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ABSTRACT

Enzyme design is a critical area in biotechnology, with applications ranging from
drug development to synthetic biology. Traditional methods for enzyme func-
tion prediction or protein binding pocket design often fall short in capturing
the dynamic and complex nature of enzyme-substrate interactions, particularly
in catalytic processes. To address the challenges, we introduce EnzymeFlow,
a generative model that employs flow matching with hierarchical pre-training
and enzyme-reaction co-evolution to generate catalytic pockets for specific sub-
strates and catalytic reactions. Additionally, we introduce a large-scale, curated,
and validated dataset of enzyme-reaction pairs, specifically designed for the cat-
alytic pocket generation task, comprising a total of 328,192 pairs. By incor-
porating evolutionary dynamics and reaction-specific adaptations, EnzymeFlow
becomes a powerful model for designing enzyme pockets, which is capable
of catalyzing a wide range of biochemical reactions. Experiments on the new
dataset demonstrate the model’s effectiveness in designing high-quality, func-
tional enzyme catalytic pockets, paving the way for advancements in enzyme
engineering and synthetic biology. The EnzymeFlow code can be found at
https://anonymous.4open.science/r/EnzymeFlow—7420.

1 INTRODUCTION

Proteins are fundamental to life, participating in many essential interactions for biological processes
(Whitford, 2013). Among proteins, enzymes stand out as a specialized class that serves as catalysts,
driving and regulating nearly all chemical reactions and metabolic pathways across living organisms,
from simple bacteria to complex mammals (Kraut, 1988; Murakami et al., 1996; Copeland, 2023)
(visualized in Fig. 1). Their catalytic power is central to biological functions, enabling the efficient
production of complex organic molecules in biosynthesis (Ferrer et al., 2008; Liu & Wang, 2007)
and the creation of novel biological pathways in synthetic biology (Girvan & Munro, 2016; Keasling,
2010; Hodgman & Jewett, 2012). Examining enzyme functions across the tree of life deepens our
understanding of the evolutionary processes that shape metabolic networks and enable organisms
to adapt to their environments (Jensen, 1976; Glasner et al., 2006; Campbell et al., 2016; Pinto
et al., 2022). Consequently, studying enzyme-substrate interactions is essential for comprehending
biological processes and designing effective products. CD Substrate Products @

Traditional methods have primarily focused on enzyme \w - @ - @
function prediction, annotation (Gligorijevi¢ et al., 2021;

Yu et al., 2023), or enzyme-reaction retrieval (Mikhael Enmyme-substate

et al., 2024; Hua et al., 2024b; Yang et al., 2024). These Enzyme complex Enzyme
approaches lack the ability to design new enzymes that Figure 1: Enzyme-substrate Mechanism.
catalyze specific biological processes. Recent studies suggest that current function prediction models
struggle to generalize to unseen enzyme reaction data (de Crecy-Lagard et al., 2024; Kroll et al.,
2023a), limiting their utility in enzyme design. To effectively design enzymes, it is crucial not only
to predict protein functions but also to identify and generate enzyme catalytic pockets specific to
particular substrates, thereby enabling potentially valuable biological processes.

On the other hand, recent advances in deep generative models have significantly improved pocket
design for protein-ligand complexes (Stirk et al., 2023; Zhang et al., 2023b; 2024e; Krishna et al.,
2024), generating diverse and functional binding pockets for ligand molecules. However, these
models cannot generalize directly to the design of enzyme catalytic pockets for substrates involved in
catalytic processes. Unlike protein-ligand complexes, where ligand binding typically does not lead to
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a chemical transformation, enzyme-substrate interactions result in a chemical change where the
substrate is converted into a product, which has significantly different underlying mechanisms.
More specifically, in protein-ligand binding, the ligand may induce a conformational change in the
protein, affect its interactions with other molecules, or modulate its activity; in contrast, the formation
of an enzyme-substrate complex is a precursor to a catalytic reaction, where the enzyme lowers the
activation energy, facilitating the transformation of the substrate into a product. After the reaction, the
enzyme is free to bind another substrate molecule. Therefore, current generative models for pocket
design are restricted and limited to static ligand-binding interactions, failing to describe such dynamic
transformations and the complex nature of enzyme-substrate interactions.

To address these limitations, we propose EnzymeFlow (demonstrated in Fig. 2), a flow matching
model (Lipman et al., 2022; Liu et al., 2022; Albergo & Vanden-Eijnden, 2023) with enzyme-reaction
co-evolution and structure-based pre-training for enzyme catalytic pocket generation. Our major
contributions follow: (1) EnzymeFlow—Flow Model for Enzyme Catalytic Pocket Design: We
define conditional flows for enzyme catalytic pocket generation based on backbone frames, amino acid
types, and Enzyme Commission (EC) class. The generative flow process is conditioned on specific
substrates and products, enabling potential catalytic processes. (2) Enzyme-Reaction Co-Evolution:
Since enzyme-substrate interactions involve dynamic chemical transformations of substrate molecules,
which is distinct from static protein-ligand interactions, we propose enzyme-reaction co-evolution
with a new co-evolutionary transformer (coEvoFormer). The co-evolution is used to capture substrate-
specificity in catalytic reactions. It encodes how enzymes and reactions evolve together, allowing
the model to operate on evolutionary dynamics, which naturally comprehends the catalytic process.
(3) Structure-Based Hierarchical Pre-Training: To leverage the vast data of geometric structures
from existing proteins and protein-ligand complexes, we propose a structure-based hierarchical
pre-training. This method progressively learns from protein backbones to protein binding pockets,
and finally to enzyme catalytic pockets. This hierarchical learning of protein structures enhances
geometric awareness within the model. (4) EnzymeFill—Large-scale Pocket-specific Enzyme-
Reaction Dataset with Pocket Structures: Current enzyme-reaction datasets are based on full
enzyme sequences or structures and lack precise geometry for how enzyme pockets catalyze the
substrates. To address this, we construct a structure-based, curated, and validated enzyme catalytic
pocket-substrate dataset, specifically designed for the catalytic pocket generation task.

2 RELATED WORK

2.1 PROTEIN EVOLUTION

Protein evolution learns how proteins change over time through processes such as mutation, selection,
and genetic drift (Pal et al., 2006; Bloom & Arnold, 2009), which influence protein functions. Studies
on protein evolution focus on understanding the molecular mechanisms driving changes in protein
sequences and structures. Zuckerkandl & Pauling (1965) introduce the concept of the molecular clock,
which postulates that proteins evolve at a relatively constant rate over time, providing a framework
for estimating divergence times between species. DePristo et al. (2005) show that evolutionary rates
are influenced by functional constraints, with regions critical to protein function (e.g., active sites,
binding interfaces) evolving more slowly due to purifying selection. This understanding leads to
the development of methods for detecting functionally important residues based on evolutionary
conservation. Understanding protein evolution has practical applications in protein engineering. By
studying how natural proteins evolve to acquire new functions, researchers design synthetic proteins
with desired properties (Xia & Levitt, 2004; Jickel et al., 2008). Additionally, deep learning models
increasingly integrate evolutionary principles to predict protein function and stability, design novel
enzymes, and guide protein engineering (Yang et al., 2019; AlQuraishi, 2019; Jumper et al., 2021).

2.2 GENERATIVE MODELS FOR PROTEIN AND POCKET DESIGN

Recent advancements in generative models have advanced the field of protein design and binding
pocket design, enabling the creation of proteins or binding pockets with desired properties and func-
tions (Yim et al., 2023a;b; Chu et al., 2024; Hua et al., 2024a; Abramson et al., 2024). For example,
RFDiffusion (Watson et al., 2023) employs denoising diffusion in conjunction with RoseTTAFold
(Baek et al., 2021) for de novo protein structure design, achieving wet-lab-level generated structures
that can be extended to binding pocket design. RFDiffusionAA (Krishna et al., 2024) extends
RFDiffusion for joint modeling of protein and ligand structures, generating ligand-binding proteins
and further leveraging MPNNs for sequence design. Additionally, FAIR (Zhang et al., 2023b) and
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PocketGen (Zhang et al., 2024e) use a two-stage coarse-to-fine refinement approach to co-design
pocket structures and sequences. Recent models leveraging flow matching frameworks have shown
promising results in these tasks. For instance, FoldFlow (Bose et al., 2023) introduces a series of flow
models for protein backbone design, improving training stability and efficiency. FrameFlow (Yim
et al., 2023a) further enhances sampling efficiency and demonstrates success in motif-scaffolding
tasks using flow matching, while MultiFlow (Campbell et al., 2024) advances to structure and se-
quence co-design. These flow models, initially applied to protein backbones, have been further
generalized to binding pockets. For example, PocketFlow (Zhang et al., 2024d) combines flow
matching with physical priors to explicitly learn protein-ligand interactions in binding pocket design,
achieving stronger results compared to RFDiffusionAA. While these models excel in protein and
binding pocket design, they primarily focus on static protein(-ligand) interactions and lack the ability
to model the chemical transformations involved in enzyme-catalyzed reactions. This limitation may
reduce their accuracy and generalizability in designing enzyme pockets for catalytic reactions. In
EnzymeFlow, we aim to address these current limitations. An extended discussion of related works
on Al-driven protein engineering can be found in App. C.

Discussion regarding PocketFlow. PocketFlow (Zhang et al., 2024d) has demonstrated strong per-
formance in protein-ligand design, showing generalizability across various protein pocket categories.
However, it falls short when applied to the design of enzyme catalytic pocket with specific substrates.
One key limitation is that protein-ligand interactions are static, meaning that the training data and
model design do not capture or describe the chemical transformations, such as the conversion or
production of new molecules, that occur during enzyme-catalyzed reactions. This dynamic aspect of
enzyme-substrate interactions is missing in current models. Another limitation is that PocketFlow
fixes the overall protein backbone structure before designing the binding pocket, treating the pocket
as a missing element to be filled in. This approach may not align with practical needs, as the overall
protein backbone structure is often unknown before pocket design. Ideally, the design process should
be reversed: the pocket should be designed first, influencing the overall protein structure. Despite
these challenges, PocketFlow remains a good and leading work in pocket design. With EnzymeFlow,
we aim to address these limitations, particularly in the context of catalytic pocket design.

3 ENzYMEFLOW

We introduce EnzymeFlow, a flow matching model with hierarchical pre-training and enzyme-reaction
co-evolution to generate enzyme catalytic pockets for specific substrates and catalytic reactions. We
demonstrate the pipeline in Fig. 2, discuss the EnzymeFlow with co-evolutionary dynamics in Sec. 3.1,
further introduce the structure-based hierarchical pre-training for generalizability in Sec. 3.2

3.1 ENZYME CATALYTIC POCKET GENERATION WITH FLOW MATCHING

EnzymeFlow on Catalytic Pocket. Following Yim et al. (2023a), we refer to the protein structure
as the backbone atomic coordinates of each residue. A pocket with number of residues NV,. can be
parameterized into SE(3) residue frames { (7, 7%, ¢)} X7, where 2* € R? represents the position
(translation) of the C,, atom of the i-th residue, r* € SO(3) is a rotation matrix defining the local
frame relative to a global reference frame, and ¢’ € {1,...,20} U {X} denotes the amino acid type,
with an additional X indicating a masking state of the amino acid type. We refer to the residue block
as T® = (2,7, c"), and the entire pocket is described by a set of residues T = {7"}\7, . Additionally,
we denote the graph representations of substrate and product molecules in the catalytic reaction as [
and [, respectively. An enzyme-reaction pair can therefore be described as (T, l5,1,).

Following flow matching literature (Yim et al., 2023a; Campbell et al., 2024), we use time ¢ = 1 to
denote the source data. The conditional flow on the enzyme catalytic pocket p;(T:|T;) for a time
step t € (0, 1] can be factorized into the probability density over continuous variables (translations
and rotations) and the probability mass function over discrete variables (amino acid types) as:

N,

pe(TeTy) = Hpt(ifﬂfi)i'?t(?"ﬂ?”i)pt(cﬂci)’ )]
=1

where the translation, rotation, and amino acid type at time ¢ are derived as:
rh = (1= )+ tad, 3~ N0, D); 7t = expyy (tlogyg 1), 76 ~ Usoos

. o o . )
ci ~ pe(cglcl) = Cat(t 6(ct, ct) + (1 —t) 6(X, cp)),
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Figure 2: Overview of EnzymeFlow with hierarchical pre-training and enzyme-reaction co-evolution.
(1) Flow model pre-trained on protein backbones and amino acid types. (2) Flow model further
pre-trained on protein binding pockets, conditioned on ligand molecules with geometry-specific
optimization. (3) Flow model fine-tuned on enzyme catalytic pockets, and conditioned on substrate
and product molecules, with enzyme-reaction co-evolution and EC-class generation.

where 6 (a, b) is the Kronecker delta, which equals to 1 if a = b and 0 if a # b; Cat is a categorical
distribution for the sampling of discrete amino acid type, with probabilities t5(c, ci) + (1 — ¢)6(X, ci).
The discrete flow interpolates from the masking state X at t = 0 to the actual amino acid type cj at
t = 1 (Campbell et al., 2024). In a catalytic process, enzymes interact with substrates to produce
specific products. In practical enzyme design, we typically know the substrates [ (as 3D atom point
clouds) and the desired products /,, (as 2D molecular graphs or SMILES). Therefore, the formation of
the enzyme catalytic pocket should be conditioned on both substrates and products. Our enzyme flow
matching model is conditioned on these two ligand molecules [, [,,, ensuring that the predictions of
vector fields vy (+) and loss functions account for the substrate and product molecules:

s i i iN2 = i log,.; i 2
Etrans = Z ||U6(xt7t7 lsalp) - (‘Tl - xO)”Q? ‘C'TOI = Z H’U@(?”t,t,ls,lp) - ﬁ”soﬁ);
=1 i=1 (3)
Ny
Lo = —Zlogpe(Cﬂvé(Ci,t,ls,lp))-
1=1

To design the enzyme pocket and model protein-ligand interactions, we implement 3D and 2D GNN5s
to encode the substrate and product, respectively (implemented in App. E). The main vector field
network applies cross-attention to model protein-ligand interactions and incorporates Invariant Point
Attention (IPA) (Jumper et al., 2021) to encode protein features and make predictions. Following
tricks in Yim et al. (2023a); Campbell et al. (2024), we let the the model predict the final structure at
t = 1 and interpolates to compute the vector fields (discussed in App. F).

EnzymeFlow on EC-Class. The Enzyme Commission (EC) classification is crucial for categorizing
enzymes based on the reactions they catalyze. Understanding the EC-class of an enzyme-reaction
pair can help predict its function in various biochemical pathways (Bansal et al., 2022). Given its
importance, EnzymeFlow leverages EC-class to enhance its generalizability across various enzymes
and catalytic reactions. Therefore, our model incorporates EC-class, ye. € {1,...,7} U{X},as a
discrete factor in the design process. The EC-class is sampled from a Categorical distribution with
probabilities 6 (Yec, , Yec; ) + (1 — £)5(X, yec,) - The discrete flow on EC-class interpolates from the
masking state X at t = 0 to the actual EC-class y,., att = 1. The prediction and loss function are
conditioned on the pocket frames and the substrate and product molecules:

[fec = - 10gp0 (yecl |U9 (Tt; t, lsa lpa Yec, )) (4)
The model predicts the final EC-class at t = 1 and interpolates to compute its vector field. For EC-
class prediction, we first employ a EC-class embedding network to encode ye.,. The final predicted
EC-class is obtained by pooling cross-attention between the encoded enzyme and EC-class features.

3.1.1 ENzZYMEFLOW WITH ENZYME-REACTION CO-EVOLUTION

Enzyme (protein) evolution refers to the process by which enzyme structures and functions change
over time due to genetic variations, such as mutations, duplications, and recombinations. These
changes can lead to alterations in amino acids, potentially affecting the enzyme structure, function,
stability, and interactions (Pdl et al., 2006; Sikosek & Chan, 2014). Reaction evolution, on the other
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Figure 3: Catalytic pocket design example using EnzymeFlow (UniProt: Q7U4P2). The pocket gener-
ation is conditioned on reaction cnces; (C(=0)c)cs.c/c=C\\1/C(=C/c2[nH]c (c(c2C)CCC(=0)0)/C=C/2\\N=C (C(=C2CCC
(=0) 0) C) C[C@H] 2NC (=0) C (=C2C) C=C) /NC (=0) [C@@H]1C — CN[CEH] (C(=0)C)CSC (C1=C(C)C (=0) N[C@H]1Ccl [nH] ¢ (¢ (c1C) CCC (=0)
0) /c=c/1\\N=C (C (=c1ccc (=0) 0) ¢) c[cen] 1nc (<o) ¢ (=c1c) c=c) ¢ Of EC4 (ligase enzyme), fromt = 0tot = 1.

hand, refers to the process by which chemical reactions or substrates, particularly those catalyzed by
enzymes, change and diversify within biological systems over time (illustrated in Fig. 2(3)(d)).

Co-Evolutionary Dynamics. Enzymes can co-evolve with the metabolic or biochemical pathways
they are part of, adapting to changes in substrate availability, the introduction of new reaction steps, or
the need for more efficient flux through the pathway. As pathways evolve, enzymes within them may
develop new catalytic functions or refine existing ones to better accommodate these changes (Noda-
Garcia et al., 2018). This process frequently involves the co-evolution of enzymes and their substrates.
As substrates change—whether due to the introduction of new compounds in the environment or
mutations in other metabolic pathways—enzymes may adapt to catalyze reactions with these new
substrates, leading to the emergence of entirely new reactions. Understanding enzyme-substrate
interactions, therefore, requires considering their evolutionary dynamics, as these interactions are
shaped by the evolutionary history and adaptations of both enzymes and their substrates. This
co-evolutionary process is crucial for explaining how enzymes develop new functions and maintain
efficiency in response to ongoing changes in their biochemical environment.

To capture the evolutionary dynamics, we introduce the concept of enzyme-reaction co-evolution
into EnzymeFlow. We compute the enzyme and reaction evolution by applying multiple sequence
alignment (MSA) to enzyme sequences and reaction SMILES, respectively (Steinegger & Soding,
2017). The co-evolution of an enzyme-reaction pair is represented by a matrix U € R™VMsa*Noken which
combines the MSA results of enzyme sequences and reaction SMILES (illustrated in Fig. 2(3)(d)
& Fig. 8), where Nysa denotes the number of MSA sequences and Nioken denotes the length of the
MSA alignment preserved. And each element «™" € {1,...,64} U {X} in U denotes a tokenized
character from our co-evolution vocabulary, with additional X indicating the masking state.

EnzymeFlow on Co-Evolution. The flow for co-evolution follows a similar approach to that used for
amino acid types and EC-class, treating it as a discrete factor in the design process. The co-evolution
is sampled from a Categorical distribution, where each element has probabilities ¢6(u!"", ui""™) 4+ (1 —
t)6(X, ui"™). Each element flows independently, reflecting the natural independence of amino acid
mutations (Boyko et al., 2008). The discrete flow on co-evolution interpolates from the masking state
X att = 0 to the actual character u]*" at t{ = 1. The prediction and loss function are conditioned on
the pocket frames and the substrate and product molecules:

Nusa Nioken

Ecoevo = - Z Z logPG (UTHWG(TM t, lsv lpa u;nn)) ©)

m=1 n=1
The model predicts the final co-evolution at ¢ = 1 and interpolates to compute its vector field. For
co-evolution prediction, we first introduce a co-evolutionary MSA transformer (coEvoFormer) to
encode U; (implemented in App. D). The final predicted co-evolution is obtained by computing
cross-attention between the encoded enzyme and ligand, and the encoded co-evolution features.

We can therefore express EnzymeFlow with co-evolutionary dynamics for catalytic pocket design as:

pt(Tt7 Uta yect |T17 Ula yCC1 ) 157 lp) = pt(yect |y601 ) Tt) pt(UtIUh Tt) pt(TtlTla l57 lp) (6)

The final EnzymeFlow model performs flows on protein backbones, amino acid types, EC-class,
and enzyme-reaction co-evolution. Given the SE(3)-invariant prior and the main SE(3)-equivariant
network in EnzymeFlow, the pocket generation process is also SE(3)-equivariant (proven in App. G).

3.2 STRUCTURE-BASED HIERARCHICAL PRE-TRAINING

In addition to the standard EnzymeFlow for enzyme pocket design, we propose a hierarchical pre-
training strategy to enhance the generalizability of the model across different enzyme categories. The
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term hierarchical pre-training is used because the approach first involves training the flow model to
understand protein backbone generation, followed by training it to learn the geometric relationships
between proteins and ligand molecules, which form protein binding pockets. After the flow model
learns these prior knowledge, we fine-tune it specifically on an enzyme-reaction dataset to generate
enzyme catalytic pockets. The term hierarchical reflects the progression from protein backbone
generation, to protein binding pocket formation, and finally to enzyme catalytic pocket generation.

Motivation. A key limitation of current datasets, such as ESP (Kroll et al., 2023b), EnzymeMap (Heid
etal., 2023), CARE (Yang et al., 2024), or ReactZyme (Hua et al., 2024b), is the lack of precise pocket
information. These datasets typically provide enzyme-reaction data, including protein sequences
and SMILES representations, which is used to predict EC numbers in practice. To incorporate
geometric information and enhance the model’s generalizability through structural data, we propose
a hierarchical pre-training approach to ensure the model comprehends the geometry between proteins
and ligand molecules. Alongside this, we introduce a new synthetic dataset, the EnzymeFlow pocket
dataset, which includes precise pocket structures with substrate conformations (discussed in Sec. 4).

Specifically, we begin by pre-training the flow model on a protein backbones. Once the model learns
it, we proceed to post-train it on a protein-ligands, with the objective of generating binding pockets
conditioned on the ligand molecules. Finally, the model is fine-tuned on our EnzymeFlow dataset to
generate valid enzyme catalytic pockets for specific substrates and catalytic reactions.

3.2.1 PROTEIN BACKBONE PRE-TRAINING

The initial step involves pre-training the model on a protein backbone dataset (illustrated in Fig. 2(1)).
We use the backbone dataset discussed in FrameFlow (Yim et al., 2023a). This pre-training focuses
solely on SE(3) backbone frames and discrete amino acid types, allowing the flow model to acquire
foundational knowledge of protein backbone geometry and structure.

3.2.2 PROTEIN-LIGAND PRE-TRAINING

Following the protein backbone pre-training, we proceed to pre-train the flow model on a protein-
ligand dataset (illustrated in Fig. 2(2)). Specifically, we use PDBBind2020 (Wang et al., 2004).
This pre-training focuses on binding pocket frames, with the flow model conditioned on the 3D
representations of ligand molecules ! consisting of N; atoms. Additionally, binding affinity yw € R
and atomic-level pocket-ligand distance D* € R**™ for the i-th residue frame serve as optimization
factors. The parametrization is similar to Eq. 6, with conditioning on the ligand molecule as follows:

Pt(Tt, yxa|T1, 1) = pe(yxal T, 1) pe(Te T, 0). (7N
In addition to the flow matching losses in Eq. 3, we introduce a protein-ligand interaction loss
to prevent intersection during the binding generation process. Conceptually, this ensures that the
generated pocket atoms do not come into contact with the surface of the ligand molecule. Following
previous work on protein-ligand binding (Lin et al., 2022), the surface of a ligand {a;|j € N(V;) }is
defined as {a € R?|S(a) = ~}, where S(a) = —plog(Z;.V:ll exp(—|a — a;]?/p)). The interior of the
ligand molecule is thus defined by {a € R*|S(a) < v}, and the binding pocket atoms are constrained
to lie within {a € R3|S(a) > ~v}. We also introduce a protein-ligand distance loss to regularize
pairwise atomic distances, along with a binding affinity loss to enforce the generation of more valid
protein-ligand pairs. These objectives are defined as follows:
1{D} < 8A}(D} — D})|3 X
(14D < 8ANDE = Di)lla = llyka = Grall®,  (®)

> 1pisa

where A’ € R**® denotes the predicted atomic positions of i-th residue frame, v = 6 and p = 2 are
hyperparameters, and 4 is the predicted binding affinity for a generated pair. D? € R**™ is defined
similarly to D*, based on the distance between the predicted atomic positions and ligand positions
for the i-th residue frame. The predicted affinity i is obtained by pooling the encoded protein and
ligand features. These additional losses are incorporated to improve the model’s generalizability,
enforcing more constrained geometries for more valid protein pocket design.

N, N,
Liner =y max(0,7 — S(A})), Lasw = |
=1 i=1

4 ENzZYMEFILL: LARGE-SCALE ENZYME POCKET-REACTION DATASET

Data Source. We construct a curated and validated dataset of enzyme-reaction pairs by collecting
data from the Rhea (Bansal et al., 2022), MetaCyc (Caspi et al., 2020), and Brenda (Schomburg
et al., 2002) databases. For enzymes in these databases, we exclude entries missing UniProt IDs or
protein sequences. For reactions, we apply the following procedures: (1) remove cofactors, small
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Figure 4: (a) Enzyme pocket extraction workflow with AlphaFill. (b) Quality analysis of clustering
between enzyme pockets and full structures; good clusters have high functional concentration.

ion groups, and molecules that appear in both substrates and products within a single reaction; (2)
exclude reactions with more than five substrates or products; and (3) apply OpenBabel (O’Boyle et al.,
2011) to standardize canonical SMILES. Ultimately, we obatin a total of 328, 192 enzyme-reaction
pairs, comprising 145, 782 unique enzymes and 17, 868 unique reactions; we name it EnzymekFill.

Catalytic Pocket with AlphaFill. We identify all enzyme catalytic pockets using AlphaFill (Hekkel-
man et al., 2023), an AF-based algorithm that uses sequence and structure similarity to transplant
ligand molecules from experimentally determined structures to predicted protein models. We down-
load the AlphaFold structures for all enzymes and apply AlphaFill to extract the enzyme pockets.
Simultaneously, we determine the reaction center by using atom-atom mapping of the reactions.
During the pocket extraction process, AlphaFill first identifies homologous proteins of the target
enzyme in the PDB-REDO database, along with their complexes with ligands (van Beusekom et al.,
2018). It then transplants the ligands from the homologous protein complexes to the target enzyme
through structural alignment (illustrated in Fig. 4(a)). After transplantation, we select the appropriate
ligand molecule based on the number of atoms and its frequency of occurrence, and extract the pocket
using a pre-defined radius of 10A . We also perform clustering analysis on the extracted pockets using
Foldseek (van Kempen et al., 2022), which reveals that enzyme catalytic pockets capture functional
information more effectively than full structures (illustrated in Fig. 4(b)). For the extraction of
reaction centers, we first apply RXNMapper to extract atom-atom mappings (Schwaller et al., 2021),
which maps the atoms between the substrates and products. We then identify atoms where changes
occurred in chemical bonds, charges, and chirality, labeling these atoms as reaction centers.

Data Debiasing for Generation. To ensure the quality of catalytic pocket data for the design
task, we exclude pockets with fewer than 32 residues', resulting in 232, 520 enzyme-reaction pairs.
Additionally, enzymes and their catalytic pockets can exhibit significant sequence similarity. When
enzymes that are highly similar in sequence appear too frequently in the dataset, they tend to belong to
the same cluster or homologous group, which can introduce substantial biases during model training.
To mitigate this issue and ensure a more balanced dataset, it is important to reduce the number of
homologous enzymes by clustering and selectively removing enzymes from the same clusters. This
helps to debias the data and improve the model’s generalizability. We perform sequence alignment
to cluster enzymes and identify homologous ones (Steinegger & Soding, 2017). We then revise the
dataset into five major categories based on enzyme sequence similarity, resulting in: (1) 19, 379
pairs with at most 40% homology, (2) 34, 750 pairs with at most 50% homology, (3) 53, 483 pairs
with at most 60% homology, (4) 100, 925 pairs with at most 80% homology, and (5) 132, 047 pairs
with at most 90% homology. In EnzymeFlow, we choose to use the clustered data with at most 60%
homology with 53, 483 samples for training. We provide more dataset statistics in App. H

5 EXPERIMENT — GENERATING CATALYTIC POCKET CONDITIONED ON
REACTIONS AND SUBSTRATES

We compare EnzymeFlow with state-of-the-arts representative baselines, including template-matching
method DEPACT (Chen et al., 2022), deep equivariant and iterative refinement model PocketGen
(Zhang et al., 2024e), golden-standard diffusion model RFDiffAA (Krishna et al., 2024), and the most
recent PocketFlow” (Zhang et al., 2024d). For RFDiffAA-designed pockets, we apply LigandMPNN

'32 residues are chosen based on LigandMPNN (Dauparas et al., 2023), ensuring high-quality interactions.
2PocketFlow is not open-sourced yet, we implement and train it on EnzymeFill without fixing the backbones.
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Table 1: EnzymeFlow Evaluation Data Statistics.

| Reaction | Enzyme | Substrate | Product | Enzyme Commision
Data “greaction | #enzyme | #substrate | #avg atom | #product | #av atom | ECI | EC2 | EC3 | EC4 | ECS | EC6 | BCT

232520 97912 7259 30.81 7664 30.34 | 44881 (19.30) | 75944 (32.66) | 37728 (16.23) | 47242 (20.32) | 8315(3.58) | 18281 (7.86) | 129 (0.06)
53483 22350 6112 30.95 6331 30.34 | 11674 (21.83) | 18419 (34.44) | 11394 (21.30) | 5555(10.39) | 2194 (4.10) | 4200 (7.85) | 47(0.09)
100 100 100 30.7 94 28.84 17 (17.00) 17 (17.00) 17 (17.00) 17 (17.00) 16 (16.00) 16 (16.00) 0(0.00)

Raw
Train
Eval

(Dauparas et al., 2023) to inverse fold and predict the sequences post-hoc. We provide the code of
EnzymeFlow at https://anonymous.4open.science/r/EnzymeFlow-7420.

Evaluation Data. We use MMseqs2 to perform clustering with a 10% homology threshold, selecting
the center of each cluster as the initial dataset, resulting in a total of 3,417 pairs. After de-duplicating
both repeated substrates and UniProt entries, we are left with 839 unique enzyme-reaction pairs. We
then uniformly sample data across different EC classes, selecting 17 pairs from EC1 to EC4 classes
and 16 pairs from EC5 and EC6 classes, respectively, resulting in a total of 100 unique catalytic
pockets and 100 unique reactions. Each enzyme-reaction pair is labeled with a ground-truth EC-class
from EC1 to EC6. We present the EC-class distribution in the evaluation set in Tab. 1.

Reaction-conditioned Generation. For pocket design and model sampling, we perform conditional
generation on each reaction (or substrate), generating 100 catalytic pockets for each reaction in the
evaluation set. We evaluate the generated pockets for their structures and functions (i.e., EC-class).

EnzymeFlow Scope. In EnzymeFlow, we adhere to the philosophy that enzyme function dictates its
structure. This means that an enzyme folds into a specific 3D shape to fulfill its catalytic role, and the
resulting structure can then be inversely folded into a sequence—essentially, function — structure
— sequence. In EnzymeFlow, the enzyme function is defined by the reaction that the enzyme will
catalyze (discussed in App. B). We evaluate the structures and functions of the designed pockets.

5.1 CATALYTIC POCKET STRUCTURE EVALUATION

We begin by assessing the structural validity of generated catalytic pockets. While enzyme function
determines whether the designed pocket can catalyze a specific reaction, the structure determines
whether the substrate conformation can properly bind to the catalytic pocket. We provide some visual
examples of designed pockets in Fig. 5 and App. J.

Metrics. We use the following metrics to evaluate and compare the structural validity of the generated
pocket. Constrained-site RMSD (cRMSD): The structural distance between the ground-truth and
generated pockets, as proposed in Hayes et al. (2024). TM-score: The topological similarity
between the generated and ground-truth pockets in local deviations. Aggregated Chai Score (chai):
The confidence and structural validity of the designed pockets by running Chai (Chai, 2024). It is
calculated as 0.2 x pTM + 0.8 x ipTM — 100 X clash, where pTM is the predicted template modeling
score, ipTM is the interface predicted template modeling score (as used in Jumper et al. (2021)),
and the definition of chai is proposed by Chai (2024). Binding Affinity (Xd): The binding affinity
between the generated catalytic pocket and the substrate conformation is computed using AutoDock
Vina (Trott & Olson, 2010). Amino Acid Recovery (AAR): The overlap ratio between the predicted
and ground-truth amino acid types in the generated pocket. Enzyme Commission Accuracy (ECacc):
The accuracy of matching the EC-class of generated pockets with the ground-truth EC-class.

Table 2: Evaluation of structural validity of EnzymeFlow- and baseline-generated catalytic pockets.
The binding affinities (Kd) and structural confidence (chai) are computed by performing docking
on the catalytic pocket and substrate conformation using Vina (Trott & Olson, 2010) and Chai (Chai,
2024), respectively. We highlight top three results in bold, underline, and italic, respectively.

| cRMSD ({) | TM-score (1) | | | |
Model | Topl Topl0 Median | Topl Topl0 Median | Kd () | chai () | ARR(T) | ECacc (1)
Eval Data - \ - | -4.65 | - - -
DEPACT 9.25 9.75 11.16 | 0.238  0.206 0.149 -5.46 0.125 0.112 0.149
PocketGen 7.65 8.14 1045 | 0.260  0.233 0.193 -5.01 0.121 0.176 0.152
RFDiffAA 9.13 9.77 11.92 | 0.269 0.245 0.198 | -12.71 0.232 0.153 0.170
PocketFlow 7.42 8.09 10.01 | 0.268  0.260 0.197 -4.93 0.123 0.207 0.166
EnzymeFlow (T=50) 6.94 7.57 9.04 | 0.290 0.262 0.209 -5.03 0.129 0.216 0.280
w/0 coevo 7.02 7.60 9.15 | 0.288  0.260 0.205 -4.86 0.123 0.196 0.246
w/o pretraining 7.01 7.69 9.29 | 0.286 0.261 0.207 -4.33 0.134 0.202 0.255
w/o coevo+pretraining  7.05 7.81 943 | 0278  0.255 0.204 | -4.72 0.125 0.154 0.221
EnzymeFlow (T=100) 6.97 7.57 9.02 | 0.283 0.258 0.207 -5.31 0.135 0.215 0.273

Results. We compare the structural validity between EnzymeFlow- and baseline-generated catalytic
pockets in Tab. 2. EnzymeFlow and its ablation models outperform baseline models, including leading
models like RFDiffAA and PocketFlow, with significant improvements in cRMSD, TM-score, and
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(Uniprot ID: BBMXP5) RMSD: 3.02

Figure 5: Case study of catalytic pocket design (UniProt: BESMXPS5). We show the reference
and designed pockets of different models. The pocket generation is conditioned on reaction
OC[CE@H]10[C@RH] (Oc2cccce2/C=C\\C (=0)0) [CREH] ([C@H] ([CRRH]10)0)0 — OC(=0)/C=C\\clccccclo of EC3.

ECacc, and competitive performance in AAR. This demonstrates that EnzymeFlow is capable of
generating more structurally valid catalytic pockets, aligning with the enzyme function analysis
presented in Fig. 6. The average improvements over RFDiffAA in cRMSD, TM-score, AAR, and
EC-Acc are 23.9%, 7.8%, 41.1%, and 64.7%, respectively. Additionally, EnzymeFlow slightly
outperforms PocketFlow in catalytic-substrate binding, showing improved affinity scores (Kd) and
structural confidence (chai) by 2.1% and 9.8%, respectively.

However, EnzymeFlow underperforms RFDiffAA in binding scores, reflected by lower affinities and
structural confidence. Nonetheless, considering that the affinities of EnzymeFlow-generated catalytic
pockets (-5.03) are close to those of enzyme-reaction pairs in the evaluation set (-4.65), the binding
of EnzymeFlow remains acceptable, as enzymes and substrates do not always require tight binding to
catalyze reactions because of the kinetic mechanism (Cleland, 1977; Arcus & Mulholland, 2020).

5.2 QUANTITATIVE ANALYSIS OF ENZYME FUNCTION

The key question is how we can quantitatively assess enzyme functions, i.e., catalytic ability, of the
generated pockets for a given reaction. To answer this, we perform enzyme function analysis on the
designed catalytic pockets. Accurate annotated enzyme function is important for catalytic pocket
design because it helps identify the functionality and the active sites that should be preserved or
modified to improve catalytic efficiency (Rost, 2002; Barglow & Cravatt, 2007; Yu et al., 2023).

Enzyme Function Comparison. In EnzymeFlow, we co-annotate the enzyme function alongside the
catalytic pocket design, allowing their functions to directly influence the structure generation. This
integration of enzyme function annotation into EnzymeFlow ensures functionality control throughout
the design. For baselines that design general proteins rather than enzyme-specific pockets, we perform
enzyme function annotation post-hoc using CLEAN (Yu et al., 2023) to classify and annotate the
EC-class of the generated pockets. After labeling each generated pocket with a EC-class, we compare
it to the ground-truth EC-class associated with the actual reaction to compute EC-class accuracy,
which quantifies how well the generated pockets align with the intended enzyme functions.

- B Enzyme Function Annotation - EC1-6 b £C Distribution

0.2809
02732
0.2600
02722
Jo.2652

0.2468
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Jo2123

£ & =)
c. EC Distribution Error Bar

0.1407
01373
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0.1244
0.1286
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0.1150
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1 EnzymeFlow (T=50)
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Accuracy Precision Recall F1 score
Figure 6: Quantitative comparison of annotated enzyme functions between EnzymeFlow- and
baseline-generated catalytic pockets across all EC classes.
green color represents
ground-truth data. (a) Evaluation of annotated functions using four multi- label accuracy metrics:
accuracy, precision, recall, and F1 score. (b) Occurrence of Enzyme Commission (EC) numbers in
generated catalytic pockets compared to the ground-truth occurrence. (¢) Distribution of EC numbers
in generated catalytic pockets with mean and standard deviation compared to the ground-truth.
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Enzyme Function Annotation - EC1 Enzyme Function Annotation - EC2 Enzyme Function Annotation - EC3

Enzyme Function Annotation - EC4 Enzyme Function Annotation - EC5 Enzyme Function Annotation - EC6

Figure 7: Quantitative comparison of annotated enzyme functions between EnzymeFlow- and
baseline-generated catalytic pockets per EC-class, using accuracy, recall, and F1 score.

)

Results. We quantitatively compare the annotated enzyme functions between EnzymeFlow- and
baseline-generated catalytic pockets across all EC classes in Fig. 6, and compare the per-class
performance in Fig. 7. These figures allow us to interpret the functions of enzyme catalytic pockets
designed by different models. From Fig. 6(a), EnzymeFlow and its ablation models achieve the highest
values across various multi-label accuracy metrics, including accuracy (0.2809), precision (0.2600),
recall (0.2722), and F1 score (0.2504), outperforming models like RFDiffAA and PocketFlow. In
Fig. 6(b), we observe the per-class distribution of functions in generated catalytic pockets, where
EnzymeFlow generates pockets with a function distribution closer to the evaluation data, peaking
at EC2. Baseline models, however, tend to notably underperform on EC5 and EC6. This trend is
further highlighted in Fig. 6(c), which visualizes the mean and standard deviation of the functions in
generated catalytic pockets. The evaluation data have a mean of 3.43 and a standard deviation of 1.69
for enzyme functions, and EnzymeFlow-generated pockets are much closer to these values compared
to baseline models, which show less alignment with the evaluation data.

Additionally, Fig. 7 illustrates per-class enzyme function accuracy, where EnzymeFlow demonstrates
strong performance in EC2, EC4, EC5, and EC6, competitive performance in EC3, but slightly
weaker performance in EC1 compared to baseline models. Baseline models tend to perform poorly
in EC5 and EC6, with per-class occurrence and accuracy showing values close to 0. In contrast,
EnzymeFlow generates more functionally diverse and accurate catalytic pockets, maintaining higher
accuracy across different EC classes. In conclusion, EnzymeFlow generates catalytic pockets that
are better compared to other pocket design models, providing more accurate and diverse enzyme
functions, which suggests enhanced catalytic potential.

Overall, from both functional and structural perspectives, EnzymeFlow leverages enzyme-reaction
co-evolution, which effectively captures the dynamic changes in a catalytic reaction as substrates are
converted into products. This introduces function-based enzyme design, allowing for the generation
of more functionally and structurally valid catalytic pockets when targeting specific reactions.

6 LIMITATION AND FUTURE WORK

EnzymeFlow addresses key challenges in designing enzyme catalytic pockets for specific reactions,
but several limitations remain. The first limitation is that EnzymeFlow currently generates only the
catalytic pocket residues, rather than the entire enzyme structure. Ideally, the catalytic pocket should
be designed first, followed by the design or reconstruction of the full enzyme structure based on the
pocket. While we are developing to use ESM3 (Hayes et al., 2024) to reconstruct the full enzyme
structure based on the designed catalytic pocket (discussed in App. 1), this is not the most ideal
solution. ESM3 is not specifically trained for enzyme-related tasks, which may limit its performance
in enzyme design. In future versions of EnzymeFlow, we are working to fine-tune large biological
models like ESM3 (Hayes et al., 2024), RFDiffAA (Krishna et al., 2024), or Genie2 (Lin et al., 2024)
to specialize them for enzyme-related tasks, particularly for inpainting functional motifs of enzymes
(enzyme catalytic motif scaffolding). Additionally, we aim to create an end-to-end model that
combines EnzymeFlow with these large models, enabling catalytic pocket generation and functional
motif inpainting in a single step, rather than in a two-step process. The second limitation, though
minor, is that EnzymeFlow currently operates only on enzyme backbones and does not model or
generate enzyme side chains. In future work, we plan to incorporate models like DiffPack (Zhang
et al., 2024c¢) or develop a full-atom model to address this.
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A  FUTURE WORK IN PROGRESS: AI-DRIVEN ENZYME DESIGN PLATFORM

As discussed in Sec. 6, there are several limitations in the current version of EnzymeFlow. Here,
we briefly outline the next steps and improvements we are actively working on for the upcoming
version. Currently, EnzymeFlow generates only catalytic pocket residues rather than full enzyme
structures. Ideally, the catalytic pocket should be designed first, followed by the reconstruction of the
full enzyme structure based on the pocket. While we currently use ESM3 (Hayes et al., 2024) for
this reconstruction, this approach is not ideal. Fine-tuning ESM3 or RFDiffAA (Krishna et al., 2024)
would be preferable, but unfortunately, training scripts for these wonderful models are not provided,
making it impossible to directly fine-tune them on our EnzymeFill dataset.

To address this, we are borrowing concepts from Wang et al. (2021) and Lin et al. (2024), which
focuses on inpainting proteins and scaffolding functional motifs. We are working to integrate this
concept into EnzymeFlow’s pipeline, as part of our primary design. Our goal is to develop an
end-to-end automated Al-driven enzyme discovery system that works as follows:

* 1. Catalytic Pocket Design: The system will first design enzyme catalytic pockets.

2. Scaffolding Functional Motifs: Next, it will scaffold the functional motifs to generate
full enzyme structures.

* 3. Substrate Docking: Using methods like DiffDock (Corso et al., 2022), DynamicBind (Lu
et al., 2024), or fine-tuned Chai (Chai, 2024) on EnzymekFill, the system will bind substrates
to the catalytic pockets.

* 4. Inverse Folding: The enzyme-substrate complex will undergo inverse folding using
LigandMPNN (Dauparas et al., 2023).

* 5. Computational Screening: Finally, the system will perform computational screening to
select the best-generated enzymes.

This entire process is being developed into an integrated, end-to-end solution for Al-driven enzyme
design. We are very excited about the potential of this project and look forward to achieving a fully
automated enzyme design system in the near future.

B OPEN DISCUSSION: WHY IS SUBSTRATE/REACTION-SPECIFIED ENZYME
DESIGN NEEDED?

EnzymeFlow is unique in its leading approach to function-based de novo protein design. Currently,
most protein design models, whether focused on backbone generation (Yim et al., 2023a;b; Bose et al.,
2023; Campbell et al., 2024; Krishna et al., 2024) or pocket design (Zhang et al., 2023b;a; 2024e;d),
are structure-based. These models aim to design or modify proteins to achieve a specific 3D structure,
prioritizing stability, folding, and molecular interactions. The design process typically involves
optimizing a protein structure to minimize energy and achieve a stable structural conformation
(Khoury et al., 2014; Pelay-Gimeno et al., 2015).

In contrast, function-based protein design focuses on creating proteins that perform specific bio-
chemical tasks, such as catalysis, signaling, or even binding (Martin et al., 1998; Thornton et al.,
1999). These models are driven by the need for proteins to carry out particular functions rather than
adopt a specific 3D structure. Function-based design often targets the active site or binding pockets,
optimizing them for specific molecular interactions—in our case, the enzyme’s catalytic pockets.

Our philosophy is that protein function determines its structure, meaning that a protein folds into a
specific 3D shape to achieve its intended function, and the resulting structure can then be translated
into a proper sequence—essentially, protein function — protein structure — protein sequence.
EnzymeFlow follows this philosophy. Specifically, the function of an enzyme is determined by its
ability to catalyze a specific reaction or interact with a specific substrate. Therefore, our enzyme
pocket design process begins with the reaction or substrate in mind, incorporating reaction/substrate
specificity into the generation process. The reaction or substrate represents the functional target for
the generated enzyme pockets.

In this approach, EnzymeFlow generates enzyme pocket structures specified for the desired protein
function, which contrasts with current generative methods that prioritize structure first. These existing
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methods operate on the idea that protein structure — protein function — protein sequence. However,
proteins should be designed primarily for their functionality, not just their structures. EnzymeFlow’s
focus on function-based design could serve as an inspiration for future advancements, leading the
way toward more purposeful, function-driven protein design.

C RELATED WORK

C.1 PROTEIN REPRESENTATION LEARNING

Graph representation learning emerges as a potent strategy for representing and learning about
proteins and molecules, focusing on structured, non-Euclidean data (Satorras et al., 2021; Luan et al.,
2020; 2022; Hua et al., 2022a;b; Luan et al., 2024b;a). In this context, proteins and molecules can be
effectively modeled as 2D graphs or 3D point clouds, where nodes correspond to individual atoms
or residues, and edges represent interactions between them (Gligorijevic et al., 2021; Zhang et al.,
2022; Hua et al., 2023; Zhang et al., 2024a). Indeed, representing proteins and molecules as graphs
or point clouds offers a valuable approach for gaining insights into and learning the fundamental
geometric and chemical mechanisms governing protein-ligand interactions. This representation
allows for a more comprehensive exploration of the intricate relationships and structural features
within protein-ligand structures (Tubiana et al., 2022; Isert et al., 2023; Zhang et al., 2024b).

C.2 PROTEIN FUNCTION ANNOTATION

Protein function prediction aims to determine the biological role of a protein based on its sequence,
structure, or other features. It is a crucial task in bioinformatics, often leveraging databases such as
Gene Ontology (GO), Enzyme Commission (EC) numbers, and KEGG Orthology (KO) annotations
(Bairoch, 2000; Consortium, 2004; Mao et al., 2005). Traditional methods like BLAST, PSI-BLAST,
and eggNOG infer function by comparing sequence alignments and similarities (Altschul et al., 1990;
1997; Huerta-Cepas et al., 2019). Recently, deep learning has introduced more advanced approaches
for protein function prediction (Ryu et al., 2019; Kulmanov & Hoehndorf, 2020; Bonetta & Valentino,
2020). There are two major types of function prediction models, one uses only protein sequence
as their input, while the other also uses experimentally-determined or predicted protein structure
as input. Typically, these methods predict EC or GO annotations to approximate protein functions,
rather than describing the exact catalyzed reaction, which is a limitation of these approaches.

C.3 PROTEIN EVOLUTION

Protein evolution learns how proteins change over time through processes such as mutation, selection,
and genetic drift (Pél et al., 2006; Bloom & Arnold, 2009), which influence protein functions. Studies
on protein evolution focus on understanding the molecular mechanisms driving changes in protein
sequences and structures. Zuckerkandl & Pauling (1965) introduce the concept of the molecular clock,
which postulates that proteins evolve at a relatively constant rate over time, providing a framework
for estimating divergence times between species. DePristo et al. (2005) show that evolutionary rates
are influenced by functional constraints, with regions critical to protein function (e.g., active sites,
binding interfaces) evolving more slowly due to purifying selection. This understanding leads to
the development of methods for detecting functionally important residues based on evolutionary
conservation. Understanding protein evolution has practical applications in protein engineering. By
studying how natural proteins evolve to acquire new functions, researchers design synthetic proteins
with desired properties (Xia & Levitt, 2004; Jickel et al., 2008). Additionally, deep learning models
increasingly integrate evolutionary principles to predict protein function and stability, design novel
enzymes, and guide protein engineering (Yang et al., 2019; AlQuraishi, 2019; Jumper et al., 2021).

C.4 GENERATIVE MODELS FOR PROTEIN AND POCKET DESIGN

Recent advancements in generative models have advanced the field of protein design and binding
pocket design, enabling the creation of proteins or binding pockets with desired properties and
functions (Yim et al., 2023a;b; Chu et al., 2024; Hua et al., 2024a; Abramson et al., 2024). For
example, RFDiff (Watson et al., 2023) employs denoising diffusion in conjunction with RoseTTAFold
(Baek et al., 2021) for de novo protein structure design, achieving wet-lab-level generated structures
that can be extended to binding pocket design. RFDiffAA (Krishna et al., 2024) extends RFDiff
for joint modeling of protein and ligand structures, generating ligand-binding proteins and further
leveraging GNNs for sequence design. Additionally, FAIR (Zhang et al., 2023b) and PocketGen
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(Zhang et al., 2024e) use a two-stage coarse-to-fine refinement approach to co-design pocket structures
and sequences. Recent models leveraging flow matching frameworks have shown promising results
in these tasks. For instance, FoldFlow (Bose et al., 2023) introduces a series of flow models for
protein backbone design, improving training stability and efficiency. FrameFlow (Yim et al., 2023a)
further enhances sampling efficiency and demonstrates success in motif-scaffolding tasks using
flow matching, while MultiFlow (Campbell et al., 2024) advances to structure and sequence co-
design. These flow models, initially applied to protein backbones, have been further generalized
to binding pockets. For example, PocketFlow (Zhang et al., 2024d) combines flow matching with
physical priors to explicitly learn protein-ligand interaction types in pocket design, achieving superior
results compared to RFDiffAA. While these models excel in protein and binding pocket design, they
primarily focus on static protein(-ligand) interactions and lack the ability to model the chemical
transformations involved in enzyme-substrate interactions. This limitation may reduce their accuracy
and generalizability in designing enzyme pockets for catalytic reactions.

D Co-EVOLUTIONARY MSA TRANSFORMER

Co-evolution captures the dynamic relationship between an enzyme and its substrate during a
catalytic reaction. AlphaFold2 (Jumper et al., 2021) has demonstrated the critical importance of
leveraging protein evolution, specifically through multiple sequence alignments (MSA) across protein
sequences, to enhance a model’s generalizability and expressive power. Previous works, such as
MSA Transformer (Rao et al., 2021) and EvoFormer (Jumper et al., 2021), have focused on encoding
and learning protein evolution from MSA results. Proper co-evolution encodings of enzymes and
reactions are essential for capturing the dynamic changes that occur during catalytic processes, not
only in our EnzymeFlow model but in other models as well.
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Tokenize using co-evolution vocabulary
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Figure 8: Enzyme-reaction co-evolution and tokenized representation.

D.1 CO-EVOLUTION VOCABULARY

We provide our co-evolution dictionary for tokenization and encoding following:

{'<pad>': 0, ' ': 1, '#:2, '%":3, '(': 4, ')':5, "%x':6, '+':7, "'-':8, '.':9,
/' 10, '0": '1': 12, '2': 13, '3': 14, '4': 15, '5': 16, '6': 17, '7': 18,
'8': 19, '9": =':21, '>': 22, '@': 23, 'A': 24, 'B': 25, 'C': 26, 'D': 27,
‘E': 28, 'F': G': 3@, 'H': 31, 'I': 32, 'J': 33, 'K': 34, 'L': 35, 'M': 36,
‘N': 37, '0": : 39, '0Q': 40, 'R"': 41, 'S': 42, 'T': 43, 'U': 44, 'V': 45,

'W': 46, 'X': 47, 'Y': 48, 'Z': 49, '[': 5@, '\\': 51, ']"': 52, 'c': 53, 'e': 54,
‘g': 55, 'i': 56, 'l': 57, 'n': 58, 'o': 59, 'r': 60, 's': 61, 'u': 62, '<unk>': 63}

Figure 9: EnzymeFlow co-evolution dictionary.

D.2 CcOEVOFORMER IMPLEMENTATION

Here, we introduce a new co-evolutionary MSA transformer, coEvoFormer. The co-evolution
of an enzyme-reaction pair is represented by a matrix U € RNvsaXNoen  which combines the
MSA results of enzyme sequences and reaction SMILES (illustrated in Fig. 2(3d)). In this matrix,
Nusa denotes the number of MSA sequences, and Ny, denotes the length of the preserved MSA
alignment. Each element u™" € {1,...,64}U{X} in U represents a tokenized character from our co-
evolution vocabulary (provided in App. D.1), with X indicating the masking state. The coEvoFormer
takes the co-evolution matrix U as input and outputs an embedded co-evolution representation
Hy € RMwsaxNoeXDry where Dy, denotes the hidden dimension size.
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The code for coEvoFormer follows directly:

import math, copy
import numpy as np

import torch

import torch.nn as nn

import torch.nn.functional as F
from torch.autograd import Variable

## Co-Evolution Transformer (coEvoFormer)

## (12) Layer Norm
class ResidualNorm(nn.Module) :
def __init__ (self, size, dropout) :
super (ResidualNorm, self).__init__ ()
self.norm = LayerNorm(size)
self.dropout = nn.Dropout (dropout)

def forward (self, x, sublayer):

return x + self.dropout (sublayer (self.norm(x))

## (11) Residual Norm
class LayerNorm(nn.Module) :
def __init__ (self, features, eps=le-6):
super (LayerNorm, self).__init__ ()

self.a_2 = nn.Parameter (torch.ones (features))
self.b_2 = nn.Parameter (torch.zeros (features))

self.eps = eps

def forward(self, x):
mean = x.mean (-1, keepdim=True)
std = x.std (-1, keepdim=True)

x = self.a_2 * (x - mean) / (std + self.eps)

return x

## (10) 2-layer MLP
class MLP (nn.Module) :

def __init__ (self, model_depth, ff_ depth, dropout):

super (MLP, self)._ _init__ ()

self.wl = nn.Linear (model_depth, ff_ depth)
self.w2 = nn.Linear (ff_depth, model_depth)

self.dropout = nn.Dropout (dropout)
self.silu = nn.SiLU()

def forward(self, x):

return self.w2 (self.dropout (self.silu(self.wl(x))))

## (9) Attention
def attention(Q,K,V, mask=None) :
dk = Q.size(-1)
T = (Q @ K.transpose (-2, -1))/math.sqgrt (dk)
if mask is not None:
T = T.masked_fill_(mask.unsqueeze (1)==0,
T = F.softmax (T, dim=-1)
return T @ V

## (8) Multi-Head Attention
class MultiHeadAttention (nn.Module) :
def __init__ (self,
num_heads,
embed_dim,
bias=False
)8

super (MultiHeadAttention, self).__init__ ()

self.num_heads = num_heads

self.dk = embed_dim//num_heads

self.WQ = nn.Linear (embed_dim, embed_dim,
self.WK = nn.Linear (embed_dim, embed_dim,
self.WV = nn.Linear (embed_dim, embed_dim,
self . WO = nn.Linear (embed_dim, embed_dim,

def forward(self, x, kv, mask=None) :
batch_size = x.size (0)

Q = self.WQ(x ).view(batch_size, -1, self.
K = self.WK(kv) .view(batch_size, -1, self.
V = self.WV(kv) .view(batch_size, -1, self.
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if mask is not None:
if len(mask.shape) == 2:

mask = torch.einsum(’bi,bj->bij’, mask, mask)

x = attention(Q, K, V, mask=mask)

x = x.transpose(l, 2).contiguous () .view(batch_size,

return self.WO (x)

## (7) Positional Embedding
class PositionalEncoding (nn.Module) :

def

__init__ (self, model_depth, max_len=

5000) :

super (PositionalEncoding, self).__init__ ()

pe = torch.zeros (max_len, model_depth)
position = torch.arange (0.0, max_len) .unsqueeze (1)

div_term = torch.exp(torch.arange (0.

—(math.log(10000.0)
torch.sin(position % div_term)

pel:, 0::2]

0, model_depth,

pel[:, 1::2] = torch.cos(position % div_term)

pe = pe.unsqueeze (0)
self.register_buffer('pe’, pe)

def forward(self, x):
return x + Variable(self.pe[:, :x.size(l)]
## (6) Embedding
class Embedding (nn.Module) :
def __init__ (self, vocab_size, model_depth):
super (Embedding, self)._ _init__ ()
self.lut = nn.Embedding(vocab_size, model_depth)
self.model_depth = model_depth
self.positional = PositionalEncoding (model_depth)
def forward(self, x):
emb = self.lut (x) * math.sqgrt (self.model_depth)
return self.positional (emb)
## (5) Encoder Layer

class E
def

def

## (4)
class E
def

i

def

ncoderlLayer (nn.Module) :
__init__ (self,
n_heads,
model_depth,
ff_depth,
dropout=0.0
)3
super (EncoderlLayer, self).__init__ ()

self.self attn = MultiHeadAttention (embed_dim=model_depth,

self.resnorml = ResidualNorm(model_depth, dropout)

self.ff = MLP (model_depth, ff_depth,

dropout)

self.resnorm2 = ResidualNorm(model_depth, dropout)

forward(self, x, mask):

-1, self.num_heads*self.dk)

2) *

/ model_depth))

requires_grad=False)

x = self.resnorml (x, lambda arg: self.self_attn(arg, arg, mask))

x = self.resnorm2(x, self.ff)
return x

Encoder

ncoder (nn.Module) :

__init__ (self,
n_layers,
n_heads,
model_depth,
ff_ depth,

dropout

) 8

super (Encoder, self).__init__ ()

self.layers = nn.Modulelist ([EncoderLayer (n_heads,

in range (n_layers)])
self.lnorm = LayerNorm(model_depth)

forward(self, x, mask):

for layer in self.layers:
x = layer (x, mask)

return self.lnorm(x)
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160 ## (3)Generator
161 class Generator (nn.Module) :

162 def __init__ (self,

163 model_depth,

164 vocab_size

165 ) 8

166 super (Generator, self).__init__ ()

167 self.ff = nn.Linear (model_depth, vocab_size)
168

169 def forward(self, x):

170 return F.log_softmax(self.ff(x), dim=-1)
171

172

173 ## (2)coEvoEmbedder
174 class CoEvoEmbedder (nn.Module) :

175 def __init__ (self,

176 vocab_size,

177 n_layers=2,

178 n_heads=4,

179 model_depth=64,

180 ff_depth=64,

181 dropout=0.0,

182 ) 8

183 super (CoEvoFormer, self).__init__ ()

184

185 self.model_depth = model_depth

186 self.encoder = Encoder (n_layers=n_layers,

187 n_heads=n_heads,

188 model_depth=model_depth,

189 ff _depth=ff_ depth,

190 dropout=dropout,

191 )

192

193 if vocab_size is not None:

194 if isinstance (vocab_size, int):

195 self.set_vocab_size (vocab_size)

196

197 elzes

198 self.set_vocab_size (vocab_size[0], vocab_size[l])
199

200 def set_vocab_size(self, src_vocab_size):

201 self.src_embedder = Embedding(src_vocab_size, self.model_depth)
202 self.generator = Generator (self.model_depth, src_vocab_size)
203

204 for p in self.parameters():

205 if p.dim() > 1:

206 nn.init.xavier_uniform_ (p)

207

208 def forward(self, src, src_mask=None):

209 enc_out = self.encoder (self.src_embedder (src), src_mask)
210

211 return enc_out

212

213
214 ## (1)coEvoFormer
215 class CoEvoFormer (nn.Module) :

216 def __init_ (self, model_conf) :

217 super (CoEvoFormer, self).__init__ ()

218 torch.set_default_dtype (torch.float32)

219 self._model_conf = model_conf

220 self._msa_conf = model_conf.msa

221

222 self.msa_encoder = CoEvoEmbedder (

223 vocab_size=self._msa_conf.num _msa_vocab,
224 n_layers=self._msa_conf.msa_layers,

225 n_heads=self._msa_conf.msa_heads,

226 model_depth=self. msa_conf.msa_embed_size,
227 ff depth=self._msa_conf.msa_hidden_size,
228 dropout=self._model_conf.dropout,

229 )

230

231 self.col_attn = MultiHeadAttention (

232 num_heads=self._msa_conf.msa_heads,

233 embed_dim=self._msa_conf.msa_embed_size,

234 )

235

236 self.row_attn = MultiHeadAttention (

237 num_heads=self._msa_conf.msa_heads,

238 embed_dim=self._msa_conf.msa_embed_size,

239 )

240
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def forward/(
self,
msa_feature,
msa_mask=None,

bs, n_msa, n_token = msa_feature.size()

msa_feature = msa_feature.reshape (bs*n_msa, n_token)

msa_embed = self.msa_encoder (msa_feature) .reshape (bs, n_msa, n_token, -1)
msa_embed = msa_embed.transpose(l, 2).reshape (bs*n_token, n_msa, -1)

if msa_mask is not None:
msa_mask = msa_mask.transpose(l, 2).reshape (bsxn_token, n_msa)

msa_embed = self.col_attn (msa_embed, msa_embed, mask=msa_mask) .reshape (bs, n_token,
n_msa, —1).transpose(l, 2)
msa_embed = msa_embed.reshape (bs*n_msa, n_token, -1)

if msa_mask is not None:
msa_mask = msa_mask.reshape (bs, n_token, n_msa)
msa_mask = msa_mask.transpose(l, 2).reshape(bsxn_msa, n_token)

msa_embed = self.row_attn (msa_embed, msa_embed, mask=msa_mask) .reshape (bs, n_msa,
n_token, -1)

return msa_embed

Listing 1: Pytorch Implementation of coEvoFormer.

E MOLECULE GNN

E.1 3D MOLECULE GNN

The 3D molecule GNN plays a crucial role in EnzymeFlow. During the structure-based hierarchical
pre-training, it encodes ligand molecule representations, learning the constrained geometry between
protein binding pockets and ligand molecules. This pre-training process makes the 3D molecule
GNN transferable. When the flow model is fine-tuned, the 3D molecule GNN is also fine-tuned,
transferring its prior knowledge about ligand molecules to substrate molecules in enzyme-catalyzed
reactions. This allows for substrate-specific encodings while leveraging the knowledge learned from
protein-ligand interactions.

Consider a molecule [, with [V;, atoms; this could be a ligand conformation in a protein-ligand pair
or a substrate conformation in an enzyme-substrate pair. The molecule [, can be viewed as a set of
atomic point clouds in 3D Euclidean space, where each atom is characterized by its atomic type.
There is a distance relationship between each atom pair in the point cloud, which can be processed
as bonding features. In our 3D molecule GNN, we use a radial basis function to process these
pairwise atomic distances, a technique commonly employed to ensure equivariance and invariance
in model design (Hua et al., 2023; Zhang et al., 2024a;b). The 3D molecule GNN takes a molecule

conformation [ as input and outputs an embedded molecule representation H;_ € RN XD, where
Dy, denotes the hidden dimension size.

The code for 3D Molecule GNN follows directly:

import math
import numpy as np

import torch
import torch.nn as nn
from torch.nn import functional as F

## (1)3D Molecule GNN
class MolEmbedder3D (nn.Module) :
def __init__ (self, model_conf):
super (MolEmbedder3D, self).__init__ ()
torch.set_default_dtype (torch.float32)
self._model_conf = model_conf
self._embed _conf = model_conf.embed

node_embed_dims = self._model_ conf.num_atom_type
node_embed_size = self._model_conf.node_embed_size
self.node_embedder = nn.Sequential (
nn.Embedding (node_embed_dims, node_embed_size, padding_idx=0),
nn.SiLU(),
nn.Linear (node_embed_size, node_embed_size),
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22 nn.LayerNorm (node_embed_size),

23 )

24

25 self.node_aggregator = nn.Sequential (

26 nn.Linear (node_embed_size + self._model_conf.edge_embed_size, node_embed_size),

27 nn.SiLU(),

28 nn.Linear (node_embed_size, node_embed_size),

29 nn.SiLU(),

30 nn.Linear (node_embed_size, node_embed_size),

31 nn.LayerNorm (node_embed_size),

32 )

33

34 self.dist_min = self. model_conf.ligand_rbf d min

35 self.dist_max = self. model_conf.ligand_rbf d max

36 self.num_rbf_size = self._model_conf.num_rbf_ size

37 self.edge_embed_size = self. model_conf.edge_embed_size

38

39 self.edge_embedder = nn.Sequential (

40 nn.Linear (self.num_rbf_size + node_embed_size + node_embed_size, self.
edge_embed_size),

41 nn.SiLU(),

42 nn.Linear (self._model_conf.edge_embed_size, self._model_conf.edge_embed_size),

43 nn.SiLU(),

44 nn.Linear (self._model_conf.edge_embed_size, self._model conf.edge_embed_size),

45 nn.LayerNorm(self. model_conf.edge_embed_size),

46 )

47

48 mu = torch.linspace(self.dist_min, self.dist_max, self.num_rbf size)

49 self.mu = mu.reshape([1, 1, 1, -1]

5C

51 self.sigma = (self.dist_max - self.dist_min) / self.num_rbf_ size

52

53 # Distance function -- pair-wise distance computation

54 def coord2dist (self, coord, edge_mask) :

55 n_batch, n_atom = coord.size(0), coord.size (1l

56 radial = torch.sum((coord.unsqueeze(l) - coord.unsqueeze(2)) *x 2, dim=-1

57 dist = torch.sqrt(

58 radial + le-10

59 ) * edge_mask

60

61 radial = radial * edge_mask

62 return radial, dist

63

64 # RBF function -- distance encoding

65 def rbf(self, dist):

66 dist_expand = torch.unsqueeze (dist, -1)

67 _mu = self.mu.to(dist.device)

68 rbf = torch.exp(-(((dist_expand - _mu) / self.sigma) *x 2))

69 return rbf

70

71 def forward(

72 self,

73 ligand_atom,

74 ligand_pos,

75 edge_mask,

76 )

77 num_batch, num_atom = ligand_atom.shape

78

79 # Atom Embbedding

80 node_embed = self.node_embedder (ligand_atom)

81

82 # Edge Feature Computation

83 radial, dist = self.coord2dist (

84 coord=ligand_pos,

85 edge_mask=edge_mask,

86 )

87 edge_embed = self.rbf(dist) % edge_mask[..., None]

88 src_node_embed = node_embed.unsqueeze (1) .repeat (1, num_atom, 1, 1)

89 tar_node_embed = node_embed.unsqueeze (2) .repeat (1, 1, num_atom, 1)

90 edge_embed = torch.cat ([src_node_embed, tar_node_embed, edge_embed], dim=-1)

91

92 # Edge Embedding

93 edge_embed = self.edge_embedder (edge_embed.to (torch.float))

94

95 # Message-Passing

96 src_node_agg = (edge_embed.sum(dim=1) / (edge_mask[..., None].sum(dim=1)+1le-10)) =*
ligand_atom.clamp (max=1.) [..., None]

97 src_node_agg = torch.cat ([node_embed, src_node_agg], dim=-1)

98

99 # Residue Connection

100 node_embed = node_embed + self.node_aggregator (src_node_agg)
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return node_embed, edge_embed

Listing 2: Pytorch Implementation of 3D Molecule GNN.

E.2 2D MOLECULE GNN

Like the 3D molecule GNN, the 2D molecule GNN is also important in our EnzymeFlow imple-
mentation. In an enzyme-catalyzed reaction, the substrate molecule is transformed into a product
molecule, with enzyme-substrate interactions driving this chemical transformation. The 2D molecule
GNN plays a key role in modeling and encoding this transformation during the catalytic process,
making it equally important as our use of co-evolutionary dynamics. While the 3D molecule GNN
encodes the substrate, the 2D molecule GNN encodes the product, guiding the design of the enzyme
catalytic pocket.

Consider a product molecule [, with N;, atoms in a catalytic reaction. This molecule can be repre-
sented as a graph, where nodes correspond to atoms and edges represent bonds. In our 2D molecule
GNN, we use fingerprints with attention mechanisms (Xiong et al., 2019) to facilitate message passing
between atoms, enabling effective communication across the molecule. The 2D molecule GNN takes
this molecular graph /,, as input and outputs an embedded molecule representation H;, € RV P, ,
where Dy, = denotes the hidden dimension size.

The code for 2D Molecule GNN follows directly:

import torch
import torch.nn as nn
from torch_geometric.nn.models import AttentiveFP

## (1)2D Molecule GNN
class MolEmbedder2D (nn.Module) :
def __init__ (self, model_conf) :
super (MolEmbedder2D, self).__init__ ()

torch.set_default_dtype (torch.float32)
self. _model_conf = model_conf

self.node_embed_dims = self._model_ conf.mpnn.mpnn_node_embed_size
self.edge_embed_dims = self._model_conf.mpnn.mpnn_edge_embed_size

self.node_embedder = nn.Sequential (
nn.Embedding (self._model_conf.num_atom_type, self.node_embed_dims),
nn.SiLU(),
nn.Linear (self.node_embed_dims, self.node_embed_dims),
nn.LayerNorm(self.node_embed_dims),

)

self.edge_embedder = nn.Sequential (
nn.Embedding (self._model_conf.mpnn.num_edge_type, self.edge_embed_dims),
nn.SiLU(),
nn.Linear (self.edge_embed_dims, self.edge_embed_dims),
nn.LayerNorm(self.edge_embed _dims),

)

# Message Passing with Atttention and Fingerprint

self.mpnn = AttentiveFP (
in_channels=self.node_embed_dims,
hidden_channels=self.node_embed_dims,
out_channels=self.node_embed_dims,
edge_dim=self.edge_embed_dims,
num_layers=self._model_conf.mpnn.mpnn_layers,
num_timesteps=self._model_ conf.mpnn.n_timesteps,
dropout=self._model_conf.mpnn.dropout,

)

# Dense Edge Matrix to Sparse Edge Matrix
def dense_to_sparse (

self,

mol_atom,

mol_edge,

mol_edge_feat,

mol_atom_mask,

mol_edge_mask,

mol_atom_list = mol_atom[mol_atom_mask]
mol_edge_feat_list = mol_edge_feat[mol_edge_mask]
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if mol_edge.size (dim=1) ==
mol_edge = mol_edge.transpose(1l,2)
mol_edge_list = [edge[mask] for edge, mask in zip(mol_edge, mol_edge_mask) ]

n_nodes = mol_atom mask.sum(dim=1, keepdim=True)
cum_n_nodes = torch.cumsum(n_nodes, dim=0)
new_mol_edge_list = [mol_edge_list[0]]
for edge, size in zip(mol_edge_list[1l:], cum_n_nodes[:-1]):
new_mol_edge = edge + size
new_mol_edge_list.append (new_mol_edge)

new_mol_edge_list = torch.cat (new_mol_edge_list, dim=0)

if new_mol_edge_list.size(dim=1) ==
new_mol_edge_list = new_mol_edge_list.transpose(1l,0)

idx = 0

batch_mask = []

for size in n_nodes:
batch_mask.append (torch.zeros (size, dtype=torch.long) + idx)
idx += 1

batch_mask = torch.cat (batch_mask) .to(mol_atom.device)

return mol_atom_list, new_mol_edge_list, mol_edge_feat_list, batch_mask

def forward(
self,
mol_atom,
mol_edge,
mol_edge_feat,
mol_atom_mask,
mol_edge_mask,

n_batch = mol_atom.size (0)

mol_atom_mask = mol_atom_mask.bool ()

mol_edge_mask = mol_edge_mask.bool ()

mol_atom, mol_edge, mol_edge_feat, batch_mask = self.dense_to_sparse(mol_atom,
mol_edge, mol_edge_feat, mol_atom_mask, mol_edge_mask)

assert mol_edge.size(l) == mol_edge_feat.size (0)

# Atom Embedding
mol_atom = self.node_embedder (mol_atom)

# Edge Embedding
mol_edge_feat = self.edge_embedder (mol_edge_feat)

# Message-Passing
mol_rep = self.mpnn(mol_atom, mol_edge, mol_edge_feat, batch_mask)

return mol_rep

Listing 3: Pytorch Implementation of 2D Molecule GNN.

F VECTOR FIELD COMPUTATION AND SAMPLING

Here, we describe how to compute vectors fields and perform sampling for catalytic pocket residues
frames, EC-class, as well as the enzyme-reaction co-evolution.

F.1 BACKGROUND

Catalytic Pocket Frame. We refer to the protein structure as the backbone atomic coordinates of
each residue. A pocket of length N, can be parameterized into SE(3) residue frames { (7, 7%, ¢)} ¥,
where ' € R3 represents the position (translation) of the C,, atom of the i-th residue, r* € SO(3) is
a rotation matrix defining the local frame relative to a global reference frame, and ¢! € {1,...,20} U
{X} denotes the amino acid type, with additional X indicating a masking state of the amino acid
type. We refer to the residue block as 7% = (%, ¢, c*), and the entire pocket is described by a set of
residues T = {Tz}fvg 1. Additionally, we denote the graph representations of substrate and product
molecules in the catalytic reaction as [, and [, respectively. An enzyme-reaction pair can therefore
be described as (T, [, l,,). For simplicity, we omit 4.

EC-Class. An EC-class is denoted as ye. € {1,...,7} U {X}, with X indicating the masking state.
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Co-evolution. The co-evolution of an enzyme-reaction pair is represented by a matrix U &
RNwsax Noken - which combines the MSA results of enzyme sequences and reaction SMILES, where
Nusa denotes the number of MSA sequences and Noen denotes the length of the MSA alignment
preserved. And each element ™" € {1,...,64} U {X} in U denotes a tokenized character from our
co-evolution vocabulary, with additional X indicating the masking state.

Vector Field. flow matching describes a process where a flow transforms a simple distribution pg into
the target data distribution p; (Lipman et al., 2022). The goal in flow matching is to train a neural
network vg (€, t) that approximates the vector field u; (¢), which measures the transformation of the
distribution p;(e;) as it evolves toward p; (¢;) over time ¢ € [0, 1). The process is optimized using a
regression loss defined as Lev = Emgs0,1],p4 (e) |00 (€2, t) — ut(€)||>. However, directly computing
u¢(€) is often intractable in practice. Instead, a conditional vector field u;(e|e;) is defined, and the
conditional flow matching objective is computed as Lcemt = Engso,1],p, (e, |00 (€2, 1) — ue(eler) ||,
Notably, VoLem = VoLcrum.

During inference or sampling, an ODEsolver, e.g., Euler method, is typically used to solve the ODE
governing the flow, expressed as ¢; = ODEsolver(eg, vy, 0, 1), where ¢q is the initial data and €;
is the generated data. In actual training, rather than directly predicting the vector fields, it is more
common to use the neural network to predict the final state at ¢ = 1, then interpolates to calculate
the vector fields. This approach has been shown to be more efficient and effective for network
optimization (Yim et al., 2023a; Bose et al., 2023; Campbell et al., 2024).

F.2 CONTINUOUS VARIABLE TRAJECTORY

Given the predictions for translation Z; and rotation 71 att = 1, we interpolate and their corresponding
vector fields are computed as follows:

T — x4 log,., 71
volwnt) = = wolrit) = ©)

The sampling or trajectory can then be computed using Euler steps with a step size At, as follows:
T4 At = Tt + 'Ug(xt, t) . At, T4+ At = Tt —+ ’Ug(?"t, t) . At, (10)

where the prior of x(, ry are chosen as the uniform distribution on R? and SO(3), respectively.

F.3 DISCRETE VARIABLE TRAJECTORY

For the discrete variables, including amino acid types, EC-class, and co-evolution, we follow Camp-
bell et al. (2024) to use continuous time Markov chains (CTMC).

Continuous Time Markov Chain. A sequence trajectory €; over time ¢ € [0, 1] that follows a CTMC
alternates between resting in its current state and periodically jumping to another randomly chosen
state. The frequency and destination of the jumps are determined by the rate matrix R, € RV*V
with the constraint its off-diagonal elements are non-negative. The probability of ¢; jumping to
a different state s follows Ry (e, s)dt for the next infinitesimal time step d¢. We can express the
transition probability as

Dirac(sler) = d{et, s} + Re(es, s)dt, (11)

where d(a,b) is the Kronecker delta, equal to 1 if a = b and 0 if a # b, and Ry(es, ;) =
— > zc(€t,7) (Campbell et al., 2024). Therefore, p;q; is a Categorical distribution with probabili-

ties (e, +) + Ry (et -)dt with notation s ~ Cat(d(e¢, s) + Re(er, s)dt).
For finite time intervals At, a sequence trajectory can be simulated with Euler steps following:
errar ~ Cat(0(er, e at) + Re(er, €4 ae) At). (12)

The rate matrix R; along with an initial distribution pg define CTMC. Furthermore, the probability
flow p; is the marginal distribution of ¢, at every time ¢, and we say the rate matrix R; generates p; if
8tpt = RtTpt, Vit € [O, 1}

In the actual training, Campbell et al. (2024) show that we can train a neural network to approximate
the true denoising distribution using the standard cross-entropy:

Lce = Eir4(0,1],p4 (er) [10g Do (€1]€t)], (13)
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which leads to our neural network objectives for amino acid types, EC-class, and co-evolution as:

Laa = Eita(0,1],p1(er) 108 Po(c1let)]s Lec = Etmta[0,1],p (vec, ) [108 PO (Yeer [Yeer )]s

(14)
ccoevo = Eth[O,l],pt(ut) [lngg (ul |ut)} .

Rate Matrix for Inference. The conditional rate matrix R; (e, s|s1) generates the conditional
flow ps(etler). And Ry(et,s) = Ep, (e, |e,) [Re(€s, s|€1)], for which the expectation is taken over

pi1(er)er) = %. With the conditional rate matrix, the sampling can be performed:

Rt(Gt, ) — Epl(el\et)[Rt(eh '|€1)]a
€t AL Cat(&(et, 6t+At) + Rt(ﬁu 6t+At)At).

The rate matrix generates the probability flow for discrete variables.

15)

Campbell et al. (2024) define the conditional rate matrix starting with
ReLU(0;p¢(s|er) — Owpe(etler))
N -p; (€t|€ 1) .
In practice, the closed-form of conditional rate matrix with masking state X is defined as:
5 (61 s S)
1-—t

Rt(ét,S‘Gt) = (16)

Rt(Et,S|€1) =

5(er, X). (17)

With the definition of the conditional rate matrix R (e;, s|€1), we can perform sampling and inference
for amino acid types, EC-class, and co-evolution following:
ceyat ~ Cat(d(ct, cryae) + Re(ce, ceqpaclve(ce, t)) - At),
Yecryne ™ Cat((s(yect ) y€Ct+At) + Rt(yect y Yecrrae ‘UG (yect , t)) ) At)a (18)
Ui ae ~ Cat((ug, ugrae) + Re(ug, usy aelve(ug, t)) - At).

G ENzZYMEFLOW SE(3)-EQUIVARIANCE

Theorem. Let ¢ denote an SE(3) transformation. The catalytic pocket design in EnzymeFlow,
represented as pg(T|ls), is SE(3)-equivariant, meaning that pe(¢(T)|¢d(ls)) = pe(T|ls), where T
represents the generated catalytic pocket, and ls denotes the substrate conformation.

Proof. Given an SE(3)-invariant prior, such that p(To,ls) = p(¢(To),#(ls)), and an SE(3)-
equivariant transition state for each time step ¢ via an SE(3)-equivariant neural network, such
that pg (T at,ls) = po(A(Tirar), d(ls)), it follows that for the total time steps T', we have:

Pu((T]0(L) = [ palo(To.l. ) T o0& T )T, )

n=0
T TL b n i
/pe 0,1 Hpe At+at: L) |0(Tras, ls)) (19)
T—1
= /pe(To,ls) 11 po(Tnacsan b Toar, Ls)
n=0

= po(T1|ls).

H ENzYMEFLOW DATASET STATISTICS

Data Source. We construct a curated and validated dataset of enzyme-reaction pairs by collecting
data from the Rhea (Bansal et al., 2022), MetaCyc (Caspi et al., 2020), and Brenda (Schomburg
et al., 2002) databases. For enzymes in these databases, we exclude entries missing UniProt IDs or
protein sequences. For reactions, we apply the following procedures: (1) remove cofactors, small
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Reaction | Enzyme Substrate Product Enzyme Commission Class
Data #reaction | #enzyme | #substrate | #avg atom | #product | #avg atom EC1 EC2 EC3 EC4 ECS EC6 EC7
Rawdata | 232520 | 97912 7259 30.81 7664 30.34 | 44881 (19.30%) | 75944 (32.66%) | 37728 (16.23%) | 47242 (20.32%) | 8315 (3.58%) | 18281 (7.86%) | 129 (0.06%)
40% Homo 19379 6922 4798 31.06 4897 3024 | 4754(24.53%) | 5857 (30.22%) | 4839 (24.97%) | 1764 (9.10%) | 759 (3.92%) | 1379 (7.12%) | 27 (0.14%)
50% Homo | 34750 | 13442 5675 3145 5871 3075 | 8184(23.55%) | 11174 (32.16%) | 8050 (23.17%) | 3203 (9.22%) | 1357 (3.91%) | 2752(7.92%) | 30 (0.09%)
60% Homo | 53483 | 22350 6112 30.95 6331 30.34 | 11674 (21.83%) | 18419 (34.44%) | 11394 (21.30%) | 5555 (10.39%) | 2194 (4.10%) | 4200 (7.85%) | 47 (0.09%)
80% Homo | 100925 | 43458 6619 3046 6943 29.95 | 21308 (21.11%) | 34344 (34.03%) | 18925 (18.75%) | 14010 (13.88%) | 3901 (3.87%) | 8371(8.29%) | 66 (0.07%)
90% Homo | 132047 | 55697 6928 30.32 7298 29.81 | 28833 (21.84%) | 43287 (32.78%) | 23989 (18.17%) | 20070 (15.20%) | 5015 (3.80%) | 10766 (8.15%) | 87 (0.07%)

Table 3: Enzyme Catalytic Pocket Dataset Statistics.

| Reaction | Enzyme | Substrate | Product | Enzyme Commision
Data | #reaction | #enzyme | #substrate | #avg atom | #product | #avg atom | EC1 | EC2 | EC3 | EC4 | EC5 | EC6 | EC7
Rawdata 232520 97912 7259 30.81 7664 30.34 | 44881 (19.30) | 75944 (32.66) | 37728 (16.23) | 47242 (20.32) | 8315 (3.58) | 18281 (7.86) | 129 (0.06)
Train Data 53483 22350 6112 30.95 6331 30.34 | 11674 (21.83) | 18419 (34.44) | 11394 (21.30) | 5555(10.39) | 2194 (4.10) | 4200 (7.85) | 47(0.09)
Eval Data 100 100 100 30.7 94 28.84 17 (17.00) 17 (17.00) 17 (17.00) 17 (17.00) 16 (16.00) 16 (16.00) 0(0.00)
Table 4: EnzymeFlow Evaluation Data Statistics.
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List
mmm Rawdata
70000 = 90% Homo
mmm  80% Homo
- m 60% Homo
= 60000 &
o mm 50% Homo
& m 40% Homo
S 50000
Q
@
£
£ 40000
N
c
w
[
S 30000
o
[
o)
£
Z 20000
b I II II |I II
1 2 3 4 5 6 7

Enzyme Commission Class

Figure 10: Distribution of enzyme-reaction pairs over EC-class.

ion groups, and molecules that appear in both substrates and products within a single reaction; (2)
exclude reactions with more than five substrates or products; and (3) apply OpenBabel (O’Boyle et al.,
2011) to standardize molecular SMILES. Ultimately, we obatin a total of 328, 192 enzyme-reaction
pairs, comprising 145, 782 unique enzymes and 17, 868 unique reactions.

Debiasing. To ensure the quality of catalytic pocket data, we exclude pockets with fewer than 32
residues, resulting in 232, 520 enzyme-reaction pairs. Additionally, enzymes and their catalytic
pockets can exhibit significant sequence similarity. When enzymes that are highly similar in sequence
appear too frequently in the dataset, they tend to belong to the same cluster or homologous group,
which can introduce substantial biases during model training. To mitigate this issue and ensure a
more balanced dataset, it is important to reduce the number of homologous enzymes by clustering and
selectively removing enzymes from the same clusters. This helps to debias the data and improve the
model’s generalizability. We perform sequence alignment to cluster enzymes and identify homologous
ones (Steinegger & Soding, 2017). We then revise the dataset into five major categories based on
enzyme sequence similarity, resulting in: (1) 19, 379 pairs with at most 40% homology, (2) 34, 750
pairs with at most 50% homology, (3) 53, 483 pairs with at most 60% homology, (4) 100, 925 pairs
with at most 80% homology, and (5) 132,047 pairs with at most 90% homology. We provide data
statistics, including the EC-class distribution, in Table 3, and visualize the distribution in Figure 10.

From the data, we observe that EC1, EC2, EC3, and EC4 contribute the most enzyme-reaction pairs
to our dataset. Specifically, EC1 refers to oxidation/reduction reactions, involving the transfer of
hydrogen, oxygen atoms, or electrons from one substance to another. EC2 involves the transfer of a
functional group (such as methyl, acyl, amino, or phosphate) from one substance to another. EC3
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is associated with the formation of two products from a substrate through hydrolysis, while EC4
involves the non-hydrolytic addition or removal of groups from substrates, potentially cleaving C-C,
C-N, C-0, or C-S bonds. Our dataset distribution closely follows the natural enzyme-reaction enzyme
commission class distribution, with Transferases (EC2) being the most dominant.

I WORK IN PROGRESS: ENZYME POCKET-REACTION RECRUITMENT WITH
ENzYME CLIP MODEL

In addition to evaluating the catalytic pockets generated from the functional and structural perspectives,
we may raise a key question of how we quantitatively determine whether the generated pockets
can catalyze a specific reaction. To answer it, we are working to train an enzyme-reaction CLIP
model using enzyme-reaction pairs (with pocket-specific information) from the 60%-clustered data,
excluding the 100 evaluation samples from training. All enzymes not annotated to catalyze a specific
reaction are treated as negative samples, following the approach in Yang et al. (2024); Mikhael et al.
(2024). For the 100 generated catalytic pockets of each reaction, we select the Top—1 pocket with
the highest TM—score for evaluation using the enzyme CLIP model.

d. Current CLIP with Full Structure b. our cup with Catalytic Pocket
Full Structure Full Sequence Catalytic Pocket Structure- Sequence Co-Embedding
SMNPPPPETSNPNKP
KRQTNQLQYLLRVV
LKTLWKHQFAWPFQ
QPVDAVKLNLPDYY
<4 KIKTPMDMGTIKK
RLENF{YY}’YNAQECI
QoemurTCYY >—~ CLIP <—<
@ KLFLQKINELPTEE
Reaction SMILES , Substrate Graph o Product Graph
NCCCNCCCCNCCCNC(=0)C - NCCCCNCCONC(=0)C Aot e

C. Pocket-specific CLIP
Catalytic Pocket

Catalytic Pocket Embedding
—[soms (i 5§
\ Logit
Cross I:‘
Substrate Graph Attention
)l\:,/\/\»i/\/\/h\/\/w MAT \ Transition-state Embedding
contion | IR
. Product Graph / Attention
V/\/\u/\/\/NH MAT

Figure 11: Enzyme-Reaction CLIP model comparison. (a) Existing CLIP models use the full enzyme
structure or full enzyme sequence, paired with reaction SMILES as input. (b) Our pocket-specific
CLIP model focuses on catalytic pockets, using both their structures and sequences paired with
molecular graphs of reactions. The pocket-specific CLIP approach learns from enzyme active sites,
which exhibit higher functional concentration. (c) Overview of Pocket-specific CLIP model.

Pocket-specific CLIP. Unlike existing methods that typically train on full enzyme structures or
sequences (Yu et al., 2023; Mikhael et al., 2024), our pocket-specific CLIP approach is designed to
focus specifically on catalytic pockets, including both their structures and sequences, paired with
molecular graphs of catalytic reactions (illustrated in Fig. 11). As shown in Fig. 4(b), catalytic
pockets are usually the regions that exhibit high functional concentration, while the remaining parts
tend to be less functionally important. Therefore, focusing on catalytic pockets is more applicable
and effective for enzyme CLIP models. The advantage of the pocket-specific CLIP is that it learns
from active sites that are highly meaningful both structurally and sequentially.

We illustrate our pocket-specific enzyme CLIP approach in Fig. 11. In our pocket-specific CLIP
model, we encode the pocket structure and sequence using ESM3 (Hayes et al., 2024), and the
substrate and product molecular graphs using MAT (Maziarka et al., 2020). Cross-attention is applied
to compute the transition state of the reaction, capturing the transformation of the substrate into the
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product, as proposed in Hua et al. (2024b). This is followed by another cross-attention mechanism to
learn the interactions between the catalytic pocket and the reaction. The model is trained by enforcing
high logits for positive enzyme-reaction pairs and low logits for negative enzyme-reaction pairs.

Metrics. To evaluate the catalytic ability of the designed pockets for a given reaction, we employ
retrieval-based ranking as proposed in Hua et al. (2024b). This ranking-based evaluation ensures
fairness and minimizes biases. The metrics include: Top—k Acc, which quantifies the proportion of
instances in which the catalytic pocket is ranked within the CLIP’s top-k predictions; Mean Rank,
which calculates the average position of the pocket in the retrieval list; Mean Reciprocal Rank (MRR),
which measures how quickly the pocket is retrieved by averaging the reciprocal ranks of the first
correct pocket across all reactions. These metrics help assess whether a catalytic pocket designed for
a specific reaction ranks highly in the recruitment list, indicating its potential to catalyze the reaction.

1.1 INPAINTING CATALYTIC POCKET WITH ESM3 FOR FULL ENZYME RECRUITMENT

Pocket Full Structure Full Structure + Sequence

HATYHT
ATGL TLH TL_H TTHTTALLTHYTY_HT HATYHTATGLATLHATLLPH TTHTTALLTH
Y YTYAHT Y

Figure 12: Inpainting catalytic pocket using ESM3.

ESM3 (Hayes et al., 2024) can inpaint missing structures and sequences with functional motifs. In
this context, we train a separate full enzyme CLIP model for the enzyme recruitment task. This
model is trained using the same 60%-clustered data but incorporates full enzyme structures and
sequences. For generated catalytic pockets and those in the evaluation set, we use ESM3 to inpaint
them, completing the structures and sequences predicted by ESM3. These ESM3-inpainted enzymes
are then evaluated using the full enzyme CLIP model, applying the same retrieval-based ranking
metrics as before. We illustrate the catalytic pocket inpainting pipeline in Fig. 12.

In conclusion, we are developing a pocket-specific enzyme CLIP model for pocket-based enzyme
recruitment tasks and a full-enzyme CLIP model using ESM3 for inpainting and pocket scaffolding in
full enzyme recruitment tasks. However, we recognize that directly using ESM3 for catalytic pocket
inpainting lacks domain-specific knowledge, making fine-tuning necessary. To address this, we are
working on a fine-tuning open-source large biological model, e.g., Genie2 (Lin et al., 2024), on our
EnzymeFill dataset. Genie2, pre-trained on FoldSeek-clustered AlphaFold- and Protein-DataBank
proteins for de novo protein design and (multi-)motif scaffolding, aligns well with our catalytic pocket
scaffolding task. Fine-tuning Genie2 on EnzymeFill will enhance its performance in catalytic pocket
inpainting. The development of EnzymeFlow, aimed at achieving an Al-driven automated enzyme
design platform, is discussed in App. A.

J RFDIFFAA-DESIGNED POCKETS

In Fig. 13, we visualize some RFDiffAA-designed pockets (Krishna et al., 2024) (before superim-
position) with LigandMPNN-predicted sequences (Dauparas et al., 2023) and CLEAN-predicted
EC-class (Yu et al., 2023). In Fig. 14, we visualize some EnzymeFlow-designed pockets (before
superimposition) with predicted sequences and EC-class. In real design, we do not have the structure
or sequence information of ground-truth catalytic pockets, so we choose to visualize examples before
the superimposition of the ground-truth ones and generated ones.

31



1
2
3
4

5

Under review as a conference paper at ICLR 2025

RFDiffAA-designed Samples (Non-Superimposed Samples 1-12)
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Figure 13: Some RFDiffAA-designed pockets for Uniprot QOWYS1 (Samples 1-12).

EnzymeFlow-designed Samples (Non-Superimposed Samples 1-12)
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Figure 14: Some EnzymeFlow-designed pockets for Uniprot QOWYS1 (Samples 1-12).

K ENZYMEFLOW NEURAL NETWORK IMPLEMENTATION

The equivariant neural network is based on the Invariant Point Attention (IPA) implemented in
AlphaFold2 (Jumper et al., 2021). In the following, we detail how enzyme catalytic pockets, substrate
molecules, product molecules, EC-class, and co-evolution interact within our network.

The code for EnzymeFlow main network follows directly:

import functools as fn
import math

import torch
import torch.nn as nn
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from
from
from
from
from

#H E

##(
def

##(
def

##(
def

## (

torch.nn import functional as F
ofold.utils.rigid utils import Rigid
model import ipa_pytorch
flowmatch.data import all_atom
flowmatch.data import utils as du

nzymeFlow Main Network

8) Distogram
calc_distogram(pos, min_bin, max_bin, num_bins):

dists_2d = torch.linalg.norm(pos[:, :, None, :] - pos[:, None, :, :], axis=-1) [

., None
]
lower = torch.linspace (min_bin, max_bin, num_bins, device=pos.device)
upper = torch.cat ([lower[l:], lower.new_tensor([le8])], dim=-1)
dgram = ((dists_2d > lower) = (dists_2d < upper)) .type (pos.dtype)
return dgram

7) Index Embedding

get_index_embedding (indices, embed_size, max_len=2056) :
K = torch.arange (embed_size // 2, device=indices.device)
pos_embedding_sin = torch.sin(

indices[..., None] * math.pi / (max_len ** (2 * K[None] / embed_size))
) .to(indices.device)
pos_embedding_cos = torch.cos (

indices[..., None] * math.pi / (max_len ** (2 % K[None] / embed_size))

) .to(indices.device)
pos_embedding = torch.cat ([pos_embedding_sin, pos_embedding_cos], axis=-1)
return pos_embedding

6) Time Embedding
get_timestep_embedding (timesteps, embedding_dim, max_positions=10000) :
assert len(timesteps.shape) ==
timesteps = timesteps * max_positions
half_dim = embedding_dim // 2
emb = math.log(max_positions) / (half_dim - 1)
emb = torch.exp(
torch.arange (half_dim, dtype=torch.float32, device=timesteps.device) =*
)

emb = timesteps.float () [:, None] x emb[None, :]
emb = torch.cat ([torch.sin(emb), torch.cos(emb)], dim=1)
if embedding_dim % 2 == 1: # zero pad
emb = F.pad(emb, (0, 1), mode="constant")
assert emb.shape == (timesteps.shape[0], embedding_dim)

return emb

5) Edge Feature Network

class EdgeFeatureNet (nn.Module) :

def __init__ (self, module_cfg):
super (EdgeFeatureNet, self).__init__ ()
self._cfg = module_cfg

self.c_s = self._cfg.embed.c_s
self.c_z = self._cfg.embed.c_z
self.feat_dim = self._cfg.embed.feat_dim

self.linear_s_p = nn.Linear (self.c_s, self.feat_dim)
self.linear_relpos = nn.Linear(self.feat_dim, self.feat_dim)

total_edge_feats = self.feat_dim x 3 + self._cfg.embed.num _bins x 2 + 2

self.edge_embedder = nn.Sequential (
nn.Linear (total_edge_feats, self.c_z),
nn.ReLU (),
nn.Linear (self.c_z, self.c_z),
nn.RelU (),
nn.Linear (self.c_z, self.c_z),
nn.LayerNorm(self.c_z),

def embed_relpos(self, r):
d =1r[:, :, Nonel] - r[:, None, :]
pos_emb = get_index_embedding(d, self.feat_dim, max_len=2056
return self.linear_relpos (pos_emb)

def _cross_concat (self, feats_1d, num_batch, num_res):

33

—emb



Under review as a conference paper at ICLR 2025

87 return torch.cat ([

88 torch.tile(feats_1d[:, :, None, :], (1, 1, num_res, 1)),

89 torch.tile(feats_1d[:, None, :, :], (1, num_res, 1, 1)),

90 1, dim=-1) .float () .reshape ([num_batch, num_res, num_res, -1])
91

92 def forward(self, s, t, sc_t, edge_mask, flow_mask):

93 # Input: [b, n_res, c_s]

94 num_batch, num_res, _ = s.shape

95

96 # [b, n_res, c_z]

97 p_1i = self.linear_s_p(s)

98 cross_node_feats = self._cross_concat (p_i, num_batch, num_res)

99

100 # [b, n_res]

101 r = torch.arange (

102 num_res, device=s.device) .unsqueeze (0).repeat (num_batch, 1)
103 relpos_feats = self.embed_relpos (r)

104

105 dist_feats = calc_distogram (

106 t, min_bin=le-3, max_bin=20.0, num_bins=self._cfg.embed.num_bins)

107 sc_feats = calc_distogram(

108 sc_t, min_bin=le-3, max_bin=20.0, num_bins=self._cfg.embed.num bins)
109

110 all edge_feats = [cross_node_feats, relpos_feats, dist_feats, sc_feats]
111

112 diff_ feat = self._cross_concat (flow_mask[..., None], num_batch, num_res)
113 all edge_feats.append(diff_ feat)

114

115 edge_feats = self.edge_embedder (torch.concat (all_edge_feats, dim=-1).to(torch.float))
116 edge_feats *= edge_mask.unsqueeze (-1)

117 return edge_feats

118

119
120 ## (4) Node Feature Network
121 class NodeFeatureNet (nn.Module) :

122 def __init_ (self, module_cfg):

123 super (NodeFeatureNet, self).__init_ ()

124 self._cfg = module_cfg

125 self.c_s = self._cfg.embed.c_s

126 self.c_pos_emb = self._cfg.embed.c_pos_emb

127 self.c_timestep_emb = self._cfg.embed.c_timestep_emb

128 embed_size = self.c_pos_emb + self.c_timestep_emb x 2 + 1

129

130 self.aatype_embedding = nn.Embedding (21, self.c_s) # Always 21 because of 20 amino
acids + 1 for unk

131 embed_size += self.c_s + self.c_timestep_emb + self._cfg.num_aa_type

132

133 self.linear = nn.Sequential (

134 nn.Linear (embed_size, self.c_s),

135 nn.RelU(),

136 nn.Linear (self.c_s, self.c_s),

137 nn.RelU (),

138 nn.Linear (self.c_s, self.c_s),

139 nn.LayerNorm(self.c_s),

140 )

141

142 def embed_t (self, timesteps, mask):

143 timestep_emb = get_timestep_embedding (

144 timesteps,

145 self.c_timestep_emb,

146 max_positions=2056

147 )[:, None, :].repeat(l, mask.shape[l], 1)

148 return timestep_emb * mask.unsqueeze (-1)

149

150 def forward (

151 self,

152 *,

153 =

154 res_mask,

155 flow_mask,

156 pos,

157 aatypes,

158 aatypes_sc,

159 )3

160 # [b, n_res, c_pos_emb]

161 pos_emb = get_index_embedding (pos, self.c_pos_emb, max_len=2056)

162 pos_emb = pos_emb x res_mask.unsqueeze (—1)

163

164 # [b, n_res, c_timestep_emb]

165 input_feats = [

166 pos_emb,
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167 flow_mask[..., None],

168 self.embed_t (t, res_mask),

169 self.embed_t (t, res_mask)

170 ]

171 input_feats.append(self.aatype_embedding (aatypes))
172 input_feats.append(self.embed_t (t, res_mask))

173 input_feats.append (aatypes_sc)

174 return self.linear (torch.cat (input_feats, dim=-1))
175

177 ## (3) Distance Embedder
178 class DistEmbedder (nn.Module) :

179 def __init_ (self, model_conf):

180 super (DistEmbedder, self).__init__ ()

181 torch.set_default_dtype (torch.float32)

182 self._model_conf = model_conf

183 self._embed_conf = model_conf.embed

184

185 edge_embed_size = self._model_conf.edge_embed_size

186

187 self.dist_min = self. model_conf.bb_ligand_rbf d min

188 self.dist_max = self. _model_conf.bb_ligand_rbf_ d_max

189 self.num_rbf_size = self._model_conf.num_rbf_size

190 self.edge_embedder = nn.Sequential (

191 nn.Linear (self.num_rbf size, edge_embed_size),

192 nn.RelU (),

193 nn.Linear (edge_embed_size, edge_embed_size),

194 nn.RelLU (),

195 nn.Linear (edge_embed_size, edge_embed_size),

196 nn.LayerNorm (edge_embed_size),

197 )

198

199 mu = torch.linspace(self.dist_min, self.dist_max, self.num_rbf size)

200 self.mu = mu.reshape([1, 1, 1, -1])

201 self.sigma = (self.dist_max - self.dist_min) / self.num_rbf_size

202

203 def coord2dist (self, coord, edge_mask):

204 n_batch, n_atom = coord.size(0), coord.size(l)

205 radial = torch.sum((coord.unsqueeze (1) - coord.unsqueeze(2)) *x 2, dim=-1)

206 dist = torch.sqrt(

207 radial + le-10

208 ) * edge_mask

209

210 radial = radial % edge_mask

211 return radial, dist

212

213 def rbf(self, dist):

214 dist_expand = torch.unsqueeze (dist, -1)

215 _mu = self.mu.to(dist.device)

216 rbf = torch.exp(-(((dist_expand - _mu) / self.sigma) ** 2))

217 return rbf

218

219 def forward(

220 self,

221 rigid,

222 ligand_pos,

223 bb_ligand_mask,

224 E

225 curr_bb_pos = all_atom.to_atom37 (Rigid.from_tensor_7 (torch.clone (rigid))) [-1][:,
1] .to(ligand_pos.device)

226

227 curr_bb_lig pos = torch.cat ([curr_bb_pos, ligand_pos], dim=1)

228 edge_mask = bb_ligand_mask.unsqueeze (dim=1) = bb_ligand_mask.unsqueeze (dim=2)

229

230 radial, dist = self.coord2dist (

231 coord=curr_bb_lig_pos,

232 edge_mask=edge_mask,

233 )

234

235

236 edge_embed = self.rbf(dist) % edge_mask[..., None]

237 edge_embed = self.edge_embedder (edge_embed.to (torch.float))

238

239 return edge_embed

240

241

242 ## (2) Cross—-Attentiom
243 class CrossAttention (nn.Module) :

244 def __init__ (self, query_input_dim, key_input_dim, output_dim):
245 super (CrossAttention, self).__init_ ()
246 self.out_dim = output_dim
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self
self

= nn.Linear (query_input_dim,
= nn.Linear (key_input_dim,
self = nn.Linear (key_input_dim,
self.scale_val = self.out_dim ** 0.5
self.softmax = nn.Softmax (dim=-1)

W
W
LW

< RO

def forward(self, query_input,
key_input_mask=None) :

key_input,

query = self.W_Q(query_input)
key = self.W_K(key_input)
value = self.W_V (value_input)

attn_weights = torch.matmul (query,
attn_mask = query_input_mask.unsqueeze (-1)

attn_weights =

attn_weights = self.softmax (attn_weights)

value_input,

key.transpose (1,

attn_weights.masked_fill (attn_mask

output_dim)
output_dim)
output_dim)

query_input_mask=None,

2)) / self.scale_val
* key_input_mask.unsqueeze (-1) .transpose (1,

False, -1e9)

output = torch.matmul (attn_weights, value)
return output, attn_weights
## (1) Protein-Ligand Network
class ProteinLigandNetwork (nn.Module) :
def __init__ (self, model_conf):
super (ProteinLigandNetwork, self).__init__ ()

torch.set_default_dtype (torch.float32)
self._model_conf = model_conf

# Input Node Embedder
self.node_feature_net =

# Input Edge Embedder
self.edge_feature_net =

# 3D Molecule GNN

self.mol_embedding_layer =
# Invariant Point Attention Network
self.ipanet =

(IPA)

# Node Fusion
self.node_embed_size =
self.node_embedder = nn.Sequential (

nn.Embedding (self._model_ conf.num_aa_type,
nn.RelU (),
nn.Linear (self.node_embed_size,

nn.LayerNorm(self.node_embed_size),

)

self.node_fusion =
nn.
nn.RelU (),
nn.Linear (self.node_embed_size,
nn.LayerNorm(self.node_embed_size),

nn.Sequential (

# Backbone-Substrate Fusion
self.bb_lig fusion = CrossAttention (

Linear (self.node_embed_size + self.node_embed_size,

NodeFeatureNet (model_conf)

EdgeFeatureNet (model_conf)

MolEmbedder (model_conf)

ipa_pytorch.IpaNetwork (model_conf)

self._model_conf.node_embed_size

self.node_embed_size),

self.node_embed_size),

self.node_embed_size),

self.node_embed_size),

query_input_dim=self.node_embed_size,

key_input_dim=self.node_embed_size,
output_dim=self.node_embed_size,
)

# Edge Fusion

self.edge_embed _size = self. _model_conf.edge_embed_size

self.edge_dist_embedder =

# Amino Acid Prediction Network
self.aatype_pred_net = nn.Sequential (
nn.Linear (self.node_embed_size,
nn.RelLU(),
nn.Linear (self.node_embed_size,
nn.ReLU(),
nn.Linear (self.node_embed_size,

)

if self._model_conf.flow_msa:
# Co-Evolution Embedder

DistEmbedder (model_conf)

self.node_embed_size),
self.node_embed_size),

model_conf.num_aa_type)

self.msa_embedding_layer = CoEvoFormer (model_conf)

# Coevo-Backbone-Substrate Fusion
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326 self.msa_bb_lig fusion = CrossAttention (

327 query_input_dim=model_conf.msa.msa_embed_size,

328 key_input_dim=self.node_embed_size,

329 output_dim=self.node_embed_size,

330 )

331

332 # Coevo Prediction Network

333 self.msa_pred = nn.Sequential (

334 nn.Linear (self.node_embed_size, self.node_embed_size),
335 nn.SiLU(),

336 nn.Linear (self.node_embed_size, self.node_embed_size),
337 nn.SiLU(),

338 nn.Linear (self.node_embed_size, model_conf.msa.num_msa_vocab),
339 )

340

341 if self._model_conf.ec:

342 # EC Embedder

343 self.ec_embedding_layer = nn.Sequential (

344 nn.Embedding (model_conf.ec.num_ec_class, model_conf.ec.ec_embed_size),
345 nn.SiLU(),

346 nn.Linear (model_conf.ec.ec_embed_size, model conf.ec.ec_embed_size),
347 nn.LayerNorm(model_ conf.ec.ec_embed_size),

348 )

349

350 # EC-Backbone-Substrate Fusion

351 self.ec_bb_lig_fusion = CrossAttention (

352 query_input_dim=model_conf.ec.ec_embed_size,

353 key_input_dim=self.node_embed_size,

354 output_dim=self.node_embed_size,

355 )

356

357 # EC Prediction Network

358 self.ec_pred = nn.Sequential (

359 nn.Linear (self.node_embed_size, self.node_embed_size),
360 nn.SiLU(),

361 nn.Linear (self.node_embed_size, self.node_embed_size),
362 nn.SiLU(),

363 nn.Linear (self.node_embed_size, model_conf.ec.num_ec_class),
364 )

365

366 self.condition_generation = self._model_conf.guide_by_condition
367 if self.condition_generation:

368 # 2D Molecule GNN

369 self.guide_ligand_mpnn = MolEmbedder2D (model_conf)

370

371 # Backbone-Product Fusion

372 self.guide_bb_lig fusion = CrossAttention (

373 query_input_dim=self.node_embed_size,

374 key_input_dim=self.node_embed_size,

375 output_dim=self.node_embed_size,

376 )

377

378 def forward(self, input_feats, use_context=False):

379 # Frames as [batch, res, 7] tensors.

380 bb_mask = input_feats["res_mask"].type (torch.float32) # [B, N]
381 flow_mask = input_feats["flow_mask"].type (torch.float32)

382 edge_mask = bb_mask[..., None] * bb_mask[..., None, :]

383

384 n_batch, n_res = bb_mask.shape

385

386 # Encode Backbone Nodes with Input Node Embedder

387 init_bb_node_embed = self.node_feature_net (

388 t=input_feats["t"],

389 res_mask=bb_mask,

390 flow_mask=flow_mask,

391 pos=input_feats["seq idx"],

392 aatypes=input_feats["aatype_t"],

393 aatypes_sc=input_feats["sc_aa t"],

394 )

395

396 # Encode Backbone Edges with Input Edge Embedder

397 init_bb_edge_embed = self.edge_feature_net (

398 s=init_bb_node_embed,

399 t=input_feats["trans_t"],

400 sc_t=input_feats["sc_ca_t"],

401 edge_mask=edge_mask,

402 flow_mask=flow_mask,

403 )

404

405 # Masking Padded Residues

406 bb_node_embed = init_bb_node_embed * bb_mask[..., None]
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407 bb_edge_embed = init_bb_edge_embed % edge_mask[..., None]

408

409 # AminoAcid embedding

410 bb_aa_embed = self.node_embedder (input_feats["aatype_t"]) * bb_mask[..., None]
411 bb_aa_embed = torch.cat ([bb_aa_embed, bb_node_embed], dim=-1)

412 # Backbone-AminoAcid Fusion

413 bb_node_embed = self.node_fusion (bb_aa_embed)

414 bb_node_embed = bb_node_embed * bb_mask[..., None]

415

416 # Initialze Substrate Masking

417 lig_mask = input_feats["ligand_mask"]

418 lig_edge_mask = lig _mask[..., None] * lig_mask[..., None, :]

419 # Encode Substrate with 3D Molecule GNN

420 lig_init_node_embed, _ = self.mol_embedding_layer (

421 ligand_atom=input_feats["ligand_atom"],

422 ligand_pos=input_feats["ligand_pos"],

423 edge_mask=1lig_edge_mask,

424 )

425 lig_node_embed = lig_init_node_embed * lig_mask[..., None]

426

427 # Backbone-Substrate Fusion

428 bb_lig_rep, _ = self.bb_lig_fusion(

429 query_input=bb_node_embed,

430 key_input=1ig_node_embed,

431 value_input=lig_node_embed,

432 query_input_mask=bb_mask,

433 key_input_mask=1ig_mask,

434 )

435

436 # Residue Connection

437 bb_node_embed = bb_node_embed + bb_lig_rep

438

439 # Conditioning on Product Molecule

440 if self.condition_generation:

441 # Encode Product with 2D Molecule GNN

442 guide_ligand_rep = self.guide_ligand_mpnn (

443 mol_atom=input_feats["guide_ligand_atom"],
444 mol_edge=input_feats["guide_ligand_edge_index"],
445 mol_edge_feat=input_feats["guide_ ligand_edge"],
446 mol_atom_mask=input_feats["guide_ligand_atom_mask"],
447 mol_edge_mask=input_feats["guide_ligand_edge_mask"],
448 ) .unsqueeze (1)

449

450 # Initialze Product Masking

451 guide_ligand_mask = input_feats["guide_ligand_atom mask"][:, 0:1]
452 # Backbone-Product Fusion

453 bb_guide_lig_rep, _ = self.guide_bb_lig_fusion (

454 query_input=bb_node_embed,

455 key_input=guide_ligand_rep,

456 value_input=guide_ligand_rep,

457 query_input_mask=bb_mask,

458 key_input_mask=guide_ligand_mask,

459 )

460

461 # Residue Connection

462 bb_node_embed = bb_node_embed + bb_guide_lig_rep

463

464 # Initialze Backbone-Substrate Masking

465 bb_ligand_mask = torch.cat ([bb_mask, lig_mask], dim=-1)

466 # Backbone-Substrate Distance Embedding

467 bb_lig_edge = self.edge_dist_embedder (

468 rigid=input_feats["rigids_t"],

469 ligand_pos=input_feats["ligand pos"],

470 bb_ligand_mask=bb_ligand_mask,

471 )

472

473 # Backbone-Backbone-Product Edge Fusion

474 bb_edge_embed = bb_edge_embed + bb_lig_edge[:, :n_res, :n_res, :]
475

476 # Masking Padded Residues

477 bb_node_embed = bb_node_embed[:, :n_res, :] * bb_mask[..., None]
478 bb_edge_embed = bb_edge_embed[:, :n_res, :n_res, :] * edge_mask[..., None]
479

480 # Run IPA Network

481 model_out = self.ipanet (bb_node_embed, bb_edge_embed, input_feats)
482 node_embed = model_out ["node_embed"] * bb_mask[..., None]

483

484 # Amino Acid Prediction with Amino Acid Prediction Network

485 aa_pred = self.aatype_pred_net (node_embed) * bb_mask[..., None]
486

487 if self._model_conf.flow_msa:
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# Encode Coevo with Co-Evolution Embedder
msa_mask = input_feats["msa_mask"]

msa_embed = self.msa_embedding_layer (input_feats["msa_t"],

msa_mask[..., None] #[B, N_msa, N_token, D]

msa_rep = msa_embed.sum(dim=1) / (msa_mask[..., None].sum(dim=1) + 1le-10)

D]
_msa_mask = msa_mask[:, 0] #torch.ones_like (msa_rep[...,

# Coevo-Backbone Fusion

msa_rep, _ = self.msa_bb_lig_fusion(
query_input=msa_rep,
key_input=node_embed,
value_input=node_embed,
query_input_mask=_msa_mask,
key_input_mask=bb_mask,

)

# Coevo Prediction with Coevo Prediction Network
msa_pred = self.msa_pred(msa_rep)

if self._model_conf.flow_ec:
# Encode EC with EC Embedder
ec_embed = self.ec_embedding_layer (input_feats["ec_t"])

0]) .to (msa_embed

ec_mask = torch.ones_like(ec_embed[..., 0]).to(ec_embed.device)

# EC-Backbone Fusion

ec_rep, _ = self.ec_bb_lig fusion(
query_input=ec_embed,
key_input=node_embed,
value_input=node_embed,
query_input_mask=ec_mask,
key_input_mask=bb_mask,

)

# EC Prediction with EC Prediction Network
ec_rep = ec_rep.reshape(n_batch, -1)
ec_pred = self.ec_pred(ec_rep)

# Main Network Ouput

pred_out = {
"amino_acid": aa_pred,
"rigids_tensor": model_out["rigids"],

}

if self._model_conf.flow_msa:
pred_out ["msa"] = msa_pred * _msa_mask[..., None]

if self._model_conf.flow_ec:
pred_out ["ec"] = ec_pred

pred_out ["rigids"] = model_out["rigids"].to_tensor_7()
return pred_out

Listing 4: Pytorch Implementation of EnzymeFlow Main Network.

msa_mask=msa_mask) *

#[B, 1,

.device)

Fun Fact: While implementing enzyme-substrate and enzyme-product interactions by cross-attention
fusion networks, we experimented with using PairFormer (with only 3-4 layers) as implemented in
AlphaFold3 (Abramson et al., 2024). However, the computational load was immense—it would take
years to run on our A40 GPU. Our fusion network turns to be a more efficient approach. It makes me
wonder who has the resources to re-train AlphaFold3, given the heavy computational demands!
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