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A Some concentration results for uniform random variables

In this section, we state some concentration results that are useful for the theoretical analysis in

. ~ iid.y . . . e
Sectlon Let T, &q,..., &, ~~ Unif(B, \/m) be i.i.d. samples from the uniform distribution over
the Euclidean norm ball of radius v/d + 2 in R?. Let

Zo= min |F-a|? (1n
xe{x1,x2,...,n }

If n = 1, EZ; is the sum of the variance of each coordinate of Unif(3; /z73). Therefore, EZ,
provides a generalized measure of concentration. Intuitively, EZ,, — 0 as n — oo. The proposition
below provides a upper bound on the rate of convergence.

Lemma A.1 (Nearest Neighbor concentration). Given the assumptions above

1/d
1 1/d
EZ, < d? [CW)] , (12)
n
where < means inequality up to an universal constant independent of d and n.
Proof. Define
& =1{7, <6},
1 ={Z, < 6%} ) 13)
& ={d<vd+2—|=z|}
We will compute two probabilities P(E; |E2) and P(E;) that will be useful latter.
P(ES|1E) = P(Z, > 6%|E2) = P(||& — ;]| > 6, Vil&s),
= EzP(|Z — x| > 6|6, ®)" = Bz(1 - P(|2 — | < 6|6, 2))",
Vol(Bzs) | ( 5 )d
=Ez |1- ’ =|1- ) 14
* Vol(By /a73) Vd+2 (14)

5 d
<e N | ——
=P [ (\/d T 2>

Next, we compute P(E3)

\ﬁd+25>d(l 5 )d 15)
Vid+2 Va+2)
We use £; and &, to compute the following upper bound
EZ, = E(Zn|(€1 n gQ)P(gl N 52) + E(Zn|(€1 n 52)°)P((51 N 52)0),
<+ (2Vd+2)2(1-P(&NE)), (16)
=02+ 4(d+2)[1 - P(&1]E)P(E)] .-

P(Ex) = P(I] < VT2 -0) = (

To find an upper bound for EZ,,, we need to find an upper bound for 1 — P(&;|E2)P(Es).
1 —P(&[E)P(E) =1 - [1 - P(E7(E)] P(E2),
=1-P(&) + P(E7|E6)P(Es), a7
<1-P(&) +P(&L]E).

Now choose § = /d + 2n~1/4 [log (nl/d)] 1/d‘

d
P(&F|E2) < exp ln <5) = exp [fmfl log (nl/d)} =n Y4, (18)

Vd+2

14
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544

545

546

547

548

549

and

B ) ¢ o ~1/d 1/a\1Y4
P(EQ)_<1—d+2> > 1= = 1= flog ()] )

Thus
1-P(&|&)P(E) <1—1+dn~1/d [log (nl/d)} e +n 4 < dp~1/d [log (nl/d)] Ve . (20)

Combining everything together, we get

EZ, < (d+2)n~2/" [log (n” d)] M A(d+2) x dn [1og (nl/d)] v

1/d

< d2p1/d {log (nl/d)} ’ o
1/d
_ 2 log (nl/d)
— .
This completes the proof. O

Proposition A.2 ([47] Corollary 6.20). Ler x; i'iw'd'Unif(B'O’\/m) fori =1,...,n be uniformly
distributed over a ball of radius B in R? centered at 0. Let

1 n
3, =— g mi:ciT
n -
1=1

be the sample covariance matrix. Then

2

ne
P(|S, — I, <2 -t
(120 = Tl > €) < 2dexp |~ 55—
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sso. B Proof of Theorem

s51  In this section, we present the proof of Theorem [3.3] In Section [B.T] we provide the detail of the
552 decomposition of the risk into 7% and T%. Then in Section[B.2]we compute an upper bound for 77,
553 and compute an upper bound for 75 in Section Finally, we combine everything together in
554 Section and completes the proof.

555 B.1 Decomposition of the test risk

[reten (@) - £.(@ | =Elfa(@) + (@) - L@,

— fu(@) = fu(Z)) + fo(Z() )] )

— foo @) + foo @) = [u(@) = fu(@1)) + foo (@) — foo(T 1))+f*($(1))} )

X [E(fu(®) = foo (@) + E(fu(@(1)) = foo(@(1))* + E(foo (@) = fu(@) — [ (@1)) + f2(Z (1)),

Ty T>

(22)
ss6  where in the last inequality, we used the fact that (a + b + ¢)? < 3(a® + b? + ¢?) for any a, b, c € R.

s57 B.2 Upper bound on 73.

ss8  Since P, = Unif(Bo, 5 ), we apply the bound || ||, ||z (1)|| < B to obtain

= E[fn(®) — foo(@)* + E[fn(T(1)) — foo(@1)))?,
=E(0, — 0, Z)* + E(0,, — 0, Z(1))°,

<E|0, — 0|’ | 2] + E[|6, — O [[|Z 1) 1%,

< 2B%E||6,, — 0|

(23)

559 As n gets large, the empirical covariance matrix 3,, = X T X /n is concentrated around its mean
seo I.Let A,, = I — 3, denote this deviation. For some ¢ € (0, 1), define the following “good event”
s61 over the randomness in 3,

A= {”AnHop < g—:}, 24

sz where ||A,||op denotes the operator norm of the deviation matrix. The high level idea of the proof is
s63  to condition on the event A and deduce and upper bound of ||6,, — O ]| in terms of €. Then, we use
se4 the fact that A happens with high probability.

s65 Recall that 8., = LO,, and

1
0,, = argmin —|| X6 — y|*. (25)
lej<c ™

se6 Since y = X 0, by definition, the Lagrangian of the convex program above is

1
L£(0,)) = ﬁ||X9—X9*H2+)\(||0||2 —L). (26)

s67  The KKT condition suggests that the primal-dual optimal pair (6,,, \,,) is given by

[6n]l < L,
An 20, (27)
/\n(”0n|| - L) =0,

ses and at optimality

2
L£(0,,0,) =0 < =“XTX(0-6,)+2)\,0 =0,
Vo Ll( ) i ( )+ 28)

= 0,=(Z,+\I)"'%,06..
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seo  The complementary slackness condition A, (||0,,|| — L) = 0 suggests that either \,, = 0 or ||0,,|| = L.
s70 Butif \,, = 0, the stationary condition Vo£(0,\) = 0 would suggest that §,, = ¥ '%,0, =
st 0, = ||0,|| =1 > L, a contradiction. (Note that here X,, is invertible condition on the event .A.)

(29)

572 Therefore, we must have ||0,,|| = L. As a result, the primal and dual pair (0,,, A,,) is determined by
573 the system of equations

0, =(Z,+\1)"1%,0,,

16.] =L,

An > 0.

574 Next, we proceed to compute the deviation ||0,, — 0]

0, = [\ +1DI—A,"'%,0,,

- A _1
=M\, + 17T - ° 3,.0.,
A+ D77 )\n—i—l}
S BN\
=(An+1) I*Zm (I —Ay)0,,
L k=1
i e Ak e Akt
= O+ 1) T e S NS . M.
(n+1) +;()\n+1)k kz:l(/\n+1)k

575  Define

576 Then @, = (\, +1)710, + (\, +1)7'D,,0,, and

AL + ||An||k]
1+ : ;
k=1 (An +1)

1+2(1+An)‘1§: <1+5An>k] :

=1

[ Dyl < [|A]l

<e

577 Therefore
L=6,]7= M\ +1)"2+ (N, +1)7%0] D, D,,0, +2()\, +1)"26,D,,0.,
=\, +1)’L*=1+6,, 5, =6!D]D,6, +20] D,0,.
578 We can obtain the following bound for §,,:

|| < [10u[1* [ Dnl|* + 2[4 ]| Dl < 92 + 6 < 15e.

579 Since 1 — 0, /2 < 1+, <1+ 4,/2,and |6,| < 15, we obtain

15 15 15
(On+DL=11< =5 = L= O+ )7 £ 200 +1)71 < =5,
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sso where the last inequality follows as we have A,, > 0. Finally,

an - 000 = (>\n + 1)_10* - Lo, + ()\n + 1)_1Dn0*7
=160, — 0| =[1+ X)) ' =L+ (1+X,)%6,D' D6, +2(\, + 1) (1 +\,) "' - L]6,D,6,,
< 642 + 9e2 4 45e2 = 11862,

= 6, — 0..]* < 2 6

ss1  Combine the above result with Proposition[A.2] we get that

E[[6, — 0coll” = E(|0, — 0o ||| A)P(A) + E(]|6,, — 00| *[A°)P(A°),
o e (37
<e“4+4L° x 4dexp —2(d+2)(1+€) ,

~1/3

ss2  If we choose ¢ = n , we get

E[0, — 0 < dL*n /3, (38)

583 which implies that
Ty < d?L*n =2/, (39)

ss4 B.3 Upper bound on 75.
585 Plugging in the formula for f| (Z) = f.(T) — foo(T) = (X,0 ), we get

T, =E[fL(zq)) — fL(@)],
—E(01,F0) - 7%,

. (40)
< (1= L0, ]”EllZ — &)1,

= (1 - L)’Ellz — &),

ss6  where in the last inequality, we used the relation that 8, = (1 — L)0,. Proposition suggests that

1/d
1 1/d
E|& - & < ¢ log(") , (1)
n
s87 which implies
1/d
1 1/d
Ty < d2(1 - L)? [Og(”)] . (42)
n

s88 Remark B.1 (Comparison with pure nearest neighbor and ERM). If we rely solely on nearest neighbor
s89 method, the prediction error is

Elf. (@) — fo(@1)]* = E@ — (1), 0.)° < E[|T — Tq)|* (43)

590 On the other hand, if we solely rely on ERM, even with infinite sample, we get

E[fo(Z) — fo(2)]? = E(Z, 0, — 0)> < (1 — L)*E||Z|*. (44)

591 We can see from the upper bound that ResMem takes advantage of both

592 * Projecting f, onto f., so that the dependence on the prediction function is reduced from 1
593 to (1 — L)2.

594  Memorizing the residuals using nearest neighbor, so that the variance is reduced from E||Z||?
595 to E||Z (1) — x|

18



so6 B.4 Test loss for ResMem.
s97 If we combine the previous two parts together, we get

1/d
log (nl/d)] 43)

E[f@ - £.@)] @y a2 o2 |20

s98 This completes the proof of Theorem 3.3
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C Additional CIFAR100 Results

This section includes additional experiment results on applying ResMem to CIFAR100 dataset.

C.1 Additional robustness results

In addition to the results already presented in Section 4.2} we also evaluate ResMem performance for
each architecture in CIFAR-ResNet{8, 14, 20, 32, 44, 56} and each subset (10%, 20%, ..., 100%) of
CIFAR100 training data. We use the same training hyperparameter and the ResMem hyperparameter
as described in Section [f.2] Generally, we see that ResMem yields larger improvement over the
baseline DeepNet when the network is small and dataset is large.

0.60 Ot 1.00 Q) 8 8 1.00 Pty
ol 065 24 8
O o000 | 2095 $ 2 e
3055 o ©0.90 oy & £09
8 ¥ 3 5 3060 g 5
§ 0.50 8 ¢ g 0.85 0~ DeepNet § 055 ¢§ $0.90 0, o~ DeepNet
® 20801 ¢— ResMem @ q =) 9= ResMem
2 0.45 § £o7s 4 0.50 £os85 o
& 4~ DeepNet T 0.70 o e 0,45 o~ DeepNet s Op.
040 o~ ResMem | " 065 e SN o= ResMem | " 080 A SN
¢ o Olbg 0.40{ ¢ ¢
90 o g o g g Jb e g o A R g0 g g o g g g e g oo e R
R S R RN N R S I S R DAL P AP LS DAL S LA P S P
Percentage of CIFAR100 used Percentage of CIFAR100 used Percentage of CIFAR100 used Percentage of CIFAR100 used
(a) CIFAR-ResNet-8 (b) CIFAR-ResNet-14
0.70 . = 1.000 | §——0—0——0—0—0—0—0 e 100 f=g—0—0—0—0—0—0—0—0
g 8 20.975 0.70 o 5 N
>0.65 & 9, >0.65 ¢ £ 0.98
3 o 3 e
Co60 9 3 0050 o o 2 o
§ : ) 20.925 0. 0 ¢~ DeepNet § 0.60 & o 0.96 .
8 0.55 p 20.900 ¢~ ResMem Bos5 P 20.94 o
$ 050 <€ 0875 o 8 050 £ 0.
= ¢~ DeepNet © 0. o = ¢~ DeepNet ©0.92 ¢~ DeepNet
0.45 ¢~ ResMem = o850 o o 0.45 o~ ResMem = ¢~ ResMem "
¢ 0.825 o ¢ 0.90 ¢
g0 g g b S db d e o S g0 g gb oo db do db do e S g0 g g b S db de e e S go g g b S db de e e S
R S R RN S R M S R R RN XY R S R I S R
Percentage of CIFAR100 used Percentage of CIFAR100 used Percentage of CIFAR100 used Percentage of CIFAR100 used
(¢) CIFAR-ResNet-20 (d) CIFAR-ResNet-32
1.00] Ff—0—0—0—0—0—0—0—0 075 r) L S T e )
=00 $ o0
0.70 o 2099 0 0.70 pa— > A
& 2 I o ©0.99
8065 v Soos " Soes 1S £ 0
g 3 e 3
§u.5a ¢ 90097 0 §osu o 3098
Soss 13 2096 9. Soss ¢ 2 O,
7 £ 2 So.97
F0.50 ¢~ DeepNet 'r_E 0951 DeepNet ¢ 2050 ¢~ DeepNet 'r_E ¢~ DeepNet 0,
0.45 ¢~ ResMem 0.941 4~ ResMem e 0.45 = ResMem 0961 4~ ResMem
¢ 0.93 ¢ ¢ 9
g0 b b oo g g Jo b S o A B A R L
ST S S S ST TS S S ST TS S S ST TS S

Percentage of CIFAR100 used

(e) CIFAR-ResNet-44

Percentage of CIFAR100 used

Percentage of CIFAR100 used

Percentage of CIFAI

(f) CIFAR-ResNet-56

Figure 4: Test(left)/Training (right) accuracy for different sample sizes.

C.2 Sensitivity analysis for CIFAR100
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Figure 5: Sensitivity analysis of ResMem hyperparameters. The y-axis represents the CIFAR100
test accuracies, and the x-axis represents the sweeping of respective hyperparameters.
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Varying locality parameter k and c. We vary the number of neighbours from k£ = 27 to & = 500.
We find that ResMem test accuracy is relatively stable across the choice of the number of neighbours
(cf. Figure [5(a)). The trend of the curve suggests that as k — oo, the ResMem test accuracy seems to
be converging to a constant level. For o, we explored different values of o € (0.1,2.0). We observe
that the test accuracy has a unimodal shape as a function of o, suggesting that there is an optimal
choice of o (cf. Figure[5(b)).

Varying temperature 7" and connection to distillation. We tried 7" = 0.1 to T" = 5, and also
identified an unimodal shape for the test accuracy (Figure[5(c)). The fact that we can use different
temperatures for (a) training the network and (b) constructing the k-NN predictor reminds us of the
well-established knowledge distillation procedure [28]. In knowledge distillation, we first use one
model (the teacher network) to generate targets at a higher temperature, and then train a second model
(the student network) using the combination of the true labels and the output of the first network.

ResMem operates in a reversed direction: Here we have a second model (kNN) that learns the
difference between true labels and the output of the first model. In both cases, we can tune the
temperature of the first model to control how much information is retained. This connection offers an
alternative perspective that regards ResMem as a “dual procedure” to knowledge distillation.

D ResMem on ImageNet
This section includes additional experiment results on applying ResMem to ImageNet dataset.

ImageNet. In addition to CIFAR100, we also evaluate the performance of ResMem on Ima-
geNet [42]. We employ a family of pre-trained MobileNet-V2 models [44] from Kera with
varying widths controlled by a multiplier a. For ResMem, we again use the second last layer of
DeepNet as a 1280-dimensional embedding of an image and rely on the /5 distance between the
embeddings for nearest neighbor search (Step 3, Section[f.1). We specify the ResMem parameter of
(k,o,T) in the table below. We repeat the experiment over several MobileNet-V2 architectures, with
MobileNet-V2-a0.35 being the smallest model and MobileNet-V2-al.3 being the largest one.

Table 1: Test accuracy for ResMem and baseline deep network for ImageNet data.

ResMem param. Test accuracy
k o T DeepNet ResMem

MobileNet-V2-a0.35 10 0.6 04 60.2% 61.2%
MobileNet-V2-a0.5 10 0.6 04 65.3% 66.1%
MobileNet-V2-a0.75 10 0.8 0.6 69.6% 70.1%
MobileNet-V2-a1.0 20 04 04 71.3% 71.8%
MobileNet-V2-al.3 30 04 04 74.7% 75.1%

Architecture

We can see that (c.f. Table[l) ResMem boosts the test accuracy by 1% on the smallest model and by
0.4% on the largest model.

E Additional details of NLP experiments

The Decoder-Only model used in our experiments is essentially the normal Encoder-Decoder archi-
tecture with Encoder and Cross-Attention removed. We pretrained both the T5-small and T5-base
model on C4 [41] dataset with auto-regressive language modeling task for 1,000,000 steps, with
dropout rate of 0.1 and batch size of 128. The learning rate for the first 10,000 steps is fixed to 0.01
and the rest steps follow a square root decay schedule.

During the inference for retrieval key, query embeddings and residuals, we ensured every token has
at least 64 preceding context by adopting a sliding window strategy, where a window of 256 token
slides from the beginning to the end on each of the articles, with a stride of 256 — 64 = 192.

*https://keras.io/api/applications/mobilenet/
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644
645
646
647

For residuals, we only stored the top 128 residuals measured by the absolute magnitude, as the
residual vector is as large as TS vocabulary size (i.e., 32128), and storing all 32128 residuals for each
token is too demanding for storage. However, when weight-combining the residuals, we zero filled
the missing residuals so that all the residual vectors have 32128 elements.
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