 formal theorem decla-362

rations. Within the CriticLeanBench benchmark,363

our CriticLeanGPT models trained via supervised364

fine-tuning (SFT) and reinforcement learning (RL),365

along with their enhanced variants—outperform a366

range of closed-source API models, open-source367

models, and baseline models, highlighting distinct368

advantages. These outcomes yield several key in-369

sights: (1) Reasoning models excel in critical tasks,370

with Gemini 2.5 Pro, QwQ-32B, Qwen3-32B, and371

DeepSeek-R1 all attaining scores above 80. When372

compared to baseline models, our Qwen3-32B-RL373

model, optimized through RL, achieves a strong374

accuracy level, underscoring the efficacy of both375

our training methodology and dataset. (3) Our in-376

novative mixed SFT strategy substantially boosts377

the performance of the Qwen2.5 family, with no-378

table improvements observed across the 7B, 14B,379

and 32B models. (4) Additionally, SFT and RL380

significantly strengthen the models’ capacity to381

identify erroneous samples, as evidenced by higher382

true negative rates (TNR) and lower false negative383

rates (FNR)—a critical enhancement for accurate384

detection of incorrect formalizations, which is in-385

dispensable for effective critical tasks.386

5.3 Ablation Study387

Model ACC TPR FPR TNR FNR

7B Size Models

Qwen2.5-7B-Instruct 60.8 89.6 10.4 32.0 68.0

Qwen2.5-7B-Instruct-SFT(Critic Only) 64.0 70.8 29.2 57.2 42.8

Qwen2.5-7B-Instruct-SFT 69.8 94.4 5.6 45.2 54.8

14B Size Models

Qwen2.5-14B-Instruct 66.6 80.4 19.6 52.8 47.2
Qwen2.5-14B-Instruct-SFT(Critic Only) 67.4 80.8 19.2 54.0 46.0

Qwen2.5-14B-Instruct-SFT 70.6 83.6 16.4 57.6 42.4

32B Size Models

Qwen2.5-32B-Instruct 73.0 91.6 8.4 54.4 45.6

Qwen2.5-32B-Instruct-SFT(Critic Only) 71.0 72.0 28.0 70.0 30.0

Qwen2.5-32B-Instruct-SFT 76.2 85.2 14.8 67.2 32.8

Table 3: Comparison of model performance under
different training strategies: base model, SFT on
Critic data only, and SFT on combined Critic, code,
and math data. The best score for each indicator is
shown in box .

5.3.1 Effect of Reasoning Data388

We conduct an ablation study on CriticLeanBench389

to evaluate the impact of different training strate-390

gies. As shown in Table 3, incorporating code and391

math reasoning data significantly improves perfor-392

mance across all model sizes compared to using393

Seed Data D.1. Specifically, using the CriticLeanIn-394

struct 4, which samples Critic and non-Critic data395

at a ratio of 1:3, leads to substantial gains, demon- 396

strating that integrating diverse reasoning tasks 397

enhances the critical reasoning capabilities of the 398

model. This suggests that multi-task learning with 399

math and code data improves the critique abilities 400

of mathematical formalization. 401

5.3.2 Effect of SFT Dataset Size 402

Figure 5 highlights a notable parameter-dependent 403

relationship between the size of the SFT dataset 404

and key reasoning performance. Across all model 405

scales, performance improvements are observed 406

through SFT, albeit with varying degrees of fluctu- 407

ation depending on the training set size. Smaller 408

models (e.g., 7B) exhibit more pronounced gains 409

as the dataset expands, whereas larger models (e.g., 410

32B) demonstrate a less consistent trend, with 411

marginal improvements at lower data volumes but 412

substantial gains at higher data volumes. These 413

findings align with prior studies (Muennighoff 414

et al., 2025; Zhou et al., 2023), underscoring the 415

interplay between model capacity, data scale, and 416

performance optimization in SFT scenarios. The 417

results emphasize the need for tailored strategies to 418

balance data efficiency and model generalization, 419

particularly for large-scale architectures. 420

5.4 Analysis 421

5.4.1 Scaling Analysis 422

0 10 20 30 40 50
Model Parameters (Billion)

60

65

70

75

80

85

Sc
or

e
(%

) o
n

Cr
iti

cL
ea

nB
en

ch

Qwen2.5-7B-Instruct

Qwen2.5-14B-Instruct

Qwen2.5-32B-Instruct

Qwen2.5-Coder-7B-Instruct

Qwen2.5-Coder-32B-Instruct
Qwen2.5-7B-Instruct-SFT

Qwen2.5-14B-Instruct-SFT

Qwen2.5-32B-Instruct-SFT

Qwen2.5-7B-Instruct-SFT-RL

Qwen2.5-14B-Instruct-SFT-RL

Qwen2.5-32B-Instruct-SFT-RL
Qwen3-8B

Qwen3-14B

Qwen3-32B

Qwen3-8B-RL

Qwen3-14B-RL

Qwen3-32B-RL

Claude35_Sonnet2^

Doubao-1.5-pro^

Gemini 2.5 Pro^

GPT-4o-2024-11-20^

Figure 3: Scaling Analysis of LLMs on CriticLean-
Bench. ˆ denoted closed-source LLMs.

We evaluate the performance of Qwen se- 423

ries models on CriticLeanBench across different 424

model scales, including Qwen2.5-Coder, Qwen2.5- 425

Instruct, Qwen2.5-Instruct-SFT, Qwen2.5-Instruct- 426

SFT-RL, Qwen3, and Qwen3-RL. The results in 427

Figure 3 show that the performance improves con- 428

sistently as the model size increases, demonstrating 429

a clear scaling law of LLMs on CriticLeanBench. 430

6

Qwen
2.5

-7B
-In

str
uct

Qwen
2.5

-7B
-In

str
uct

-SF
T-R

L

Qwen
3-8

B

Qwen
3-8

B-RL
60

70

80

90

100
Ac

cu
ra

cy
 (%

)

ACC
TPR
TNR

(a) k = 8

Qwen
2.5

-7B
-In

str
uct

Qwen
2.5

-7B
-In

str
uct

-SF
T-R

L

Qwen
3-8

B

Qwen
3-8

B-RL
60

70

80

90

100

Ac
cu

ra
cy

 (%
)

ACC
TPR
TNR

(b) k = 32

Figure 4: Performance on CriticLeanBench using
Pass@k metrics, where k = 8 (top) and k = 32 (bot-
tom).

5.4.2 Effect of Pass@k431

The Pass@k metric identifies high-quality re-432

sponses from large language models, demonstrat-433

ing their potential for improvement through post-434

training techniques like RLHF (Li et al., 2023) and435

GRPO (Shao et al., 2024b). This study evaluates436

Qwen2.5-7B-Instruct, Qwen2.5-7B-Instruct-SFT-437

RL, Qwen3-8B, and Qwen3-8B-RL on CriticLean-438

Bench using Pass@8 and Pass@32, measuring Ac-439

curacy (ACC), True Positive Rate (TPR), and True440

Negative Rate (TNR).441

7 14 32
Model Size (Billion Parameters)

50

60

70

Ac
cu

ra
cy

 (%
)

Model Accuracy by Size and Training Data Size

Qwen2.5-Instruct
Qwen2.5-Instruct-SFT(16K)
Qwen2.5-Instruct-SFT(48K)

Figure 5: Comparison of model performance under
different amounts of SFT data: base model, Criti-
cLeanInstruct(16K), and CriticLeanInstruct.

As shown in Figure 4, models with Supervised 442

Fine-Tuning (SFT) and Reinforcement Learning 443

(RL) achieve superior overall performance. At 444

Pass@32, Qwen2.5-7B-Instruct-SFT-RL outper- 445

forms Qwen2.5-7B-Instruct in accuracy, markedly 446

enhancing overall correctness. For True Negative 447

Rate (TNR), models without SFT-RL more read- 448

ily misclassify errors as correct, while SFT-RL 449

models mitigate this: Qwen2.5-7B-Instruct-SFT- 450

RL shows a higher TNR than its base counterpart 451

at Pass@32, lowering such risks. A similar trend 452

appears in Qwen3-8B. All models perform better as 453

k increases, suggesting SFT-RL-optimized models 454

more effectively select high-quality responses with 455

more candidates, highlighting their strengthened 456

ability to identify superior outputs with additional 457

candidates. 458

6 FineLeanCorpus 459

Building on this pipeline, we develop FineLean- 460

Corpus, an open-source dataset of 509,358 verified 461

pairs of mathematical statements and their Lean 4 462

Code. As shown in Table 6, compared to prior 463

datasets, it offers greater diversity in mathematical 464

domains, difficulty levels, and quality, validated 465

through iterative critical feedback. For more de- 466

tails, see Appendix E. 467

6.1 Analysis on CriticLean Pipeline 468

As shown in Table 7, our autoformalization 469

pipeline significantly improves accuracy. We se- 470

lected 50 problems from the Omni-MATH and ap- 471

plied the following three formalization strategies, 472

with the correctness of all outputs confirmed by 473

manual human inspection. 474

Our baseline model, Kimina-Autoformalizer-7B, 475

is used in each strategy: (1) a Single Pass baseline 476

(38.0% accuracy); (2) a Compiler Feedback loop, 477

where the model regenerates formalizations until 478

they successfully compile (54.0% accuracy); (3) 479

our CriticLean Pipeline, which extends this pro- 480

cess, regenerating formalizations until they both 481

compile successfully and are validated by our inte- 482

grated CriticLeanGPT Model (84.0% accuracy). 483

While compiler feedback resolves syntactical er- 484

rors, it fails to detect logical flaws. Our pipeline 485

addresses this gap. The integration of critic model, 486

which performs deeper semantic and logical val- 487

idation, is directly responsible for the accuracy 488

increase from 54.0% to 84.0%. By filtering out 489

plausible but incorrect formalizations, our method 490

7

Attempt 1 5 10 50 100 200

Count / Ratio 63 / 12.6% 137 / 27.4% 170 / 34.0% 229 / 45.8% 245 / 49.0% 264 / 52.8%

Table 4: Effectiveness of the Multi-Attempt Strategy on Formalization Yield. The table shows the cumulative
number of successfully formalized problems retained by the critic model as the attempt limit increases. Statistics
are from a 500-problem sample.

Dataset Accuracy Dataset Accuracy

NuminaMath-TIR (LI et al., 2024) 78% IneqMath (Jiayi et al., 2025) 96%
BlueMO (Zhang et al., 2024b) 86% DeepMath-103k (He et al., 2025c) 84%
DAPO-Math-17k (Yu et al., 2025a) 69% OnlineMathContest 88%
AOPs (Mahdavi et al., 2025b) 73% TAL-SCQ5K (Math-eval, 2023) 75%
Omni-MATH (Gao et al., 2024) 84% DeepTheorem (Zhang et al., 2025b) 100%
DeepScaleR (Luo et al., 2025) 100%

Table 5: Human evaluation results of different sources.

Dataset Source Theorems Level Detailed
Critic Process

Difficulty
Profile

Topic
Diversity

Lean-Workbook (Ying et al., 2025) Synthetic 140K Undergraduate Opaque
Avg: 3.70

Top-tier (≥6): 7.81%
Highly Skewed

FineLeanCorpus (ours) Synthetic 509K Diverse Transparent Avg: 3.59
Top-tier (≥6): 17.16% Balanced & Diverse

Table 6: Comparison of dataset statistics. FineLeanCorpus offers a transparent critic process, a higher proportion
of top-tier problems, and a more balanced and diverse topic distribution compared to the highly skewed Lean-
Workbook.

Model ACC

Kimina-Autoformalizer-7B 38.0
Kimina-Autoformalizer-7B (Compiler) 54.0
Kimina-Autoformalizer-7B (CriticLean) 84.0

Table 7: Human evaluation for autoformalization
performance: The best score is highlighted in box .

provides a more robust path toward reliable auto-491

formalization. These verified results present strong492

empirical evidence for the efficacy of our approach.493

Table 4 shows our pipeline achieved a 52.8%494

success rate across 500 problems, where success495

required passing both syntactic validation and our496

critic model’s semantic check. The value of our497

multi-attempt strategy is evident: while only 12.6%498

of samples passed on the first try, the pipeline suc-499

cessfully recovered an additional 40.2% that would500

be discarded by single-pass systems. Conversely,501

the 47.2% failure rate within the 200-attempt limit502

highlights a fundamental bottleneck: the pipeline’s503

performance is ultimately constrained by the base504

auto-formalization model’s ability to produce a can-505

didate our critic can approve. 506

Moreover, as shown in Table 5, we also provide 507

the human evaluation results of different sources. 508

We observe that the accuracy varies across different 509

sources, a discrepancy we attribute primarily to the 510

differing domain and difficulty distributions of the 511

respective datasets. 2 512

7 Conclusion 513

This paper presents CriticLean, a comprehensive 514

framework that positions the critic as a central 515

component in the autoformalization of mathemati- 516

cal statements. Through the development of Crit- 517

icLeanGPT and the construction of CriticLean- 518

Bench, we demonstrate that explicitly modeling 519

and training the critic yields significant improve- 520

ments in formalization quality. Our pipeline not 521

only refines the translation process through seman- 522

tic validation, but also enables the construction of 523

FineLeanCorpus, which is validated by both com- 524

piler and critic. 525

2Our human evaluation standard is particularly stringent.
To calibrate our criteria, we inspected a random sample of 50
entries from the Lean-Workbook, which yielded an accuracy
of 84%.

8

References526

AI Research Group of TAL Education Group. K-527
12 handwritten mathematical expressions dataset528
(hme100k). https://ai.100tal.com/dataset.529
Accessed: 2025-04-05.530

Anthropic. 2024. Claude 3.5 sonnet model card adden-531
dum. Accessed: 2024-09-21.532

Zhangir Azerbayev, Bartosz Piotrowski, Hailey533
Schoelkopf, Edward W Ayers, Dragomir Radev, and534
Jeremy Avigad. 2023. Proofnet: Autoformalizing535
and formally proving undergraduate-level mathemat-536
ics. arXiv preprint arXiv:2302.12433.537

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,538
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei539
Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin,540
Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu,541
Keming Lu, and 29 others. 2023. Qwen technical542
report. arXiv preprint arXiv:2309.16609.543

Konstantin Chernyshev, Vitaliy Polshkov, Ekaterina544
Artemova, Alex Myasnikov, Vlad Stepanov, Alexei545
Miasnikov, and Sergei Tilga. 2024. U-math: A546
university-level benchmark for evaluating mathemat-547
ical skills in llms. arXiv preprint arXiv:2412.03205.548

B.P. Demidovich. 1964. Problems in Mathematical549
Analysis. Edited by B. Demidovich. Translated From550
the Russian by G. Yankovsky. Russian Monographs551
and Texts on Advanced Mathematics and Physics.552
Mir Publishers.553

J Fan, S Martinson, EY Wang, K Hausknecht, J Brenner,554
D Liu, N Peng, C Wang, and MP Brenner. Hard-555
math: A benchmark dataset for challenging problems556
in applied mathematics. arxiv 2024. arXiv preprint557
arXiv:2410.09988.558

Bofei Gao, Feifan Song, Zhe Yang, Zefan Cai, Yibo559
Miao, Qingxiu Dong, Lei Li, Chenghao Ma, Liang560
Chen, Runxin Xu, and 1 others. 2024. Omni-561
math: A universal olympiad level mathematic bench-562
mark for large language models. arXiv preprint563
arXiv:2410.07985.564

Google. 2023. Gemini: A family of highly capable565
multimodal models. Preprint, arXiv:2312.11805.566

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,567
Abhinav Pandey, Abhishek Kadian, Ahmad Al-568
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,569
Alex Vaughan, and 1 others. 2024. The llama 3 herd570
of models. arXiv preprint arXiv:2407.21783.571

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,572
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong573
Ma, Peiyi Wang, Xiao Bi, and 1 others. 2025a.574
Deepseek-R1: Incentivizing reasoning capability in575
LLMs via reinforcement learning. arXiv preprint576
arXiv:2501.12948.577

Dong Guo, Faming Wu, Feida Zhu, Fuxing Leng,578
Guang Shi, Haobin Chen, Haoqi Fan, Jian Wang,579

Jianyu Jiang, Jiawei Wang, and 1 others. 2025b. 580
Seed1. 5-vl technical report. arXiv preprint 581
arXiv:2505.07062. 582

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, 583
Zhen Leng Thai, Junhao Shen, Jinyi Hu, Xu Han, Yu- 584
jie Huang, Yuxiang Zhang, Jie Liu, Lei Qi, Zhiyuan 585
Liu, and Maosong Sun. 2024. Olympiadbench: 586
A challenging benchmark for promoting agi with 587
olympiad-level bilingual multimodal scientific prob- 588
lems. Preprint, arXiv:2402.14008. 589

Yancheng He, Shilong Li, Jiaheng Liu, Weixun Wang, 590
Xingyuan Bu, Ge Zhang, Zhongyuan Peng, Zhaox- 591
iang Zhang, Zhicheng Zheng, Wenbo Su, and 592
Bo Zheng. 2025a. Can large language models detect 593
errors in long chain-of-thought reasoning? Preprint, 594
arXiv:2502.19361. 595

Zhiwei He, Tian Liang, Jiahao Xu, Qiuzhi Liu, Xingyu 596
Chen, Yue Wang, Linfeng Song, Dian Yu, Zhen- 597
wen Liang, Wenxuan Wang, Zhuosheng Zhang, Rui 598
Wang, Zhaopeng Tu, Haitao Mi, and Dong Yu. 2025b. 599
Deepmath-103k: A large-scale, challenging, decon- 600
taminated, and verifiable mathematical dataset for 601
advancing reasoning. 602

Zhiwei He, Tian Liang, Jiahao Xu, Qiuzhi Liu, Xingyu 603
Chen, Yue Wang, Linfeng Song, Dian Yu, Zhen- 604
wen Liang, Wenxuan Wang, and 1 others. 2025c. 605
Deepmath-103k: A large-scale, challenging, decon- 606
taminated, and verifiable mathematical dataset for ad- 607
vancing reasoning. arXiv preprint arXiv:2504.11456. 608

Hui Huang, Yancheng He, Hongli Zhou, Rui Zhang, 609
Wei Liu, Weixun Wang, Wenbo Su, Bo Zheng, and 610
Jiaheng Liu. 2025. Think-j: Learning to think for 611
generative llm-as-a-judge. ArXiv, abs/2505.14268. 612

Hugging Face. 2025. Open r1: A fully open reproduc- 613
tion of deepseek-r1. 614

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, 615
Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun 616
Zhang, Bowen Yu, Kai Dang, and 1 others. 2024. 617
Qwen2. 5-coder technical report. arXiv preprint 618
arXiv:2409.12186. 619

Sheng Jiayi, Lyu Luna, Jin Jikai, Xia Tony, Gu Alex, 620
Zou James, and Lu Pan. 2025. Solving inequality 621
proofs with large language models. arXiv preprint 622
arXiv:2506.07927. 623

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying 624
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E. 625
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi- 626
cient memory management for large language model 627
serving with pagedattention. In Proceedings of the 628
ACM SIGOPS 29th Symposium on Operating Systems 629
Principles. 630

Leanprover Community. 2023. A read-eval- 631
print-loop for Lean 4. https://github.com/ 632
leanprover-community/repl. 633

9

https://ai.100tal.com/dataset
https://www.paperswithcode.com/paper/claude-3-5-sonnet-model-card-addendum
https://www.paperswithcode.com/paper/claude-3-5-sonnet-model-card-addendum
https://www.paperswithcode.com/paper/claude-3-5-sonnet-model-card-addendum
https://books.google.com/books?id=XdmpwgEACAAJ
https://books.google.com/books?id=XdmpwgEACAAJ
https://books.google.com/books?id=XdmpwgEACAAJ
https://books.google.com/books?id=XdmpwgEACAAJ
https://books.google.com/books?id=XdmpwgEACAAJ
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2402.14008
https://arxiv.org/abs/2402.14008
https://arxiv.org/abs/2402.14008
https://arxiv.org/abs/2402.14008
https://arxiv.org/abs/2402.14008
https://arxiv.org/abs/2402.14008
https://arxiv.org/abs/2402.14008
https://arxiv.org/abs/2502.19361
https://arxiv.org/abs/2502.19361
https://arxiv.org/abs/2502.19361
https://arxiv.org/abs/2504.11456
https://arxiv.org/abs/2504.11456
https://arxiv.org/abs/2504.11456
https://arxiv.org/abs/2504.11456
https://arxiv.org/abs/2504.11456
https://api.semanticscholar.org/CorpusID:278769843
https://api.semanticscholar.org/CorpusID:278769843
https://api.semanticscholar.org/CorpusID:278769843
https://github.com/huggingface/open-r1
https://github.com/huggingface/open-r1
https://github.com/huggingface/open-r1
https://github.com/leanprover-community/repl
https://github.com/leanprover-community/repl
https://github.com/leanprover-community/repl

Aitor Lewkowycz, Anders Andreassen, David Dohan,634
Ethan Dyer, Henryk Michalewski, Vinay Ramasesh,635
Ambrose Slone, Cem Anil, Imanol Schlag, Theo636
Gutman-Solo, Yuhuai Wu, Behnam Neyshabur, Guy637
Gur-Ari, and Vedant Misra. 2022. Solving quantita-638
tive reasoning problems with language models. arXiv639
preprint.640

Jia LI, Edward Beeching, Lewis Tunstall, Ben Lipkin,641
Roman Soletskyi, Shengyi Costa Huang, Kashif642
Rasul, Longhui Yu, Albert Jiang, Ziju Shen,643
Zihan Qin, Bin Dong, Li Zhou, Yann Fleureau,644
Guillaume Lample, and Stanislas Polu. 2024.645
Numinamath tir. [https://huggingface.co/646
AI-MO/NuminaMath-TIR](https://github.com/647
project-numina/aimo-progress-prize/blob/648
main/report/numina_dataset.pdf).649

Zihao Li, Zhuoran Yang, and Mengdi Wang. 2023. Re-650
inforcement learning with human feedback: Learn-651
ing dynamic choices via pessimism. arXiv preprint652
arXiv:2305.18438.653

Yong Lin, Shange Tang, Bohan Lyu, Jiayun Wu,654
Hongzhou Lin, Kaiyu Yang, Jia Li, Mengzhou655
Xia, Danqi Chen, Sanjeev Arora, and Chi Jin.656
2025. Goedel-prover: A frontier model for open-657
source automated theorem proving. Preprint,658
arXiv:2502.07640.659

Zicheng Lin, Zhibin Gou, Tian Liang, Ruilin Luo,660
Haowei Liu, and Yujiu Yang. 2024. Criticbench:661
Benchmarking llms for critique-correct reasoning.662
arXiv preprint arXiv:2402.14809.663

Chengwu Liu, Jianhao Shen, Huajian Xin, Zhengying664
Liu, Ye Yuan, Haiming Wang, Wei Ju, Chuanyang665
Zheng, Yichun Yin, Lin Li, and 1 others. 2023. Fimo:666
A challenge formal dataset for automated theorem667
proving. arXiv preprint arXiv:2309.04295.668

Jiaheng Liu, Ken Deng, Congnan Liu, Jian Yang, Shukai669
Liu, He Zhu, Peng Zhao, Linzheng Chai, Yanan Wu,670
Ke Jin, and 1 others. 2024a. M2rc-eval: Massively671
multilingual repository-level code completion evalu-672
ation. arXiv preprint arXiv:2410.21157.673

Jiaheng Liu, Chenchen Zhang, Jinyang Guo, Yuanxing674
Zhang, Haoran Que, Ken Deng, ZhiqiBai, Jie Liu,675
Ge Zhang, JiakaiWang, Yanan Wu, Congnan Liu,676
Jiamang Wang, Lin Qu, Wenbo Su, and Bo Zheng.677
2024b. DDK: Distilling domain knowledge for ef-678
ficient large language models. In The Thirty-eighth679
Annual Conference on Neural Information Process-680
ing Systems.681

Jiaheng Liu, Dawei Zhu, Zhiqi Bai, Yancheng682
He, Huanxuan Liao, Haoran Que, Zekun Wang,683
Chenchen Zhang, Ge Zhang, Jiebin Zhang, and684
1 others. 2025a. A comprehensive survey on685
long context language modeling. arXiv preprint686
arXiv:2503.17407.687

Mingjie Liu, Shizhe Diao, Ximing Lu, Jian Hu, Xin688
Dong, Yejin Choi, Jan Kautz, and Yi Dong. 2025b.689
ProRL: Prolonged reinforcement learning expands690

reasoning boundaries in large language models. 691
arXiv preprint arXiv:2505.24864. 692

Jianqiao Lu, Yingjia Wan, Zhengying Liu, Yinya Huang, 693
Jing Xiong, Chengwu Liu, Jianhao Shen, Hui Jin, 694
Jipeng Zhang, Haiming Wang, Zhicheng Yang, Jing 695
Tang, and Zhijiang Guo. 2024. Process-driven auto- 696
formalization in lean 4. Preprint, arXiv:2406.01940. 697

Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang 698
Shi, William Tang, Manan Roongta, Colin Cai, 699
Jeffrey Luo, Tianjun Zhang, Erran Li, Raluca Ada 700
Popa, and Ion Stoica. 2025. Deepscaler: Sur- 701
passing o1-preview with a 1.5b model by scaling 702
rl. https://pretty-radio-b75.notion.site/ 703
DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2.704
Notion Blog. 705

Sadegh Mahdavi, Muchen Li, Kaiwen Liu, Christos 706
Thrampoulidis, Leonid Sigal, and Renjie Liao. 2025a. 707
Leveraging online olympiad-level math problems for 708
llms training and contamination-resistant evaluation. 709
arXiv preprint arXiv:2501.14275. 710

Sadegh Mahdavi, Muchen Li, Kaiwen Liu, Christos 711
Thrampoulidis, Leonid Sigal, and Renjie Liao. 2025b. 712
Leveraging online olympiad-level math problems for 713
llms training and contamination-resistant evaluation. 714
Preprint, arXiv:2501.14275. 715

Math-eval. 2023. TAL-SCQ5K. https://github. 716
com/math-eval/TAL-SCQ5K. 717

Leonardo de Moura and Sebastian Ullrich. 2021. The 718
lean 4 theorem prover and programming language. 719
In Automated Deduction – CADE 28: 28th Interna- 720
tional Conference on Automated Deduction, Virtual 721
Event, July 12–15, 2021, Proceedings, page 625–635, 722
Berlin, Heidelberg. Springer-Verlag. 723

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xi- 724
ang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke 725
Zettlemoyer, Percy Liang, Emmanuel Candès, and 726
Tatsunori Hashimoto. 2025. s1: Simple test-time 727
scaling. arXiv preprint arXiv:2501.19393. 728

Tobias Nipkow, Markus Wenzel, and Lawrence C. Paul- 729
son. 2002. Isabelle/HOL: a proof assistant for 730
higher-order logic. Springer-Verlag, Berlin, Heidel- 731
berg. 732

Online Math Contest. Online math contest. https: 733
//onlinemathcontest.com/. Accessed: 2025-04- 734
05. 735

R OpenAI. 2023. Gpt-4 technical report. arxiv 736
2303.08774. View in Article, 2(5). 737

Miguel Angel Peñaloza Perez, Bruno Lopez Orozco, 738
Jesus Tadeo Cruz Soto, Michelle Bruno Hernan- 739
dez, Miguel Angel Alvarado Gonzalez, and San- 740
dra Malagon. 2025. Ai4math: A native spanish 741
benchmark for university-level mathematical rea- 742
soning in large language models. arXiv preprint 743
arXiv:2505.18978. 744

10

https://doi.org/10.48550/ARXIV.2206.14858
https://doi.org/10.48550/ARXIV.2206.14858
https://doi.org/10.48550/ARXIV.2206.14858
[https://huggingface.co/AI-MO/NuminaMath-TIR](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-TIR](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-TIR](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-TIR](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-TIR](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-TIR](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-TIR](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
https://arxiv.org/abs/2502.07640
https://arxiv.org/abs/2502.07640
https://arxiv.org/abs/2502.07640
https://openreview.net/forum?id=xgiurUq0ss
https://openreview.net/forum?id=xgiurUq0ss
https://openreview.net/forum?id=xgiurUq0ss
https://arxiv.org/abs/2406.01940
https://arxiv.org/abs/2406.01940
https://arxiv.org/abs/2406.01940
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2
https://arxiv.org/abs/2501.14275
https://arxiv.org/abs/2501.14275
https://arxiv.org/abs/2501.14275
https://github.com/math-eval/TAL-SCQ5K
https://github.com/math-eval/TAL-SCQ5K
https://github.com/math-eval/TAL-SCQ5K
https://doi.org/10.1007/978-3-030-79876-5_37
https://doi.org/10.1007/978-3-030-79876-5_37
https://doi.org/10.1007/978-3-030-79876-5_37
https://onlinemathcontest.com/
https://onlinemathcontest.com/
https://onlinemathcontest.com/

Peter Scholze. 2022. Liquid tensor experiment. Experi-745
mental Mathematics, 31(2):349–354.746

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,747
Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan748
Zhang, Y. K. Li, Y. Wu, and Daya Guo. 2024a.749
Deepseekmath: Pushing the limits of mathemati-750
cal reasoning in open language models. Preprint,751
arXiv:2402.03300.752

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,753
Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan754
Zhang, YK Li, Y Wu, and 1 others. 2024b. Deepseek-755
math: Pushing the limits of mathematical reason-756
ing in open language models. arXiv preprint757
arXiv:2402.03300.758

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin759
Wu, Wang Zhang, Ru Zhang, Yanghua Peng, Haibin760
Lin, and Chuan Wu. 2024. Hybridflow: A flexible761
and efficient rlhf framework. arXiv preprint arXiv:762
2409.19256.763

Christian Szegedy. 2020. A promising path towards764
autoformalization and general artificial intelligence.765
In Intelligent Computer Mathematics: 13th Interna-766
tional Conference, CICM 2020, Bertinoro, Italy, July767
26–31, 2020, Proceedings 13, pages 3–20. Springer.768

Terence Tao. 2023. The polynomial freiman-ruzsa con-769
jecture. https://github.com/teorth/pf.770

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-771
Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan772
Schalkwyk, Andrew M Dai, Anja Hauth, Katie Mil-773
lican, and 1 others. 2023. Gemini: a family of774
highly capable multimodal models. arXiv preprint775
arXiv:2312.11805.776

Qwen Team. 2024. Qwen2.5: A party of foundation777
models.778

Qwen Team. 2025a. Qwen3 technical report. Preprint,779
arXiv:2505.09388.780

Qwen Team. 2025b. Qwq-32b: Embracing the power781
of reinforcement learning.782

Haiming Wang, Mert Unsal, Xiaohan Lin, Mantas783
Baksys, Junqi Liu, Marco Dos Santos, Flood Sung,784
Marina Vinyes, Zhenzhe Ying, Zekai Zhu, Jianqiao785
Lu, Hugues de Saxcé, Bolton Bailey, Chendong Song,786
Chenjun Xiao, Dehao Zhang, Ebony Zhang, Fred-787
erick Pu, Han Zhu, and 21 others. 2025a. Kimina-788
prover preview: Towards large formal reasoning mod-789
els with reinforcement learning.790

Weixun Wang, Shaopan Xiong, Gengru Chen, Wei Gao,791
Sheng Guo, Yancheng He, Ju Huang, Jiaheng Liu,792
Zhendong Li, Xiaoyang Li, Zichen Liu, Haizhou793
Zhao, Dakai An, Lunxi Cao, Qi Cao, Wanxi Deng,794
Feilei Du, Yiliang Gu, Jiahe Li, and 22 others. 2025b.795
Reinforcement learning optimization for large-scale796
learning: An efficient and user-friendly scaling li-797
brary.798

Yiping Wang, Qing Yang, Zhiyuan Zeng, Liliang Ren, 799
Liyuan Liu, Baolin Peng, Hao Cheng, Xuehai He, 800
Kuan Wang, Jianfeng Gao, Weizhu Chen, Shuohang 801
Wang, Simon Shaolei Du, and Yelong Shen. 2025c. 802
Reinforcement learning for reasoning in large lan- 803
guage models with one training example. Preprint, 804
arXiv:2504.20571. 805

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 806
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, 807
and 1 others. 2022. Chain-of-thought prompting elic- 808
its reasoning in large language models. Advances 809
in neural information processing systems, 35:24824– 810
24837. 811

Sean Welleck, Jiacheng Liu, Ronan Le Bras, Hannaneh 812
Hajishirzi, Yejin Choi, and Kyunghyun Cho. 2021. 813
Naturalproofs: Mathematical theorem proving in nat- 814
ural language. arXiv preprint. 815

Sean Welleck, Jiacheng Liu, Ximing Lu, Hannaneh 816
Hajishirzi, and Yejin Choi. 2022. Naturalprover: 817
Grounded mathematical proof generation with lan- 818
guage models. arXiv preprint. 819

Yuhuai Wu, Albert Q. Jiang, Wenda Li, Markus N. 820
Rabe, Charles Staats, Mateja Jamnik, and Christian 821
Szegedy. 2022. Autoformalization with large lan- 822
guage models. Preprint, arXiv:2205.12615. 823

Huajian Xin, Daya Guo, Zhihong Shao, Zhizhou Ren, 824
Qihao Zhu, Bo Liu, Chong Ruan, Wenda Li, and 825
Xiaodan Liang. 2024a. Deepseek-prover: Advancing 826
theorem proving in llms through large-scale synthetic 827
data. arXiv preprint arXiv:2405.14333. 828

Huajian Xin, Z. Z. Ren, Junxiao Song, Zhihong Shao, 829
Wanjia Zhao, Haocheng Wang, Bo Liu, Liyue Zhang, 830
Xuan Lu, Qiushi Du, Wenjun Gao, Qihao Zhu, Dejian 831
Yang, Zhibin Gou, Z. F. Wu, Fuli Luo, and Chong 832
Ruan. 2024b. Deepseek-prover-v1.5: Harnessing 833
proof assistant feedback for reinforcement learning 834
and monte-carlo tree search. 835

Tianyi Xiong, Xiyao Wang, Dong Guo, Qinghao Ye, 836
Haoqi Fan, Quanquan Gu, Heng Huang, and Chun- 837
yuan Li. 2025. Llava-critic: Learning to evaluate 838
multimodal models. In Proceedings of the Computer 839
Vision and Pattern Recognition Conference, pages 840
13618–13628. 841

Kaiyu Yang, Gabriel Poesia, Jingxuan He, Wenda Li, 842
Kristin Lauter, Swarat Chaudhuri, and Dawn Song. 843
2024. Formal mathematical reasoning: A new fron- 844
tier in ai. Preprint, arXiv:2412.16075. 845

Huaiyuan Ying, Zijian Wu, Yihan Geng, Zheng Yuan, 846
Dahua Lin, and Kai Chen. 2025. Lean work- 847
book: A large-scale lean problem set formalized 848
from natural language math problems. Preprint, 849
arXiv:2406.03847. 850

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, 851
Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong Liu, 852
Lingjun Liu, Xin Liu, and 1 others. 2025a. DAPO: 853
An open-source LLM reinforcement learning system 854
at scale. arXiv preprint arXiv:2503.14476. 855

11

https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://github.com/teorth/pf
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://arxiv.org/abs/2505.09388
https://qwenlm.github.io/blog/qwq-32b/
https://qwenlm.github.io/blog/qwq-32b/
https://qwenlm.github.io/blog/qwq-32b/
http://arxiv.org/abs/2504.11354
http://arxiv.org/abs/2504.11354
http://arxiv.org/abs/2504.11354
http://arxiv.org/abs/2504.11354
http://arxiv.org/abs/2504.11354
https://arxiv.org/abs/2504.20571
https://arxiv.org/abs/2504.20571
https://arxiv.org/abs/2504.20571
https://doi.org/10.48550/ARXIV.2104.01112
https://doi.org/10.48550/ARXIV.2104.01112
https://doi.org/10.48550/ARXIV.2104.01112
https://doi.org/10.48550/ARXIV.2205.12910
https://doi.org/10.48550/ARXIV.2205.12910
https://doi.org/10.48550/ARXIV.2205.12910
https://doi.org/10.48550/ARXIV.2205.12910
https://doi.org/10.48550/ARXIV.2205.12910
https://arxiv.org/abs/2205.12615
https://arxiv.org/abs/2205.12615
https://arxiv.org/abs/2205.12615
https://arxiv.org/abs/2408.08152
https://arxiv.org/abs/2408.08152
https://arxiv.org/abs/2408.08152
https://arxiv.org/abs/2408.08152
https://arxiv.org/abs/2408.08152
https://arxiv.org/abs/2412.16075
https://arxiv.org/abs/2412.16075
https://arxiv.org/abs/2412.16075
https://arxiv.org/abs/2406.03847
https://arxiv.org/abs/2406.03847
https://arxiv.org/abs/2406.03847
https://arxiv.org/abs/2406.03847
https://arxiv.org/abs/2406.03847

Zhouliang Yu, Ruotian Peng, Keyi Ding, Yizhe Li,856
Zhongyuan Peng, Minghao Liu, Yifan Zhang, Zheng857
Yuan, Huajian Xin, Wenhao Huang, Yandong Wen,858
Ge Zhang, and Weiyang Liu. 2025b. Formalmath:859
Benchmarking formal mathematical reasoning of860
large language models. Preprint, arXiv:2505.02735.861

Zhouliang Yu, Yuhuan Yuan, Tim Z Xiao, Fuxi-862
ang Frank Xia, Jie Fu, Ge Zhang, Ge Lin, and863
Weiyang Liu. 2025c. Generating symbolic world864
models via test-time scaling of large language mod-865
els. arXiv preprint arXiv:2502.04728.866

Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai867
Wang, Shiji Song, and Gao Huang. 2025a. Does868
reinforcement learning really incentivize reasoning869
capacity in LLMs beyond the base model? arXiv870
preprint arXiv:2504.13837.871

Yu Yue, Yufeng Yuan, Qiying Yu, Xiaochen Zuo, Ruofei872
Zhu, Wenyuan Xu, Jiaze Chen, Chengyi Wang,873
TianTian Fan, Zhengyin Du, and 1 others. 2025b.874
VAPO: Efficient and reliable reinforcement learn-875
ing for advanced reasoning tasks. arXiv preprint876
arXiv:2504.05118.877

Alexander Zhang, Marcus Dong, Jiaheng Liu, Wei878
Zhang, Yejie Wang, Jian Yang, Ge Zhang, Tianyu879
Liu, Zhongyuan Peng, Yingshui Tan, and 1 others.880
2025a. Codecriticbench: A holistic code critique881
benchmark for large language models. arXiv preprint882
arXiv:2502.16614.883

Ge Zhang, Scott Qu, Jiaheng Liu, Chenchen Zhang,884
Chenghua Lin, Chou Leuang Yu, Danny Pan, Es-885
ther Cheng, Jie Liu, Qunshu Lin, and 1 others.886
2024a. Map-neo: Highly capable and transparent887
bilingual large language model series. arXiv preprint888
arXiv:2405.19327.889

Yifan Zhang, Yifan Luo, and Yizhou Chen. 2024b.890
Bluemo: A comprehensive collection of challeng-891
ing mathematical olympiad problems from the little892
blue book series.893

Ziyin Zhang, Jiahao Xu, Zhiwei He, Tian Liang, Qi-894
uzhi Liu, Yansi Li, Linfeng Song, Zhenwen Liang,895
Zhuosheng Zhang, Rui Wang, Zhaopeng Tu, Haitao896
Mi, and Dong Yu. 2025b. Deeptheorem: Advanc-897
ing llm reasoning for theorem proving through nat-898
ural language and reinforcement learning. Preprint,899
arXiv:2505.23754.900

Kunhao Zheng, Jesse Michael Han, and Stanislas Polu.901
2021. Minif2f: a cross-system benchmark for for-902
mal olympiad-level mathematics. arXiv preprint903
arXiv:2109.00110.904

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan905
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,906
Zhuohan Li, Dacheng Li, Eric Xing, and 1 others.907
2023. Judging llm-as-a-judge with mt-bench and908
chatbot arena. Advances in Neural Information Pro-909
cessing Systems, 36:46595–46623.910

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan 911
Ye, Zheyan Luo, Zhangchi Feng, and Yongqiang Ma. 912
2024. Llamafactory: Unified efficient fine-tuning 913
of 100+ language models. In Proceedings of the 914
62nd Annual Meeting of the Association for Compu- 915
tational Linguistics (Volume 3: System Demonstra- 916
tions), Bangkok, Thailand. Association for Computa- 917
tional Linguistics. 918

Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan Iyer, 919
Jiao Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping 920
Yu, Lili Yu, and 1 others. 2023. Lima: Less is more 921
for alignment. Advances in Neural Information Pro- 922
cessing Systems, 36:55006–55021. 923

12

https://arxiv.org/abs/2505.02735
https://arxiv.org/abs/2505.02735
https://arxiv.org/abs/2505.02735
https://arxiv.org/abs/2505.02735
https://arxiv.org/abs/2505.02735
https://arxiv.org/abs/2505.23754
https://arxiv.org/abs/2505.23754
https://arxiv.org/abs/2505.23754
https://arxiv.org/abs/2505.23754
https://arxiv.org/abs/2505.23754
http://arxiv.org/abs/2403.13372
http://arxiv.org/abs/2403.13372
http://arxiv.org/abs/2403.13372

A Limitations 924

The current framework requires careful tuning of hyperparameters for SFT and RL training processes to 925

maintain optimal performance. Additionally, CriticLeanBench’s evaluation scope remains limited by its 926

relatively small test dataset (500 samples) despite its rigorous design. Potential risks include the pipeline’s 927

performance being fundamentally constrained by the base auto-formalization model’s ability to generate 928

candidates, resulting in a high error rate for complex problems even after 200 attempts. 929

B Sample Selection Criteria and Error Type Coverage 930

We select representative samples that mirror the characteristics of the original autoformalization statements 931

while maximizing diversity within each subset and capturing the full spectrum of observed error types in 932

the negative samples. This is achieved by balancing several factors: 933

Stratified Representation: The selected samples should maintain a similar distribution across different 934

strata of the original dataset. These strata are defined by: 935

• Problem Complexity: This encompasses factors like the number of variables, quantifiers, logical 936

connectives, and the depth of nested mathematical structures. 937

• Mathematical Branches: The samples should represent the various mathematical domains present in 938

the original data. 939

• Statement Well-Formedness: This refers to the degree to which the original mathematical statements 940

adhere to standard mathematical notation and conventions. This stratification ensures that the subsets 941

reflect the variability in the quality of the original problem statements. 942

Comprehensive Error Coverage: The negative samples are specifically chosen to exemplify the 943

full range of typical errors observed in the autoformalization process. This range includes fundamental 944

semantic and logical issues, such as Premise Translation Errors (e.g., incorrect domains or missing 945

conditions), Mathematical Representation Errors (e.g., faulty expressions or definitions), and Goal 946

Translation Errors. The set also covers issues such as Incorrect Assumptions, logical flaws like Operator 947

& Parenthesis Errors (e.g., misplaced quantifiers), and high-level structural problems like Incomplete 948

Formalization, where crucial context is omitted(detailed in figure9). 949

C Details of CriticLeanBench 950

C.1 Comparison to Other Benchmarks 951

Benchmark Critic Lean Test

CriticBench ✓ ✗ ✓

CodeCriticBench ✓ ✗ ✓

LLaVA-Critic ✓ ✗ ✗

CriticLeanBench (ours) ✓ ✓ ✓

Table 8: Dataset statistics and comparison of various code benchmark datasets.

In Table 8 , CriticLeanBench has the following features: (1) We focus on a modest data size of 500 952

samples, acknowledging the expensive manual annotation costs (ranging from tens to hundreds of dollars 953

per instance) and prioritizing efficiency without compromising evaluation rigor; (2) We integrate both 954

Critic and Lean functionalities, distinguishing ourselves from benchmarks like CriticBench (Lin et al., 955

2024) and CodeCriticBench (Zhang et al., 2025a) that lack Lean capabilities, and LLaVA-Critic (Xiong 956

et al., 2025) that omits both Lean capabilities and test evaluation components; (3) We incorporate a test 957

component focused on translating mathematical statements into formally verified theorem declarations in 958

Lean 4, offering a fine-grained evaluation framework to assess the correctness of model transformations. 959

This aspect of evaluative completeness remains unmatched by existing datasets. 960

13

D Details of CriticLeanInstruct961

D.1 Seed Data962

The seed data comprises 4,000 samples evenly split into 2,000 correct and 2,000 incorrect instances.963

For both correct and incorrect samples, human experts provided critical feedback K. Additionally, the964

incorrect samples include compiler error messages generated by the Lean 4 Compiler as supplementary965

feedback. Then, we adopt the Gemini2.5-Pro (Google, 2023) to extend the critical feedback to detailed966

Chain-of-Thought (CoT) explanations.967

Typ
e E

rro
r

Pre
mise

 Tra
nsl

ati
on

 Er
ror

Sy
nta

x E
rro

r

Math
em

ati
cal

 Re
pre

sen
tat

ion
 Er

ror

Goa
l Tr

an
sla

tio
n E

rro
r

Inc
om

ple
te

For
maliz

ati
on

Inc
orr

ect
 Assu

mpti
on

Im
pro

va
ble

 Cod
e S

tyl
e

Misu
se

of
Math

em
ati

cal
 Con

cep
ts

Va
ria

ble
 Usag

e E
rro

r

Ope
rat

or
& Pa

ren
the

sis
 Er

ror

Lib
rar

y U
sag

e E
rro

r

Unfo
rm

aliz
ab

le
Pro

ble
m

0

5

10

15

20

25

Pe
rc

en
t (

%
)

24.9%
23.8%

22.1%

10.7%

6.3%

3.7%
1.8% 1.5% 1.4% 1.3% 1.1% 1.1% 0.4%

Figure 6: Distribution of Different Error Types.

To understand the primary failure modes, we analyzed the error distribution across the 2,000 incorrect968

samples in our seed data as illustrated in Figure 6. The analysis reveals two primary challenges:(1)969

Syntactic Barriers: The most frequent obstacles are syntactic, such as Type Error and Syntax Errors.970

These issues typically prevent the code from compiling, indicating a fundamental difficulty in mastering971

the formal language.(2) Semantic Gaps: Beyond syntax, these errors stem from a failure to interpret the972

natural language scenario and accurately model its key information. This is evident in high rates of errors973

when translating a problem’s core logical components—including its premises, goal, and mathematical974

representation. This semantic challenge is particularly acute in application-style "word problems," where975

difficulty comprehending complex contexts leads to a fundamentally flawed formalization.976

Drawing from the error taxonomy (detailed in Appendix I) and building upon our initial annotation977

standards (detailed in Appendix H), we established a fine-grained checklist, which is provided in full in978

Appendix J. This checklist formalizes the observed error paradigms, providing the foundational framework979

for methodically constructing the negative samples used throughout our study.980

D.2 Data Augmentation981

D.2.1 Correct Samples982

We selected 5560 correct mathematical statements and Lean code pairs from the FormalMATH (Yu et al.,983

2025b) dataset and used the Gemini-2.5-Pro model to generate Critical Chain-of-Thought for initial984

assessment. To ensure data quality, we kept these samples where the model’s judgment is “correct.”985

D.2.2 Incorrect Samples986

We provide two strategies to obtain the incorrect samples as follows:987

14

• Based on OmniMath, we adopt the Kimina-Autoformalizer-7B (Wang et al., 2025a) to generate 988

the Lean 4 code statements, and we kept 2,000 Lean code snippets that failed to compile due to 989

syntactic or logical issues during automated formalization processes. For each detected error, a 990

detailed Chain-of-Thought (CoT) explanation was generated to elucidate the error’s cause, enabling 991

the model to recognize common compilation error patterns and thereby enhance its understanding of 992

Lean 4 code syntax. 993

• Based on correct mathematical statements and Lean 4 code from the FormalMATH (Yu et al., 994

2025b) dataset, we implemented a three-step collaborative process to generate negative samples, 995

aiming to enhance the CriticLeanGPT model’s ability to identify subtle errors and logical flaws. 996

First, a checklist of various potential issues, refined by human experts, was established as shown 997

in Appendix J. Second, the Gemini 2.5 Pro model was invoked to randomly select error types from 998

this checklist and modify correct Lean code accordingly, generating incorrect samples(detailed 999

in Appendix M). Then, we adopt the Gemini model to generate the critical Chain-of-Thought 1000

explaination. 1001

E FineLeanCorpus 1002

To construct the FineLeanCorpus, we began by aggregating a vast and diverse collection of natural 1003

language mathematical problems. Sourcing from a wide array of materials, including high school olympiad 1004

datasets (e.g., AoPS, BlueMO), standard high school curricula (e.g., TAL-SCQ5), and undergraduate-level 1005

challenges (e.g., Omni-MATH), we ensured an extensive initial distribution in both the mathematical 1006

domain and difficulty. The first step in our process was to standardize this heterogeneous collection into a 1007

uniform, proof-based format, making each problem compatible with the Lean 4 theorem prover and ready 1008

for the subsequent formalization pipeline. 1009

Dataset Difficulty Level Size

AOPs (Mahdavi et al., 2025b) High School Olympiad 350714
DeepMath-103k (He et al., 2025b) Diverse 45853
NuminaMath-TIR (LI et al., 2024) High School 45152
DeepTheorem (Zhang et al., 2025b) High School Olympiad 31409
DeepScaleR (Luo et al., 2025) High School Olympiad 22360
DAPO-Math-17k (Yu et al., 2025a) High School 8868
Omni-MATH (Gao et al., 2024) Undergraduate 1181
IneqMath (Jiayi et al., 2025) High School Olympiad 1180
BlueMO (Zhang et al., 2024b) High School Olympiad 1099
TAL-SCQ5K (Math-eval, 2023) High School 393
OnlineMathContest High School 156
Multi-Source Math Competition High School Olympiad 993

Table 9: Overview of different sources for FineLeanCorpus.

These Standardized problems were then subjected to a rigorous, gated auto-formalization process 1010

powered by our CriticLean framework (Figure 1).The Kimina-Autoformalizer-7B model first generates 1011

a candidate formal statement. This statement must pass a syntactic check via the Lean 4 compiler; 1012

failure leads to regeneration. A successful compilation is followed by a semantic correctness check from 1013

our CriticLeanGPT model, with rejection also triggering a new attempt. This regenerative approach 1014

is critical, maximizing the yield from our source corpus by iteratively seeking a valid formalization. 1015

Finally, to further enhance precision, we apply a final filtering stage using another, higher-performance 1016

CriticLeanGPT model. Manual validation indicates that this step is expected to eliminate 74.7% of the 1017

remaining incorrect formalizations. The resulting corpus is characterized by its expressive range: natural 1018

language statements vary from a concise 9 tokens to a complex 2,984 tokens (avg. 86.1), while their 1019

15

corresponding Lean formalizations span from 7 to 2112 tokens (avg. 94.1), reflecting the deep spectrum1020

of complexity successfully captured by our pipeline.1021

Statistics Number

#Problems 509356

Length
Statement

maximum length 2984 tokens
minimum length 9 tokens
avg length 86.1 tokens

Lean Result(success)
maximum length 2112 tokens
minimum length 7 tokens
avg length 94.1 tokens

Table 10: Dataset statistics of FineLeanCorpus.

To further analyze the differences between our FineLeanCorpus dataset and the Lean-Workbook, we1022

employed the templates from Appendix O and Appendix N to assess the difficulty levels and classify the1023

mathematical domains of the datasets using Doubao-1.5-pro (Guo et al., 2025b). A comparative analysis of1024

our proposed FineLeanCorpus against Lean-Workbook (Figure 7, Figure 8, Table 9 and Table 10) reveals1025

two fundamental advancements: (1) Scale and Coverage: Our corpus provides a significant quantitative1026

expansion in both problem difficulty and domain coverage. This expansion is evident not only across1027

nearly the entire difficulty spectrum—offering a much richer data pool for training foundational skills—but1028

also in the substantial augmentation of high-volume domains like Intermediate Algebra and Elementary1029

Number Theory. (2) FineLeanCorpus exhibits a more diverse and structurally balanced profile, achieved1030

by collecting natural language statements from numerous sources. From a difficulty perspective, it features1031

a multimodal distribution with substantial problem counts at several distinct complexity points, in stark1032

contrast to the unimodal distribution of Lean-Workbook. This characteristic is crucial for mitigating model1033

overfitting to a narrow complexity band. From a domain perspective, it substantially reinforces previously1034

underrepresented areas. For instance, categories such as Analytic Geometry and Integral Calculus are1035

significantly expanded, while niche topics like Algorithms and Graph Theory are also robustly augmented.1036

This targeted enrichment transforms sparsely sampled topics into well-supported, learnable sub-domains,1037

yielding a more comprehensive dataset designed to foster holistic reasoning capabilities. More details1038

regarding our FineLeanCorpus dataset, including its fine-grained mathematical domain distribution (see1039

Appendix F), are provided for further analysis.1040

Furthermore, to push the boundaries of current models and foster research into the upper echelons1041

of mathematical reasoning, We have curated a specialized training subset from FineLeanCorpus, which1042

we designate as Diamond. This subset comprises 87,354 problems with a difficulty rating of 6 or1043

higher. The purpose of this high-difficulty training set is to create a demanding training environment that1044

fosters the development of the sophisticated, multi-step reasoning required to tackle the most formidable1045

mathematical problems.A detailed breakdown of the mathematical domain distribution within this subset1046

is provided in table 12.1047

F Fine-Grained Domain Distribution of FineLeanCorpus1048

The following table illustrates the fine-grained domain distribution of the FineLeanCorpus by presenting1049

its mathematical topics with relatively high frequency for illustrative purposes. To enhance readability and1050

highlight the hierarchical structure, entries are sorted alphabetically by Main Category, then Sub-Category,1051

and Topic.1052

16

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

Difficulty Level

0

10000

20000

30000

40000

50000

60000

70000

80000
Nu

m
be

r o
f P

ro
bl

em
FineLeanCorpus
Lean-Workbook

Figure 7: Comparison of dataset statistics. FineLeanCorpus offers a transparent critic process, a higher proportion
of top-tier problems, and a more balanced and diverse topic distribution compared to the highly skewed Lean-
Workbook.

Algo
rith

ms

Ana
lyt

ic G
eo

metr
y

Calc
ulu

s

Con
str

uct
ive

 Com
bin

ato
ric

s

Coo
rdi

na
te

Geo
metr

y

Diffe
ren

tia
l C

alc
ulu

s

Ele
men

tar
y N

um
be

r T
he

ory

En
um

era
tiv

e C
om

bin
ato

ric
s

Eu
clid

ea
n G

eo
metr

y

Ex
tre

mal
Com

bin
ato

ric
s

Grap
h T

he
ory

Int
eg

ral
 Calc

ulu
s

Int
erm

ed
iat

e A
lge

bra

Lin
ea

r A
lge

bra Log
ic

Matr
ice

s

Opti
miza

tio
n

Othe
r

Pro
ba

bili
ty

Se
t T

he
ory

0
1,000
2,000
3,000
4,000

10,000
20,000

50,000

100,000

200,000

340,000

Nu
m

be
r o

f P
ro

bl
em

Lean-Workbook
FineLeanCorpus

Figure 8: Math Domain Distributions: FineLeanCorpus vs. Lean-Workbook.

Table 11: Distribution of Problems by Mathematical Topic

Main Category Sub-Category Topic Count

Algebra Intermediate Algebra Diophantine Equations 26
Equations 64
Exponential Functions 18
Functional Equations 53978
Inequalities 119092
Other 104546
Polynomials 58722
Sequences 37
Sequences and Series 47
Trigonometric Identities 15

Linear Algebra Determinants 16
Matrices 9130
Other 170

17

(Continued) Distribution of Problems by Mathematical Topic

Main Category Sub-Category Topic Count

Vector Spaces 4815

Other Group Theory 13
Other 29

Applied Mathematics Algorithms Greedy Algorithms 96
Other 71

Optimization Linear Programming 1024
Other 3629

Other Other 630

Probability Conditional Probability 1832
Expected Value 2792
Other 6459

Calculus Calculus Other 65

Differential Calculus Applications of Derivatives 15903
Continuity 32
Derivatives 20025
Differential Equations 29
Limits 902
Other 9066
Series Expansion 16
Series Expansions 19
Taylor Series 12

Integral Calculus Applications of Integrals 51
Definite Integrals 26361
Other 33180

Other Limits 1087
Limits of Multivariable Functions 35
Limits of Sequences 106
Other 8950

Series and Sequences Other 18

Combinatorics Constructive Combinatorics Invariants 427
Other 56

Enumerative Combinatorics Binomial Coefficients 19
Combinations 12359
Inclusion-Exclusion 20
Other 18327
Permutations 4658
Pigeonhole Principle 35

Extremal Combinatorics Other 860
Pigeonhole Principle 3557

Graph Theory Other 422
Trees 32

Other Other 23

18

(Continued) Distribution of Problems by Mathematical Topic

Main Category Sub-Category Topic Count

Discrete Mathematics Graph Theory Other 28

Logic Other 31
Propositional Logic 1072

Other Other 4678

Set Theory Cardinality 2755
Other 2119

Geometry Analytic Geometry Conic Sections 2440
Coordinate Geometry 45
Other 274

Coordinate Geometry Other 85
Transformations 12

Euclidean Geometry Circles 3923
Conic Sections 188
Coordinate Geometry 14562
Inequalities 21
Other 9596
Transformations 1105
Triangles 14898
Trigonometry 14

Other Other 45

Graph Theory Other Other 20

Number Theory Elementary Number Theory Diophantine Equations 36121
Diophantine Equations. 14
Divisibility 33467
Divisibility. 18
Inequalities 44
Modular Arithmetic 19811
Other 22918
Prime Numbers 16563

Other Other Other 52

Set Theory Other Other 11

Trigonometry Other Other 12

Trigonometric Identities Other 15

G Fine-Grained Domain Distribution of FineLeanCorpus-Diamond 1053

The following table illustrates the fine-grained domain distribution of the Diamond dataset, our high- 1054

difficulty subset, by presenting its mathematical topics with relatively high frequency for illustrative 1055

purposes. To enhance readability and highlight the hierarchical structure, entries are sorted alphabetically 1056

by Main Category, then Sub-Category, and Topic. 1057

19

Table 12: Distribution of Problems by Mathematical Topic

Main Category Sub-Category Topic Count

Algebra Intermediate Algebra Functional Equations 16751
Functional Equations. 5
Inequalities 23963
Inequalities. 4
Other 9104
Polynomials 7793
Sequences 11
Sequences and Series 10

Linear Algebra Determinants 14
Matrices 2619
Other 54
Vector Spaces 768

Other Group Theory 5
Other 16

Applied Mathematics Algorithms Greedy Algorithms 7
Other 11

Optimization Linear Programming 130
Other 257

Other Other 60

Probability Conditional Probability 112
Expected Value 229
Other 247

Calculus Calculus Other 18

Differential Calculus Applications of Derivatives 3662
Asymptotic Analysis 9
Continuity 7
Derivatives 1868
Differential Equations 9
Limits 69
Other 1202
Series 4
Series Expansions 7

Integral Calculus Applications of Integrals 19
Asymptotic Analysis 6
Definite Integrals 5467
Other 7830
Series 5
Series Convergence 4

Optimization Other 6

Other Limits 45
Other 895

Series and Sequences Other 7

Combinatorics Constructive Combinatorics Invariants 196

20

(Continued) Distribution of Problems by Mathematical Topic

Main Category Sub-Category Topic Count

Other 34

Enumerative Combinatorics Binomial Coefficients 15
Combinations 1227
Other 3130
Permutations 533
Pigeonhole Principle 13

Extremal Combinatorics Other 566
Pigeonhole Principle 1428

Graph Theory Other 221
Trees 9

Other Other 11

Complex Analysis Other Other 5

Discrete Mathematics Graph Theory Other 19

Logic Other 13
Propositional Logic 89

Other Other 1465

Set Theory Cardinality 850
Other 436

Geometry Analytic Geometry Conic Sections 206
Coordinate Geometry 8
Other 30

Coordinate Geometry Other 24
Transformations 6

Euclidean Geometry Circles 448
Conic Sections 28
Coordinate Geometry 1712
Inequalities 19
Other 1471
Transformations 179
Triangles 2825
Trigonometry 6

Other Other 23

Graph Theory Other Other 14

Number Theory Elementary Number Theory Diophantine Equations 8899
Diophantine Equations. 5
Divisibility 7684
Divisibility. 12
Inequalities 18
Modular Arithmetic 5068
Modular Arithmetic. 5
Other 4851
Prime Numbers 5515

21

(Continued) Distribution of Problems by Mathematical Topic

Main Category Sub-Category Topic Count

Other Other Other 17

Physics Mechanics Rotational Dynamics 5

Set Theory Cardinality Other 6

Other Other 4

Trigonometry Trigonometric Identities Other 7

Typ
e E

rro
r

Pre
mise

 Tra
nsl

ati
on

 Er
ror

Sy
nta

x E
rro

r

Math
em

ati
cal

 Re
pre

sen
tat

ion
 Er

ror

Goa
l Tr

an
sla

tio
n E

rro
r

Inc
om

ple
te

For
maliz

ati
on

Inc
orr

ect
 Assu

mpti
on

Im
pro

va
ble

 Cod
e S

tyl
e

Misu
se

of
Math

em
ati

cal
 Con

cep
ts

Va
ria

ble
 Usag

e E
rro

r

Ope
rat

or
& Pa

ren
the

sis
 Er

ror

Lib
rar

y U
sag

e E
rro

r

Unfo
rm

aliz
ab

le
Pro

ble
m

0

5

10

15

20

25

30

35

40

Pe
rc

en
t (

%
)

4.40%

36.00%

7.20%

32.40%

4.00%
0.80%

3.20%
0.40%

7.60%

2.80%
0.40% 0.40% 0.40%

Figure 9: Distribution of Different Error Types of CriticLeanBench.

H Formalization Quality Assessment Criteria1058

Formalization Quality Assessment Criteria

I. Integrity & Accuracy of Mathematical Content

• Conditions & Hypotheses: Are all explicit premises, variable domains (e.g., N, R, Fin
k), index ranges (e.g., a0 vs. a1), properties of specific objects (e.g., geometric shapes,
algebraic structures), and implicit context (e.g., non-zero divisors) accurately translated? Are
mathematical meanings preserved (e.g., ̸= 0 vs. > 0)?

• Goals & Conclusions: Are all goals/conclusions translated (including multiple parts/cases)?
Is the goal type accurate (e.g., specific value, extremum, existence/uniqueness)? For extrema,
is attainability addressed? Is the mathematical meaning accurately translated?

II. Clarity & Correctness of Logical Structure

• Propositional Structure: Are logical connectives (↔, →, ∧, ∨, ¬) and quantifiers (∀, ∃,
∃!) used correctly? Are quantifier order, scope, and nesting accurate (e.g., dependencies like

1059

22

∀ϵ > 0,∃δ > 0, . . .)?

• Relation of Conditions to Conclusions: How do multiple premises combine (e.g., (A∧B) →
C vs. A → (B → C))? Are constraints within the correct scope?

• Reasoning Path: Does the formalization reflect the original logic and key steps without
introducing flaws or altering proof difficulty?

III. Lean Conventions & Technical Accuracy

• Syntax & Declarations: Is the syntax (e.g., parentheses, keywords, type declarations) correct?
Are theorem, example, lemma used appropriately?

• Type System: Do operations, parameters, and return values satisfy type constraints? Are
numerals used in the correct type? Are mathematical concepts correctly mapped to Lean
counterparts?

• Definitions & Library Usage: Are custom definitions clear? Are imports correct and
non-redundant? Are standard symbols and operations used correctly (e.g., Complex.abs,
Nat.Prime)?

• Code Style & Readability: Are names clear and consistent? Are there sufficient comments
for complex parts? Is there any redundancy?

IV. Problem Comprehension & Overall Consistency

• Grasping the Core: Does the formalization capture the core mathematical idea?

• Internal Self-Consistency: Are there any logical contradictions between the translated parts?

• Suitability for Formalization: Is the problem suitable for formalization? Are assumption-
s/interpretations documented?

V. Formalization Strategy & Choices

• Abstraction Level: Is the abstraction level appropriate, avoiding unnecessary generalization
or over-specification?

• Alternative Evaluation: Were alternatives considered? Was decomposition/modularization
used for complex problems?

VI. Provability & Proof Assistance

• Proof Complexity: Does the formalization maintain a similar proof complexity? Were
lemmas added to simplify the proof?

• Automation Potential: Is the structure amenable to automation tools?
1060

23

I Error Taxonomy1061

1062

Error Taxonomy

1. Semantic and Logical Errors

1.1 Premise Translation Error

• Description: This error occurs when formalizing the given conditions, constraints, or
assumptions from the original problem, resulting in a discrepancy between the logical
premises in the Lean code and the problem’s description.

• Examples: Failing to constrain variables to be positive, integers, or coprime as required;
not ensuring that denominators in mathematical expressions are non-zero; omitting geo-
metric constraints such as "A, B, C form a triangle" in geometry problems; not explicitly
specifying the exact range of a variable. For instance, relationships between angles and
sides must be precisely defined in Lean, otherwise the resulting correspondence may not
be unique.

Generated code

1.2 Mathematical Representation Error

• Description: This error involves an inaccurate representation of the form and meaning
of mathematical entities such as variables and expressions from the original problem.
This leads to the formalized mathematical proposition in the code being inconsistent
with the original problem, thereby undermining formal semantic correspondence.

• Examples: Formalizing a cubic polynomial as a quadratic one; mistranslating "all eigen-
values are 1" as "the determinant is 1"; simplifying a complex algebraic relationship
into an incorrect equation; using the conclusion as a premise; mismatch of mathemat-
ical entities. An incorrect expression structure can change the intrinsic structure and
semantics of the original mathematical expression, even if the computed result might
happen to be the same. For example, incorrectly formalizing a finite nested expression
(e.g., 2002 + 21(2001 + . . .)) as the sum of an infinite series.

1.3 Goal Translation Error

• Description: The final goal or conclusion achieved by the code does not match what the
problem asks for, failing to complete the specified task.

• Examples: The problem asks for a specific numerical value, but the code only proves
its existence; the problem asks to calculate the radius of convergence, but the code
incorrectly solves for the sum of the series; the final answer has a numerical calculation
error or a formal writing error (e.g., writing a fraction n/m as m/n). The final goal
might also be translated incompletely, with omissions.

1.4 Variable Usage Error

• Description: Improper use of a variable’s type, scope, name, or index.
1063

24

• Examples: Using natural numbers (N) for a variable that requires real numbers (R);
off-by-one errors in summation or sequence indices; confusing or redefining variable
names.

1.5 Misuse of Mathematical Concepts

• Description: Incorrectly using a mathematical formalism in Lean to represent a different
mathematical concept.

• Examples: Translating "calculate the residue" as "find the limit"; formalizing "locally
uniform convergence" as "pointwise convergence"; treating a problem of counting
unordered combinations (e.g., non-congruent triangles) as one of counting ordered
tuples.

1.6 Incorrect Assumption

• Description: Adding conditions that are not present in the original problem, which
oversimplifies the problem or leads to an incorrect conclusion.

• Example: Introducing an unfounded assumption, such as a specific numerical value.

2. Lean Syntax and Technical Errors

• Description: These are technical issues at the code level that prevent the code from compiling
or cause unexpected runtime behavior.

2.1 Syntax Error

• Description: The code does not conform to the basic syntax rules of Lean 4.

• Examples: A theorem statement is missing its name; the by sorry block to skip a
proof is absent; incorrect keywords or symbols are used.

Generated code

2.2 Type Error

• Description: Performing incompatible operations on variables of different data types,
including type mismatches and type casting errors.

• Examples: Performing division on a natural number (Nat) and expecting a fractional
result, but the outcome is floored to 0; failing to cast integers or natural numbers to real
numbers before performing real-valued operations.

2.3 Operator & Parenthesis Error

• Description: The calculation order of an expression does not match the intended logic
due to misunderstandings of operator precedence, improper placement of quantifiers, or
incorrect use of parentheses.

• Example: tan2(π9) is incorrectly parsed as (tanπ
9)2.

2.4 Library Usage Error
1064

25

• Description: Improper use of functions or definitions from mathlib.

• Examples: Using .ncard on an incorrect type of set; using a deprecated function name
like Complex.abs.

3. Translation Completeness and Other Meta-Errors

• Description: These errors reflect that the formalization fails to cover all requirements of the
problem, or that the problem itself is difficult to formalize.

3.1 Unformalizable Problem

• Description: The original problem description is vague, ambiguous, relies on diagrams,
or involves real-world scenarios that are difficult to express in formal logic.

• Examples: The problem depends on a geometric figure that is not explicitly defined;
a physical context or narrative scenario cannot be modeled precisely; the problem
statement itself contains mathematical errors.

Generated code

3.2 Incomplete Formalization

• Description: The code only formalizes part of the problem, omitting other requirements.

• Examples: Ignoring a "prove or disprove" requirement and assuming the statement is
true by default; omitting multi-step derivation requirements from the problem.

3.3 Improvable Code Style

• Description: The code may be logically correct but can be improved in terms of clarity,
robustness, or adherence to conventions.

• Examples: Adding parentheses could enhance logical clarity; variable names are not
intuitive; better use could be made of Lean’s syntactic features.

1065

J Complete Checklist for Lean4 Mathematical Formalization1066

Complete Checklist for Lean4 Mathematical Formalization

Conditions & Hypotheses:

1. Completeness of Preconditions: Are all explicitly stated preconditions in the problem trans-
lated without omission?

2. Accuracy of Variable Domains: Are the domains of variables (e.g., N,N+,R, Fin k ,
Set.Icc a b) accurately translated?

3. Accuracy of Indexing: Do the starting points and ranges of sequence/function indices (e.g.,
a0 vs a1, Finset.range n vs Finset.Icc 1 n) align with the original intent?

4. Clarity of Object Properties: Are the properties of specific objects (e.g., geometric figures
like trapezoids, incircles; algebraic structures like groups, rings) clearly expressed?

1067

26

5. Inclusion of Implicit Conditions: Are common implicit contextual conditions in mathematics
(e.g., non-zero divisors, non-negative radicands, non-degenerate geometric objects, defined-
ness of functions/sequences at application points, default to real numbers if unspecified)
appropriately added?

6. Accuracy of Conditional Semantics: Is the mathematical meaning of conditions (e.g., "not
equal to 0" (̸= 0) vs "greater than 0" (> 0), direction of inequality signs (> vs ≥)) accurately
translated?

Goals & Conclusions:

1. Completeness of Goals/Conclusions: Are all goals/conclusions that need to be proven or
solved translated? (Pay special attention to multi-part conclusions and multiple solution
scenarios).

2. Precision of Goal Type: Is the type of goal to be solved precise (e.g., specific value, extremum,
existence/uniqueness, universal property, equivalence relation, implication)?

3. Attainability in Extremum Problems: For extremum problems, is "attainability" explicitly
stated (i.e., demonstrating not just an inequality, but also that equality can be achieved)?

4. Accuracy of Goal Semantics: Is the mathematical meaning of the goals accurately translated?

Combination of Preconditions
Logical Structure:

1. Accuracy of Logical Connectives: Does the use of logical connectives (↔ (iff), → (if...then...),
∧ (and), ∨ (or), ¬ (not)) accurately reflect the logical relationships of the original proposition?

2. Appropriateness of Quantifiers: Is the use of quantifiers (∀ (for all), ∃ (exists), ∃! (exists
uniquely)) appropriate?

3. Correctness of Quantifier Scope and Nesting: Do the order, scope, and nesting of quantifiers
correctly express the dependencies between variables (e.g., in ∀ϵ > 0,∃δ > 0, . . . , δ depends
on ϵ)?

4. Combination of Preconditions: How do multiple preconditions combine to affect the conclu-
sion (e.g., differentiate (A ∧B) → C from A → (B → C))?

5. Fidelity to Original Logic: Does the formalization faithfully represent the inherent logic and
key steps of the original mathematical problem?

Lean Technical Accuracy:

1. Correctness of Basic Syntax: Is the basic Lean syntax (parenthesis matching, keywords like
theorem , def , variable , let , by) entirely correct?

2. Adherence to Type Constraints: Do all operations, function parameters, and return values
satisfy Lean’s type constraints?

1068

27

3. Correct Mapping of Mathematical Concepts: Are mathematical concepts correctly mapped to
their Lean counterparts?

4. Clarity of Custom Definitions: Are all custom functions, predicates, and notations used clearly
defined?

5. Correctness of Imports: Are necessary definitions and lemmas correctly imported from
Mathlib?

Overall Consistency:

1. Capturing Core Mathematical Ideas: Does the formalization truly capture the core mathemati-
cal ideas and goals of the original problem?

2. Absence of Logical Contradictions: Are there any logical contradictions between the translated
conditions, definitions, and goals?

3. Appropriateness for Formalization: Is the problem itself suitable for precise, unambiguous
mathematical formalization?

4. Documentation of Assumptions: Are any assumptions or interpretative choices made during
the formalization process documented?

1069

K Prompt:Critical Feedback to CoT1070

Prompt:Critical Feedback to CoT

Instruction:You will be provided with a mathematical text and its Lean4 code representation. Your
task is to evaluate whether the Lean4 code accurately and semantically represents the mathematical
text. You will be given a boolean indicating conversion success and potentially failure information.
Based on this, use a step-by-step Chain of Thought (COT) to generate a detailed explanation for
why the conversion is considered successful or failed, focusing on the semantic equivalence and
formal correctness of the Lean4 code relative to the mathematical meaning. The Lean4 code must
preserve the intended meaning in the mathematical text and use correct Lean4 syntax and structure.
Input: You will receive the following four values:

1. Mathematical Text: A string containing mathematical content.

2. Lean4Code: A string representing the code equivalent of the mathematical text.

3. Conversion Success: A boolean value (True or False) indicating whether the mathematical
text was successfully converted to the Lean4 code representation.

4. Reason: A string representing the code equivalent of the mathematical text.

5. If Conversion Success is True, this field will typically be empty. You must generate the
detailed justification for the success.

6. If Conversion Success is False, this field will contain specific information pinpointing why
1071

28

the conversion failed. You must elaborate on this identified failure, incorporating the analysis
modules described below.

Your Role: You are an AI language assistant. Your role is to analyze the provided information
and, using a step-by-step Chain of Thought (COT) approach, generate the explanation for the
conversion’s success (if indicated as successful) or elaborate on the identified failure information
(if indicated as failed). Guidelines:

1. Understand the Content: Carefully read the mathematical text, the code representation, the
Conversion Success value, and the Reason input (if Conversion Success is False).

2. Generating the Explanation for Success (if Conversion Success is True): If the conversion
is successful, provide a detailed, step-by-step explanation using COT to justify why it is
successful. Your justification should implicitly cover:

(a) Mathematical Text Analysis: Briefly identify the core mathematical components
(definitions, variables, operations, relations, constraints, statements) present in the text.

(b) Lean4 Code Analysis: Briefly describe the structure and components of the provided
Lean4 code, outlining how it represents the mathematical elements.

(c) Comparative Analysis: Systematically compare each mathematical component identi-
fied in the text analysis with its corresponding part described in the Lean4 code analysis.
Explain step-by-step how the Lean4 syntax and constructs accurately translate the math-
ematical concept and semantics.

(d) Confirmation of Correctness: Explicitly confirm the absence of errors by verifying
that:

• Definitions: Types (variables, functions, sets, etc.) are correctly defined in Lean4,
match the mathematical context, accurately reflect the intended meaning, and have a
valid interpretation within Lean4. (Absence of Errors in Definition)

• Constraints: All constraints from the mathematical text are present (no omissions),
accurately represented (no inconsistencies or logical flaws), and without unnecessary
additions (no redundancy). (Absence of Constraint Errors)

• Syntax: The Lean4 code uses correct syntax for logical expressions (quantifiers,
connectives), mathematical expressions (

∑
,
∫

, {}, operations), and overall Lean4
language structure (theorem declarations, keywords like by). (Absence of Syntax
Errors)

• Proof Targets/Statements: If applicable, the proof target or statement in Lean4 is
complete, unambiguous, and consistent with the mathematical claim. (Absence of
Proof Target Errors)

• Confirm that the Lean4 code fully and accurately captures the mathematical meaning
without loss or distortion, preserving the intended meaning. Highlight the key aspects
demonstrating a correct and complete translation.

3. Elaborating on Failure (if Conversion Success is False): If the conversion is unsuccess-
ful, use a step-by-step COT approach structured around the following analysis modules to
elaborate on the specific failure identified in the input Reason field:

1072

29

(a) Mathematical Text Analysis: Briefly identify the core mathematical components
(definitions, variables, operations, relations, constraints, statements) present in the text.
This establishes the intended meaning.

(b) Lean4 Code Analysis: Briefly describe the structure and components of the provided
Lean4 code, outlining how it *attempts* to represent the mathematical elements identified
in the text analysis step. This describes the code *as presented*, before focusing on the
error.

(c) Comparative Analysis: Compare the intended meaning and structure derived from
the mathematical text analysis with the actual Lean4 code structure described in the
previous step. Crucially, use the input Reason to pinpoint and focus the comparison
on the specific segment(s) where the Lean4 code fails to accurately represent the
mathematical text, clearly demonstrating the mismatch or divergence indicated by the
failure reason.

(d) Identification of Omission/Error: Based on the discrepancy identified in the compara-
tive analysis (which was guided by the input Reason), clearly articulate the specific error.
Categorize this error by referencing the relevant error type and explain why the issue
constitutes this type of error. Use the following categories and examples as a guide:

• Errors in Definition: e.g., Incorrect or mismatched type definitions (Type Mismatch),
failure to reflect the precise mathematical context (Context Mismatch), definitions
being mathematically meaningless or ill-formed in Lean4 (Ill-formed Definition).

• Constraint Errors: e.g., Omission of necessary constraints (Constraint Omission),
Redundancy of constraints (Constraint Redundancy), Inconsistency with mathemati-
cal text (Constraint Inconsistency), Logical Errors within the translated constraints
(Logical Flaw in Constraint).

• Syntax Errors: e.g., Errors in Logical Expression Syntax (quantifiers ∀, ∃; connec-
tives ∧, ∨, →, ¬), Mathematical Expression Syntax (notation for sums

∑
, integrals∫

, sets {}, specific operations), or Lean4 Language Structure Syntax (keywords like
theorem, def, variable, assume, show, by; overall declaration structure). (Invalid
Lean Syntax, Logical Syntax Error, Mathematical Notation Error)

• Proof Target Errors: e.g., Complete Omission of the target statement (Target Omis-
sion), Partial Omission or ambiguity in the target (Target Incomplete/Ambiguous),
Inconsistency between the Lean4 goal and the mathematical claim (Target Mismatch).

(e) Explanation of Impact: Detail the consequences of this specific error. Explain how
it alters the logical meaning compared to the original mathematical text, introduces
ambiguity, makes the statement fundamentally different, or renders the Lean4 code
syntactically invalid or semantically incorrect relative to the intended mathematical
statement.

4. Crucially: Your final explanation should present this analysis directly. Do not explicitly state
"The provided reason indicates..." or similar phrases referring back to the input Reason field
in your output. Simply explain the error based on the structure above.

1073

30

• Focus on Explanation: Your primary goal is to generate a clear and comprehensive
explanation using the COT method, ensuring each step in your reasoning is explicit.

• No Evaluation of Failure Information: If the conversion failed, do not question or
evaluate the validity of the failure information given in the Reason input. Your task is
solely to elaborate on it based on that information, following the specified structure and
error categorization.

Output Format: The output must be in English and presented strictly as follows:

Reason: [Your step-by-step Chain of Thought explanation here, either

justifying success or elaborating on the identified failure following

the specified modules and error types for failures]

This section will contain a single paragraph with your detailed Chain of Thought explanation.
Notes:

• Clarity and Conciseness: Ensure your explanation is clear, logical, and easy to understand.
While using COT, ensure each step is articulated concisely.

• Professional Tone: Maintain an objective and professional tone throughout your response.

• No Additional Information: Do not introduce any external information or perform the conver-
sion yourself. Focus solely on generating the explanation based on the provided inputs, using
a step-by-step approach guided by the structure and error categories provided.

1074

L Prompt:Formal Verification Expert 1075

Prompt:Formal Verification Expert

Role: Lean & Formal Verification Expert

Input:
- Mathematical_Text: A math problem and its answer (no proof).
- Lean4Code: A Lean 4 theorem statement formalizing the problem. Proof is intentionally omitted
(e.g., sorry).

Goal:
Determine if the Lean theorem statement is an exact and faithful formalization of the mathematical
problem.
**Do not evaluate or consider the answer or the proof. Your sole task is to verify the correctness of
the formalization.**

Evaluation Stages (All required):

1. Math Assertion Analysis
Identify all structurally and semantically relevant components of the mathematical problem,

1076

31

including variables, types, quantifiers, constraints, logic structure, conclusion, and so on. The
analysis should be based on the actual content of the text.

2. Lean Statement Analysis (ignore proof part)
Extract all structurally and semantically relevant components from the Lean statement, including
variables, types, conditions, quantifiers, constraints, the final claim, and so on. The analysis should
reflect the actual content present in the Lean code.

3. Comparative Verification
Check for exact correspondence between the math and Lean statements; you may refer to aspects
like:
- Semantic alignment, logic structure, and quantifier correctness.
- Preservation of constraints and boundary assumptions.
- Accurate typing and use of variables.
- Syntactic validity and proper Lean usage (free from errors).
- Use of symbols and constructs without semantic drift.
- No missing elements, no unjustified additions, and no automatic corrections or completions.

4. Final Judgement Based solely on the above analysis, judge whether the Lean state-
ment is a correct and exact formalization of the mathematical problem.

5. Accuracy Confirmation
If correct: clearly confirm why all elements match.
If incorrect: list all mismatches and explain how each one affects correctness.

Note: While the analysis may be broad and open to interpreting all relevant features, the
final judgment must be based only on what is explicitly and formally expressed in the Lean
statement.
**Do not consider or assess any part of the proof. Your judgment should be entirely about the
accuracy of the statement formalization.**

Output Format:
Return exactly one JSON object:
“‘json

{

"reasons": "Your detailed CoT analysis:

1. Math Assertion Analysis: [...]

2. Lean Statement Analysis (Proof Ignored): [...]

3. Comparative Verification: [...]

4. Conclusion: [...]

5. Accuracy Confirmation: [match confirmation or list of discrepancies...]",

"is_assistant_correct": "[Correct/Incorrect]"
1077

32

}

“‘

Input Data:
— Start of Mathematical_Text —
{mathematical_statement}
— End of Mathematical_Text —

— Start of Lean4Code —
{autoformalization_placeholder}
— End of Lean4Code —

1078

M Prompt:Lean Flaw Injection 1079

Prompt:Lean Flaw Injection

You are an exceptional Lean 4 code formalization engineer. Your current task is to meticulously
introduce errors into correct Lean 4 code, following a specific checklist of error types.
I will provide you with:

1. A problem pair consisting of:

(a) A mathematical definition or statement.

(b) Its corresponding correct Lean 4 code formalization.

2. An error checklist and Lean 4 theorem statement: A list of potential error types or modification
strategies, along with a Lean 4 theorem statement that formalizes the problem. Note that the
proof is intentionally omitted (e.g., using sorry).

Your process should be as follows:

1. From the provided checklist, select exactly 2 error types or modification strategies. Each
chosen item must be directly and plausibly applicable to the structure, logic, or types within
the provided mathematical statement and its Lean 4 code.

2. Based on your selection(s), intentionally modify the Lean 4 code to make it incorrect or
subtly deviate from the original mathematical intent. The modification should be contextually
relevant to the provided mathematical statement and its original Lean 4 formalization. Aim
for errors that someone might plausibly make when formalizing *this specific* concept, rather
than completely arbitrary changes.

3. When applying multiple selected error types, aim to incorporate all of them naturally into the
code modification. If this proves too complex or makes the resulting error contrived, you may
focus on a primary subset of the selected types, but clearly explain your rationale and how the
chosen modifications relate to your selections.

4. Important: Do not add any comments directly within the mathematical description or the Lean
4 code itself to explain your changes. All explanations should be in the "Detailed Explanation
of Modifications" section.

1080

33

You must then return your response as a JSON object with the following structure and content:
“‘json
Output Format
You must then return your response as a JSON object with the following structure and content:

{

"modified_lean_code": "[Your intentionally flawed Lean 4 code here.

Please ensure that you do not add any comments directly within the

mathematical description or the Lean 4 code itself to explain your

changes.]",

"explanation": "Here, you will:\n1. Clearly state which 2 error

types or modification strategies you selected from the checklist.

\n2. Explain precisely what changes you made to the original

correct code to introduce these errors/deviations.\n3. Describe

how these changes reflect the selected strateg(ies). Crucially,

point out the specific \"error points\" you introduced by comparing

the modified code to the (unstated) original correct version, and

explain *why* this type of error is plausible or relevant given

the specific mathematical content and structure of the original

code."

}

checklist:
{selected_checklist_items_placeholder}
"Mathematical statement": "{refined_statement_placeholder}"
"Lean4 code": "{autoformalization_placeholder}"

1081

N Prompt: Mathematical Problem Classification Task1082

Prompt: Mathematical Problem Classification Task

I am working with natural language statements of advanced mathematics problems, which are
intended to be later formalized in Lean. Before formalization, I need to categorize each problem
into its appropriate mathematical domain.
#OBJECTIVE#

1. Summarize the math problem in one or two sentences, highlighting the key mathematical
concepts or structures involved.

2. Classify the problem into one or more mathematical domains, using a hierarchical classifica-
tion chain. For example:
Algebra -> Intermediate Algebra -> Inequalities.

The classification should be based on the mathematical content of the natural language problem,
even if no formal notation is used yet.

1083

34

#DOMAIN TAXONOMY#
The domain classification should follow a standard taxonomy:
<math domains>

Algebra -> Intermediate Algebra -> Inequalities
Algebra -> Intermediate Algebra -> Polynomials
Algebra -> Intermediate Algebra -> Functional Equations
Algebra -> Linear Algebra -> Vector Spaces
Algebra -> Linear Algebra -> Matrices
Geometry -> Euclidean Geometry -> Triangles
Geometry -> Euclidean Geometry -> Circles
Geometry -> Euclidean Geometry -> Coordinate Geometry
Geometry -> Euclidean Geometry -> Transformations
Geometry -> Analytic Geometry -> Conic Sections
Number Theory -> Elementary Number Theory -> Divisibility
Number Theory -> Elementary Number Theory -> Modular Arithmetic
Number Theory -> Elementary Number Theory -> Diophantine Equations
Number Theory -> Elementary Number Theory -> Prime Numbers
Combinatorics -> Enumerative Combinatorics -> Permutations
Combinatorics -> Enumerative Combinatorics -> Combinations
Combinatorics -> Extremal Combinatorics -> Pigeonhole Principle
Combinatorics -> Constructive Combinatorics -> Invariants
Combinatorics -> Graph Theory -> Trees
Calculus -> Differential Calculus -> Derivatives
Calculus -> Integral Calculus -> Definite Integrals
Discrete Mathematics -> Logic -> Propositional Logic
Discrete Mathematics -> Set Theory -> Cardinality
Applied Mathematics -> Probability -> Expected Value
Applied Mathematics -> Probability -> Conditional Probability
Applied Mathematics -> Optimization -> Linear Programming
Applied Mathematics -> Algorithms -> Greedy Algorithms
Algebra -> Intermediate Algebra -> Other
Geometry -> Euclidean Geometry -> Other
Number Theory -> Elementary Number Theory -> Other
Combinatorics -> Enumerative Combinatorics -> Other
Calculus -> Integral Calculus -> Other
Discrete Mathematics -> Other -> Other
</math domains>

#RESPONSE FORMAT# ##Summarization [A brief summary of the problem, describing the
mathematical concepts it involves.]
##Math domains [A hierarchical classification of the mathematical domains involved in the
problem.]
#INSTRUCTIONS#

1084

35

• You may include up to three domain classification chains, separated by semicolons.

• The format must be: Major Domain -> Subdomain -> Specific Topic.

• If a concept doesn’t fit exactly, use Other as the last node only. For example: Algebra ->

Intermediate Algebra -> Other.

• Avoid using vague or overlapping categories.

• End each report with the line === report over ===.

#INPUT# Below is the original natural language math problem statement:
<statement>{statement}</statement>

#OUTPUT FORMAT# Please return your response in JSON format. For example:

{

"Summary": "This problem involves minimizing a symmetric function

over real variables under absolute value constraints.",

"Domains": [

"Algebra -> Intermediate Algebra -> Inequalities",

"Calculus -> Differential Calculus -> Applications of Derivatives"

]

}
1085

O Prompt:Difficulty Level Assessment1086

Prompt:Difficulty Level Assessment

You are an exceptional Lean 4 code formalization engineer. Your current task is to meticulously
introduce errors into correct Lean 4 code, following a specific checklist of error types.
I am working with natural language statements of advanced mathematics problems, which are
intended to be later formalized in Lean. Before that, we aim to assess the **intrinsic difficulty**
of the problem in its current informal (natural language) form.
#OBJECTIVE
Assign a **difficulty score** to the problem, on a scale from 0 to 10.
Your rating should reflect the mathematical reasoning required to solve the problem — including
the level of abstraction, creativity, number of steps, and familiarity with advanced techniques.
#DIFFICULTY REFERENCE
##Examples for difficulty levels
For reference, here are problems from each of the difficulty levels 1-10:
1: How many integer values of x satisfy |x| < 3π? (2021 Spring AMC 10B, Problem 1)
1.5: A number is called flippy if its digits alternate between two distinct digits. For example,
2020 and 37373 are flippy, but 3883 and 123123 are not. How many five-digit flippy numbers are
divisible by 15? (2020 AMC 8, Problem 19)
2: A fair 6-sided die is repeatedly rolled until an odd number appears. What is the probability
that every even number appears at least once before the first occurrence of an odd number? (2021

1087

36

Spring AMC 10B, Problem 18)
2.5: A, B, C are three piles of rocks. The mean weight of the rocks in A is 40 pounds, the mean
weight of the rocks in B is 50 pounds, the mean weight of the rocks in the combined piles A and B
is 43 pounds, and the mean weight of the rocks in the combined piles A and C is 44 pounds. What
is the greatest possible integer value for the mean in pounds of the rocks in the combined piles B
and C? (2013 AMC 12A, Problem 16)
3: Triangle △ABC with AB = 50 and AC = 10 has area 120. Let D be the midpoint of AB,
and let E be the midpoint of AC. The angle bisector of ∠BAC intersects DE and BC at F and G,
respectively. What is the area of quadrilateral FDBG? (2018 AMC 10A, Problem 24)
3.5: Find the number of integer values of k in the closed interval [−500, 500] for which the
equation log(kx) = 2 log(x+ 2) has exactly one real solution. (2017 AIME II, Problem 7)
4: Define a sequence recursively by x0 = 5 and

xn+1 =
x2n + 5xn + 4

xn + 6

for all nonnegative integers n. Let m be the least positive integer such that

xm ≤ 4 +
1

220
.

In which of the following intervals does m lie? (A) [9, 26] (B) [27, 80] (C) [81, 242] (D) [243,
728] (E) [729, ∞) (2019 AMC 10B, Problem 24 and 2019 AMC 12B, Problem 22)
4.5: Find, with proof, all positive integers n for which 2n + 12n + 2011n is a perfect square.
(USAJMO 2011/1)
5: Find all triples (a, b, c) of real numbers such that the following system holds:

a+ b+ c =
1

a
+

1

b
+

1

c
,

a2 + b2 + c2 =
1

a2
+

1

b2
+

1

c2
.

(JBMO 2020/1)
5.5: Triangle ABC has ∠BAC = 60◦, ∠CBA ≤ 90◦, BC = 1, and AC ≥ AB. Let H, I, and O
be the orthocenter, incenter, and circumcenter of △ABC, respectively. Assume that the area of
pentagon BCOIH is the maximum possible. What is ∠CBA? (2011 AMC 12A, Problem 25)
6: Let △ABC be an acute triangle with circumcircle ω, and let H be the intersection of the
altitudes of △ABC. Suppose the tangent to the circumcircle of △HBC at H intersects ω at points
X and Y with HA = 3, HX = 2, and HY = 6. The area of △ABC can be written in the form
m
√
n, where m and n are positive integers, and n is not divisible by the square of any prime. Find

m+ n. (2020 AIME I, Problem 15)
6.5: Rectangles BCC1B2, CAA1C2, and ABB1A2 are erected outside an acute triangle ABC.
Suppose that ∠BC1C + ∠CA1A + ∠AB1B = 180◦. Prove that lines B1C2, C1A2, and A1B2

are concurrent. (USAMO 2021/1, USAJMO 2021/2)
7: We say that a finite set S in the plane is balanced if, for any two different points A,B in S, there
is a point C in S such that AC = BC. We say that S is centre-free if for any three points A,B,C

in S, there is no point P in S such that PA = PB = PC. Show that for all integers n ≥ 3, there
1088

37

exists a balanced set consisting of n points. Determine all integers n ≥ 3 for which there exists a
balanced centre-free set consisting of n points. (IMO 2015/1)
7.5: Let Z be the set of integers. Find all functions f : Z → Z such that

xf(2f(y)− x) + y2f(2x− f(y)) = f(x)2 + f(yf(y))

for all x, y ∈ Z with x ̸= 0. (USAMO 2014/2)
8: For each positive integer n, the Bank of Cape Town issues coins of denomination 1/n. Given a
finite collection of such coins (of not necessarily different denominations) with total value at most
99 + 1/2, prove that it is possible to split this collection into 100 or fewer groups, such that each
group has total value at most 1. (IMO 2014/5)
8.5: Let I be the incentre of acute triangle ABC with AB ̸= AC. The incircle ω of ABC is tangent
to sides BC, CA, and AB at D, E, and F, respectively. The line through D perpendicular to EF
meets ω at R. Line AR meets ω again at P. The circumcircles of triangle PCE and PBF meet again
at Q. Prove that lines DI and PQ meet on the line through A perpendicular to AI. (IMO 2019/6)
9: Let k be a positive integer and let S be a finite set of odd prime numbers. Prove that there is
at most one way (up to rotation and reflection) to place the elements of S around the circle such
that the product of any two neighbors is of the form x2 + x+ k for some positive integer x. (IMO
2022/3)
9.5: An anti-Pascal triangle is an equilateral triangular array of numbers such that, except for the
numbers in the bottom row, each number is the absolute value of the difference of the two numbers
immediately below it. For example, the following is an anti-Pascal triangle with four rows which
contains every integer from 1 to 10.

4
2 6

5 7 1
8 3 10 9

Does there exist an anti-Pascal triangle with 2018 rows which contains every integer from 1 to
1 + 2 + 3 + · · ·+ 2018? (IMO 2018/3)
10: Prove that there exists a positive constant c such that the following statement is true: Consider
an integer n > 1, and a set S of n points in the plane such that the distance between any two
different points in S is at least 1. It follows that there is a line ℓ separating S such that the distance
from any point of S to ℓ is at least cn−1/3.
#OBJECTIVE

1. Summarize the math problem in a brief sentence, describing the concepts involved in the math
problem.

2. Based on the source of the given problem, as well as the difficulty of the problems referenced
in these materials and the solution to the current problem, please provide an overall difficulty
score for the current problem. The score should be a number between 1 and 10, with
increments of 0.5, and should align perfectly with the materials.

#STYLE#
1089

38

Data report.
#TONE#
Professional, scientific.
#AUDIENCE#
Students. Enable them to better understand the difficulty of the math problems.
#RESPONSE: MARKDOWN REPORT# ##Summarization
[Summarize the math problem in a brief paragraph.]
##Difficulty
[Rate the difficulty of the math problem and give the reason.]
#ATTENTION#

• Add "=== report over ===" at the end of the report.

#INPUT# Below is the original natural language math problem statement:
<statement>{statement}</statement>
#OUTPUT FORMAT#
You must respond with a JSON object:

{

"Difficulty": float (between 0 and 10),

"Rationale": "Explain your score in 1–3 sentences. Mention structural

elements or comparison to benchmark problems."

}
1090

1091

39

	Introduction
	Related Works
	Autoformalization
	RL for LLM Reasoning

	CriticLeanGPT
	CriticLeanBench
	Overview of CriticLeanBench
	Automatically verified
	Human Validation Filter
	Data Statistics

	CriticLeanInstruct
	Training Paradigm

	Experiments
	Experimental Setup
	Main Results
	Evaluation of Critic Capability

	Ablation Study
	Effect of Reasoning Data
	Effect of SFT Dataset Size

	Analysis
	Scaling Analysis
	Effect of Pass@k

	FineLeanCorpus
	Analysis on CriticLean Pipeline

	Conclusion
	Limitations
	Sample Selection Criteria and Error Type Coverage
	Details of CriticLeanBench
	Comparison to Other Benchmarks

	Details of CriticLeanInstruct
	Seed Data
	Data Augmentation
	Correct Samples
	Incorrect Samples

	FineLeanCorpus
	Fine-Grained Domain Distribution of FineLeanCorpus
	Fine-Grained Domain Distribution of FineLeanCorpus-Diamond
	Formalization Quality Assessment Criteria
	Error Taxonomy
	Complete Checklist for Lean4 Mathematical Formalization
	Prompt:Critical Feedback to CoT
	Prompt:Formal Verification Expert
	Prompt:Lean Flaw Injection
	Prompt: Mathematical Problem Classification Task
	Prompt:Difficulty Level Assessment

