
A Some concentration results for uniform random variables528

In this section, we state some concentration results that are useful for the theoretical analysis in529

Section 3. Let x̃,x1, . . . ,xn
i.i.d.∼ Unif(B0,

√
d+2) be i.i.d. samples from the uniform distribution over530

the Euclidean norm ball of radius
√
d+ 2 in Rd. Let531

Zn = min
x∈{x1,x2,...,xn}

∥x̃− x∥2. (11)

If n = 1, EZ1 is the sum of the variance of each coordinate of Unif(B0,
√
d+2). Therefore, EZn532

provides a generalized measure of concentration. Intuitively, EZn → 0 as n → ∞. The proposition533

below provides a upper bound on the rate of convergence.534

Lemma A.1 (Nearest Neighbor concentration). Given the assumptions above535

EZn ≲ d2

[
log
(
n1/d

)
n

]1/d
, (12)

where ≲ means inequality up to an universal constant independent of d and n.536

Proof. Define537

E1 = {Zn ≤ δ2},
E2 = {δ ≤

√
d+ 2− ∥x̃∥}.

(13)

We will compute two probabilities P(E1|E2) and P(E2) that will be useful latter.538

P(Ec
1 |E2) = P(Zn ≥ δ2|E2) = P(∥x̃− xi∥ ≥ δ, ∀i|E2),

= Ex̃P(∥x̃− xi∥ ≥ δ|E2, x̃)n = Ex̃(1− P(∥x̃− xi∥ ≤ δ|E2, x̃))n,

= Ex̃

[
1−

Vol(Bx̃,δ)

Vol(B0,
√
d+2)

]n
=

[
1−

(
δ√
d+ 2

)d
]n

,

≤ exp

[
−n

(
δ√
d+ 2

)d
]
.

(14)

Next, we compute P(E2)539

P(E2) = P(∥x̃∥ ≤
√
d+ 2− δ) =

(√
d+ 2− δ√
d+ 2

)d

=

(
1− δ√

d+ 2

)d

. (15)

We use E1 and E2 to compute the following upper bound540

EZn = E(Zn|E1 ∩ E2)P(E1 ∩ E2) + E(Zn|(E1 ∩ E2)c)P ((E1 ∩ E2)c),
≤ δ2 + (2

√
d+ 2)2 (1− P(E1 ∩ E2)) ,

= δ2 + 4(d+ 2) [1− P(E1|E2)P(E2)] .
(16)

To find an upper bound for EZn, we need to find an upper bound for 1− P(E1|E2)P(E2).541

1− P(E1|E2)P(E2) = 1− [1− P(Ec
1 |E2)]P(E2),

= 1− P(E2) + P(Ec
1 |E2)P(E2),

≤ 1− P(E2) + P(Ec
1 |E2).

(17)

Now choose δ =
√
d+ 2n−1/d

[
log
(
n1/d

)]1/d
.542

P(Ec
1 |E2) ≤ exp

[
−n

(
δ√
d+ 2

)d
]
= exp

[
−nn−1 log

(
n1/d

)]
= n−1/d, (18)
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and543

P(E2) =
(
1− δ√

d+ 2

)d

≥ 1− d
δ√
d+ 2

= 1− dn−1/d
[
log
(
n1/d

)]1/d
. (19)

Thus544

1−P(E1|E2)P(E2) ≤ 1−1+dn−1/d
[
log
(
n1/d

)]1/d
+n−1/d ≲ dn−1/d

[
log
(
n1/d

)]1/d
. (20)

Combining everything together, we get545

EZn ≤ (d+ 2)n−2/d
[
log
(
n1/d

)]2/d
+ 4(d+ 2)× dn−1/d

[
log
(
n1/d

)]1/d
,

≲ d2n−1/d
[
log
(
n1/d

)]1/d
,

= d2

[
log
(
n1/d

)
n

]1/d
.

(21)

This completes the proof.546

Proposition A.2 ([47] Corollary 6.20). Let xi
i.i.d.∼ Unif (B0,

√
d+2) for i = 1, . . . , n be uniformly547

distributed over a ball of radius B in Rd centered at 0. Let548

Σn =
1

n

n∑
i=1

xix
T
i

be the sample covariance matrix. Then549

P(∥Σn − I∥op > ε) ≤ 2d exp

[
− nε2

2(d+ 2)(1 + ε)

]
.
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B Proof of Theorem 3.3550

In this section, we present the proof of Theorem 3.3. In Section B.1, we provide the detail of the551

decomposition of the risk into T1 and T2. Then in Section B.2 we compute an upper bound for T1,552

and compute an upper bound for T2 in Section B.3. Finally, we combine everything together in553

Section B.4 and completes the proof.554

B.1 Decomposition of the test risk555

E
[
fResMem(x̃)− f⋆(x̃)

]2
= E [fn(x̃) + rn(x̃)− f⋆(x̃)]

2
,

= E
[
fn(x̃)− f⋆(x̃)− fn(x̃(1)) + f⋆(x̃(1))

]2
,

= E
[
fn(x̃)− f∞(x̃) + f∞(x̃)− f⋆(x̃)− fn(x̃(1)) + f∞(x̃(1))− f∞(x̃(1)) + f⋆(x̃(1))

]2
,

≤ 3× [E(fn(x̃)− f∞(x̃))2 + E(fn(x̃(1))− f∞(x̃(1)))
2︸ ︷︷ ︸

T1

+E(f∞(x̃)− f⋆(x̃)− f∞(x̃(1)) + f⋆(x̃(1)))
2︸ ︷︷ ︸

T2

],

(22)
where in the last inequality, we used the fact that (a+ b+ c)2 < 3(a2 + b2 + c2) for any a, b, c ∈ R.556

B.2 Upper bound on T1.557

Since Px = Unif(B0,B ), we apply the bound ∥x̃∥, ∥x̃(1)∥ ≤ B to obtain558

T1 = E[fn(x̃)− f∞(x̃)]2 + E[fn(x̃(1))− f∞(x̃(1))]
2,

= E⟨θn − θ∞, x̃⟩2 + E⟨θn − θ∞, x̃(1)⟩2,
≤ E∥θn − θ∞∥2∥x̃∥2 + E∥θn − θ∞∥2∥x̃(1)∥2,
≤ 2B2E∥θn − θ∞∥2.

(23)

As n gets large, the empirical covariance matrix Σn = XTX/n is concentrated around its mean559

I . Let ∆n = I −Σn denote this deviation. For some ε ∈ (0, 1), define the following “good event”560

over the randomness in Σn561

A = {∥∆n∥op < ε}, (24)

where ∥∆n∥op denotes the operator norm of the deviation matrix. The high level idea of the proof is562

to condition on the event A and deduce and upper bound of ∥θn − θ∞∥ in terms of ε. Then, we use563

the fact that A happens with high probability.564

Recall that θ∞ = Lθ⋆, and565

θn = argmin
∥θ∥≤L

1

n
∥Xθ − y∥2. (25)

Since y = Xθ⋆ by definition, the Lagrangian of the convex program above is566

L(θ, λ) = 1

n
∥Xθ −Xθ⋆∥2 + λ(∥θ∥2 − L). (26)

The KKT condition suggests that the primal-dual optimal pair (θn, λn) is given by567

∥θn∥ ≤ L,

λn ≥ 0,

λn(∥θn∥ − L) = 0,

(27)

and at optimality568

∇θL(θn, λn) = 0 ⇐⇒ 2

n
XTX(θ − θ⋆) + 2λnθ = 0,

⇐⇒ θn = (Σn + λnI)
−1Σnθ⋆.

(28)
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The complementary slackness condition λn(∥θn∥−L) = 0 suggests that either λn = 0 or ∥θn∥ = L.569

But if λn = 0, the stationary condition ∇θL(θ, λ) = 0 would suggest that θn = Σ−1
n Σnθ⋆ =570

θ⋆ ⇒ ∥θn∥ = 1 > L, a contradiction. (Note that here Σn is invertible condition on the event A.)571

Therefore, we must have ∥θn∥ = L. As a result, the primal and dual pair (θn, λn) is determined by572

the system of equations573 
θn = (Σn + λnI)

−1Σnθ⋆,

∥θn∥ = L,

λn > 0.

(29)

Next, we proceed to compute the deviation ∥θn − θ∞∥.574

θn = [(λn + 1)I −∆n]
−1

Σnθ⋆,

= (λn + 1)−1

[
I − ∆n

λn + 1

]−1

Σnθ⋆,

= (λn + 1)−1

[
I +

∞∑
k=1

∆k
n

(λn + 1)k

]
(I −∆n)θ⋆,

= (λn + 1)−1

[
I +

∞∑
k=1

∆k
n

(λn + 1)k
−∆n −

∞∑
k=1

∆k+1
n

(λn + 1)k

]
θ⋆,

= (λn + 1)−1θ⋆ + (λn + 1)−1∆n

[ ∞∑
k=1

∆k−1
n

(λn + 1)k
− I −

∞∑
k=1

∆k
n

(λn + 1)k

]
θ⋆,

= (λn + 1)−1θ⋆ + (λn + 1)−1∆n

[ ∞∑
k=1

∆k−1
n −∆k

n

(λn + 1)k
− I

]
θ⋆.

(30)

Define575

Dn = ∆n

[ ∞∑
k=1

∆k−1
n −∆k

n

(λn + 1)k
− I

]
. (31)

Then θn = (λn + 1)−1θ⋆ + (λn + 1)−1Dnθ⋆, and576

∥Dn∥ ≤ ∥∆n∥

[
1 +

∞∑
k=1

∥∆n∥k−1 + ∥∆n∥k

(λn + 1)k

]
,

≤ ε

[
1 + 2(1 + λn)

−1
∞∑
k=1

(
ε

1 + λn

)k
]
,

= ε

(
1 +

2

1 + λn

1

1− ε
1+λn

)
≤ 3ε.

(32)

Therefore577

L = ∥θn∥2 = (λn + 1)−2 + (λn + 1)−2θT
⋆D

T
nDnθ⋆ + 2(λn + 1)−2θ⋆Dnθ⋆,

⇒(λn + 1)2L2 = 1 + δn, δn = θT
⋆D

T
nDnθ⋆ + 2θT

⋆Dnθ⋆.
(33)

We can obtain the following bound for δn:578

|δn| ≤ ∥θ⋆∥2∥Dn∥2 + 2∥θ⋆∥2∥Dn∥ ≤ 9ε2 + 6ε ≤ 15ε. (34)

Since 1− δn/2 ≤
√
1 + δn ≤ 1 + δn/2, and |δn| ≤ 15ε, we obtain579

|(λn + 1)L− 1| ≤ 15ε

2
⇒
∣∣L− (λn + 1)−1

∣∣ ≤ 15ε

2
(λn + 1)−1 ≤ 15ε

2
, (35)
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where the last inequality follows as we have λn > 0. Finally,580

θn − θ∞ = (λn + 1)−1θ⋆ − Lθ⋆ + (λn + 1)−1Dnθ⋆,

⇒ ∥θn − θ∞∥2 = [(1 + λn)
−1 − L]2 + (1 + λn)

−2θ⋆D
T
nDnθ⋆ + 2(λn + 1)−1[(1 + λn)

−1 − L]θ⋆Dnθ⋆,

≤ 64ε2 + 9ε2 + 45ε2 = 118ε2,

⇒ ∥θn − θ∞∥2 ≲ ε2.
(36)

Combine the above result with Proposition A.2, we get that581

E∥θn − θ∞∥2 = E(∥θn − θ∞∥2|A)P(A) + E(∥θn − θ∞∥2|Ac)P(Ac),

≤ ε2 + 4L2 × 4d exp

[
− nε2

2(d+ 2)(1 + ε)

]
,

(37)

If we choose ε = n−1/3, we get582

E∥θn − θ∞∥2 ≲ dL2n−2/3, (38)

which implies that583

T1 ≲ d2L2n−2/3. (39)

B.3 Upper bound on T2.584

Plugging in the formula for f⊥(x̃) = f⋆(x̃)− f∞(x̃) = ⟨x̃,θ⊥⟩, we get585

T2 = E[f⊥(x̃(1))− f⊥(x̃)]
2,

= E⟨θ⊥, x̃(1) − x̃⟩2,
≤ (1− L)2∥θ⋆∥2E∥x̃− x̃(1)∥2,
= (1− L)2E∥x̃− x̃(1)∥2,

(40)

where in the last inequality, we used the relation that θ⊥ = (1− L)θ⋆. Proposition A.1 suggests that586

E∥x̃− x̃(1)∥2 ≲ d2

[
log
(
n1/d

)
n

]1/d
, (41)

which implies587

T2 ≲ d2(1− L)2

[
log
(
n1/d

)
n

]1/d
. (42)

Remark B.1 (Comparison with pure nearest neighbor and ERM). If we rely solely on nearest neighbor588

method, the prediction error is589

E[f⋆(x̃)− f⋆(x̃(1))]
2 = E⟨x̃− x̃(1),θ⋆⟩2 ≤ E∥x̃− x̃(1)∥2. (43)

On the other hand, if we solely rely on ERM, even with infinite sample, we get590

E[f⋆(x̃)− f∞(x̃)]2 = E⟨x̃,θ⋆ − θ∞⟩2 ≤ (1− L)2E∥x̃∥2. (44)

We can see from the upper bound that ResMem takes advantage of both591

• Projecting f⋆ onto f∞, so that the dependence on the prediction function is reduced from 1592

to (1− L)2.593

• Memorizing the residuals using nearest neighbor, so that the variance is reduced from E∥x̃∥2594

to E∥x̃(1) − x̃∥2.595
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B.4 Test loss for ResMem.596

If we combine the previous two parts together, we get597

E
[
f̂(x̃)− f⋆(x̃)

]2
≲ d2L2n−2/3 + d2(1− L)2

[
log
(
n1/d

)
n

]1/d
. (45)

This completes the proof of Theorem 3.3.598
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C Additional CIFAR100 Results599

This section includes additional experiment results on applying ResMem to CIFAR100 dataset.600

C.1 Additional robustness results601

In addition to the results already presented in Section 4.2, we also evaluate ResMem performance for602

each architecture in CIFAR-ResNet{8, 14, 20, 32, 44, 56} and each subset (10%, 20%, ..., 100%) of603

CIFAR100 training data. We use the same training hyperparameter and the ResMem hyperparameter604

as described in Section 4.2. Generally, we see that ResMem yields larger improvement over the605

baseline DeepNet when the network is small and dataset is large.
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(a) CIFAR-ResNet-8
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(b) CIFAR-ResNet-14
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(c) CIFAR-ResNet-20
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(d) CIFAR-ResNet-32
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(e) CIFAR-ResNet-44
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(f) CIFAR-ResNet-56

Figure 4: Test(left)/Training (right) accuracy for different sample sizes.
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C.2 Sensitivity analysis for CIFAR100607
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(a) # of neighbours k.
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(b) Radius parameter σ.
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(c) Temperature T .

Figure 5: Sensitivity analysis of ResMem hyperparameters. The y-axis represents the CIFAR100
test accuracies, and the x-axis represents the sweeping of respective hyperparameters.
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Varying locality parameter k and σ. We vary the number of neighbours from k = 27 to k = 500.608

We find that ResMem test accuracy is relatively stable across the choice of the number of neighbours609

(cf. Figure 5(a)). The trend of the curve suggests that as k → ∞, the ResMem test accuracy seems to610

be converging to a constant level. For σ, we explored different values of σ ∈ (0.1, 2.0). We observe611

that the test accuracy has a unimodal shape as a function of σ, suggesting that there is an optimal612

choice of σ (cf. Figure 5(b)).613

Varying temperature T and connection to distillation. We tried T = 0.1 to T = 5, and also614

identified an unimodal shape for the test accuracy (Figure 5(c)). The fact that we can use different615

temperatures for (a) training the network and (b) constructing the k-NN predictor reminds us of the616

well-established knowledge distillation procedure [28]. In knowledge distillation, we first use one617

model (the teacher network) to generate targets at a higher temperature, and then train a second model618

(the student network) using the combination of the true labels and the output of the first network.619

ResMem operates in a reversed direction: Here we have a second model (kNN) that learns the620

difference between true labels and the output of the first model. In both cases, we can tune the621

temperature of the first model to control how much information is retained. This connection offers an622

alternative perspective that regards ResMem as a “dual procedure” to knowledge distillation.623

D ResMem on ImageNet624

This section includes additional experiment results on applying ResMem to ImageNet dataset.625

ImageNet. In addition to CIFAR100, we also evaluate the performance of ResMem on Ima-626

geNet [42]. We employ a family of pre-trained MobileNet-V2 models [44] from Keras2, with627

varying widths controlled by a multiplier a. For ResMem, we again use the second last layer of628

DeepNet as a 1280-dimensional embedding of an image and rely on the ℓ2 distance between the629

embeddings for nearest neighbor search (Step 3, Section 4.1). We specify the ResMem parameter of630

(k, σ, T ) in the table below. We repeat the experiment over several MobileNet-V2 architectures, with631

MobileNet-V2-a0.35 being the smallest model and MobileNet-V2-a1.3 being the largest one.632

Table 1: Test accuracy for ResMem and baseline deep network for ImageNet data.

Architecture ResMem param. Test accuracy

k σ T DeepNet ResMem

MobileNet-V2-a0.35 10 0.6 0.4 60.2% 61.2%
MobileNet-V2-a0.5 10 0.6 0.4 65.3% 66.1%
MobileNet-V2-a0.75 10 0.8 0.6 69.6% 70.1%
MobileNet-V2-a1.0 20 0.4 0.4 71.3% 71.8%
MobileNet-V2-a1.3 30 0.4 0.4 74.7% 75.1%

We can see that (c.f. Table 1) ResMem boosts the test accuracy by 1% on the smallest model and by633

0.4% on the largest model.634

E Additional details of NLP experiments635

The Decoder-Only model used in our experiments is essentially the normal Encoder-Decoder archi-636

tecture with Encoder and Cross-Attention removed. We pretrained both the T5-small and T5-base637

model on C4 [41] dataset with auto-regressive language modeling task for 1,000,000 steps, with638

dropout rate of 0.1 and batch size of 128. The learning rate for the first 10,000 steps is fixed to 0.01639

and the rest steps follow a square root decay schedule.640

During the inference for retrieval key, query embeddings and residuals, we ensured every token has641

at least 64 preceding context by adopting a sliding window strategy, where a window of 256 token642

slides from the beginning to the end on each of the articles, with a stride of 256− 64 = 192.643

2https://keras.io/api/applications/mobilenet/
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For residuals, we only stored the top 128 residuals measured by the absolute magnitude, as the644

residual vector is as large as T5 vocabulary size (i.e., 32128), and storing all 32128 residuals for each645

token is too demanding for storage. However, when weight-combining the residuals, we zero filled646

the missing residuals so that all the residual vectors have 32128 elements.647
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