Published as a conference paper at ICLR 2024

TEMPORAL GENERALIZATION ESTIMATION IN
EVOLVING GRAPHS

Bin Lu!, Tingyan Ma', Xiaoying Gan', Xinbing Wang'

Yungiang Zhu?, Chenghu Zhou?, Shiyu Liang>*

!Department of Electronic Engineering, Shanghai Jiao Tong University

?Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences
3John Hopcroft Center for Computer Science, Shanghai Jiao Tong University

{robinlul209, xiaockeaiyan, ganxiaoying, xwang8}@sjtu.edu.cn

{zhuyqg, zhouch}@igsnrr.ac.cn, 1lsy18602808513@sjtu.edu.cn

ABSTRACT

Graph Neural Networks (GNNs) are widely deployed in vast fields, but they often
struggle to maintain accurate representations as graphs evolve. We theoretically
establish a lower bound, proving that under mild conditions, representation dis-
tortion inevitably occurs over time. To estimate the temporal distortion without
human annotation after deployment, one naive approach is to pre-train a recur-
rent model (e.g., RNN) before deployment and use this model afterwards, but the
estimation is far from satisfactory. In this paper, we analyze the representation
distortion from an information theory perspective, and attribute it primarily to in-
accurate feature extraction during evolution. Consequently, we introduce SMART,
a straightforward and effective baseline enhanced by an adaptive feature extractor
through self-supervised graph reconstruction. In synthetic random graphs, we fur-
ther refine the former lower bound to show the inevitable distortion over time and
empirically observe that SMART achieves good estimation performance. More-
over, we observe that SMART consistently shows outstanding generalization esti-
mation on four real-world evolving graphs. The ablation studies underscore the
necessity of graph reconstruction. For example, on OGB-arXiv dataset, the esti-
mation metric MAPE deteriorates from 2.19% to 8.00% without reconstruction.

1 INTRODUCTION

The rapid rising of Graph Neural Networks (GNN) leads to widely deployment in various applica-
tions, e.g. social network, smart cities, drug discovery (Yang & Han, 2023} Lu et al.|[2022; [Xu et al.,
2023)). However, recent studies have uncovered a notable challenge: as the distribution of the graph
shifts continuously after deployment, GNNs may suffer from the representation distortion over time,
which further leads to continuing performance degradation (Liang et al., [2018; Wu et al.| 2022 |Lu
et al., |2023)), as shown in Figure (1| This distribution shift may come from the continuous addition
of nodes and edges, changes in network structure or the introduction of new features. This issue
becomes particularly salient in applications where the graph evolves rapidly over time.

60000
Consequently, a practical and urgent need is to monitor the 035 —— Accuracy

representation distortion of GNN. An obvious method is to #hode e
regularly label and test online data. However, constant human 030
annotation is difficult to withstand the rapidly ever-growing
evolution of graph after deployment. Therefore, how to proac-
tively estimate the temporal generalization performance with-
out annotation after deployment is a challenging problem.

40000
30000
0.25 20000

10000
0.20

1985 1990 1995 2000 2005 2010 2015O
To solve this problem, a naive way is to collect the generaliza- vear
tion changes through partially-observed labels before deploy-
ment, and train a recurrent neural network (RNN) (Mikolov

et al.,2010) in a supervised manner. However, existing stud-

Figure 1: GNN performance con-
tinues to decline with the rapid
growth over 30 years.

*Correspondence to: Shiyu Liang (Isy18602808513 @sjtu.edu.cn)

Published as a conference paper at ICLR 2024

ies (Li et al. 2018} [Pareja et al., |2020) have shown that RNN itself have insufficient representa-
tion power, thereby usually concatenating a well-designed feature extractor. Unluckily, the rep-
resentation distortion of static feature extractor still suffers during evolution. Other methods con-
sider measuring the distribution distance between training and testing data through average con-
fidence (Guillory et al., [2021)), representation distance Deng & Zheng| (2021) and conformal test
martingales (Vovk et al.| 2021). However, these methods do not directly estimate generalization
performance. Meanwhile, graph evolution can be very fast and the evolving graphs are usually
very different from their initial states. Hence, to deal with this problem, we propose SMART (Self-
supervised teMporAl geneRalization esTimation). Since it is hard to gather label information in a
rapid graph evolution after deployment, our SMART resorts to an adaptive feature extractor through
self-supervised graph feature and structure reconstruction, eliminating the information gap due to
the evolving distribution drift.

‘We summarize the main contributions as follows:

* We theoretically prove the representation distortion is unavoidable during evolution. We con-
sider a single-layer GCN with Leaky ReLU activation function and establish a lower bound of
distortion, which indicates it is strictly increasing under mild conditions. (see Section|2.3)

* We propose a straightforward and effective baseline SMART for this underexplored problem,
which is enhanced with self-supervised graph reconstruction to minimize the information loss in
estimating the generalization performance in evolving graphs. (see Section[3)

* Under a synthetic Barabasi—Albert random graph setting, we refine the lower bound to derive
a closed-form generalization error of GNN on whole graph after deployment, and our SMART
achieves a satisfied prediction performance. (see Section 4]

* We conduct extensive experiments on four real-world evolving graphs and our SMART consis-
tently shows outstanding performance on different backbones and time spans. The ablation stud-
ies indicate the augmented graph reconstruction is of vital importance, e.g., our method reduces
the MAPE from 8.00% to 2.19% on OGB-arXiv citation graphs. (see Section [3))

2 PRELIMINARY

2.1 NOTATIONS

Graph. Let X € R™*? denote the feature matrix where each row x; € R? of the matrix X denotes
the feature vector of the node ¢ in the graph. Let ¥ € R™ denote the label matrix where each
element y; € R of the matrix Y denotes the label of the node . Let A € {0,1}"*™ denote the
adjacency matrix where the element a;; = 1 denotes the existence of an edge between node ¢ and

J, while a;; = 0 denotes the absence of an edge. Let A = A+ I denote the self-looped adjacency
matrix, while the diagonal matrix D=1+ Diag(dy, ..., d,) denotes the self-looped degree matrix,
where d; = > ki A;; denotes the degree of node 7. Let L = D~1 A denote a standard normalized
self-looped adjacency matrix (Perozzi et al.|[2014).

Graph Evolution Process. We use G; = (A4, Xy, Y;) to denote the graph at time ¢. We consider
an ever-growing evolution process G = (G; : t € N), where N denotes set of all natural numbers.
We use n; to denote the number of nodes in the graph G;. We use the conditional probability
P (G¢|Go, ---, Gi—1) to denote the underlying transition probability of the graph state G; at time ¢
conditioned on the history state Gy, ..., G;_1.

2.2 PROBLEM FORMULATION

As shown in Figure E], before the deployment at time Zgeploy, We are given with a pre-trained graph
neural network G that outputs a label for each node in the graph, based on the graph adjacency
matrix Ay € {0,1}™*"* and feature matrix X;, € R™*? at each time k. Additionally, we are
given an observation set D = {(Ag, Xy, HiYy)}:_,, consisting of (1) a series of fully observed
graph adjacency matrices Ay, - -+ , A; and node feature matrices X, - -- , X;; (2) a series of par-
tially observed label vectors HyYj, - - - , H;Y:, where each observation matrix Hy, € {0, 1} is
diagonal. Specifically, the diagonal element on the i-th row in matrix Hy, is non-zero if and only if
the label of the node i is observed.

Published as a conference paper at ICLR 2024

Before Deployment t4ey10y After Deployment

At each time 7 after deployment

at time fgeploy, W€ aim to predict

the expected temporal generaliza-

tion performance of the model G O%j @g

on the state G, = (A, X,,Y,),

i.e., predicting the generalization] structure [Feature [Label partia)
etror E[((G(Ar, X;),Y:)|Ar X,

given a full observation on the ad-

jacency matrix A, and feature ma- Figure 2: Illustration for generalization estimation.

trix X,. Obviously, the problem

is not hard if we have a sufficient amount of labeled samples drawn from the distribution
P(Y-|Go,-.-sGr—1,Ar, X;). However, it is costly to obtain the human annotation on the constant
portion of the whole graph after deployment, especially many real-world graphs grow exponentially
fast. Therefore, the problem arises if we try to design a post-deployment testing performance pre-
dictor M without further human annotations after deployment. More precisely, we try to ensure
that the accumulated performance prediction error is small within a period of length T" — #4epioy after
deployment time Zgeploy, Where the accumulated performance prediction error is defined as

time

[structure [#] Feature [¥] Label

T
EMG) L2 Eany | Y. (MALX,)—UG(A, X,),Y2))? (1)

T=tdeploy +1

where the random matrix sequence A = (Ay, 11, ---» A7), sequence X' = (X, +1, -, X7) and
sequence Y = (Yi,,,,+1, - Y7) contain all adjacency matrices, all feature matrices and all label
vectors from time fgeploy + 1 to 1" separately.

2.3 UNAVOIDABLE REPRESENTATION DISTORTION AS GRAPH EVOLVES

One may ask, then, what impact the pre-trained graph neural network may have on the node rep-
resentation over time? In this subsection, we show that as the graph evolves, the distortion of
representation is unavoidable, which might further lead to potential performance damage.

First, as shown in Figure [3] we plot the performance variation
on the OGB-arXiv dataset (Hu et al., 2020a) with 30 different
GNN checkpoints. We observe that GNN prediction perfor-
mance continues to deteriorate over time. Additionally, we
prove that the representation distortion strictly increasing with
probability one. Before presenting the results, we first present
the following several assumptions.

Prediction Loss

Assumption 1 (Graph Evolution Process). The initial graph
Go = (Ao, Xo, Yo) has n nodes. (1) We assume that the feature
matrix X is drawn from a continuous probability distribution
supported on R"*%. (2) At each time t in the process, a new
node indexed by n + t appears in the graph. We assume that
this node connects with each node in the existing graph with a
positive probability and that edges in the graph do not vanish
in the process. (3) We assume that the feature vector x,yy
has a zero mean conditioned on all previous graph states, i.e.,
E[zn+t|Go, ..., Gt—1] = 0q forall t > 1.

Remark 1. Assumption [I]states the following: (1) For any given subspace in the continuous prob-
ability distribution, the probability that X appears is zero. (2) The ever-growing graph assump-
tion is common in both random graph analysis, like the Barabdsi-Albert graph (Albert & Barabasi,
2002), and real-world scenarios. For example, in a citation network, a paper may have a citation
relationships with other papers in the network, and this relationships will not disappear over time.
Similarly, the purchasing relationships between users and products in e-commerce trading networks
are the same. (3) The zero-mean assumption always holds, as it is a convention in deep learning to
normalize the features.

Timestep

Figure 3: Test loss changes over
time of 30 pre-trained GNN check-
points on OGB-arXiv dataset.

In this subsection, we consider the pre-trained graph model as a single-layer GCN with Leaky ReLU
activation function parameterized as 6. The optimal parameters for the model are 6*. However, due

Published as a conference paper at ICLR 2024

to the stochastic gradient descent in optimization and quantization of models, we always obtain a
sub-optimal parameter drawn from a uniform distribution U (6*, £). We define the expected distor-
tion of the model output on node ¢ at time ¢ as the expected difference between the model output at

time ¢ and time zero on the node i, i.e., £¢ (i) = Eg g, ||f:(4;6) — fo(4; 9)|2} .

Theorem 1. If 0 is the vectorization of the parameter set {(a;, W;, bj)}évzl

0; is drawn from the uniform distribution U (0}, &) centering at the i-th coordinate of the vector 6,
the expected deviation £ (i) of the perturbed GCN model at the time T > 0 on the node i € {1, ...,n}
is lower bounded by

and its i-th coordinate

2

2¢4 2
£0) 2 0.) & TSR (dl. - li)> > @
k

T(l) dO(ENo (i))

where the set Ny(i) denotes the neighborhood set of the node i at time 0, 3 is is the slope ratio for
negative values in Leaky ReLU. Additionally, ¢ (i) is strictly increasing with respect to 7 > 1.

Remark 2. Proofs of Theorem |l can be found in Appendix [Bl This theorem shows that for any
node i, the expected distortion of the model output is strictly increasing over time, especially when
the width NV of the model is quite large in the current era of large models. Note that the continuous
probability distribution and the ever-growing assumption in Assumption[I]are necessary. Otherwise,

2
HZ KEN, (i) Tk H2 might be zero for some choice of X, which would lead to the lower bound being

zero for all 7 and further indicate that the lower bound is not strictly increasing.

3 METHODOLOGY

3.1 A NAIVE WAY OF ESTIMATING GENERALIZATION LOSS

Before deployment, we are given an observation set D = {(Ag, Xy, H kYk)}f:jay. Now, we want
to construct a temporal generalization loss estimator that takes the adjacency matrices and feature
matrices as its input and predicts the difference between the outputs of the graph neural network G
and the observed true labels at time k, i.e., £y, = ¢ (HpG(Ag, X&), HpYx)-

In order to capture the temporal variation, we adopt a recurrent neural network-based model
M(+;0rNN) to estimate generalization loss in the future. The RNN model sequentially takes the
output of the GNN G(Ag, Xj) as its input and outputs the estimation /), at time k. To enhance
the representation power of RNN, we usually add a non-linear feature extractor ¢ to capture the
principal features in the inputs and the RNN model becomes

ék’ — Mé (wOG(AkanLhk—l)
hu, My (9o G(Ag, Xi), he—1) |’

where hy, denotes the hidden state in the RNN, transferring the historical information. During train-
ing, we are trying to find the optimal model M*, ¢* such that the following empirical risk mini-
mization problem is solved,

t(leploy

(M*,(p*) = argﬁ\n/lig Z ||Me ((p o G(Ak,Xk)Jlk,l) — f(H}CG(Ak,Xk),HkYk) ||2
7 k=0

After deployment time #gepioy, @ Naive and straightforward way of using the generalization loss es-
timator is directly applying the model on the graph sequence (G, : T > tgeploy). This results in a
population loss prediction error £, at time 7 given by

E-(M*,9") = E| M (9" 0 G(Ak, Xi), hi—1) — € (G(Ar, X), V) |I.

Before deployment, however, we are not able to get sufficient training frames. This indicates ¢* may
only have good feature extraction performance on graphs similar to the first several graphs. After
deployment, the graphs undergo significant changes, and thereby have unavoidable representation
distortion, which makes the generalization estimator perform worse and worse.

Published as a conference paper at ICLR 2024

3.2 INFORMATION LOSS BY REPRESENTATION DISTORTIONS

To further investigate this problem, let us consider the information loss within the input graph series
and the output prediction after the GNN is deployed,

Information Loss = I({(A,, XT)}’ﬁ:tdeploerh D; ly) — I(ly; r),

where I(U; V') is the mutual information of two random variables U and V. The learning process is
equivalent to minimizing the above information loss. Furthermore, it can be divided into two parts:

Information Loss = I({¢ o G(4-, X;) ’j:tdcm“, D; b)) — I(Ly; r)
@ Information Loss Induced by RNN (2)
+I{G(Ar, X) ot i1 D) = I({0 0 G(Ar, Xo) Yoy, 1, D).

@ Information Loss Induced by Representation Distortion

Information Loss Induced by RNN. The first part is induced by the insufficient representation
power of the RNN. Specifically, 0}, is a function of the current state and the hidden state vector
hy_1. Here, there exists information loss if h;_; cannot fully capture all the historical information.
However, this is usually inevitable due to the insufficient representation power of the RNN, limited
RNN hidden dimension, and inadequate training data.

Information Loss Induced by Reprentation Distortion. The second part indicates the informa-
tion loss by the representation distortion of . Especially as the graph continues to evolve over
time, the information loss correspondingly increases due to the distribution shift. According to the
data-processing inequality (Beaudry & Renner, [2012)) in information theory, post-processing cannot
increase information. Therefore, the second part of Equation [2holds for any time 7,

I({G(A‘Fv XT)}];:tdcph,ﬁlv D; gk) - I({QO o G(A‘Fa XT) I::tdcp](,erlv D§ gk) > 0.

The equality holds if and only if ¢ o G(A,, X;) is a one-to-one mapping with G(A,, X;). To
minimize the information loss and achieve equality, we have to choose a bijective mapping , which
further indicates ming > _E||G(A,, X;) — ¢ o p o G(A;, X;)||3 = 0. Therefore, to minimize the
information loss, it is equivalent to solve the graph representation reconstruction problem. In the
next subsection, we propose a reconstruction algorithm to update feature extractor and adapt to the
significant graph distribution shift after deployment.

3.3 SMART: SELF-SUPERVISED TEMPORAL GENERALIZATION ESTIMATION

In this section, we present our method, SMART, for generalization estimation in evolving graph as
shown in Figure @ After deployment, since there are no human-annotated label, we design the
augmented graph reconstruction to obtain self-supervised signals to finetune the adaptive feature
extractor ¢ at post-deployment time, thereby reducing the information loss during the dynamic
graph evolution. Compared with directly graph reconstruction, our method generates more views
through data augmentation, which can learn more principal and robust representations.

Post-deployment Graph Reconstruction. Given the pre-trained graph model GG and evolving graph
(Ag, Xi) at time k, we first obtain the feature embedding matrix O = G(Ag, Xi). In order to
capture the evolution property of graphs, we define two reconstruction loss on augmented feature
graph, which is denoted as (7 (Ay), O), where T (+) is the structure transformation function, i.e.
randomly add or drop edges (You et al., 2020; Rong et al.}[2020; [Liu et al.| [2023).

¢ Structure Reconstruction Loss £,. First of all, we define the structure reconstruction loss
L. Given the augmented feature graph (7 (Ax),Oy), we perform reconstruction on adja-

cency matrix Ag. Specifically, it computes the reconstructed adjacency matrix Ay, by A, =
o(FFl), Fy, = o(T (Ag), Oy), where Fy, € RV*B g is the sigmoid activation function. Here
we utilize one-layer graph attention network (GAT) as model ¢ (Velickovic et al, 2018)), and
it is optimized by binary cross entropy loss between Ay and Ay as a link prediction task, i.e.
Ls = Lyce(Ak, Ak).

Published as a conference paper at ICLR 2024

(\
| —O I
I Structure I
g‘rfl | \ \O «-— " 5 |
} OE)’O Reconstruction }
| I
I Yy I
ol .
I -
G* —Tv GNN i Feature Extractor ¢ H RNN M ; 4;
X
| T |
| |
|
I I
I I
| I
I I
| |
\]

| & !

O
Q?} Feature
L S
o"b,o O Reconstruction

O\
gr+1

...... SMART: Self-supervised TeMporAl geneRalization esTimation

Figure 4: Overview of our proposed SMART for generalization estimation in evolving graph.

* Feature Reconstruction Loss £ ;. Moreover, we perform the node-level feature reconstruction
on the corrupted adjacency matrix 7 (Ax). We utilize a single-layer decoder a to obtain the
reconstructed feature Oy, by Oy, = Fra”, Fy = (T (Ax), Ox), where a € RE*E, and it is
optimized by mean squared error loss £; = ||Oy — Oy||%.

To sum up, the reconstruction loss £, is the composition of structure reconstruction loss £, and
feature reconstruction loss Ly as

Ly(p) = ALs+ (1 =MLy, 3)
where) is the proportional weight ratio to balance two loss functions.

Pre-deployment Graph Reconstruction. We note here that, before deployment, we combine the
same graph reconstruction with the supervised learning to improve the performance of feature
extraction. Algorithm [I]in Appendix [A] outlines the pre-deployment warm-up training and post-
deployment finetuning process of SMART in detail.

4 A CLOSER LOOK AT BARABASI-ALBERT RANDOM GRAPH

To theoretically verify the effectiveness of SMART, we first consider the synthetic random graphs,
i.e., Barabdsi—Albert (BA) graph model, G = (G; : t € N) (Barabasi, 2009). Please refer to
Appendix [E|for the details.
Assumption 2 (Preferential Attachment Evolving Graphs). Here we consider a node regression
task. The initial graph Go has Ny nodes. (1) We assume the node feature matrix X}, is a Gaussian
random variable with N'(0,15), where I € RB. (2) The node label of each node i is generated by
Yi = d¢ Xym, a > 0, which is satisfied like node degree, closeness centrality coefficients, etc. (3) A
single-layer GCN f(G) = LXW is given as the pre-trained graph model G.
Theorem 2. [fat each time-slot t, the Barabdsi—-Albert random graph is grown by attaching one new
node with m edges that are preferentially attached to existing nodes with high degree. To quantify
the performance of GNN, the mean graph-level generalization relative error under the stationary
degree distribution Q) is determined by
t
No+t

where d is the degree of nodes. C = (Eqd®™')/(BEqd™") and d; is the degree of node v;.

&g =2m (C?Egd2*™* — 20Eqd *~* + Eqd ™),

Remark 3. Proofs of Theorem[2]can be found in the Appendix [C This theorem shows that when the
node scale Ny of initial graph Gy is quite large, the graph-level error loss is approximately linearly
related to time ¢ and continues to deteriorate.

To verify the above propositions, we generate a Barabasi—Albert (BA) scale-free model with the fol-
lowing setting: the initial scale of the graph is Ny = 1000, and the evolution period is 180 timesteps.
At each timestep, one vertex is added with m = 5 edges. The label of each node is the closeness
centrality coefficients. The historical training time period is only 9. As we derived in Theorem[2} the
actual graph-level generalization error approximates a linear growth pattern. Therefore, we consider
to compare SMART with linear regression model to estimate the generalization performance.

Does Linear Regression Model Work? We conduct experiments with 10 random seeds and present
the empirical results in Figure[5a] (1) Generalization error exhibits linear growth, consistent with our

Published as a conference paper at ICLR 2024

Table 1: Performance comparison on different Barabdsi—Albert graph setting. We use Mean Abso-
lute Percentage Error (MAPE) £ Standard Error to evaluate the estimation on different scenarios.

Barabasi—Albert (Vy = 1000) Dual Barabasi—Albert (Vg = 1000, m; = 1)
m=2 m=>5 m = 10 mo = 2 mg =5 mo = 10
Linear 79.2431 74.1083 82.1677 61.8048 67.6442 38.4884

SMART 7.1817:12350 4.2602:05316 9.1173:01331 7.9038:1.8008 3.8288+0.1706 1.9947+0.1682

o
n

| == Full Observation === Full Observation

Smart (Ours)
w/o Reconstruction

0 30 60 90 120 150 180 0 30 60 90 120 150 180 002 000 0.02
Timestep Timestep Reduction of Reconstruction Loss AL,

S
o
S

=== Partial Observation

N

~

[
%
S

Lincar Regression
Smart (Ours)

e
Iy
=3
w

PR

5
L]

y

o
=)

W
=)
=1
Finetuning Epoch

o
[
S

=)

o
=3
G

Prediction Improvement (%)

Pre-trained GNN Performance
f=]
5]

o
=)

Pre-trained GNN Performance

(a) Performance comparison with (b) Ablation study of removing (c) Prediction improvement during
Linear Regression and SMART. graph reconstruction in SMART. the graph reconstruction.

Figure 5: Experimental results of SMART and its variation on BA random graph.

theorem (the blue solid line). (2) Our SMART method performs significantly well in a long testing
period, with a mean prediction percentage error of 4.2602% and collapses into a roughly linear
model. (3) However, the linear regression model, based on the first 9-step partial observations (the
green solid line), exhibits extremely poor performance. Due to limited human annotation, partial
observations cannot accurately represent the performance degradation of the entire graph. We also
adjust parameters in the BA graph model and introduced dual BA graph model (Moshiri, [2018) for
further experiments (see Table[T). Our proposed SMART model effectively captures the evolutionary
characteristics across various settings and significantly outperforms the linear regression model.

Effectiveness of Graph Reconstruction. To further validate the effectiveness of graph reconstruc-
tion in SMART, we conduct following two experiments. (1) As shown in Figure [Sb| we remove the
graph reconstruction module and repeat the experiment with 10 random seeds. Due to the tempo-
ral distribution shift caused by the graph evolution, the generalization estimation shows significant
deviations and instability. (2) We track the intermediate results during post-deployment fine-tuning,
i.e. the reduction of reconstruction loss and prediction improvements. As depicted in Figure
in the early stage of reconstruction (scatter points in light color), the prediction performance opti-
mization is fluctuating. As the optimization continues (scatter points in dark color), the prediction
performance is effectively boosted and concentrated in the upper-right corner, with an average per-
formance improvement of 10%.

5 EXPERIMENTS ON REAL-WORLD EVOLVING GRAPHS

5.1 EXPERIMENT SETTINGS

Datasets. We use two citation datasets, a co-authorship network dataset and a series of social
network datasets for evaluation. The statstics and more details are provided in Appendix [OGB-
arXiv (Hu et al.}2020a): A citation network between arXiv papers of 40 subject areas, and we divide
the temporal evolution into 14 timesteps. DBLP (Galke et al., 2021): A citation network focused
on computer science. We divide the temporal evolution into 17 timesteps, and the task is to predict
6 venues. Pharmabio (Galke et al, [2021): A co-authorship graph, which records paper that share
common authors. We divide the graph into 30 timesteps, and predict 7 different journal categories.
Facebook 100 (Lim et al.l[2021)): A social network from Facebook of 5 different university: Penn,
Amberst, Reed, Johns Hopkins and Cornell. The task is to predict the reported gender.

Evaluation Metrics. To evaluate the performance, we adopt following metrics. (1) Mean Ab-
solute Percentage Error (MAPE) quantifies the average relative difference between the predicted

Published as a conference paper at ICLR 2024

generalization loss and the actual observed generalization loss, which is calculated as MAPE =

Tftldepmy ZZ:tdcph,y 41 tl[—r 21 % 100%. (2) Standard Error (SE) measures the variability of sample

mean and estimates how much the sample mean is likely to deviate from the true population mean,
which is calculated as SE = o /+/n, where o is the standard deviation, n is the number of samples.
In addition, we conduct the performance comparison on Root Mean Squared Error (RMSE) and
Mean Absolute Error (MAE), please refer to Appendix [G.1]

Experiment Configurations. We adopt the vanilla graph convolution network as the pre-trained
graph model G, which is trained on the initial timestep of the graph with 10% labeling. During
training, we only select the next 3 historical timesteps, where we randomly label 10% of the newly-
arrived nodes. The remaining timesteps are reserved for testing, where we have no observations of
the label. We run SMART and baselines 20 times with different random seeds.

5.2 EXPERIMENTAL RESULTS

Comparison with Baselines. In Table 2] we report the performance comparison with two exist-
ing baselines, linear regression and DoC (Guillory et al., 2021). Moreover, we compare SMART
with a supervised baseline, which requires new node labels and retrain the model on the new data
after deployment. We observed that SMART consistently outperforms the other two self-supervised
methods (linear regression and DoC) on different evaluation metrics, demonstrating the superior
temporal generalization estimation of our methods. On OGB-arXiv dataset, our SMART achieves
comparable performance with Supervised.

Table 2: Performance comparison on three academic network datasets and four GNN backbones.
We use MAPE = Standard Error to evaluate the estimation on different scenarios. The complete
experimental results can be found in Appendix

Dataset OGB-arXiv ({) DBLP ({) Pharmabio ({)
Backbone Linear DoC Supervised SMART Linear SMART Linear SMART
GCN 10.5224 9.5277+14857 2.1354x04501 2.1897x02211 | 16.4991 3.4992+0.1502 | 32.3653 1.3405+0.2674
GAT 12.3652 12.2138+1222 1.9027=+1.1513 3.1481x0.4079 | 17.6388 6.6459+13401 | 29.0404 1.2197=0.2241
GraphSage | 19.5480 20.5891:04553 1.6918:04556 5.2733:22635 | 23.7363 9.9651x1.4699 | 31.7033 3.1448:0.6875
TransConv | 14.9552 10.0999+0.1972 2.0473:0.5588 3.5275+1.1462 | 18.2188 6.4212+1.9358 | 31.8249 2.7357+1.1357

Estimation on Different Test Time Period. In Table 3] we demonstrate the performance of
SMART over time during the evolution of graphs in five social network datasets from Facebook
100. As the evolving pattern gradually deviates from the pre-trained model on the initial graph,
generalization estimation becomes more challenging. Consequently, the error in linear estimation
increases. However, our SMART method maintains overall stable prediction performance.

Table 3: Performance comparison on five social network datasets in Facebook 100. We divide the
test time T into 3 periods and evaluate the estimation performance separately.

Facebook 100 ‘ [Oa ﬂest/3] ‘ (ﬂest/sa 2,Ttest/3] ‘ (2ﬂesl/3a ﬂest]
| Linear SMART | Linear SMART | Linear SMART
Penn 1.9428 0.0193x00041 | 2.0432 0.6127:0.0307 | 2.7219 2.2745+0.0553
Ambherst 31.1095 1.4489+02450 | 49.2363 2.8280+0.9527 | 73.5709 4.3320+1.8799
Reed 55.6071 0.0453+0.0020 | 65.7536 0.0987:0.0078 | 73.6452 0.0318x0.0085
Johns Hopkins | 8.1043 0.5893x0.0491 | 10.2035 0.8607x0.1661 | 11.5206 0.9061=+0.2795
Cornell 4.5655 0.4663:0.0275 | 8.6622 1.0467:00817 | 12.3263 1.7311z0.1175

5.3 ABLATION STUDY

To verify the effectiveness of different modules in SMART, we conducted ablation studies on four
datasets with the following variants: (M1) w/o augmented graph reconstruction: Removing graph
reconstruction, using RNN only for estimation. (M2) w/o RNN: Replacing RNN with an MLP for
processing current step input. (M3) w/o structure or feature reconstruction: Removing either
structure or feature reconstruction, using the complementary method in post-deployment fine-tuning.

Published as a conference paper at ICLR 2024

I M1 : w/o augmented graph reconstruction M3a : w/o structure reconstruction Smart (Ours)
M2 : w/o RNN M3b : w/o feature reconstruction
OGB-arXiv DBLP 3 Pharmabio Cornell
10 6 S

1 3
FFREREE | R
- 1 1 Il

T T 1

MAPE (%)
W
H

==

0 0 0
M1 M2 M3aM3bOurs M1 M2 M3aM3bOurs M1 M2 M3aM3bOurs M1 M2 M3aM3bOurs

Figure 6: Ablation study on four representative evolving datasets.

(a) OGB-arXiv (b) DBLP (c) PharmaBio (d) Cornell
~ 4
= 5 2.0 1.5
m
% 4 1.5
R e e S
01 03 05 07 09 01 03 05 07 09 01 03 05 07 09 01 03 05 07 09
Loss ratio A Loss ratio A Loss ratio & Loss ratio A
(e) OGB-arXiv (f) DBLP (g) PharmaBio (h) Cornell
S 61 3
S 4 5.0
o 24
< 4 2.5
4 8 16 32 64 128 4 8 16 32 64 128 4 8 16 32 64 128 4 8 16 32 64 128
RNN Dimension RNN Dimension RNN Dimension RNN Dimension

Figure 7: Hyperparamter study on proportional weight ratio A and RNN input dimension.

As seen in Figure @ we make the following observations: (1) Comparing (M1) with our method,
augmented graph reconstruction significantly impacts accurate generalization estimation, particu-
larly evident in the OGB-arXiv and Pharmabio datasets, where the (M1) variant exhibits a substantial
performance gap. (2) In the case of (M2), generalization estimation based on historical multi-step
information improves prediction accuracy and stability. For instance, in the Cornell dataset, pre-
dictions using single-step information result in a larger standard error. (3) As shown by (M3a) and
(M3b), removing either of the reconstruction losses leads to a performance decrease in SMART.
Since evolving graphs display temporal drift in both structure and features, both graph augmented
reconstruction losses are essential for mitigating information loss over time.

5.4 HYPERPARAMETER SENSITIVITY

Proportional Ratio of Two Reconstruction Loss. We evaluate performance using different
weight ratios A € {0,1,0.3,0.5,0.7,0.9}, as shown in Figure a)-(d). Our method is generally
insensitive to the choice of), with A = 0.5 being a balanced option in most cases. However, larger
A values can yield better results in specific datasets, such as DBLP and PharmaBio, especially when
the node features are simple, like one-hot encoding or TF-IDF representations. Feature Dimen-
sion of RNN Input. We compared RNN feature dimensions ranging from {4, 8, 16, 32, 64, 128}, as
shown in Figure [7[e)-(h). Performance remains stable across four datasets when the feature dimen-
sion is set between 4 and 64. However, a significant performance drop occurs on the Cornell dataset
when the dimension is set to 128. Setting the RNN feature dimension too high is discouraged for
two reasons: (1) As shown in Equation 2] RNN input represents compressed node information over
time. To enhance historical information density and effectiveness, the input dimension should be re-
duced, facilitated by the reconstruction loss. (2) Given limited observation samples during training,
reducing the RNN input dimension helps alleviate training pressure.

6 CONCLUSIONS

In this paper, we investigate a practical but underexplored problem of temporal generalization es-
timation in evolving graph. To this end, we theoretically show that the representation distortion is
unavoidable and further propose a straightforward and effective baseline SMART. Both synthetic
and real-world experiments demonstrate the effectiveness of our methods. Future work involves
exploring our methods in more complicated scenarios such as evolving graph with changing label,
heterogeneous graphs and spatio-temporal graphs.

Published as a conference paper at ICLR 2024

ACKNOWLEDGEMENT

This work was partially supported by National Key R&D Program of China (N0.2022YFB3904204),
NSF China (No. 62306179, 62272301, 42050105, 62020106005, 62061146002, 61960206002), and
the Deep-time Digital Earth (DDE) Science Program. Shiyu Liang is also supported by National
Natural Science Fund for Excellent Young Scientists Fund Program (Overseas) “Optimizing and
Analyzing Deep Residual Networks”.

REFERENCES

Réka Albert and Albert-Laszl6 Barabési. Statistical mechanics of complex networks. Reviews of
modern physics, 74(1):47, 2002.

Albert-Laszl6 Barabasi. Scale-free networks: a decade and beyond. Science, 325(5939):412—-413,
2009.

Normand J. Beaudry and Renato Renner. An intuitive proof of the data processing inequality. 12
(5-6):432-441, may 2012. ISSN 1533-7146.

Weijian Deng and Liang Zheng. Are labels always necessary for classifier accuracy evaluation? In
IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2021, virtual, June 19-25,
2021, pp. 15069—-15078. Computer Vision Foundation / IEEE, 2021.

Weijian Deng, Stephen Gould, and Liang Zheng. What does rotation prediction tell us about clas-
sifier accuracy under varying testing environments? In Proceedings of the 38th International
Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event, volume 139 of
Proceedings of Machine Learning Research, pp. 2579-2589. PMLR, 2021.

Weijian Deng, Stephen Gould, and Liang Zheng. On the strong correlation between model invari-
ance and generalization. In NeurlPS, 2022.

Lukas Galke, Benedikt Franke, Tobias Zielke, and Ansgar Scherp. Lifelong learning of graph neural
networks for open-world node classification. In 2021 International Joint Conference on Neural
Networks (IJCNN), pp. 1-8. IEEE, 2021.

Alex Graves and Jiirgen Schmidhuber. Framewise phoneme classification with bidirectional 1stm
and other neural network architectures. Neural networks, 18(5-6):602—-610, 2005.

Devin Guillory, Vaishaal Shankar, Sayna Ebrahimi, Trevor Darrell, and Ludwig Schmidt. Predicting
with confidence on unseen distributions. In 2021 IEEE/CVF International Conference on Com-
puter Vision, ICCV 2021, Montreal, QC, Canada, October 10-17, 2021, pp. 1114-1124. 1IEEE,
2021.

William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Advances in Neural Information Processing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 1024-
1034, 2017.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. In Ad-
vances in Neural Information Processing Systems 33: Annual Conference on Neural Information
Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020a.

Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure
Leskovec. Strategies for pre-training graph neural networks. In International Conference
on Learning Representations, 2020b. URL |https://openreview.net/forum?id=
HJ1IWWJSFDH.

Neha Hulkund, Nicol6 Fusi, Jennifer Wortman Vaughan, and David Alvarez-Melis. Interpretable
distribution shift detection using optimal transport. ArXiv, abs/2208.02896, 2022.

10

https://openreview.net/forum?id=HJlWWJSFDH
https://openreview.net/forum?id=HJlWWJSFDH

Published as a conference paper at ICLR 2024

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In 5th International Conference on Learning Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings, 2017.

Colin Lea, Michael D Flynn, Rene Vidal, Austin Reiter, and Gregory D Hager. Temporal convolu-
tional networks for action segmentation and detection. In proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 156-165, 2017.

Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. Diffusion convolutional recurrent neural net-
work: Data-driven traffic forecasting. In 6th International Conference on Learning Representa-
tions, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceed-
ings, 2018.

Shiyu Liang, Yixuan Li, and R. Srikant. Enhancing the reliability of out-of-distribution image
detection in neural networks. In 6th International Conference on Learning Representations, ICLR
2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings, 2018.

Derek Lim, Felix Hohne, Xiuyu Li, Sijia Linda Huang, Vaishnavi Gupta, Omkar Bhalerao, and
Ser-Nam Lim. Large scale learning on non-homophilous graphs: New benchmarks and strong
simple methods. In Advances in Neural Information Processing Systems 34: Annual Conference
on Neural Information Processing Systems 2021, NeurlPS 2021, December 6-14, 2021, virtual,
pp- 20887-20902, 2021.

Yixin Liu, Ming Jin, Shirui Pan, Chuan Zhou, Yu Zheng, Feng Xia, and Philip S. Yu. Graph self-
supervised learning: A survey. IEEE Trans. Knowl. Data Eng., 35(6):5879-5900, 2023.

Yunkai Lou, Chaokun Wang, Tiankai Gu, Hao Feng, Jun Chen, and Jeffrey Xu Yu. Time-topology
analysis on temporal graphs. VLDB J., 32(4):815-843, 2023.

Bin Lu, Xiaoying Gan, Weinan Zhang, Huaxiu Yao, Luoyi Fu, and Xinbing Wang. Spatio-temporal
graph few-shot learning with cross-city knowledge transfer. In KDD ’22: The 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, August 14 - 18,
2022, pp. 1162-1172. ACM, 2022.

Bin Lu, Xiaoying Gan, Ze Zhao, Shiyu Liang, Luoyi Fu, Xinbing Wang, and Chenghu Zhou. Graph
out-of-distribution generalization with controllable data augmentation. CoRR, abs/2308.08344,
2023.

Yuanfu Lu, Xiao Wang, Chuan Shi, Philip S. Yu, and Yanfang Ye. Temporal network embedding
with micro- and macro-dynamics. In Proceedings of the 28th ACM International Conference on
Information and Knowledge Management, CIKM 2019, Beijing, China, November 3-7, 2019, pp.
469-478. ACM, 2019.

Toméas Mikolov, Martin Karafiit, Lukds Burget, Jan Cernocky, and Sanjeev Khudanpur. Recurrent
neural network based language model. In INTERSPEECH 2010, 11th Annual Conference of the
International Speech Communication Association, Makuhari, Chiba, Japan, September 26-30,
2010, pp. 1045-1048. ISCA, 2010.

Niema Moshiri. The dual-barabdsi-albert model. arXiv preprint arXiv:1810.10538, 2018.

Pal Andras Papp, Karolis Martinkus, Lukas Faber, and Roger Wattenhofer. Dropgnn: Random
dropouts increase the expressiveness of graph neural networks. In Advances in Neural Information
Processing Systems, NeurlPS 2021, December 6-14, 2021, virtual, pp. 21997-22009, 2021.

Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura, Hiroki Kanezashi,
Tim Kaler, Tao B. Schardl, and Charles E. Leiserson. Evolvegcen: Evolving graph convolutional
networks for dynamic graphs. In The Thirty-Fourth AAAI Conference on Artificial Intelligence,
AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI
2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020,
New York, NY, USA, February 7-12, 2020, pp. 5363-5370. AAAI Press, 2020.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: online learning of social representa-
tions. In The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’14, New York, NY, USA - August 24 - 27, 2014, pp. 701-710. ACM, 2014.

11

Published as a conference paper at ICLR 2024

Stephan Rabanser, Stephan Giinnemann, and Zachary C. Lipton. Failing loudly: An empirical study
of methods for detecting dataset shift. In Advances in Neural Information Processing Systems 32:
Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December
8-14, 2019, Vancouver, BC, Canada, pp. 1394-1406, 2019.

Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep graph
convolutional networks on node classification. In 8th International Conference on Learning Rep-
resentations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020, 2020.

Aravind Sankar, Yanhong Wu, Liang Gou, Wei Zhang, and Hao Yang. Dysat: Deep neural repre-
sentation learning on dynamic graphs via self-attention networks. In WSDM °20: The Thirteenth
ACM International Conference on Web Search and Data Mining, Houston, TX, USA, February
3-7, 2020, pp. 519-527. ACM, 2020.

Min Shi, Yu Huang, Xingquan Zhu, Yufei Tang, Yuan Zhuang, and Jianxun Liu. GAEN: graph
attention evolving networks. In Proceedings of the Thirtieth International Joint Conference on
Artificial Intelligence, 1JCAI 2021, Virtual Event / Montreal, Canada, 19-27 August 2021, pp.
1541-1547. ijcai.org, 2021a.

Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong, Wenjing Wang, and Yu Sun. Masked label
prediction: Unified message passing model for semi-supervised classification. In Proceedings of
the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI 2021, Virtual Event
/ Montreal, Canada, 19-27 August 2021, pp. 1548—-1554. ijcai.org, 2021b.

Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, and Hongyuan Zha. Dyrep: Learning rep-
resentations over dynamic graphs. In 7th International Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019, 2019.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. In 6th International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings,
2018.

Vladimir Vovk, Ivan Petej, Ilia Nouretdinov, Ernst Ahlberg, Lars Carlsson, and Alex Gammerman.
Retrain or not retrain: conformal test martingales for change-point detection. In Conformal and
Probabilistic Prediction and Applications, 8-10 September 2021, Virtual Event, volume 152 of
Proceedings of Machine Learning Research, pp. 191-210. PMLR, 2021.

Yanbang Wang, Yen-Yu Chang, Yunyu Liu, Jure Leskovec, and Pan Li. Inductive representation
learning in temporal networks via causal anonymous walks. In 9th International Conference on
Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021, 2021.

Zhihao Wen and Yuan Fang. Trend: Temporal event and node dynamics for graph representation
learning. In Proceedings of the ACM Web Conference 2022, pp. 1159-1169, 2022.

Yingxin Wu, Xiang Wang, An Zhang, Xiangnan He, and Tat-Seng Chua. Discovering invariant
rationales for graph neural networks. In International Conference on Learning Representations,
2022.

Minkai Xu, Alexander S. Powers, Ron O. Dror, Stefano Ermon, and Jure Leskovec. Geometric latent
diffusion models for 3d molecule generation. In International Conference on Machine Learning,
ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume 202 of Proceedings of Machine
Learning Research, pp. 38592-38610. PMLR, 2023.

Carl Yang and Jiawei Han. Revisiting citation prediction with cluster-aware text-enhanced hetero-
geneous graph neural networks. In 39th IEEE International Conference on Data Engineering,
ICDE 2023, Anaheim, CA, USA, April 3-7, 2023, pp. 682-695. IEEE, 2023.

Jiaxuan You, Tianyu Du, and Jure Leskovec. ROLAND: graph learning framework for dynamic

graphs. In KDD ’22: The 28th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining, Washington, DC, USA, August 14 - 18, 2022, pp. 2358-2366. ACM, 2022.

12

Published as a conference paper at ICLR 2024

Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. Graph
contrastive learning with augmentations. In Advances in Neural Information Processing Systems
33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, Decem-
ber 6-12, 2020, virtual, 2020.

Le-kui Zhou, Yang Yang, Xiang Ren, Fei Wu, and Yueting Zhuang. Dynamic network embedding
by modeling triadic closure process. In Proceedings of the Thirty-Second AAAI Conference on
Artificial Intelligence, (AAAI-18), the 30th innovative Applications of Artificial Intelligence (IAAI-
18), and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-18),
New Orleans, Louisiana, USA, February 2-7, 2018, pp. 571-578. AAAI Press, 2018.

Dingyuan Zhu, Peng Cui, Ziwei Zhang, Jian Pei, and Wenwu Zhu. High-order proximity preserved
embedding for dynamic networks. IEEE Trans. Knowl. Data Eng., 30(11):2134-2144, 2018.

A ALGORITHM

We illustrate the details of our proposed SMART in Algorithm [I} The learning process of SMART
is divided into two stage: pre-deployment warmup training and post-deployment finetuning. Before
the deployment, we conduct both the supervised learning on the generalization loss prediction with
the partially-observed labels and self-supervised learning on the evolving graph structure. After the
deployment, since we no longer have the label information over time, we design two augmented
graph reconstruction task as a self-supervised manner to actively finetuning the feature extractor .

Algorithm 1 SMART: Self-supervised Temporal Generalization Estimation

Input: Pre-trained graph model G, observation data D, evolving graph (A, X},) at time k.
Output: Update generalization performance predictor M and ¢ with paramter 6 = [6M, 6].

1: while not converged or maximum epochs not reached do > Pre-deployment Warmup Training
2 Compute loss £(6) = 327 | My (0 G(Ar, X;), hr 1) — L (H-G (A, X,), HoY) ||
3: Compute graph self-supervised £, via Equation[3}
4: Update 0 +— 0 + aVo(L + Ly);
5: end while
6: for k = tgepioy +1,- -+, T do > Post-deployment Finetuning
7: Get the newly-arrival graph (A, Xx);
8: while not converged or maximum epochs not reached do
9: Compute graph self-supervised £, via Equation 3}

10: Update 0 < 0f + BV e Ly;

11: end while
12: end for

B PROOF FOR THEOREMII]

Proof. Let f.(i;0) denote the output of the GCN on the node i at time 7 > 0. Therefore, we have
N 1
Jj=1 kEN ()

Thus, the expected loss of the parameter 8* on the node ¢ at time 7 is

£:6) =B [(/:(:0) = /o(6))’]

N
1 1
P T\ ken; (i) O kens (i)

13

Published as a conference paper at ICLR 2024

Furthermore, recall that each parameter a; ~ U(a},§) and each element W ;. in the weight vector
Wj also satisfies W; , ~ U(W},§). Therefore, the differences a; — aj and W;, — W7, are all
i.i.d. random variables drawn from distribution U (0, £). Therefore, we have

2

) 1 T
(i) =E Za] o d—l) Z AWi+b | —o NG Z z Wi+ b;

Jj=1 keN;(4) keNo (i)
|)
=E ||D (a S o {Witb | —o NG > af W40,
=1 ke/\/() 0 LENo (i)
o
1 T
kEN (4) kEN (i)
2
1
= S o {Witb | —o = >z W+ b,
d-,- do(l)
kE/\/ (4) kEN, (1)
2
1
+E x;—W +b | —o | —= Z i W +b;
kEN(do(l) keN
i) o(%)

The third equality holds by the fact that the differences (a; — a;)’s are all i.i.d. random variables

drawn from the uniform distribution U (0,). Therefore, we have

. 1
Z(aj—aj) o 0 Z TaWi+bj| -0 Z z) W, +b;

j=1 TN keN; (3) keJ\/ (@)

Furthermore, since the differences (a; — a) are i.i.d. random variable drawn from the distribution
U(0,&), we must further have

2
N
. " 1 1
(i) > E Z(aj—aj) o FAD) Z i Wi4b; | —o a0 Z g W; +b;
j=1 T keN- (i) O ke (i)
N 1 2
=E | El(a; —a})’|As, X/] |0 0 S a{Witb | —o Z xg Wj +b;
i=1 T\ ken ()) kvt
N 2
52 . 1 T
W;+b; | —o| —= x, Wi +b;
el M; A |\ G 2z,
= (4) kEN (1)

14

Published as a conference paper at ICLR 2024

Furthermore, the leaky ReLU satisfies that |o(u) — o(v)| > B|u — v|. The above inequality further

implies
N 2
K(i)>§E ZO’ L Z i Wi4b; | —o L Z i Wj +b;
T =3 s dT(Z)) k'Y J do(Z) ‘ k' J
J= keN:(3) keNo(3)
-)
>ﬁ2§2E L TWi 4+ b, L TW —b;
<73 Zd(z) Z T Wi+ J_do(i) Z T Wi — 05
=1V keN, (5) kEN (1)
-)
32¢2 1 1 1
25 4|00, 2, T EE A0 2
=1V keN, (i) \No (i) T keNo (i)
-)
B2¢2 1 1 1
> ED zm X #wW o am) 2w
=1 \ | ke, ()\Wo(d) T 0 kEN (i)
F)
p2e? < 1 1) T
> E|Y — — > oafw;
3 = d-(1) do(7) b (D)
Therefore, we have
r 2

<.
Il
-

j=1 keNo (i)
- ,
B2 1 1 T
= E> - S @l (W= w))
3 SN do(D)) L=
N 2
B2 < 1 1) T
+ E —_— — Y/ Ty, W* s
3 =\ \Te am), 2

where the last equality comes from the fact that random vectors (W; — W))’s are an i.i.d. ran-
dom variables drawn from the uniform distribution U (0, £) and are also independent of the graph

evolution process. Therefore, we have

Lo Np2e? 1 1 T .
(i) > —5>-E <dT(i>dou))ke%@f’“(wf'wj)
- 2
Np2¢ < 1 1 >2
= E _
9 d.(0) do(d) ke%:«(i)“ |

where the last equality comes from the fact that each element in the random vector (W; — W) is
i.i.d. random variable drawn from the uniform distribution U (0, §). Since the initial feature matrix
Xo = (x1,...,x,) are drawn from a continuous distribution supported on R4,

15

Il
=
[\V]
A%
(V]
=
[]=
/~ /~ /~
[
|
—
8
=
&
|
3
+
3

we must have with

Published as a conference paper at ICLR 2024

probability one,
2

Z Tk > 0.

keN,(4) 2

(ol
1 1
- <d<> - For [du

1
dr (4)

Furthermore, we have

tor l(dlo - dol<z'>)2

1 2
QO] - d<>>
go])

QO‘| is decreasing with

To prove ¢ (i) is strictly increasing, it suffices to prove that Eg_

respect to 7. Since

C PROOF FOR THEOREM 2|
Proof. Assuming a regression task with a single-layer GCN, we compute mean squared error be-
tween prediction and ground truth as the learning objective as follows
min Ex [LXW — Y2 = min Ex (LXW)T - LXW — 2(LXW)TY + ||Y]2) (5)
= minEx WIXTLTLXW —2WTXTLTY +|V|3). (6)

Since D2 is a diagonal matrix, (LT L);; = (AT D~2?A);; = al D™2a;, where q; is the i-th row in
matrix A. Each node feature is independently Gaussian distributed.

When i # j,
Ex (XTLTLX];; =0 (7
When ¢ = j,

Ex [XTLTLX]; = Ex (7L La;) Z x” (LTL) jmTm;) (8)

Similarly, when and only when j = m, Ex [XTLTLX];; #0

16

Published as a conference paper at ICLR 2024

n

Ex [XTLTLX)s ZEX)LL) Z(LTL)jj I)
j=1

Consequently, the learning objective is equal to

min By [LXW — = min 3 - WIW —2WTEx (XTLTY) + |V? (10)

Meanwhile, the optimal parameter of GCN equals to W* = %E x (XTLTY).

1
Wi = 3Ex (XTLTY]; an
1 N
= BE x > (XTL)im Y (12)
m=1
1 N
= 5Ex x > (LX) mid Xk (13)
m=1
1 N N
= 5Bx DO Lo Xaids, Xk (14)
m=1s=1
N
BEX Z L Xomiy Xomi (15)
Therefore, only if i = k, Wy = £ 32| Lyymdg, = 3300, d! £ C, and otherwise W} = 0.

For any given node v;, we have

_E|LXW) —Yill} E(LXW*)2 - 2ALXW),Y; + Vi

€= = (16)
E[Y:[l3 E[Y:[l3
To be specific,
d
(LXW*); =Y (LX)ijW; = (LX) Wi = OZLZSXSIC 17
j=1 s=1
N
(LXW*);Y; = C Y LisXd? Xgp = Cd' Ly; = Cdy™! (18)
s=1
N N 1
E(LXW*)?2 =E[CY LisX.]? =E[C LisXs)?]| =C?*Y L2, =C%*— 1
(»[é kl[gk Z z 19
E|Yi|? = Ed}* X, = di* (20)
Therefore, plugging to Eq. [T6]
C2d~t —20d*1 + d2
e(d) = o @n
=C%d 2"t —20d 1 4+ 1 (22)

We denote the error of node i as ¢;. Therefore, the overall error of graph G under the stationary
degree distribution (@ is calculated as & = Ege(d). Here we assume the inherent graph model

17

Published as a conference paper at ICLR 2024

follows the Barabdsi—Albert model (Albert & Barabasil [2002), where the probability of node degree

equals to
t 1

No+t B
Ny is the initial scale of graphs, m is the newly-arrival number of nodes of each time ¢. Conse-
quently, the error of graph G can be further deduced as:

P(d) = 2m?- (23)

t 1

=Eq |2m” - —=(C*d 7 =20 d T 41 24

&g =Eq |2m N0+td3(0 ¢ +1) 24)
t

=2m* ———(C*Eqd 2** — 2CEqgd *** + Eqd* 25

m/\/o+t(Q Q +Eqd™) (25)

O

D RELATED WORK

D.1 DISTRIBUTION SHIFT ESTIMATION

Deep learning models are sensitive to the data distribution (Deng et al.|[2022). Especially when these
models are deployed online, how to accurately estimate generalization error and make decisions
in advance is a crucial issue. |Deng & Zheng| (2021); |Deng et al.| (2021) estimate the recogniion
performance by learning an accuracy regression model with image distribution statistics. Rabanser
et al.[(2019) conduct an empirical study of dataset shift by two-sample tests on pre-trained classifier.
Hulkund et al.| (2022) use optimal transport to identify distribution shifts in classification tasks.
Vovk et al.| (2021)) propose conformal test martingales to detect the change-point of retraining the
model. However, all these methods are designed for images, while evolving graph shows significant
different characteristics due to its ever-growing topology. To our best of knowledge, we are the first
to investigate the temporal generalization estimation in graphs.

D.2 EVOLVING GRAPH REPRESENTATION

Real world graphs show dynamic properties of both feature and topology continuously evolving
over time. Existing research can be categorized into two types: (1) Temporal Graph Snapshots.
Intuitively, the evolving graph can be splited into a graph time series, thereby taking a recurrent
model for temporal encoding (Shi et al.,2021a; |Sankar et al., 2020). DHPE (Zhu et al., 2018)) gets a
simple dynamic model base on SVD, which only preserves the first-order proximity between nodes.
DynamicTriad (Zhou et al.l|2018) models the triadic closure process to capture dynamics and learns
node embeddings at each time step. EvolveGCN (Pareja et al., 2020) proposes to use RNN to evolve
the parameter of GCN , while ROLAND (You et al., [2022) recurrently updates hierarchical node
embeddings. (2) Temporal Graph Events. Some other studies convert the graph representation by
grouping the node and edges with time steps in a given period (Wang et al., 2021} [Trived: et al.,
2019). TREND (Wen & Fang| 2022) borrows the idea of Hawkes temporal point process in time
series analysis, capturing both individual and collective temporal characteristics of dynamic link
formation. M2DNE (Lu et al [2019) proposes a novel temporal network embedding with micro-
and macro-dynamics, where a temporal attention point process is designed to capture structural and
temporal properties at a fine-grained level. |Lou et al.|(2023) propose to evaluate the cohesiveness of
temporal graphs in both topology and time dimensions.

E EXPERIMENT DETAILS OF BARABASI-ALBERT RANDOM GRAPH

Barabasi-Albert (BA) random graph (Barabasi, 2009; |Albert & Barabasi, 2002), also known as the
preferential attachment model, is a type of random graph used to model complex networks, particu-
larly those that exhibit scale-free properties. BA graphs are often used to model various real-world
networks, such as the World Wide Web, social networks, citation networks, etc.

BA random graph has two important concepts: growth and preferential attachment. Growth means
that the number of nodes in the network increases over time. Preferential attachment means that the
more connected a node is, the more likely it is to receive new links. Start with an initial graph Gy

18

Published as a conference paper at ICLR 2024

BA (m=2) BA (m=5) BA (m=10)
: .
—1
0! 107 10 .
> . > . > “.
Q Q P 15) oa
=] = = 3
g g y g 2 %
— —2 B *
g10° g0 M S -
— — s = -
= 23 - 43 =
1074 - 107 s s 107 akiaes
10' 107 10' 10° 10' 10°
Degree Degree Degree

Figure 8: Degree Distribution of BA graphs

that consists of a number of nodes and edges. At each time step 7, a new node is introduced into
the graph, and it forms m edges to existing nodes in the graph. The probability that an existing
node receives an edge from the new node is proportional to the degree (number of edges) in the
current graph G,_1. This means that nodes with higher degrees are more likely to receive new
edges, exhibiting preferential attachment.

Dual Barabasi-Albert (Dual BA) random graph (Moshiri, [2018)) is an extension of BA model that
better capture properties of real networks of social contact. Dual BA model is parameterized by Ny
inital number of nodes, 1 < my, ma, < ANy and probability 0 < p < 1. For each new vertex, with
probability p, m; new edges are added, and with probability 1 — p, mo new edges are added. The
new edges are added in the same manner as in the BA model.

In our experiment, we adopt above two different BA model as test datasets. @ We use
barabasi_albert_graph| and dualjoarabasi,albert,graphﬂ implementation pro-
vided by NetworkX. The detailed experiment parameter settings (Table [Table [5) and the degree
distribution (Figure 8] Figure[J) are shown as follows.

Table 4: Parameter setting of BA graph Table 5: Parameter setting of Dual BA

in synthetic experiments. graph in synthetic experiments
Barabasi-Albert model Dual Barabasi-Albert model
n m n m ma
1000 2 1000 1 2
1000 5 1000 1 5
1000 10 1000 1 10

Here, we present the complete experiment results on 4 evaluation metrics (MAPE, RMSE, MAE
and Standard Error) in Table[6] Since the DoC method only applies to classification problems using
the average confidence, we thus do not compare it with our SMART on the synthetic setting.

F REAL-WORLD DATASETS

We use two citation datasets, a co-authorship network dataset and a series of social network datasets
to evaluate our model’s performance. We utilize inductive learning, wherein nodes and edges that
emerge during testing remain unobserved during the training phase. The detailed statistics are shown
in Table[7]

Please refer to the implementation in https://networkx.org/documentation/stable/
reference/generated/networkx.generators.random_graphs.barabasi_albert_
graph.html

“Please refer to the implementation in https://networkx.org/documentation/stable/
reference/generated/networkx.generators.random_graphs.dual_barabasi_
albert_graph.html

19

https://networkx.org/documentation/stable/reference/generated/networkx.generators.random_graphs.barabasi_albert_graph.html
https://networkx.org/documentation/stable/reference/generated/networkx.generators.random_graphs.barabasi_albert_graph.html
https://networkx.org/documentation/stable/reference/generated/networkx.generators.random_graphs.barabasi_albert_graph.html
https://networkx.org/documentation/stable/reference/generated/networkx.generators.random_graphs.dual_barabasi_albert_graph.html
https://networkx.org/documentation/stable/reference/generated/networkx.generators.random_graphs.dual_barabasi_albert_graph.html
https://networkx.org/documentation/stable/reference/generated/networkx.generators.random_graphs.dual_barabasi_albert_graph.html

Published as a conference paper at ICLR 2024

DBA (m,=2)

Frequency

Frequency

DBA (m,=5)

Frequency

Degree

Figure 9: Degree Distribution of DBA graphs

DBA (m, = 10)

Table 6: Performance comparison on different Barabasi—Albert graph setting.

Barabasi-Albert (BA) Linear SMART
Random Graph MAPE RMSE MAE MAPE RMSE MAE
BA m=2 79.2431 0.0792 0.0705 7.1817x12350 0.0057x0.0008 0.0042+0.0006
(N = 1000) m= 74.1083 0.0407 0.0398 4.2602:0.5316 0.0039+0.0004 0.0035x0.0004
0= m = 10 82.1677 0.1045 0.0925 9.1173:0.1331 0.0077x0.0010 0.0071+0.0009
Dual BA mo =2 61.8048 0.0676 0.0615 7.9038+1.8008 0.0088:0.0022 0.0069:0.0017
Ny = 1000, my=1) mg =5 67.6442 0.0827 0.0771 3.8288x0.1706 0.0049:0.0013 0.0040:0.0010
0= Bt mo = 10 38.4884 0.0298 0.0297 1.9947:0.1682 0.0026+0.0002 0.0023+0.0003

¢ OGB-arXiv (Hu et al., 2020a): The OGB-arXiv dataset is a citation network where each node

represents an arXiv paper, and each edge signifies the citation relationship between these papers.
Within this dataset, we conduct node classification tasks, encompassing a total of 40 distinct
subject areas. Our experiment spans the years from 2007 to 2020. In its initial state in 2007,
OGB-arXiv comprises 4,980 nodes and 6,103 edges. As the graph evolves over time, the citation
network boasts 169,343 nodes and 1,166,243 edges. We commence by pretraining graph neural
networks on the graph in 2007. Subsequently, we employ data from the years 2008 to 2010
to train our generalization estimation model SMART. Following this training, we predict the
generalization performance of the pretrained graph neural network on graphs spanning the years
2011 to 2020.

DBLP (Galke et al.,[2021): DBLP is also a citation network and this dataset use the conferences
and journals as classes. In our experiment, DBLP starts from 1999 to 2015 with 6 classes.
Throughout the evolution of DBLP, the number of nodes increase from 6,968 to 45,407, while
the number of edges grow from 25,748 to 267,227. We pretrain the graph neural network on the
graph in 1999 and train our model on the next three years. We employ the graph spanning from
2004 to 2015 to assess the performance of our model.

Pharmabio (Galke et al.,[2021)): Pharmabio is a co-authorship graph dataset, and each node rep-
resents a paper with normalized TF-IDF representations of the publication title as its feature. If
two papers share common authors, an edge is established between the corresponding nodes. We
conduct node classification tasks on this dataset, comprising a total of seven classes, with each
class representing a journal category. The range of Pharmabio is 1985 to 2016. The pretrained
graph neural network is based on the graph of the year 1985 with 620 nodes and 57,559 edges.
Then we train our estimation model by using graph data from 1986 to 1988. We evaluate our
model on consecutive 26 years starting form 1989. At the last year 2016, the graph has evolved
to 2,820 nodes with 3,005,421 edges.

Facebook 100 (Lim et al.,[2021): Facebook 100 is a social network which models the friendship
of users within five university. We perform binary node classification on this dataset, with the
classes representing the gender of the users. Among these datasets, Amherst, Reed and Johns
Hopkins are of smaller scale, while Penn and Cornell are larger in size. We sequentially evaluate

20

Published as a conference paper at ICLR 2024

Table 7: Overview of real-world evolving graph datasets

Datasets OGB-arXiv DBLP Pharmabio Facebook 100
Penn Amherst Reed Johns Hopkins Cornell
#Node (Start) 4980 6968 620 5385 107 85 368 1360
#Node (End) 169343 45407 57559 38815 2032 865 4762 16822
#Edge (Start) 6103 25748 2820 47042 192 188 1782 8148
#Edge (End) 1166243 267227 3005421 2498498 157466 31896 338256 1370660
Time Span 14 17 30 18 11 13 14 14
#Class 40 6 7 2 2 2 2 2
OGB-arXiv DBLP Pharmabio Penn
5075 5 5 g 0510
s 2090 2070 £ 0.505
& 0.70] & 2 0.675 2
£ oes] £ oes §0.650 5
g g £ 0.625 1 g 0495
% 060 . . % g0 L : : | 20600 : : : % 0490 : : . |
2010 2015 2020 2000 2005 2010 2015 1990 2000 2010 1995 2000 2005 2010
Year Year Year Year
Amherst Cornell Johns Hopkins Reed
20-54* 20.52 20.547 g 0.521
io.sz— io'so i io.so—
% 0-501 % 0.48 % 0.52 1 %
& & & ©0.481
5% £ 0.6 g g
* : : = : : T 050 . . T 046 : .
2000 2005 2000 2005 2010 2000 2005 2010 2000 2005
Year Year Year Year

Figure 10: Homophily ratio analysis on different datasets.

our model’s adaptability to datasets of different scales. All these datasets end in the year of 2010
with the number of nodes varying from 865 to 38,815 and edges from 31,896 to 2,498,498.

In addition, research on the homogeneity and heterogeneity of graphs has received widespread at-
tention in recent years. In the context of graph data, homogeneity and heterogeneity refer to whether
the nodes and edges in the graph are of the same type (homogeneous) or different types (heteroge-
neous). For example, in a social network, a homogeneous graph might represent individuals (nodes)
and friendships (edges), where all nodes and edges are of the same type. On the other hand, a het-
erogeneous graph could represent individuals, events, and organizations as different types of nodes,
with edges representing relationships like “attended,” organized,” or “works for.” In our work, we
do not limit or pre-define the homogeneity and heterogeneity in the data. Moreover, we calculate
the homophily ratio of nodes on different experiment datasets, as shown in Figure[I0] According to
the distribution of homogeneity, there is a significant difference in the proportion of homogeneity
among different datasets, and varies greatly over time.

G ADDITIONAL EXPERIMENTAL RESULTS OF SMART

In this section, we provide a comprehensive illustration of the experiment details for temporal gen-

eralization estimation in evolving graphs, including the experiment settings, implementation details
and completed results.

G.1 EXPERIMENT SETTINGS
Baselines. We compare the performance of SMART with following three baselines.
* Linear: Linear regression is a straightforward statistical learning methods for modeling the

relationship between a scalar and variables. We observe that the performance degradation of
Barabasi-Albert random graph shows approximate linear process. Therefore, to estimate the

21

Published as a conference paper at ICLR 2024

GNN performance degradation on real-world datasets, we adopt linear regression as a baseline
to predict the performance changes.

DoC: Differences of confidences (DoC) approach (Guillory et al., 2021) proposes to estimate
the performance variation on a distribution that slightly differs from training data with average
confidence. DoC yields effective estimation of image classification over a variety of shifts and
model architecture, outperforming common distributional distances such as Frechet distance or
Maximum Mean Discrepancy.

O%f cg *| Featurizer
Base Distribution '
2% v@ * Featurizer H > loss
Target Distribution

. Similarity

Score »| Regressor > Aloss

Figure 11: System framework of DoC for temporal generalization estimation in graphs. (Modifica-
tion of Figure 2 in paper (Guillory et al.| 2021))

L]

Supervised: Moreover, we design a comparison method for temporal generalization estimation
with supervised signals. Although we are unable to access the labeled data over the time during
post-deployment, in our experiment we can acquire new node labels and retrain the model on the
new data, which is approximately a upper performance limit of this problem.

GNN Architectures. To fully validate and compare the effectiveness of different methods, we
select four different graph neural network architectures as follows.

GCN (Kipf & Welling,2017): GCN is one of the most classic graph neural network architecture,
which operates localized first-order approximation of spectral graph convolutions.

GAT (Velickovic et al.}[2018) : Graph Attention Network (GAT) leverages attention mechanism
to selectively focus on different neighboring nodes of the graph when aggregating information.

GraphSage (Hamilton et al.,2017): GraphSage is a graph neural network architecture designed
for scalable and efficient learning on large graphs. It addresses the challenge by sampling and
aggregating information from a node’s local neighborhood.

TransformerConv (Shi et al |2021b): In light of the superior performance of Transformer in
NLP, TransformerConv adopt transformer architecture into graph learning with taking into ac-
count the edge features. The Multi-head attention matrix replaces the original normalized adja-
cency matrix as transition matrix for message passing.

Evaluation Metrics. To evaluate the performance, we adopt following four metrics to measure
the effectiveness of temporal generalization estimation over time.

L]

Mean Absolute Percentage Error (MAPE) quantifies the average relative difference between the
predicted generalization loss and the actual observed generalization loss, which is calculated as
e,

T

1

MAPE = —
T - tdeploy

x 100%.

T=1deploy+1

Root Mean Squared Error (RMSE) is calculated by taking the square root of the average of the
squared differences between predicted and actual generalization loss, which is calculated as

1 T
RMSE= |—— (0, —0,)2.

T—t
deploy T=tdeploy +1

22

Published as a conference paper at ICLR 2024

Table 8: Hyperparameter setting in our experiments

Facebook 100

Datasets OGB-arXiv DBLP Pharmabio
Penn Ambherst Reed Johns Hopkins Cornell

GNN Layer 3 3 2 2 2 1 2 2
GNN dimension 256 256 256 256 256 32 256 256
RNN Layer 1 1 1 1 1 1 1 1
RNN dimension 64 8 64 64 64 32 64 8
loss lambda 0.5 0.9 0.7 0.3 0.9 0.7 0.1 0.5
learning rate 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

* Mean Absolute Error (MAE) measures the average absolute difference between the predicted
generalization loss and the actual generalization loss, which is calculated as
T

1
MAE =
T - tdeploy

0 — 1.

T :t(leploy +1

* Standard Error (SE) measures the variability of sample mean and estimates how much the sample
mean is likely to deviate from the true population mean, which is calculated as SE = o//n,
where o is the standard deviation, n is the number of samples.

G.2 IMPLEMENTATION DETAILS

Data Labeling. To simulate real-world human annotation scenarios, we randomly labeled 10% of
the samples during the training of the pre-trained graph neural network model. Prior to deployment,
at each time step, we additionally labeled 10% of the newly appearing nodes. After deployment,
no additional labeling information was available for newly added nodes. For consistency, we use
only the first three frames to obtain few labels for all real-world datasets, which is a relatively small
sample size. Further enhancing the labeled data can yield additional improvements in temporal
generalization estimation.

Hyperparameter Setting. We use Adam optimizer for all the experiments, and the learning rate
for all datasets are uniformly set to be 1e-3. In all experiments, the pre-trained graph neural networks
are equipped with batch normalization and residual connections, with a dropout rate set to 0.1.
Meanwhile, We employed the ReLLU activation function. We set hyperparameter for each datasets
and specify the details in Table[8]

Hardware. All the evaluated models are implemented on a server with two CPUs (Intel Xeon
Platinum 8336C x 2) and four GPUs (NVIDIA GeForce RTX 4090 x 8).

G.3 EXPERIMENTAL RESULTS

Comparison with different baselines. We conduct performance comparison of SMART and other
three baselines on three academic network datasets. As shown in Table 0] we observe a strikingly
prediction improvement. Our proposed SMART consistently outperforms linear regression and DoC
on different evaluation metrics, which demonstrates the superior temporal generalization estimation
of our methods. For example, on Pharmabio datasets, due to its long-term temporal evolution, the
vanilla linear regression and DoC shows inferior prediction due to the severe GNN representation
distortion. Our SMART shows advanced performance due to our self-supervised parameter update
over the time.

In addition, when comparing with supervised method, due to its continuous acquisition of annotation
information and retraining during the testing phase, it is approximately the upper limit of the estima-
tion performance. On OGB-arXiv dataset, our SMART achieves close performance with Supervised,
indicating our strong ability to cope with evolving distribution shift. However, on Pharmabio dataset,
accurately estimating its generalization performance remains a challenge due to its long-term evo-
lution (30 timesteps). Thereby, temporal generalization estimation is an important and challenging
issue, and still deserves further extensive research.

23

Published as a conference paper at ICLR 2024

Table 9: Performance comparison of SMART and baselines on three academic network datasets.
MAPE, RMSE, MAE and Standard Error are utilized to evaluate the estimation performance on
different datasets. The smaller the value, the better the performance.

Dataset | Metric Linear DoC SMART (Ours) | Supervised

MAPE 10.5224 9.5277x1.4857 2.1897+0.2211 | 2.1354+0.4501

OGB-arXiv | RMSE 0.4764 0.3689+0.0400 0.1129+0.0157 | 0.0768+0.0155
MAE 0.4014 0.3839+0.0404 0.0383+0.0083 | 0.0218+0.0199

MAPE 16.4991 4.3910=x0.1325 3.4992:0.1502 | 2.5359+0.4282

DBLP | RMSE 0.5531 0.1334=0.0058 0.1165+0.0444 | 0.0914+0.0175
MAE 0.431 0.1162x0.0310 0.0978+0.0344 | 0.0852+0.0038

MAPE 32.3653 8.1753x0.0745 1.3405+0.2674 | 0.4827+0.0798

Pharmabio | RMSE 0.7152 0.1521x0.0014 0.0338+0.0136 | 0.0101+0.0015
MAE 0.6025 0.1521=x0.0013 0.0282:0.0120 | 0.0088+0.0026

Table 10: Performance comparison of different GNN architectures, including GCN, GAT, Graph-
SAGE and TransformerConv. We use MAPE + Standard Error to evaluate the estimation on different
scenarios.

GNN architecture

Dataset Method
GCN GAT GraphSAGE TransformerConv

Linear 10.5224 12.3652 19.5480 14.9552
OGB-arXiv DoC 13.5277+1.4857 12.2138+1222 20.5891+0.4553 10.0999+0.1972
SMART 2.1897+0.2211 3.1481+0.4079 5.2733+2.2635 3.5275+1.1462
Linear 16.4991 17.6388 23.7363 18.2188
DBLP DoC 4.3910+0.1325 13.8735+4.1744 11.9003+1.8249 9.0127+2.6619
SMART 3.4992+0.1502 6.6459+1.3401 9.9651+1.4699 6.4212+1.9358
Linear 32.3653 29.0404 31.7033 31.8249
Pharmabio DoC 8.17530.0745 7.4942+0.0702 6.637620.0194 5.3498+0.2636
SMART 1.3405:0.2674 1.2197x0.2241 3.1448-0.6875 2.7357+1.1357

Comparison with different GNN architectures. To evaluate the applicability of proposed algo-
rithm, we conduct temporal generalization estimation on different GNN architectures. As shown in
Table first of all, our SMART shows consistent best performance among different architectures.
Besides, for different graph neural network architectures, they tend to capture the structure and fea-
ture information from different aspects. Due to the simple model structure of GCN, our SMART
shows advanced prediction performance among other architectures, which is also consistent with
the theory of classical statistical machine learning.

Comparison with different time series model. To capture the temporal drift of GNN generaliza-
tion variation, we propose an RNN-based method (i.e. LSTM). Moreover, we additionally replace
the LSTM with other two time series model Bi-LSTM and TCN as follows:

e LSTM: Long Short-Term Memory (LSTM) is a type of recurrent neural network (RNN) archi-
tecture designed to address the vanishing gradient problem in traditional RNNs. The ability of
LSTMs to selectively remember or forget information makes them well-suited for tasks involv-
ing long-term dependencies, and become a standard architecture in the field of deep learning for
sequential data.

e Bi-LSTM |Graves & Schmidhuber| (2005): Bidirectional Long Short-Term Memory (Bi-LSTM)
is an extension of the traditional LSTM architecture that enhances its ability to capture informa-
tion from both past and future context.

* TCN (Lea et al.,2017): Temporal Convolutional Network (TCN) use 1D convolutional layers to
capture dependencies across different time steps in a sequence. Unlike traditional CNNs, TCNs

24

Published as a conference paper at ICLR 2024

OGB-arXiv

TCN A

Bi-LSTM

LSTM A

DoC

Linear q

Smart
Baseline

0

10
MAPE

15

TCN A

Bi-LSTM 4

LSTM A

DoC

Linear q

DBLP

Pharmabio

T

Smart
Baseline

TCN A

Bi-LSTM 4

LSTM A

DoC A

Linear q

Smart
Baseline

10 15
MAPE

MAPE

Figure 12: Comparison with different time series model, i.e., LSTM, Bi-LSTM and TCN.

use dilated convolutions to extend the receptive field without significantly increasing the number
of parameters.

Different time series methods are worth trying out, since we hope to capture the temporal changes
based on a small number of training snapshots. In our experiment, as depicted in Figure our
SMART achieves the optimal performance using three different time series models on both OGB-
arXiv and Pharmabio datasets. On DBLP dataset, SMART achieve the best performance using
LSTM, while SMART equipped with Bi-LSTM and TCN show close performance with DoC. In
order to maintain consistency in the experiment, we adopted the same hyperparameter settings.
From the perspective of parameter size, the parameter quantity of Bi-LSTM is nearly twice that of
LSTM, while the parameter quantity of TCN is very small. It can be seen that as the parameter
size increases, the prediction error generally decreases first and then increases. Therefore, it is very
important to choose appropriate models and parameter settings based on the complexity of the data.

Comparison with different graph data augmentation methods. Self-supervised learning is a
popular and effective learning strategy to enrich the supervised signals.

Recent success of self-supervised learning on image datasets heavily rely on various data augmenta-
tion methods. Due to the irregular structure of graphs, existing graph augmentation methods can be
categorized into topological-based augmentation and attributive-based augmentation. In our work,
we adopt three familiar and effective graph data augmentation methods to generate different views
for self-supervised graph reconstruction, shown as follows:

* DropEdge (Rong et al.,|2020): Randomly delete some edges with a certain probability, thereby
changing the graph structure as the input of GNN.

* DropNode (Papp et al., [2021)): Instead of randomly delete some edges, DropNode randomly
delete some nodes with a certain probability.

* Feature Mask (Hu et al., 2020b): Randomly mask features of a portion of nodes with a certain
probability, thereby changing the node feature of graphs.

Figure ?? shows the experimental results, and our SMART shows the best performance on three
datasets. Due to our consideration of both structure prediction and feature reconstruction, the overall
impact of different data augmentation methods on performance is relatively stable.

Ablation study and Hyperparameter Study. In the main text, due to space constraints, we have
chosen to present representative experimental results from some selected datasets. In order to pro-
vide a more comprehensive demonstration of the effectiveness of SMART, we have included com-
plete experimental results for eight datasets, including ablation experiments and hyperparameter
experiments, in the appendix.

The correspondence between figures and experiment settings is as follows:

* Figure[I3} Ablation Study of SMART on all datasets.
* Figure[[4} Hyperparameter Study on proportional weight ratio A of SMART on all datasets.
* Figure[I3} Hyperparameter Study on RNN dimension of SMART on all datasets.

25

Published as a conference paper at ICLR 2024

I MI : w/o augmented graph reconstruction

M3a : w/o structure reconstruction

I Smart (Ours)

[M2 : w/o RNN [M3b : w/o feature reconstruction
OGB-arXiv DBLP Pharmabio Penn
g
m
a
<
=
00 Ml M2 M3a M3b Ours Ml M2 M3a M3b Ours Ml M2 M3a M3b Ours M2 M3a M3b Ours
Ambherst Reed Johns Hopkins Cornell
0.0901
4
0.0851
2
{0.0801
0 Ml M2 M3a M3b Ours M1 M2 M3a M3b Ours Ml M2 M3a M3b Ours 3a M3b Ours
Figure 13: Ablation Study of SMART on all datasets.
OGB-arXiv DBLP Pharmabio Penn
4 i]
S 5 T 2047 T A
3 e N E
2 1 B 15
s I T o
2 = S ‘ — =+ ons :
0.1 03 05 07 09 0.1 03 05 07 09 0.1 03 0.5 0.7 09 0.1 03 05 07 09
Loss ratio A Loss ratio A Loss ratio A Loss ratio A
Amberst Reed Johns Hopkins Cornell
= 12 :
<75 [0095 o150
< 1.0]é][
E 5.0 0.090 E ' / 1.25 ~]
2 \/ \ OAS% [\F
25 * ;E 1 1.00 o ES
01 03 05 07 09 01 03 05 07 09 01 03 05 07 09 01 03 05 07 09
Loss ratio . Loss ratio & Loss ratio . Loss ratio A
Figure 14: Hyperparameter Study on proportional weight ratio A of SMART on all datasets.
OGB-arXiv DBLP Pharmabio Penn
_ 1 6 — T T T 1] !
< ; 3 : 0.9 i
<y T i
& : 2 G—E_E/K_‘L
< 0.8 14 o
= - 4 \,ﬁ/ 8% ‘
2 ; : > — 1 : R —
4 8 16 32 64 128 4 8 16 32 64 128 4 8 16 32 64 128 4 8 16 32 64 128
RNN dimension RNN dimension RNN dimension RNN dimension
Ambherst Johns Hopkins Cornell
T 0.100 T
26 T 1.5 ;
S
g 0.095 1 5.0
24 gg“fg /
< H 0.090 1.0 j 25
* L - hd o oo
4 8 16 32 64 128 4 8 16 32 64 128 4 8 16 32 64 128 4 8 16 32 64 128
RNN dimension RNN dimension RNN dimension RNN dimension

Figure 15: Hyperparameter Study on RNN dimension of SMART on all datasets.

26

	Introduction
	Preliminary
	Notations
	Problem Formulation
	Unavoidable Representation Distortion as Graph Evolves

	Methodology
	A Naive Way of Estimating Generalization Loss
	Information Loss by Representation Distortions
	Smart: Self-supervised teMporAl geneRalization esTimation

	A Closer Look at Barabási–Albert Random Graph
	Experiments on Real-World Evolving Graphs
	Experiment Settings
	Experimental Results
	Ablation Study
	Hyperparameter Sensitivity

	Conclusions
	Algorithm
	Proof for Theorem 1
	Proof for Theorem 2
	Related Work
	Distribution Shift Estimation
	Evolving Graph Representation

	Experiment Details of Barabási-Albert Random Graph
	Real-world Datasets
	Additional Experimental Results of Smart
	Experiment Settings
	Implementation Details
	Experimental Results

