
A Deferred proofs364

A.1 Proof of Corollary 1365

Consider two potential “bad” events: B1, where ‖µ̂n − µ‖∞ > 1/2, and B2, where ‖µ− µ̂n‖1 >366

2‖µ̂n‖
1/2

1/2√
n

+ 6
√

ln(4/δ)
2n . Our assumption on the sample size n, together with the Dvoretzky-Kiefer-367

Wolfowitz inequality [Massart, 1990], implies that P (B1) ≤ δ/2 and (1) implies that P (B2) ≤ δ/2.368

Thus, with probability at least 1 − δ, neither of B1 or B2 occurs, and we may invoke Theorem 1,369

from which the claim immediately follows.370

�371

A.2 Proof of Theorem 2372

The following non-trivial fact [Lieb and Loss, 2001, Theorem 3.5 and Eq. (5) on p. 83] will be373

useful6:374

‖µ↓ − ν↓‖p ≤ ‖µ− ν‖p , p ∈ [1,∞], µ,ν ∈ ∆N. (11)

A result of Scheffé [1947] (more accurately credited to Riesz, 1928 [Kusolitsch, 2010]) implies375

that a sequence {ξn∈N} ⊂ `1(N) converging pointwise to some ξ ∈ `1(N) also converges in `1 iff376

‖ξn‖1 → ‖ξ‖1. This immediately implies377

Lemma 3. If {µn∈N} ⊂ ∆N converges pointwise to some µ ∈ ∆N, then it also converges in `1.378

Berend et al. [2017, Lemma 1] showed that ∆
↓(1)
N [h] is compact under `1. We begin by extending379

this result to general α, p.380

Lemma 4. For all α ≥ 1, p ∈ [1,∞], and h > 0, the set ∆
↓(α)
N [h] is compact under `p.381

Remark. This is quite false if either the non-increasing or the bounded-entropy condition is omitted.382

For a counterexample to the former, consider the sequence µn ∈ ∆N defined by µn(i) = 1[i = n].383

For a counterexample to the latter, consider the sequence µn ∈ ∆N, where µn is uniform on [n].384

Proof. We closely follow the proof strategy of Berend et al. [2017, Lemma 1]. In a metric space,385

compactness and sequential compactness are equivalent. Let µn∈N be a sequence in ∆
↓(α)
N [h]. Since386

[0, 1] is compact, every {µn(i) : n ∈ N} has a convergent subsequence, and hence µn∈N has a387

pointwise convergent subsequence. There is thus no loss of generality in assuming that µn → µ388

pointwise. Obviously, µ is non-negative and non-increasing. It remains to show that389

(a)
∑
i∈N µ(i) = 1,390

(b) H(α)(µ) ≤ h,391

(c) ‖µn − µ‖p → 0.392

To show (a), assume, for a contradiction, that
∑
i∈N µ(i) > 1. Then there must be an i0 ∈ N such that393 ∑i0

i=1 µ(i) > 1. But the latter must then hold for all µn with n sufficiently large, which contradicts394

µn ∈ ∆N. Now assume ε := 1−
∑
i∈N µ(i) > 0. For any i0 ∈ N, we have

∑i0
i=1 µn(i) < 1− ε/2395

for all sufficiently large n. Now every ν ∈ ∆↓N satisfies ν(i) ≤ 1
i (ν(1) + ν(2) + . . .+ ν(i)) ≤ 1

i .396

Hence,397

∞∑
i=i0+1

µn(i) |logµn(i)|α ≥
∞∑

i=i0+1

µn(i)(log i0)α >
ε

2
(log i0)α.

6The result is stated for functions in f ∈ L2(Rn) and their symmetric-decreasing rearrangements f∗, but
the specialization to discrete distributions is straightforward. We convert µ to a function f : R+ → R+ via
f(x) = µ(dxe) and ν to g(x) analogously. A direct calculation then shows that ‖µ− ν‖p = ‖f − g‖p and
‖µ↓ − ν↓‖p = ‖f∗ − g∗‖p, to which the result from Lieb and Loss [2001] applies to yield (11).
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Choosing i0 sufficiently large makes the latter expression exceed h, violating the assumption µn ∈398

∆
↓(α)
N [h]. Thus (a) holds.399

To show (b), assume for a contradiction that H(α)(µ) > h — and, in particular,400 ∑i0
i=1 µ(i) |logµ(i)|α > h for some i0 ∈ N. But the latter must hold for all µn with n suffi-401

ciently large, a contradiction.402

Finally, to show (c), we invoke Lemma 3: if {µn∈N} ⊂ ∆N converges pointwise to some µ ∈ ∆N,403

then it also converges in `1. Since `1 dominates every `p, p > 1, this proves (c).404

Next, we examine the continuity of H(·) on ∆
↓(α)
N [h] under `p.405

Lemma 5. Fix h > 0, α > 1, and p ∈ [1,∞]. If {µn∈N} ⊂ ∆
↓(α)
N [h] converges in `p, then its limit406

is some µ ∈ ∆
↓(α)
N [h] and furthermore, H(µn) → H(µ). In other words, H(·) is continuous on407

∆
↓(α)
N [h] under `p.408

Remark. We note that H(·) is not continuous on ∆
↓(1)
N [h] under `p, p ∈ [1,∞], as evidenced by409

the sequence µn = (1− εn, εn/n, . . . , ε/n, 0, 0, . . .), with support size n+ 1. We can choose εn so410

that H(µn) = h, but of course the limiting µ has H(µ) = 0 (see Example 1 in Berend et al. [2017]).411

Proof. It follows from Lemma 4 that the limiting µ belongs to ∆
↓(α)
N [h]. Further, Lemma 3 implies412

that µn → µ in `1. Invoking the continuity result in Theorem 1 proves the claim.413

Proof of Theorem 2. It follows from Lemma 5 that H(·) is continuous on ∆
↓(α)
N [h] under `p. Since,414

by Lemma 4, ∆
↓(α)
N [h] is compact under `p, it follows that H(·) is uniformly continuous on ∆

↓(α)
N [h]:415

there is a function F such that416

|H(µ)−H(ν)| ≤ F (‖µ− ν‖p , h, α, p), µ,ν ∈ ∆
↓(α)
N [h]

and εn := ‖µn − νn‖p → 0 =⇒ F (εn, h, α, p)→ 0. Now, for all µ,ν ∈ ∆
(α)
N [h] we have417

|H(µ)−H(ν)| =
∣∣H(µ↓)−H(ν↓)

∣∣
≤ F (‖µ↓ − ν↓‖p, h, α, p).

It follows from (11) that ‖µn − νn‖p → 0 =⇒ ‖µ↓ − ν↓‖p → 0, which concludes the proof.418

B Auxiliary results419

Proposition 2. For K ≥ 2 and α ≥ 1,420

max {logK, (α/e)}α ≤ max
µ∈∆K

H(α)(µ) ≤ max {α, logK}α + (α/e)α.

We will need the following useful (and likely known) result.421

Lemma 6 (folklore). Suppose that 0 < a < 1 and f : [0, 1] → R is strictly concave on [0, a] and422

strictly convex on [a, 1]. Define the function F : ∆K → R by423

F (µ) =

K∑
i=1

f(µ(i)).

Then any maximizer µ? of F is either the uniform distribution or else has exactly 1 “heavy” mass424

v ∈ [a, 1] and K − 1 identical “light” masses (1− v)/(K − 1).425

Proof. A standard “smoothing” argument [Loh, 2013] shows that if two masses u ≤ v occur in the426

interval (a, 1), there is an ε > 0 such that f(u − ε) + f(v + ε) > f(u) + f(v). In other words,427

such masses can be pushed apart (keeping their sum fixed) to increase the value of F , until one of428

them reaches the boundary of [a, 1]. Furthermore, since 0 < a < u < v and u + v ≤ 1, repeated429
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iteration of the “pushing apart” operation will hit the left endpoint (i.e., a) rather than the right one430

(i.e., 1). Having exhausted the “pushing apart” process, we are left with one “heavy” mass v ∈ [a, 1]431

and K − 1 “lighter” ones in [0, a]. But concavity implies that F will be maximized by pulling the432

lighter masses in (as opposed to pushing them apart), which amounts to replacing each of them by433

the average of the K − 1 values.434

Proof of Proposition 2. Choosing µ to be the uniform distribution yields H(α)(µ) = logαK, and435

choosing µ such that v := µ(1) = e−α yields H(α)(µ) ≥ v log(1/v)α = (α/e)α. Thus, the lower436

bound is proven and it only remains to prove the upper bound.437

Let µ? be a maximizer for given α,K. Recall the function h(α)(z) = z logα(1/z) and note that it is438

strictly concave on [0, e−(α−1)] and strictly convex on [e−(α−1), 1]. Then Lemma 6 shows that µ?439

will either be uniform or else attains at most one value v ∈ [e−(α−1), 1] in the convex interval, with440

the remaining values equal to 1−v
K−1 ∈ [0, e−(α−1)] in the concave interval. Only the latter case is441

non-trivial:442

H(α)(µ?) = v

(
log

1

v

)α
+ (1− v)

(
log

K − 1

1− v

)α
for some v satisfying443

0 <
1− v
K − 1

≤ e−(α−1) ≤ v < 1. (12)

Now v
(
log 1

v

)α
is maximized over [0, 1] by v = e−α, which yields the value (α/e)α.444

To bound the second term, g(v) := (1 − v)
(

log K−1
1−v

)α
, we consider two cases: (i) K − 1 < eα445

and (ii) K − 1 ≥ eα. In case (i), g is maximized by v? = 1− (K − 1)/eα and446

g(v?) = (1− v?)
(

log
K − 1

1− v?

)α
≤
(

log
K − 1

1− v?

)α
= αα.

In case (ii), g is monotonically decreasing in v. The constraint 1−v
K−1 ≤ v from (12) implies v ≥ 1/K,447

so in this case,448

g(v) ≤
(

log
K − 1

1− 1/K

)α
= logαK.

This proves the upper bound.449

450
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