
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ENZYMEFLOW: GENERATING REACTION-SPECIFIC EN-
ZYME CATALYTIC POCKETS THROUGH FLOW MATCH-
ING AND CO-EVOLUTIONARY DYNAMICS

Anonymous authors
Paper under double-blind review

ABSTRACT

Enzyme design is a critical area in biotechnology, with applications ranging from
drug development to synthetic biology. Traditional methods for enzyme func-
tion prediction or protein binding pocket design often fall short in capturing
the dynamic and complex nature of enzyme-substrate interactions, particularly
in catalytic processes. To address the challenges, we introduce EnzymeFlow,
a generative model that employs flow matching with hierarchical pre-training
and enzyme-reaction co-evolution to generate catalytic pockets for specific sub-
strates and catalytic reactions. Additionally, we introduce a large-scale, curated,
and validated dataset of enzyme-reaction pairs, specifically designed for the cat-
alytic pocket generation task, comprising a total of 328, 192 pairs. By incor-
porating evolutionary dynamics and reaction-specific adaptations, EnzymeFlow
becomes a powerful model for designing enzyme pockets, which is capable
of catalyzing a wide range of biochemical reactions. Experiments on the new
dataset demonstrate the model’s effectiveness in designing high-quality, func-
tional enzyme catalytic pockets, paving the way for advancements in enzyme
engineering and synthetic biology. The EnzymeFlow code can be found at
https://anonymous.4open.science/r/EnzymeFlow-7420.

1 INTRODUCTION

Proteins are fundamental to life, participating in many essential interactions for biological processes
(Whitford, 2013). Among proteins, enzymes stand out as a specialized class that serves as catalysts,
driving and regulating nearly all chemical reactions and metabolic pathways across living organisms,
from simple bacteria to complex mammals (Kraut, 1988; Murakami et al., 1996; Copeland, 2023)
(visualized in Fig. 1). Their catalytic power is central to biological functions, enabling the efficient
production of complex organic molecules in biosynthesis (Ferrer et al., 2008; Liu & Wang, 2007)
and the creation of novel biological pathways in synthetic biology (Girvan & Munro, 2016; Keasling,
2010; Hodgman & Jewett, 2012). Examining enzyme functions across the tree of life deepens our
understanding of the evolutionary processes that shape metabolic networks and enable organisms
to adapt to their environments (Jensen, 1976; Glasner et al., 2006; Campbell et al., 2016; Pinto
et al., 2022). Consequently, studying enzyme-substrate interactions is essential for comprehending
biological processes and designing effective products.

Enzyme Enzyme-substrate 
complex Enzyme

Substrate Products

EC:1.18.1.2 
GO:0004324

a b

Search for annotated enzyme

Predict EC/GO

Enzyme-Reaction prediction

Catalyzed reactionEnzyme

Figure 1: Enzyme-substrate Mechanism.

Traditional methods have primarily focused on enzyme
function prediction, annotation (Gligorijević et al., 2021;
Yu et al., 2023), or enzyme-reaction retrieval (Mikhael
et al., 2024; Hua et al., 2024b; Yang et al., 2024). These
approaches lack the ability to design new enzymes that
catalyze specific biological processes. Recent studies suggest that current function prediction models
struggle to generalize to unseen enzyme reaction data (de Crecy-Lagard et al., 2024; Kroll et al.,
2023a), limiting their utility in enzyme design. To effectively design enzymes, it is crucial not only
to predict protein functions but also to identify and generate enzyme catalytic pockets specific to
particular substrates, thereby enabling potentially valuable biological processes.

On the other hand, recent advances in deep generative models have significantly improved pocket
design for protein-ligand complexes (Stärk et al., 2023; Zhang et al., 2023b; 2024e; Krishna et al.,
2024), generating diverse and functional binding pockets for ligand molecules. However, these
models cannot generalize directly to the design of enzyme catalytic pockets for substrates involved in
catalytic processes. Unlike protein-ligand complexes, where ligand binding typically does not lead to

1

https://anonymous.4open.science/r/EnzymeFlow-7420


054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

a chemical transformation, enzyme-substrate interactions result in a chemical change where the
substrate is converted into a product, which has significantly different underlying mechanisms.
More specifically, in protein-ligand binding, the ligand may induce a conformational change in the
protein, affect its interactions with other molecules, or modulate its activity; in contrast, the formation
of an enzyme-substrate complex is a precursor to a catalytic reaction, where the enzyme lowers the
activation energy, facilitating the transformation of the substrate into a product. After the reaction, the
enzyme is free to bind another substrate molecule. Therefore, current generative models for pocket
design are restricted and limited to static ligand-binding interactions, failing to describe such dynamic
transformations and the complex nature of enzyme-substrate interactions.

To address these limitations, we propose EnzymeFlow (demonstrated in Fig. 2), a flow matching
model (Lipman et al., 2022; Liu et al., 2022; Albergo & Vanden-Eijnden, 2023) with enzyme-reaction
co-evolution and structure-based pre-training for enzyme catalytic pocket generation. Our major
contributions follow: (1) EnzymeFlow—Flow Model for Enzyme Catalytic Pocket Design: We
define conditional flows for enzyme catalytic pocket generation based on backbone frames, amino acid
types, and Enzyme Commission (EC) class. The generative flow process is conditioned on specific
substrates and products, enabling potential catalytic processes. (2) Enzyme-Reaction Co-Evolution:
Since enzyme-substrate interactions involve dynamic chemical transformations of substrate molecules,
which is distinct from static protein-ligand interactions, we propose enzyme-reaction co-evolution
with a new co-evolutionary transformer (coEvoFormer). The co-evolution is used to capture substrate-
specificity in catalytic reactions. It encodes how enzymes and reactions evolve together, allowing
the model to operate on evolutionary dynamics, which naturally comprehends the catalytic process.
(3) Structure-Based Hierarchical Pre-Training: To leverage the vast data of geometric structures
from existing proteins and protein-ligand complexes, we propose a structure-based hierarchical
pre-training. This method progressively learns from protein backbones to protein binding pockets,
and finally to enzyme catalytic pockets. This hierarchical learning of protein structures enhances
geometric awareness within the model. (4) EnzymeFill—Large-scale Pocket-specific Enzyme-
Reaction Dataset with Pocket Structures: Current enzyme-reaction datasets are based on full
enzyme sequences or structures and lack precise geometry for how enzyme pockets catalyze the
substrates. To address this, we construct a structure-based, curated, and validated enzyme catalytic
pocket-substrate dataset, specifically designed for the catalytic pocket generation task.

2 RELATED WORK

2.1 PROTEIN EVOLUTION

Protein evolution learns how proteins change over time through processes such as mutation, selection,
and genetic drift (Pál et al., 2006; Bloom & Arnold, 2009), which influence protein functions. Studies
on protein evolution focus on understanding the molecular mechanisms driving changes in protein
sequences and structures. Zuckerkandl & Pauling (1965) introduce the concept of the molecular clock,
which postulates that proteins evolve at a relatively constant rate over time, providing a framework
for estimating divergence times between species. DePristo et al. (2005) show that evolutionary rates
are influenced by functional constraints, with regions critical to protein function (e.g., active sites,
binding interfaces) evolving more slowly due to purifying selection. This understanding leads to
the development of methods for detecting functionally important residues based on evolutionary
conservation. Understanding protein evolution has practical applications in protein engineering. By
studying how natural proteins evolve to acquire new functions, researchers design synthetic proteins
with desired properties (Xia & Levitt, 2004; Jäckel et al., 2008). Additionally, deep learning models
increasingly integrate evolutionary principles to predict protein function and stability, design novel
enzymes, and guide protein engineering (Yang et al., 2019; AlQuraishi, 2019; Jumper et al., 2021).

2.2 GENERATIVE MODELS FOR PROTEIN AND POCKET DESIGN

Recent advancements in generative models have advanced the field of protein design and binding
pocket design, enabling the creation of proteins or binding pockets with desired properties and func-
tions (Yim et al., 2023a;b; Chu et al., 2024; Hua et al., 2024a; Abramson et al., 2024). For example,
RFDiffusion (Watson et al., 2023) employs denoising diffusion in conjunction with RoseTTAFold
(Baek et al., 2021) for de novo protein structure design, achieving wet-lab-level generated structures
that can be extended to binding pocket design. RFDiffusionAA (Krishna et al., 2024) extends
RFDiffusion for joint modeling of protein and ligand structures, generating ligand-binding proteins
and further leveraging MPNNs for sequence design. Additionally, FAIR (Zhang et al., 2023b) and

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

PocketGen (Zhang et al., 2024e) use a two-stage coarse-to-fine refinement approach to co-design
pocket structures and sequences. Recent models leveraging flow matching frameworks have shown
promising results in these tasks. For instance, FoldFlow (Bose et al., 2023) introduces a series of flow
models for protein backbone design, improving training stability and efficiency. FrameFlow (Yim
et al., 2023a) further enhances sampling efficiency and demonstrates success in motif-scaffolding
tasks using flow matching, while MultiFlow (Campbell et al., 2024) advances to structure and se-
quence co-design. These flow models, initially applied to protein backbones, have been further
generalized to binding pockets. For example, PocketFlow (Zhang et al., 2024d) combines flow
matching with physical priors to explicitly learn protein-ligand interactions in binding pocket design,
achieving stronger results compared to RFDiffusionAA. While these models excel in protein and
binding pocket design, they primarily focus on static protein(-ligand) interactions and lack the ability
to model the chemical transformations involved in enzyme-catalyzed reactions. This limitation may
reduce their accuracy and generalizability in designing enzyme pockets for catalytic reactions. In
EnzymeFlow, we aim to address these current limitations. An extended discussion of related works
on AI-driven protein engineering can be found in App. C.

Discussion regarding PocketFlow. PocketFlow (Zhang et al., 2024d) has demonstrated strong per-
formance in protein-ligand design, showing generalizability across various protein pocket categories.
However, it falls short when applied to the design of enzyme catalytic pocket with specific substrates.
One key limitation is that protein-ligand interactions are static, meaning that the training data and
model design do not capture or describe the chemical transformations, such as the conversion or
production of new molecules, that occur during enzyme-catalyzed reactions. This dynamic aspect of
enzyme-substrate interactions is missing in current models. Another limitation is that PocketFlow
fixes the overall protein backbone structure before designing the binding pocket, treating the pocket
as a missing element to be filled in. This approach may not align with practical needs, as the overall
protein backbone structure is often unknown before pocket design. Ideally, the design process should
be reversed: the pocket should be designed first, influencing the overall protein structure. Despite
these challenges, PocketFlow remains a good and leading work in pocket design. With EnzymeFlow,
we aim to address these limitations, particularly in the context of catalytic pocket design.

3 ENZYMEFLOW

We introduce EnzymeFlow, a flow matching model with hierarchical pre-training and enzyme-reaction
co-evolution to generate enzyme catalytic pockets for specific substrates and catalytic reactions. We
demonstrate the pipeline in Fig. 2, discuss the EnzymeFlow with co-evolutionary dynamics in Sec. 3.1,
further introduce the structure-based hierarchical pre-training for generalizability in Sec. 3.2

3.1 ENZYME CATALYTIC POCKET GENERATION WITH FLOW MATCHING

EnzymeFlow on Catalytic Pocket. Following Yim et al. (2023a), we refer to the protein structure
as the backbone atomic coordinates of each residue. A pocket with number of residues Nr can be
parameterized into SE(3) residue frames {(xi, ri, ci)}Nr

i=1, where xi ∈ R3 represents the position
(translation) of the Cα atom of the i-th residue, ri ∈ SO(3) is a rotation matrix defining the local
frame relative to a global reference frame, and ci ∈ {1, . . . , 20} ∪ {✕} denotes the amino acid type,
with an additional ✕ indicating a masking state of the amino acid type. We refer to the residue block
as T i = (xi, ri, ci), and the entire pocket is described by a set of residues T = {T i}Nr

i=1 . Additionally,
we denote the graph representations of substrate and product molecules in the catalytic reaction as ls
and lp, respectively. An enzyme-reaction pair can therefore be described as (T, ls, lp).

Following flow matching literature (Yim et al., 2023a; Campbell et al., 2024), we use time t = 1 to
denote the source data. The conditional flow on the enzyme catalytic pocket pt(Tt|T1) for a time
step t ∈ (0, 1] can be factorized into the probability density over continuous variables (translations
and rotations) and the probability mass function over discrete variables (amino acid types) as:

pt(Tt|T1) =

Nr∏
i=1

pt(x
i
t|xi

1) pt(r
i
t|ri1) pt(cit|ci1), (1)

where the translation, rotation, and amino acid type at time t are derived as:

xi
t = (1− t)xi

0 + txi
1, x

i
0 ∼ N (0, I); rit = expri0

(t logri0
ri1), r

i
0 ∼ USO(3);

cit ∼ pt(c
i
t|ci1) = Cat(t δ(ci1, c

i
t) + (1− t) δ(✕, cit)),

(2)

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

2. Protein-Ligand Pre-training

Protein-Ligand Complex

Flow on pocket SE(3) & amino acids conditioned by ligand molecule

ykd = 4.99

Final designed binding pocketInitial SE(3) binding pocket

t=0 

In-flow binding pocket

…

t=t t=1 

…

Geometry-based Complex Optimization

A
E

E

A

G

Pairwise 
Distance Reg

Surface Interaction Reg

Binding Affinity RegInitial SE(3) backbone

t=0 

Final backbone

t=1 

…

1. Protein Backbone Pre-training
Flow on backbone SE(3) & amino acids

… … …
3. Enzyme-Reaction Fine-tuning (b) Enzyme Catalytic Pocket

3D GNN Substrate Encoding

Substrate

Product

2D GNN Product Encoding

(a) Reaction Encodings

(c) EC-class

[EC 1]

Flow on pocket SE(3) & amino acids & co-evolution & EC-class conditioned by reaction

… …
Initial co-evolution In-flow co-evolution Final co-evolution

(d) Enzyme-Reaction Co-evolution

enzyme reaction
M L K Y D V E C C > C ( C ) O
M S T Y Y V E C C C > C C C O
M S R Y L V E C C C C > C C C C O

coEvoFormer

Protein Evolution Contacts

M L K Y D V E C C >> C ( C ) O
M S T Y Y V E C C C >> C C C O
M S R Y L V E C C C C >> C C C C O

M L K Y D V E C C >> C ( C ) O
M S T Y Y V E C C C >> C C C O
M S R Y L V E C C C C >> C C C C O

… …
Initial co-evolution In-flow co-evolution Final co-evolution

X X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X X

…

…t=0 …t=t t=1

Substrate Encoding
Product Encoding…

Initial SE(3) catalytic pocket In-flow catalytic pocket Final designed catalytic pocket

…
Substrate Encoding
Product Encoding

XXXXXXXXXX MLKLYDVEVG XXXLYXXEVG 

[EC X] [EC 5] [EC 1]
In-flow EC-classInitial EC-class Final EC-class… …

Gradient

Gradient Gradient

Gradient

X X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X X

Initial co-evolution

M L K Y D V E C C > C ( C ) O
M S T Y Y V E C C C > C C C O
M S R Y L V E C C C C > C C C C O

Final co-evolution

X X X X D V X X X C C X C ( X ) O
M X X Y Y X E X C C X X C X X X
X S X X L V X X C C X X C X C C X

In-flow co-evolution

… …

Figure 2: Overview of EnzymeFlow with hierarchical pre-training and enzyme-reaction co-evolution.
(1) Flow model pre-trained on protein backbones and amino acid types. (2) Flow model further
pre-trained on protein binding pockets, conditioned on ligand molecules with geometry-specific
optimization. (3) Flow model fine-tuned on enzyme catalytic pockets, and conditioned on substrate
and product molecules, with enzyme-reaction co-evolution and EC-class generation.

Ltrans =

NrX

i=1

kvi
✓(x

i
t, t, ls, lp) � (xi

1 � xi
0)k2

2; Lrot =

NrX

i=1

kvi
✓(r

i
t, t, ls, lp) �

logri
t
ri
1

1 � t
k2

SO(3);

Laa = �
NrX

i=1

log p✓(c
i
1|vi

✓(c
i
t, t, ls, lp)).

(3)

To design the enzyme pocket and model protein-ligand interactions, we implement 3D and 2D GNNs
to encode the substrate and product, respectively (implemented in App. C). The main vector field
network applies cross-attention to model protein-ligand interactions and incorporates Invariant Point
Attention (IPA) (Jumper et al., 2021) to encode protein features and make predictions. Following
tricks in Yim et al. (2023a); Campbell et al. (2024), we let the the model predict the final structure at
t = 1 and interpolates to compute the vector fields (discussed in App. D).

EnzymeFlow on EC-Class. The Enzyme Commission (EC) classification is crucial for categorizing
enzymes based on the reactions they catalyze. Understanding the EC-class of an enzyme-reaction
pair can help predict its function in various biochemical pathways (Bansal et al., 2022). Given its
importance, EnzymeFlow leverages EC-class to enhance its generalizability across various enzymes
and catalytic reactions. Therefore, our model incorporates EC-class, yec 2 {1, . . . , 7} [ {5} , as a
discrete factor in the design process. The EC-class is sampled from a Categorical distribution with
probabilities t�(yec1 , yect) + (1 � t)�(5, yect) . The discrete flow on EC-class interpolates from the
masking state 5 at t = 0 to the actual EC-class yec1 at t = 1. The prediction and loss function are
conditioned on the pocket frames and the substrate and product molecules:

Lec = � log p✓(yec1 |v✓(Tt, t, ls, lp, yect)). (4)
The model predicts the final EC-class at t = 1 and interpolates to compute its vector field. For EC-
class prediction, we first employ a EC-class embedding network to encode yect

. The final predicted
EC-class is obtained by pooling cross-attention between the encoded enzyme and EC-class features.

3.1.1 ENZYMEFLOW WITH ENZYME-REACTION CO-EVOLUTION

Enzyme (protein) evolution refers to the process by which enzyme structures and functions change
over time due to genetic variations, such as mutations, duplications, and recombinations. These
changes can lead to alterations in amino acids, potentially affecting the enzyme structure, function,
stability, and interactions (Pál et al., 2006; Sikosek & Chan, 2014). Reaction evolution, on the other
hand, refers to the process by which chemical reactions, particularly those catalyzed by enzymes,
change and diversify within biological systems over time.

Co-Evolutionary Dynamics. Enzymes can co-evolve with the metabolic or biochemical pathways
they are part of, adapting to changes in substrate availability, the introduction of new reaction steps, or
the need for more efficient flux through the pathway. As pathways evolve, enzymes within them may
develop new catalytic functions or refine existing ones to better accommodate these changes (Noda-
Garcia et al., 2018). This process frequently involves the co-evolution of enzymes and their substrates.
As substrates change—whether due to the introduction of new compounds in the environment or
mutations in other metabolic pathways—enzymes may adapt to catalyze reactions with these new
substrates, leading to the emergence of entirely new reactions. Understanding enzyme-substrate
interactions, therefore, requires considering their evolutionary dynamics, as these interactions are

4

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

2. Protein-Ligand Pre-training

Protein-Ligand Complex

Flow on pocket SE(3) & amino acids conditioned by ligand molecule

ykd = 4.99

Final designed binding pocketInitial SE(3) binding pocket

t=0 

In-flow binding pocket

…

t=t t=1 

…

Geometry-based Complex Optimization

A
E

E

A

G

Pairwise 
Distance Reg

Surface Interaction Reg

Binding Affinity RegInitial SE(3) backbone

t=0 

Final backbone

t=1 

…

1. Protein Backbone Pre-training
Flow on backbone SE(3) & amino acids

… … …
3. Enzyme-Reaction Fine-tuning (b) Enzyme Catalytic Pocket

3D GNN Substrate Encoding

Substrate

Product

2D GNN Product Encoding

(a) Reaction Encodings

(c) EC-class

[EC 1]

Flow on pocket SE(3) & amino acids & co-evolution & EC-class conditioned by reaction

… …
Initial co-evolution In-flow co-evolution Final co-evolution

(d) Enzyme-Reaction Co-evolution

enzyme reaction
M L K Y D V E C C > C ( C ) O
M S T Y Y V E C C C > C C C O
M S R Y L V E C C C C > C C C C O

coEvoFormer

Protein Evolution Contacts

M L K Y D V E C C >> C ( C ) O
M S T Y Y V E C C C >> C C C O
M S R Y L V E C C C C >> C C C C O

M L K Y D V E C C >> C ( C ) O
M S T Y Y V E C C C >> C C C O
M S R Y L V E C C C C >> C C C C O

… …
Initial co-evolution In-flow co-evolution Final co-evolution

X X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X X

…

…t=0 …t=t t=1

Substrate Encoding
Product Encoding…

Initial SE(3) catalytic pocket In-flow catalytic pocket Final designed catalytic pocket

…
Substrate Encoding
Product Encoding

XXXXXXXXXX MLKLYDVEVG XXXLYXXEVG 

[EC X] [EC 5] [EC 1]
In-flow EC-classInitial EC-class Final EC-class… …

Gradient

Gradient Gradient

Gradient

X X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X X

Initial co-evolution

M L K Y D V E C C > C ( C ) O
M S T Y Y V E C C C > C C C O
M S R Y L V E C C C C > C C C C O

Final co-evolution

X X X X D V X X X C C X C ( X ) O
M X X Y Y X E X C C X X C X X X
X S X X L V X X C C X X C X C C X

In-flow co-evolution

… …

Figure 2: Overview of EnzymeFlow with hierarchical pre-training and enzyme-reaction co-evolution.
(1) Flow model pre-trained on protein backbones and amino acid types. (2) Flow model further
pre-trained on protein binding pockets, conditioned on ligand molecules with geometry-specific
optimization. (3) Flow model fine-tuned on enzyme catalytic pockets, and conditioned on substrate
and product molecules, with enzyme-reaction co-evolution and EC-class generation.

Ltrans =

NrX

i=1

kvi
✓(x

i
t, t, ls, lp) � (xi

1 � xi
0)k2

2; Lrot =

NrX

i=1

kvi
✓(r

i
t, t, ls, lp) �

logri
t
ri
1

1 � t
k2

SO(3);

Laa = �
NrX

i=1

log p✓(c
i
1|vi

✓(c
i
t, t, ls, lp)).

(3)

To design the enzyme pocket and model protein-ligand interactions, we implement 3D and 2D GNNs
to encode the substrate and product, respectively (implemented in App. C). The main vector field
network applies cross-attention to model protein-ligand interactions and incorporates Invariant Point
Attention (IPA) (Jumper et al., 2021) to encode protein features and make predictions. Following
tricks in Yim et al. (2023a); Campbell et al. (2024), we let the the model predict the final structure at
t = 1 and interpolates to compute the vector fields (discussed in App. D).

EnzymeFlow on EC-Class. The Enzyme Commission (EC) classification is crucial for categorizing
enzymes based on the reactions they catalyze. Understanding the EC-class of an enzyme-reaction
pair can help predict its function in various biochemical pathways (Bansal et al., 2022). Given its
importance, EnzymeFlow leverages EC-class to enhance its generalizability across various enzymes
and catalytic reactions. Therefore, our model incorporates EC-class, yec 2 {1, . . . , 7} [ {5} , as a
discrete factor in the design process. The EC-class is sampled from a Categorical distribution with
probabilities t�(yec1 , yect) + (1 � t)�(5, yect) . The discrete flow on EC-class interpolates from the
masking state 5 at t = 0 to the actual EC-class yec1 at t = 1. The prediction and loss function are
conditioned on the pocket frames and the substrate and product molecules:

Lec = � log p✓(yec1 |v✓(Tt, t, ls, lp, yect)). (4)
The model predicts the final EC-class at t = 1 and interpolates to compute its vector field. For EC-
class prediction, we first employ a EC-class embedding network to encode yect

. The final predicted
EC-class is obtained by pooling cross-attention between the encoded enzyme and EC-class features.

3.1.1 ENZYMEFLOW WITH ENZYME-REACTION CO-EVOLUTION

Enzyme (protein) evolution refers to the process by which enzyme structures and functions change
over time due to genetic variations, such as mutations, duplications, and recombinations. These
changes can lead to alterations in amino acids, potentially affecting the enzyme structure, function,
stability, and interactions (Pál et al., 2006; Sikosek & Chan, 2014). Reaction evolution, on the other
hand, refers to the process by which chemical reactions, particularly those catalyzed by enzymes,
change and diversify within biological systems over time.

Co-Evolutionary Dynamics. Enzymes can co-evolve with the metabolic or biochemical pathways
they are part of, adapting to changes in substrate availability, the introduction of new reaction steps, or
the need for more efficient flux through the pathway. As pathways evolve, enzymes within them may
develop new catalytic functions or refine existing ones to better accommodate these changes (Noda-
Garcia et al., 2018). This process frequently involves the co-evolution of enzymes and their substrates.
As substrates change—whether due to the introduction of new compounds in the environment or
mutations in other metabolic pathways—enzymes may adapt to catalyze reactions with these new
substrates, leading to the emergence of entirely new reactions. Understanding enzyme-substrate
interactions, therefore, requires considering their evolutionary dynamics, as these interactions are

4

Molecule EvoluFon 

Figure 2: Overview of EnzymeFlow with hierarchical pre-training and enzyme-reaction co-evolution.
(1) Flow model pre-trained on protein backbones and amino acid types. (2) Flow model further
pre-trained on protein binding pockets, conditioned on ligand molecules with geometry-specific
optimization. (3) Flow model fine-tuned on enzyme catalytic pockets, and conditioned on substrate
and product molecules, with enzyme-reaction co-evolution and EC-class generation.

where δ(a, b) is the Kronecker delta, which equals to 1 if a = b and 0 if a ̸= b; Cat is a categorical
distribution for the sampling of discrete amino acid type, with probabilities tδ(ci1, cit) + (1− t)δ(✕, cit).
The discrete flow interpolates from the masking state ✕ at t = 0 to the actual amino acid type ci1 at
t = 1 (Campbell et al., 2024). In a catalytic process, enzymes interact with substrates to produce
specific products. In practical enzyme design, we typically know the substrates ls (as 3D atom point
clouds) and the desired products lp (as 2D molecular graphs or SMILES). Therefore, the formation of
the enzyme catalytic pocket should be conditioned on both substrates and products. Our enzyme flow
matching model is conditioned on these two ligand molecules ls, lp, ensuring that the predictions of
vector fields vθ(·) and loss functions account for the substrate and product molecules:

Ltrans =

Nr∑

i=1

∥viθ(xi
t, t, ls, lp)− (xi

1 − xi
0)∥22; Lrot =

Nr∑

i=1

∥viθ(rit, t, ls, lp)−
logrit r

i
1

1− t
∥2SO(3);

Laa = −
Nr∑

i=1

log pθ(c
i
1|viθ(cit, t, ls, lp)).

(3)

To design the enzyme pocket and model protein-ligand interactions, we implement 3D and 2D GNNs
to encode the substrate and product, respectively (implemented in App. E). The main vector field
network applies cross-attention to model protein-ligand interactions and incorporates Invariant Point
Attention (IPA) (Jumper et al., 2021) to encode protein features and make predictions. Following
tricks in Yim et al. (2023a); Campbell et al. (2024), we let the the model predict the final structure at
t = 1 and interpolates to compute the vector fields (discussed in App. F).

EnzymeFlow on EC-Class. The Enzyme Commission (EC) classification is crucial for categorizing
enzymes based on the reactions they catalyze. Understanding the EC-class of an enzyme-reaction
pair can help predict its function in various biochemical pathways (Bansal et al., 2022). Given its
importance, EnzymeFlow leverages EC-class to enhance its generalizability across various enzymes
and catalytic reactions. Therefore, our model incorporates EC-class, yec ∈ {1, . . . , 7} ∪ {✕} , as a
discrete factor in the design process. The EC-class is sampled from a Categorical distribution with
probabilities tδ(yec1 , yect) + (1 − t)δ(✕, yect) . The discrete flow on EC-class interpolates from the
masking state ✕ at t = 0 to the actual EC-class yec1 at t = 1. The prediction and loss function are
conditioned on the pocket frames and the substrate and product molecules:

Lec = − log pθ(yec1 |vθ(Tt, t, ls, lp, yect)). (4)
The model predicts the final EC-class at t = 1 and interpolates to compute its vector field. For EC-
class prediction, we first employ a EC-class embedding network to encode yect . The final predicted
EC-class is obtained by pooling cross-attention between the encoded enzyme and EC-class features.

3.1.1 ENZYMEFLOW WITH ENZYME-REACTION CO-EVOLUTION

Enzyme (protein) evolution refers to the process by which enzyme structures and functions change
over time due to genetic variations, such as mutations, duplications, and recombinations. These
changes can lead to alterations in amino acids, potentially affecting the enzyme structure, function,
stability, and interactions (Pál et al., 2006; Sikosek & Chan, 2014). Reaction evolution, on the other

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX HATYHTATGLTLHTLHTTHTTALLTHYTYHTYGGGGGGCGTGGCTGYTTTGGCHTTGHATGTTH

t=0                       t=0.1                        t=0                              t=0.1                           t=0.3                              t=0.5                              t=0.8                                t=1          

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

2. Protein-Ligand Pre-training

Protein-Ligand Complex

Flow on pocket SE(3) & amino acids conditioned by ligand molecule

ykd = 4.99

Final designed binding pocketInitial SE(3) binding pocket

t=0 

In-flow binding pocket

…

t=t t=1 

…

Geometry-based Complex Optimization

A
E

E

A

G

Pairwise 
Distance Reg

Surface Interaction Reg

Binding Affinity RegInitial SE(3) backbone

t=0 

Final backbone

t=1 

…

1. Protein Backbone Pre-training
Flow on backbone SE(3) & amino acids

… … …
3. Enzyme-Reaction Fine-tuning (b) Enzyme Catalytic Pocket

3D GNN Substrate Encoding

Substrate

Product

2D GNN Product Encoding

(a) Reaction Encodings

(c) EC-class

[EC 1]

Flow on pocket SE(3) & amino acids & co-evolution & EC-class conditioned by reaction

… …
Initial co-evolution In-flow co-evolution Final co-evolution

(d) Enzyme-Reaction Co-evolution

enzyme reaction
M L K Y D V E C C > C ( C ) O
M S T Y Y V E C C C > C C C O
M S R Y L V E C C C C > C C C C O

coEvoFormer

Protein Evolution Contacts

M L K Y D V E C C >> C ( C ) O
M S T Y Y V E C C C >> C C C O
M S R Y L V E C C C C >> C C C C O

M L K Y D V E C C >> C ( C ) O
M S T Y Y V E C C C >> C C C O
M S R Y L V E C C C C >> C C C C O

… …
Initial co-evolution In-flow co-evolution Final co-evolution

X X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X X

…

…t=0 …t=t t=1

Substrate Encoding
Product Encoding…

Initial SE(3) catalytic pocket In-flow catalytic pocket Final designed catalytic pocket

…
Substrate Encoding
Product Encoding

XXXXXXXXXX MLKLYDVEVG XXXLYXXEVG 

[EC X] [EC 5] [EC 1]
In-flow EC-classInitial EC-class Final EC-class… …

Gradient

Gradient Gradient

Gradient

X X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X X

Initial co-evolution

M L K Y D V E C C > C ( C ) O
M S T Y Y V E C C C > C C C O
M S R Y L V E C C C C > C C C C O

Final co-evolution

X X X X D V X X X C C X C ( X ) O
M X X Y Y X E X C C X X C X X X
X S X X L V X X C C X X C X C C X

In-flow co-evolution

… …

Figure 2: Overview of EnzymeFlow with hierarchical pre-training and enzyme-reaction co-evolution.
(1) Flow model pre-trained on protein backbones and amino acid types. (2) Flow model further
pre-trained on protein binding pockets, conditioned on ligand molecules with geometry-specific
optimization. (3) Flow model fine-tuned on enzyme catalytic pockets, and conditioned on substrate
and product molecules, with enzyme-reaction co-evolution and EC-class generation.

Ltrans =

NrX

i=1

kvi
✓(x

i
t, t, ls, lp) � (xi

1 � xi
0)k2

2; Lrot =

NrX

i=1

kvi
✓(r

i
t, t, ls, lp) �

logri
t
ri
1

1 � t
k2

SO(3);

Laa = �
NrX

i=1

log p✓(c
i
1|vi

✓(c
i
t, t, ls, lp)).

(3)

To design the enzyme pocket and model protein-ligand interactions, we implement 3D and 2D GNNs
to encode the substrate and product, respectively (implemented in App. C). The main vector field
network applies cross-attention to model protein-ligand interactions and incorporates Invariant Point
Attention (IPA) (Jumper et al., 2021) to encode protein features and make predictions. Following
tricks in Yim et al. (2023a); Campbell et al. (2024), we let the the model predict the final structure at
t = 1 and interpolates to compute the vector fields (discussed in App. D).

EnzymeFlow on EC-Class. The Enzyme Commission (EC) classification is crucial for categorizing
enzymes based on the reactions they catalyze. Understanding the EC-class of an enzyme-reaction
pair can help predict its function in various biochemical pathways (Bansal et al., 2022). Given its
importance, EnzymeFlow leverages EC-class to enhance its generalizability across various enzymes
and catalytic reactions. Therefore, our model incorporates EC-class, yec 2 {1, . . . , 7} [ {5} , as a
discrete factor in the design process. The EC-class is sampled from a Categorical distribution with
probabilities t�(yec1 , yect) + (1 � t)�(5, yect) . The discrete flow on EC-class interpolates from the
masking state 5 at t = 0 to the actual EC-class yec1 at t = 1. The prediction and loss function are
conditioned on the pocket frames and the substrate and product molecules:

Lec = � log p✓(yec1 |v✓(Tt, t, ls, lp, yect)). (4)
The model predicts the final EC-class at t = 1 and interpolates to compute its vector field. For EC-
class prediction, we first employ a EC-class embedding network to encode yect

. The final predicted
EC-class is obtained by pooling cross-attention between the encoded enzyme and EC-class features.

3.1.1 ENZYMEFLOW WITH ENZYME-REACTION CO-EVOLUTION

Enzyme (protein) evolution refers to the process by which enzyme structures and functions change
over time due to genetic variations, such as mutations, duplications, and recombinations. These
changes can lead to alterations in amino acids, potentially affecting the enzyme structure, function,
stability, and interactions (Pál et al., 2006; Sikosek & Chan, 2014). Reaction evolution, on the other
hand, refers to the process by which chemical reactions, particularly those catalyzed by enzymes,
change and diversify within biological systems over time.

Co-Evolutionary Dynamics. Enzymes can co-evolve with the metabolic or biochemical pathways
they are part of, adapting to changes in substrate availability, the introduction of new reaction steps, or
the need for more efficient flux through the pathway. As pathways evolve, enzymes within them may
develop new catalytic functions or refine existing ones to better accommodate these changes (Noda-
Garcia et al., 2018). This process frequently involves the co-evolution of enzymes and their substrates.
As substrates change—whether due to the introduction of new compounds in the environment or
mutations in other metabolic pathways—enzymes may adapt to catalyze reactions with these new
substrates, leading to the emergence of entirely new reactions. Understanding enzyme-substrate
interactions, therefore, requires considering their evolutionary dynamics, as these interactions are

4

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

2. Protein-Ligand Pre-training

Protein-Ligand Complex

Flow on pocket SE(3) & amino acids conditioned by ligand molecule

ykd = 4.99

Final designed binding pocketInitial SE(3) binding pocket

t=0 

In-flow binding pocket

…

t=t t=1 

…

Geometry-based Complex Optimization

A
E

E

A

G

Pairwise 
Distance Reg

Surface Interaction Reg

Binding Affinity RegInitial SE(3) backbone

t=0 

Final backbone

t=1 

…

1. Protein Backbone Pre-training
Flow on backbone SE(3) & amino acids

… … …
3. Enzyme-Reaction Fine-tuning (b) Enzyme Catalytic Pocket

3D GNN Substrate Encoding

Substrate

Product

2D GNN Product Encoding

(a) Reaction Encodings

(c) EC-class

[EC 1]

Flow on pocket SE(3) & amino acids & co-evolution & EC-class conditioned by reaction

… …
Initial co-evolution In-flow co-evolution Final co-evolution

(d) Enzyme-Reaction Co-evolution

enzyme reaction
M L K Y D V E C C > C ( C ) O
M S T Y Y V E C C C > C C C O
M S R Y L V E C C C C > C C C C O

coEvoFormer

Protein Evolution Contacts

M L K Y D V E C C >> C ( C ) O
M S T Y Y V E C C C >> C C C O
M S R Y L V E C C C C >> C C C C O

M L K Y D V E C C >> C ( C ) O
M S T Y Y V E C C C >> C C C O
M S R Y L V E C C C C >> C C C C O

… …
Initial co-evolution In-flow co-evolution Final co-evolution

X X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X X

…

…t=0 …t=t t=1

Substrate Encoding
Product Encoding…

Initial SE(3) catalytic pocket In-flow catalytic pocket Final designed catalytic pocket

…
Substrate Encoding
Product Encoding

XXXXXXXXXX MLKLYDVEVG XXXLYXXEVG 

[EC X] [EC 5] [EC 1]
In-flow EC-classInitial EC-class Final EC-class… …

Gradient

Gradient Gradient

Gradient

X X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X X

Initial co-evolution

M L K Y D V E C C > C ( C ) O
M S T Y Y V E C C C > C C C O
M S R Y L V E C C C C > C C C C O

Final co-evolution

X X X X D V X X X C C X C ( X ) O
M X X Y Y X E X C C X X C X X X
X S X X L V X X C C X X C X C C X

In-flow co-evolution

… …

Figure 2: Overview of EnzymeFlow with hierarchical pre-training and enzyme-reaction co-evolution.
(1) Flow model pre-trained on protein backbones and amino acid types. (2) Flow model further
pre-trained on protein binding pockets, conditioned on ligand molecules with geometry-specific
optimization. (3) Flow model fine-tuned on enzyme catalytic pockets, and conditioned on substrate
and product molecules, with enzyme-reaction co-evolution and EC-class generation.

Ltrans =

NrX

i=1

kvi
✓(x

i
t, t, ls, lp) � (xi

1 � xi
0)k2

2; Lrot =

NrX

i=1

kvi
✓(r

i
t, t, ls, lp) �

logri
t
ri
1

1 � t
k2

SO(3);

Laa = �
NrX

i=1

log p✓(c
i
1|vi

✓(c
i
t, t, ls, lp)).

(3)

To design the enzyme pocket and model protein-ligand interactions, we implement 3D and 2D GNNs
to encode the substrate and product, respectively (implemented in App. C). The main vector field
network applies cross-attention to model protein-ligand interactions and incorporates Invariant Point
Attention (IPA) (Jumper et al., 2021) to encode protein features and make predictions. Following
tricks in Yim et al. (2023a); Campbell et al. (2024), we let the the model predict the final structure at
t = 1 and interpolates to compute the vector fields (discussed in App. D).

EnzymeFlow on EC-Class. The Enzyme Commission (EC) classification is crucial for categorizing
enzymes based on the reactions they catalyze. Understanding the EC-class of an enzyme-reaction
pair can help predict its function in various biochemical pathways (Bansal et al., 2022). Given its
importance, EnzymeFlow leverages EC-class to enhance its generalizability across various enzymes
and catalytic reactions. Therefore, our model incorporates EC-class, yec 2 {1, . . . , 7} [ {5} , as a
discrete factor in the design process. The EC-class is sampled from a Categorical distribution with
probabilities t�(yec1 , yect) + (1 � t)�(5, yect) . The discrete flow on EC-class interpolates from the
masking state 5 at t = 0 to the actual EC-class yec1 at t = 1. The prediction and loss function are
conditioned on the pocket frames and the substrate and product molecules:

Lec = � log p✓(yec1 |v✓(Tt, t, ls, lp, yect)). (4)
The model predicts the final EC-class at t = 1 and interpolates to compute its vector field. For EC-
class prediction, we first employ a EC-class embedding network to encode yect

. The final predicted
EC-class is obtained by pooling cross-attention between the encoded enzyme and EC-class features.

3.1.1 ENZYMEFLOW WITH ENZYME-REACTION CO-EVOLUTION

Enzyme (protein) evolution refers to the process by which enzyme structures and functions change
over time due to genetic variations, such as mutations, duplications, and recombinations. These
changes can lead to alterations in amino acids, potentially affecting the enzyme structure, function,
stability, and interactions (Pál et al., 2006; Sikosek & Chan, 2014). Reaction evolution, on the other
hand, refers to the process by which chemical reactions, particularly those catalyzed by enzymes,
change and diversify within biological systems over time.

Co-Evolutionary Dynamics. Enzymes can co-evolve with the metabolic or biochemical pathways
they are part of, adapting to changes in substrate availability, the introduction of new reaction steps, or
the need for more efficient flux through the pathway. As pathways evolve, enzymes within them may
develop new catalytic functions or refine existing ones to better accommodate these changes (Noda-
Garcia et al., 2018). This process frequently involves the co-evolution of enzymes and their substrates.
As substrates change—whether due to the introduction of new compounds in the environment or
mutations in other metabolic pathways—enzymes may adapt to catalyze reactions with these new
substrates, leading to the emergence of entirely new reactions. Understanding enzyme-substrate
interactions, therefore, requires considering their evolutionary dynamics, as these interactions are

4

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

2. Protein-Ligand Pre-training

Protein-Ligand Complex

Flow on pocket SE(3) & amino acids conditioned by ligand molecule

ykd = 4.99

Final designed binding pocketInitial SE(3) binding pocket

t=0 

In-flow binding pocket

…

t=t t=1 

…

Geometry-based Complex Optimization

A
E

E

A

G

Pairwise 
Distance Reg

Surface Interaction Reg

Binding Affinity RegInitial SE(3) backbone

t=0 

Final backbone

t=1 

…

1. Protein Backbone Pre-training
Flow on backbone SE(3) & amino acids

… … …
3. Enzyme-Reaction Fine-tuning (b) Enzyme Catalytic Pocket

3D GNN Substrate Encoding

Substrate

Product

2D GNN Product Encoding

(a) Reaction Encodings

(c) EC-class

[EC 1]

Flow on pocket SE(3) & amino acids & co-evolution & EC-class conditioned by reaction

… …
Initial co-evolution In-flow co-evolution Final co-evolution

(d) Enzyme-Reaction Co-evolution

enzyme reaction
M L K Y D V E C C > C ( C ) O
M S T Y Y V E C C C > C C C O
M S R Y L V E C C C C > C C C C O

coEvoFormer

Protein Evolution Contacts

M L K Y D V E C C >> C ( C ) O
M S T Y Y V E C C C >> C C C O
M S R Y L V E C C C C >> C C C C O

M L K Y D V E C C >> C ( C ) O
M S T Y Y V E C C C >> C C C O
M S R Y L V E C C C C >> C C C C O

… …
Initial co-evolution In-flow co-evolution Final co-evolution

X X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X X

…

…t=0 …t=t t=1

Substrate Encoding
Product Encoding…

Initial SE(3) catalytic pocket In-flow catalytic pocket Final designed catalytic pocket

…
Substrate Encoding
Product Encoding

XXXXXXXXXX MLKLYDVEVG XXXLYXXEVG 

[EC X] [EC 5] [EC 1]
In-flow EC-classInitial EC-class Final EC-class… …

Gradient

Gradient Gradient

Gradient

X X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X X

Initial co-evolution

M L K Y D V E C C > C ( C ) O
M S T Y Y V E C C C > C C C O
M S R Y L V E C C C C > C C C C O

Final co-evolution

X X X X D V X X X C C X C ( X ) O
M X X Y Y X E X C C X X C X X X
X S X X L V X X C C X X C X C C X

In-flow co-evolution

… …

Figure 2: Overview of EnzymeFlow with hierarchical pre-training and enzyme-reaction co-evolution.
(1) Flow model pre-trained on protein backbones and amino acid types. (2) Flow model further
pre-trained on protein binding pockets, conditioned on ligand molecules with geometry-specific
optimization. (3) Flow model fine-tuned on enzyme catalytic pockets, and conditioned on substrate
and product molecules, with enzyme-reaction co-evolution and EC-class generation.

Ltrans =

NrX

i=1

kvi
✓(x

i
t, t, ls, lp) � (xi

1 � xi
0)k2

2; Lrot =

NrX

i=1

kvi
✓(r

i
t, t, ls, lp) �

logri
t
ri
1

1 � t
k2

SO(3);

Laa = �
NrX

i=1

log p✓(c
i
1|vi

✓(c
i
t, t, ls, lp)).

(3)

To design the enzyme pocket and model protein-ligand interactions, we implement 3D and 2D GNNs
to encode the substrate and product, respectively (implemented in App. C). The main vector field
network applies cross-attention to model protein-ligand interactions and incorporates Invariant Point
Attention (IPA) (Jumper et al., 2021) to encode protein features and make predictions. Following
tricks in Yim et al. (2023a); Campbell et al. (2024), we let the the model predict the final structure at
t = 1 and interpolates to compute the vector fields (discussed in App. D).

EnzymeFlow on EC-Class. The Enzyme Commission (EC) classification is crucial for categorizing
enzymes based on the reactions they catalyze. Understanding the EC-class of an enzyme-reaction
pair can help predict its function in various biochemical pathways (Bansal et al., 2022). Given its
importance, EnzymeFlow leverages EC-class to enhance its generalizability across various enzymes
and catalytic reactions. Therefore, our model incorporates EC-class, yec 2 {1, . . . , 7} [ {5} , as a
discrete factor in the design process. The EC-class is sampled from a Categorical distribution with
probabilities t�(yec1 , yect) + (1 � t)�(5, yect) . The discrete flow on EC-class interpolates from the
masking state 5 at t = 0 to the actual EC-class yec1 at t = 1. The prediction and loss function are
conditioned on the pocket frames and the substrate and product molecules:

Lec = � log p✓(yec1 |v✓(Tt, t, ls, lp, yect)). (4)
The model predicts the final EC-class at t = 1 and interpolates to compute its vector field. For EC-
class prediction, we first employ a EC-class embedding network to encode yect

. The final predicted
EC-class is obtained by pooling cross-attention between the encoded enzyme and EC-class features.

3.1.1 ENZYMEFLOW WITH ENZYME-REACTION CO-EVOLUTION

Enzyme (protein) evolution refers to the process by which enzyme structures and functions change
over time due to genetic variations, such as mutations, duplications, and recombinations. These
changes can lead to alterations in amino acids, potentially affecting the enzyme structure, function,
stability, and interactions (Pál et al., 2006; Sikosek & Chan, 2014). Reaction evolution, on the other
hand, refers to the process by which chemical reactions, particularly those catalyzed by enzymes,
change and diversify within biological systems over time.

Co-Evolutionary Dynamics. Enzymes can co-evolve with the metabolic or biochemical pathways
they are part of, adapting to changes in substrate availability, the introduction of new reaction steps, or
the need for more efficient flux through the pathway. As pathways evolve, enzymes within them may
develop new catalytic functions or refine existing ones to better accommodate these changes (Noda-
Garcia et al., 2018). This process frequently involves the co-evolution of enzymes and their substrates.
As substrates change—whether due to the introduction of new compounds in the environment or
mutations in other metabolic pathways—enzymes may adapt to catalyze reactions with these new
substrates, leading to the emergence of entirely new reactions. Understanding enzyme-substrate
interactions, therefore, requires considering their evolutionary dynamics, as these interactions are

4

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

2. Protein-Ligand Pre-training

Protein-Ligand Complex

Flow on pocket SE(3) & amino acids conditioned by ligand molecule

ykd = 4.99

Final designed binding pocketInitial SE(3) binding pocket

t=0 

In-flow binding pocket

…

t=t t=1 

…

Geometry-based Complex Optimization

A
E

E

A

G

Pairwise 
Distance Reg

Surface Interaction Reg

Binding Affinity RegInitial SE(3) backbone

t=0 

Final backbone

t=1 

…

1. Protein Backbone Pre-training
Flow on backbone SE(3) & amino acids

… … …
3. Enzyme-Reaction Fine-tuning (b) Enzyme Catalytic Pocket

3D GNN Substrate Encoding

Substrate

Product

2D GNN Product Encoding

(a) Reaction Encodings

(c) EC-class

[EC 1]

Flow on pocket SE(3) & amino acids & co-evolution & EC-class conditioned by reaction

… …
Initial co-evolution In-flow co-evolution Final co-evolution

(d) Enzyme-Reaction Co-evolution

enzyme reaction
M L K Y D V E C C > C ( C ) O
M S T Y Y V E C C C > C C C O
M S R Y L V E C C C C > C C C C O

coEvoFormer

Protein Evolution Contacts

M L K Y D V E C C >> C ( C ) O
M S T Y Y V E C C C >> C C C O
M S R Y L V E C C C C >> C C C C O

M L K Y D V E C C >> C ( C ) O
M S T Y Y V E C C C >> C C C O
M S R Y L V E C C C C >> C C C C O

… …
Initial co-evolution In-flow co-evolution Final co-evolution

X X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X X

…

…t=0 …t=t t=1

Substrate Encoding
Product Encoding…

Initial SE(3) catalytic pocket In-flow catalytic pocket Final designed catalytic pocket

…
Substrate Encoding
Product Encoding

XXXXXXXXXX MLKLYDVEVG XXXLYXXEVG 

[EC X] [EC 5] [EC 1]
In-flow EC-classInitial EC-class Final EC-class… …

Gradient

Gradient Gradient

Gradient

X X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X X

Initial co-evolution

M L K Y D V E C C > C ( C ) O
M S T Y Y V E C C C > C C C O
M S R Y L V E C C C C > C C C C O

Final co-evolution

X X X X D V X X X C C X C ( X ) O
M X X Y Y X E X C C X X C X X X
X S X X L V X X C C X X C X C C X

In-flow co-evolution

… …

Figure 2: Overview of EnzymeFlow with hierarchical pre-training and enzyme-reaction co-evolution.
(1) Flow model pre-trained on protein backbones and amino acid types. (2) Flow model further
pre-trained on protein binding pockets, conditioned on ligand molecules with geometry-specific
optimization. (3) Flow model fine-tuned on enzyme catalytic pockets, and conditioned on substrate
and product molecules, with enzyme-reaction co-evolution and EC-class generation.

Ltrans =

NrX

i=1

kvi
✓(x

i
t, t, ls, lp) � (xi

1 � xi
0)k2

2; Lrot =

NrX

i=1

kvi
✓(r

i
t, t, ls, lp) �

logri
t
ri
1

1 � t
k2

SO(3);

Laa = �
NrX

i=1

log p✓(c
i
1|vi

✓(c
i
t, t, ls, lp)).

(3)

To design the enzyme pocket and model protein-ligand interactions, we implement 3D and 2D GNNs
to encode the substrate and product, respectively (implemented in App. C). The main vector field
network applies cross-attention to model protein-ligand interactions and incorporates Invariant Point
Attention (IPA) (Jumper et al., 2021) to encode protein features and make predictions. Following
tricks in Yim et al. (2023a); Campbell et al. (2024), we let the the model predict the final structure at
t = 1 and interpolates to compute the vector fields (discussed in App. D).

EnzymeFlow on EC-Class. The Enzyme Commission (EC) classification is crucial for categorizing
enzymes based on the reactions they catalyze. Understanding the EC-class of an enzyme-reaction
pair can help predict its function in various biochemical pathways (Bansal et al., 2022). Given its
importance, EnzymeFlow leverages EC-class to enhance its generalizability across various enzymes
and catalytic reactions. Therefore, our model incorporates EC-class, yec 2 {1, . . . , 7} [ {5} , as a
discrete factor in the design process. The EC-class is sampled from a Categorical distribution with
probabilities t�(yec1 , yect) + (1 � t)�(5, yect) . The discrete flow on EC-class interpolates from the
masking state 5 at t = 0 to the actual EC-class yec1 at t = 1. The prediction and loss function are
conditioned on the pocket frames and the substrate and product molecules:

Lec = � log p✓(yec1 |v✓(Tt, t, ls, lp, yect)). (4)
The model predicts the final EC-class at t = 1 and interpolates to compute its vector field. For EC-
class prediction, we first employ a EC-class embedding network to encode yect

. The final predicted
EC-class is obtained by pooling cross-attention between the encoded enzyme and EC-class features.

3.1.1 ENZYMEFLOW WITH ENZYME-REACTION CO-EVOLUTION

Enzyme (protein) evolution refers to the process by which enzyme structures and functions change
over time due to genetic variations, such as mutations, duplications, and recombinations. These
changes can lead to alterations in amino acids, potentially affecting the enzyme structure, function,
stability, and interactions (Pál et al., 2006; Sikosek & Chan, 2014). Reaction evolution, on the other
hand, refers to the process by which chemical reactions, particularly those catalyzed by enzymes,
change and diversify within biological systems over time.

Co-Evolutionary Dynamics. Enzymes can co-evolve with the metabolic or biochemical pathways
they are part of, adapting to changes in substrate availability, the introduction of new reaction steps, or
the need for more efficient flux through the pathway. As pathways evolve, enzymes within them may
develop new catalytic functions or refine existing ones to better accommodate these changes (Noda-
Garcia et al., 2018). This process frequently involves the co-evolution of enzymes and their substrates.
As substrates change—whether due to the introduction of new compounds in the environment or
mutations in other metabolic pathways—enzymes may adapt to catalyze reactions with these new
substrates, leading to the emergence of entirely new reactions. Understanding enzyme-substrate
interactions, therefore, requires considering their evolutionary dynamics, as these interactions are

4

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

2. Protein-Ligand Pre-training

Protein-Ligand Complex

Flow on pocket SE(3) & amino acids conditioned by ligand molecule

ykd = 4.99

Final designed binding pocketInitial SE(3) binding pocket

t=0 

In-flow binding pocket

…

t=t t=1 

…

Geometry-based Complex Optimization

A
E

E

A

G

Pairwise 
Distance Reg

Surface Interaction Reg

Binding Affinity RegInitial SE(3) backbone

t=0 

Final backbone

t=1 

…

1. Protein Backbone Pre-training
Flow on backbone SE(3) & amino acids

… … …
3. Enzyme-Reaction Fine-tuning (b) Enzyme Catalytic Pocket

3D GNN Substrate Encoding

Substrate

Product

2D GNN Product Encoding

(a) Reaction Encodings

(c) EC-class

[EC 1]

Flow on pocket SE(3) & amino acids & co-evolution & EC-class conditioned by reaction

… …
Initial co-evolution In-flow co-evolution Final co-evolution

(d) Enzyme-Reaction Co-evolution

enzyme reaction
M L K Y D V E C C > C ( C ) O
M S T Y Y V E C C C > C C C O
M S R Y L V E C C C C > C C C C O

coEvoFormer

Protein Evolution Contacts

M L K Y D V E C C >> C ( C ) O
M S T Y Y V E C C C >> C C C O
M S R Y L V E C C C C >> C C C C O

M L K Y D V E C C >> C ( C ) O
M S T Y Y V E C C C >> C C C O
M S R Y L V E C C C C >> C C C C O

… …
Initial co-evolution In-flow co-evolution Final co-evolution

X X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X X

…

…t=0 …t=t t=1

Substrate Encoding
Product Encoding…

Initial SE(3) catalytic pocket In-flow catalytic pocket Final designed catalytic pocket

…
Substrate Encoding
Product Encoding

XXXXXXXXXX MLKLYDVEVG XXXLYXXEVG 

[EC X] [EC 5] [EC 1]
In-flow EC-classInitial EC-class Final EC-class… …

Gradient

Gradient Gradient

Gradient

X X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X X

Initial co-evolution

M L K Y D V E C C > C ( C ) O
M S T Y Y V E C C C > C C C O
M S R Y L V E C C C C > C C C C O

Final co-evolution

X X X X D V X X X C C X C ( X ) O
M X X Y Y X E X C C X X C X X X
X S X X L V X X C C X X C X C C X

In-flow co-evolution

… …

Figure 2: Overview of EnzymeFlow with hierarchical pre-training and enzyme-reaction co-evolution.
(1) Flow model pre-trained on protein backbones and amino acid types. (2) Flow model further
pre-trained on protein binding pockets, conditioned on ligand molecules with geometry-specific
optimization. (3) Flow model fine-tuned on enzyme catalytic pockets, and conditioned on substrate
and product molecules, with enzyme-reaction co-evolution and EC-class generation.

Ltrans =

NrX

i=1

kvi
✓(x

i
t, t, ls, lp) � (xi

1 � xi
0)k2

2; Lrot =

NrX

i=1

kvi
✓(r

i
t, t, ls, lp) �

logri
t
ri
1

1 � t
k2

SO(3);

Laa = �
NrX

i=1

log p✓(c
i
1|vi

✓(c
i
t, t, ls, lp)).

(3)

To design the enzyme pocket and model protein-ligand interactions, we implement 3D and 2D GNNs
to encode the substrate and product, respectively (implemented in App. C). The main vector field
network applies cross-attention to model protein-ligand interactions and incorporates Invariant Point
Attention (IPA) (Jumper et al., 2021) to encode protein features and make predictions. Following
tricks in Yim et al. (2023a); Campbell et al. (2024), we let the the model predict the final structure at
t = 1 and interpolates to compute the vector fields (discussed in App. D).

EnzymeFlow on EC-Class. The Enzyme Commission (EC) classification is crucial for categorizing
enzymes based on the reactions they catalyze. Understanding the EC-class of an enzyme-reaction
pair can help predict its function in various biochemical pathways (Bansal et al., 2022). Given its
importance, EnzymeFlow leverages EC-class to enhance its generalizability across various enzymes
and catalytic reactions. Therefore, our model incorporates EC-class, yec 2 {1, . . . , 7} [ {5} , as a
discrete factor in the design process. The EC-class is sampled from a Categorical distribution with
probabilities t�(yec1 , yect) + (1 � t)�(5, yect) . The discrete flow on EC-class interpolates from the
masking state 5 at t = 0 to the actual EC-class yec1 at t = 1. The prediction and loss function are
conditioned on the pocket frames and the substrate and product molecules:

Lec = � log p✓(yec1 |v✓(Tt, t, ls, lp, yect)). (4)
The model predicts the final EC-class at t = 1 and interpolates to compute its vector field. For EC-
class prediction, we first employ a EC-class embedding network to encode yect

. The final predicted
EC-class is obtained by pooling cross-attention between the encoded enzyme and EC-class features.

3.1.1 ENZYMEFLOW WITH ENZYME-REACTION CO-EVOLUTION

Enzyme (protein) evolution refers to the process by which enzyme structures and functions change
over time due to genetic variations, such as mutations, duplications, and recombinations. These
changes can lead to alterations in amino acids, potentially affecting the enzyme structure, function,
stability, and interactions (Pál et al., 2006; Sikosek & Chan, 2014). Reaction evolution, on the other
hand, refers to the process by which chemical reactions, particularly those catalyzed by enzymes,
change and diversify within biological systems over time.

Co-Evolutionary Dynamics. Enzymes can co-evolve with the metabolic or biochemical pathways
they are part of, adapting to changes in substrate availability, the introduction of new reaction steps, or
the need for more efficient flux through the pathway. As pathways evolve, enzymes within them may
develop new catalytic functions or refine existing ones to better accommodate these changes (Noda-
Garcia et al., 2018). This process frequently involves the co-evolution of enzymes and their substrates.
As substrates change—whether due to the introduction of new compounds in the environment or
mutations in other metabolic pathways—enzymes may adapt to catalyze reactions with these new
substrates, leading to the emergence of entirely new reactions. Understanding enzyme-substrate
interactions, therefore, requires considering their evolutionary dynamics, as these interactions are

4

Figure 3: Catalytic pocket design example using EnzymeFlow (UniProt: Q7U4P2). The pocket gener-
ation is conditioned on reaction CN[C@H](C(=O)C)CS.C/C=C\\1/C(=C/c2[nH]c(c(c2C)CCC(=O)O)/C=C/2\\N=C(C(=C2CCC

(=O)O)C)C[C@H]2NC(=O)C(=C2C)C=C)/NC(=O)[C@@H]1C → CN[C@H](C(=O)C)CSC(C1=C(C)C(=O)N[C@H]1Cc1[nH]c(c(c1C)CCC(=O)

O)/C=C/1\\N=C(C(=C1CCC(=O)O)C)C[C@H]1NC(=O)C(=C1C)C=C)C of EC4 (ligase enzyme), from t = 0 to t = 1.

hand, refers to the process by which chemical reactions or substrates, particularly those catalyzed by
enzymes, change and diversify within biological systems over time (illustrated in Fig. 2(3)(d)).

Co-Evolutionary Dynamics. Enzymes can co-evolve with the metabolic or biochemical pathways
they are part of, adapting to changes in substrate availability, the introduction of new reaction steps, or
the need for more efficient flux through the pathway. As pathways evolve, enzymes within them may
develop new catalytic functions or refine existing ones to better accommodate these changes (Noda-
Garcia et al., 2018). This process frequently involves the co-evolution of enzymes and their substrates.
As substrates change—whether due to the introduction of new compounds in the environment or
mutations in other metabolic pathways—enzymes may adapt to catalyze reactions with these new
substrates, leading to the emergence of entirely new reactions. Understanding enzyme-substrate
interactions, therefore, requires considering their evolutionary dynamics, as these interactions are
shaped by the evolutionary history and adaptations of both enzymes and their substrates. This
co-evolutionary process is crucial for explaining how enzymes develop new functions and maintain
efficiency in response to ongoing changes in their biochemical environment.

To capture the evolutionary dynamics, we introduce the concept of enzyme-reaction co-evolution
into EnzymeFlow. We compute the enzyme and reaction evolution by applying multiple sequence
alignment (MSA) to enzyme sequences and reaction SMILES, respectively (Steinegger & Söding,
2017). The co-evolution of an enzyme-reaction pair is represented by a matrix U ∈ RNMSA×Ntoken , which
combines the MSA results of enzyme sequences and reaction SMILES (illustrated in Fig. 2(3)(d)
& Fig. 8), where NMSA denotes the number of MSA sequences and Ntoken denotes the length of the
MSA alignment preserved. And each element umn ∈ {1, . . . , 64} ∪ {✕} in U denotes a tokenized
character from our co-evolution vocabulary, with additional ✕ indicating the masking state.

EnzymeFlow on Co-Evolution. The flow for co-evolution follows a similar approach to that used for
amino acid types and EC-class, treating it as a discrete factor in the design process. The co-evolution
is sampled from a Categorical distribution, where each element has probabilities tδ(umn

1 , umn
t ) + (1−

t)δ(✕, umn
t ). Each element flows independently, reflecting the natural independence of amino acid

mutations (Boyko et al., 2008). The discrete flow on co-evolution interpolates from the masking state
✕ at t = 0 to the actual character umn

1 at t = 1. The prediction and loss function are conditioned on
the pocket frames and the substrate and product molecules:

Lcoevo = −
NMSA∑
m=1

Ntoken∑
n=1

log pθ(u
mn
1 |vθ(Tt, t, ls, lp, u

mn
t )). (5)

The model predicts the final co-evolution at t = 1 and interpolates to compute its vector field. For
co-evolution prediction, we first introduce a co-evolutionary MSA transformer (coEvoFormer) to
encode Ut (implemented in App. D). The final predicted co-evolution is obtained by computing
cross-attention between the encoded enzyme and ligand, and the encoded co-evolution features.

We can therefore express EnzymeFlow with co-evolutionary dynamics for catalytic pocket design as:
pt(Tt, Ut, yect |T1, U1, yec1 , ls, lp) = pt(yect |yec1 ,Tt) pt(Ut|U1,Tt) pt(Tt|T1, ls, lp). (6)

The final EnzymeFlow model performs flows on protein backbones, amino acid types, EC-class,
and enzyme-reaction co-evolution. Given the SE(3)-invariant prior and the main SE(3)-equivariant
network in EnzymeFlow, the pocket generation process is also SE(3)-equivariant (proven in App. G).

3.2 STRUCTURE-BASED HIERARCHICAL PRE-TRAINING

In addition to the standard EnzymeFlow for enzyme pocket design, we propose a hierarchical pre-
training strategy to enhance the generalizability of the model across different enzyme categories. The

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

term hierarchical pre-training is used because the approach first involves training the flow model to
understand protein backbone generation, followed by training it to learn the geometric relationships
between proteins and ligand molecules, which form protein binding pockets. After the flow model
learns these prior knowledge, we fine-tune it specifically on an enzyme-reaction dataset to generate
enzyme catalytic pockets. The term hierarchical reflects the progression from protein backbone
generation, to protein binding pocket formation, and finally to enzyme catalytic pocket generation.

Motivation. A key limitation of current datasets, such as ESP (Kroll et al., 2023b), EnzymeMap (Heid
et al., 2023), CARE (Yang et al., 2024), or ReactZyme (Hua et al., 2024b), is the lack of precise pocket
information. These datasets typically provide enzyme-reaction data, including protein sequences
and SMILES representations, which is used to predict EC numbers in practice. To incorporate
geometric information and enhance the model’s generalizability through structural data, we propose
a hierarchical pre-training approach to ensure the model comprehends the geometry between proteins
and ligand molecules. Alongside this, we introduce a new synthetic dataset, the EnzymeFlow pocket
dataset, which includes precise pocket structures with substrate conformations (discussed in Sec. 4).

Specifically, we begin by pre-training the flow model on a protein backbones. Once the model learns
it, we proceed to post-train it on a protein-ligands, with the objective of generating binding pockets
conditioned on the ligand molecules. Finally, the model is fine-tuned on our EnzymeFlow dataset to
generate valid enzyme catalytic pockets for specific substrates and catalytic reactions.

3.2.1 PROTEIN BACKBONE PRE-TRAINING

The initial step involves pre-training the model on a protein backbone dataset (illustrated in Fig. 2(1)).
We use the backbone dataset discussed in FrameFlow (Yim et al., 2023a). This pre-training focuses
solely on SE(3) backbone frames and discrete amino acid types, allowing the flow model to acquire
foundational knowledge of protein backbone geometry and structure.

3.2.2 PROTEIN-LIGAND PRE-TRAINING

Following the protein backbone pre-training, we proceed to pre-train the flow model on a protein-
ligand dataset (illustrated in Fig. 2(2)). Specifically, we use PDBBind2020 (Wang et al., 2004).
This pre-training focuses on binding pocket frames, with the flow model conditioned on the 3D
representations of ligand molecules l consisting of Nl atoms. Additionally, binding affinity ykd ∈ R
and atomic-level pocket-ligand distance Di ∈ R4×Nl for the i-th residue frame serve as optimization
factors. The parametrization is similar to Eq. 6, with conditioning on the ligand molecule as follows:

pt(Tt, ykd|T1, l) = pt(ykd|Tt, l) pt(Tt|T1, l). (7)
In addition to the flow matching losses in Eq. 3, we introduce a protein-ligand interaction loss
to prevent intersection during the binding generation process. Conceptually, this ensures that the
generated pocket atoms do not come into contact with the surface of the ligand molecule. Following
previous work on protein-ligand binding (Lin et al., 2022), the surface of a ligand {aj |j ∈ N(Nl)}is
defined as {a ∈ R3|S(a) = γ}, where S(a) = −ρ log(

∑Nl
j=1 exp(−|a − aj |2/ρ)). The interior of the

ligand molecule is thus defined by {a ∈ R3|S(a) < γ}, and the binding pocket atoms are constrained
to lie within {a ∈ R3|S(a) > γ}. We also introduce a protein-ligand distance loss to regularize
pairwise atomic distances, along with a binding affinity loss to enforce the generation of more valid
protein-ligand pairs. These objectives are defined as follows:

Linter =

Nr∑

i=1

max(0, γ − S(Âi
t)), Ldist =

Nr∑

i=1

∥1{Di
1 < 8Å}(Di

1 − D̂i
t)∥22∑

1Di
1<8Å

, Lkd = ∥ykd − ŷkd∥2, (8)

where Âi ∈ R4×3 denotes the predicted atomic positions of i-th residue frame, γ = 6 and ρ = 2 are
hyperparameters, and ŷkd is the predicted binding affinity for a generated pair. D̂i ∈ R4×Nl is defined
similarly to Di , based on the distance between the predicted atomic positions and ligand positions
for the i-th residue frame. The predicted affinity ŷkd is obtained by pooling the encoded protein and
ligand features. These additional losses are incorporated to improve the model’s generalizability,
enforcing more constrained geometries for more valid protein pocket design.

4 ENZYMEFILL: LARGE-SCALE ENZYME POCKET-REACTION DATASET

Data Source. We construct a curated and validated dataset of enzyme-reaction pairs by collecting
data from the Rhea (Bansal et al., 2022), MetaCyc (Caspi et al., 2020), and Brenda (Schomburg
et al., 2002) databases. For enzymes in these databases, we exclude entries missing UniProt IDs or
protein sequences. For reactions, we apply the following procedures: (1) remove cofactors, small

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

(2) Find homologous protein (PDB ID: 1COY)

(1) Start with input protein (Uniprot ID: P9WMV9)

(3) Fill P9WMV9 with ligand

(4) End with P9WMV9 binding pocket

search for homologs

transplant ligand

extract pocket

a b

Figure 4: (a) Enzyme pocket extraction workflow with AlphaFill. (b) Quality analysis of clustering
between enzyme pockets and full structures; good clusters have high functional concentration.

ion groups, and molecules that appear in both substrates and products within a single reaction; (2)
exclude reactions with more than five substrates or products; and (3) apply OpenBabel (O’Boyle et al.,
2011) to standardize canonical SMILES. Ultimately, we obatin a total of 328, 192 enzyme-reaction
pairs, comprising 145, 782 unique enzymes and 17, 868 unique reactions; we name it EnzymeFill.

Catalytic Pocket with AlphaFill. We identify all enzyme catalytic pockets using AlphaFill (Hekkel-
man et al., 2023), an AF-based algorithm that uses sequence and structure similarity to transplant
ligand molecules from experimentally determined structures to predicted protein models. We down-
load the AlphaFold structures for all enzymes and apply AlphaFill to extract the enzyme pockets.
Simultaneously, we determine the reaction center by using atom-atom mapping of the reactions.
During the pocket extraction process, AlphaFill first identifies homologous proteins of the target
enzyme in the PDB-REDO database, along with their complexes with ligands (van Beusekom et al.,
2018). It then transplants the ligands from the homologous protein complexes to the target enzyme
through structural alignment (illustrated in Fig. 4(a)). After transplantation, we select the appropriate
ligand molecule based on the number of atoms and its frequency of occurrence, and extract the pocket
using a pre-defined radius of 10Å . We also perform clustering analysis on the extracted pockets using
Foldseek (van Kempen et al., 2022), which reveals that enzyme catalytic pockets capture functional
information more effectively than full structures (illustrated in Fig. 4(b)). For the extraction of
reaction centers, we first apply RXNMapper to extract atom-atom mappings (Schwaller et al., 2021),
which maps the atoms between the substrates and products. We then identify atoms where changes
occurred in chemical bonds, charges, and chirality, labeling these atoms as reaction centers.

Data Debiasing for Generation. To ensure the quality of catalytic pocket data for the design
task, we exclude pockets with fewer than 32 residues1, resulting in 232, 520 enzyme-reaction pairs.
Additionally, enzymes and their catalytic pockets can exhibit significant sequence similarity. When
enzymes that are highly similar in sequence appear too frequently in the dataset, they tend to belong to
the same cluster or homologous group, which can introduce substantial biases during model training.
To mitigate this issue and ensure a more balanced dataset, it is important to reduce the number of
homologous enzymes by clustering and selectively removing enzymes from the same clusters. This
helps to debias the data and improve the model’s generalizability. We perform sequence alignment
to cluster enzymes and identify homologous ones (Steinegger & Söding, 2017). We then revise the
dataset into five major categories based on enzyme sequence similarity, resulting in: (1) 19, 379
pairs with at most 40% homology, (2) 34, 750 pairs with at most 50% homology, (3) 53, 483 pairs
with at most 60% homology, (4) 100, 925 pairs with at most 80% homology, and (5) 132, 047 pairs
with at most 90% homology. In EnzymeFlow, we choose to use the clustered data with at most 60%
homology with 53, 483 samples for training. We provide more dataset statistics in App. H

5 EXPERIMENT — GENERATING CATALYTIC POCKET CONDITIONED ON
REACTIONS AND SUBSTRATES

We compare EnzymeFlow with state-of-the-arts representative baselines, including template-matching
method DEPACT (Chen et al., 2022), deep equivariant and iterative refinement model PocketGen
(Zhang et al., 2024e), golden-standard diffusion model RFDiffAA (Krishna et al., 2024), and the most
recent PocketFlow2 (Zhang et al., 2024d). For RFDiffAA-designed pockets, we apply LigandMPNN

132 residues are chosen based on LigandMPNN (Dauparas et al., 2023), ensuring high-quality interactions.
2PocketFlow is not open-sourced yet, we implement and train it on EnzymeFill without fixing the backbones.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: EnzymeFlow Evaluation Data Statistics.

Data
Reaction Enzyme Substrate Product Enzyme Commision

#reaction #enzyme #substrate #avg atom #product #avg atom EC1 EC2 EC3 EC4 EC5 EC6 EC7

Raw 232520 97912 7259 30.81 7664 30.34 44881 (19.30) 75944 (32.66) 37728 (16.23) 47242 (20.32) 8315 (3.58) 18281 (7.86) 129 (0.06)
Train 53483 22350 6112 30.95 6331 30.34 11674 (21.83) 18419 (34.44) 11394 (21.30) 5555 (10.39) 2194 (4.10) 4200 (7.85) 47 (0.09)
Eval 100 100 100 30.7 94 28.84 17 (17.00) 17 (17.00) 17 (17.00) 17 (17.00) 16 (16.00) 16 (16.00) 0 (0.00)

(Dauparas et al., 2023) to inverse fold and predict the sequences post-hoc. We provide the code of
EnzymeFlow at https://anonymous.4open.science/r/EnzymeFlow-7420.

Evaluation Data. We use MMseqs2 to perform clustering with a 10% homology threshold, selecting
the center of each cluster as the initial dataset, resulting in a total of 3, 417 pairs. After de-duplicating
both repeated substrates and UniProt entries, we are left with 839 unique enzyme-reaction pairs. We
then uniformly sample data across different EC classes, selecting 17 pairs from EC1 to EC4 classes
and 16 pairs from EC5 and EC6 classes, respectively, resulting in a total of 100 unique catalytic
pockets and 100 unique reactions. Each enzyme-reaction pair is labeled with a ground-truth EC-class
from EC1 to EC6. We present the EC-class distribution in the evaluation set in Tab. 1.

Reaction-conditioned Generation. For pocket design and model sampling, we perform conditional
generation on each reaction (or substrate), generating 100 catalytic pockets for each reaction in the
evaluation set. We evaluate the generated pockets for their structures and functions (i.e., EC-class).

EnzymeFlow Scope. In EnzymeFlow, we adhere to the philosophy that enzyme function dictates its
structure. This means that an enzyme folds into a specific 3D shape to fulfill its catalytic role, and the
resulting structure can then be inversely folded into a sequence—essentially, function→ structure
→ sequence. In EnzymeFlow, the enzyme function is defined by the reaction that the enzyme will
catalyze (discussed in App. B). We evaluate the structures and functions of the designed pockets.

5.1 CATALYTIC POCKET STRUCTURE EVALUATION

We begin by assessing the structural validity of generated catalytic pockets. While enzyme function
determines whether the designed pocket can catalyze a specific reaction, the structure determines
whether the substrate conformation can properly bind to the catalytic pocket. We provide some visual
examples of designed pockets in Fig. 5 and App. J.

Metrics. We use the following metrics to evaluate and compare the structural validity of the generated
pocket. Constrained-site RMSD (cRMSD): The structural distance between the ground-truth and
generated pockets, as proposed in Hayes et al. (2024). TM-score: The topological similarity
between the generated and ground-truth pockets in local deviations. Aggregated Chai Score (chai):
The confidence and structural validity of the designed pockets by running Chai (Chai, 2024). It is
calculated as 0.2× pTM+0.8× ipTM− 100× clash, where pTM is the predicted template modeling
score, ipTM is the interface predicted template modeling score (as used in Jumper et al. (2021)),
and the definition of chai is proposed by Chai (2024). Binding Affinity (Kd): The binding affinity
between the generated catalytic pocket and the substrate conformation is computed using AutoDock
Vina (Trott & Olson, 2010). Amino Acid Recovery (AAR): The overlap ratio between the predicted
and ground-truth amino acid types in the generated pocket. Enzyme Commission Accuracy (ECacc):
The accuracy of matching the EC-class of generated pockets with the ground-truth EC-class.

Table 2: Evaluation of structural validity of EnzymeFlow- and baseline-generated catalytic pockets.
The binding affinities (Kd) and structural confidence (chai) are computed by performing docking
on the catalytic pocket and substrate conformation using Vina (Trott & Olson, 2010) and Chai (Chai,
2024), respectively. We highlight top three results in bold, underline, and italic, respectively.

Model
cRMSD (↓) TM-score (↑)

Kd (↓) chai (↑) AAR (↑) ECacc (↑)Top1 Top10 Median Top1 Top10 Median

Eval Data - - -4.65 - - -

DEPACT 9.25 9.75 11.16 0.238 0.206 0.149 -5.46 0.125 0.112 0.149
PocketGen 7.65 8.14 10.45 0.260 0.233 0.193 -5.01 0.121 0.176 0.152
RFDiffAA 9.13 9.77 11.92 0.269 0.245 0.198 -12.71 0.232 0.153 0.170
PocketFlow 7.42 8.09 10.01 0.268 0.260 0.197 -4.93 0.123 0.207 0.166

EnzymeFlow (T=50) 6.94 7.57 9.04 0.290 0.262 0.209 -5.03 0.129 0.216 0.280
w/o coevo 7.02 7.60 9.15 0.288 0.260 0.205 -4.86 0.123 0.196 0.246

w/o pretraining 7.01 7.69 9.29 0.286 0.261 0.207 -4.33 0.134 0.202 0.255
w/o coevo+pretraining 7.05 7.81 9.43 0.278 0.255 0.204 -4.72 0.125 0.154 0.221
EnzymeFlow (T=100) 6.97 7.57 9.02 0.283 0.258 0.207 -5.31 0.135 0.215 0.273

Results. We compare the structural validity between EnzymeFlow- and baseline-generated catalytic
pockets in Tab. 2. EnzymeFlow and its ablation models outperform baseline models, including leading
models like RFDiffAA and PocketFlow, with significant improvements in cRMSD, TM-score, and

8

https://anonymous.4open.science/r/EnzymeFlow-7420


432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

(Uniprot ID: B8MXP5)

Reference 

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

2. Protein-Ligand Pre-training

Protein-Ligand Complex

Flow on pocket SE(3) & amino acids conditioned by ligand molecule

ykd = 4.99

Final designed binding pocketInitial SE(3) binding pocket

t=0 

In-flow binding pocket

…

t=t t=1 

…

Geometry-based Complex Optimization

A
E

E

A

G

Pairwise 
Distance Reg

Surface Interaction Reg

Binding Affinity RegInitial SE(3) backbone

t=0 

Final backbone

t=1 

…

1. Protein Backbone Pre-training
Flow on backbone SE(3) & amino acids

… … …
3. Enzyme-Reaction Fine-tuning (b) Enzyme Catalytic Pocket

3D GNN Substrate Encoding

Substrate

Product

2D GNN Product Encoding

(a) Reaction Encodings

(c) EC-class

[EC 1]

Flow on pocket SE(3) & amino acids & co-evolution & EC-class conditioned by reaction

… …
Initial co-evolution In-flow co-evolution Final co-evolution

(d) Enzyme-Reaction Co-evolution

enzyme reaction
M L K Y D V E C C > C ( C ) O
M S T Y Y V E C C C > C C C O
M S R Y L V E C C C C > C C C C O

coEvoFormer

Protein Evolution Contacts

M L K Y D V E C C >> C ( C ) O
M S T Y Y V E C C C >> C C C O
M S R Y L V E C C C C >> C C C C O

M L K Y D V E C C >> C ( C ) O
M S T Y Y V E C C C >> C C C O
M S R Y L V E C C C C >> C C C C O

… …
Initial co-evolution In-flow co-evolution Final co-evolution

X X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X X

…

…t=0 …t=t t=1

Substrate Encoding
Product Encoding…

Initial SE(3) catalytic pocket In-flow catalytic pocket Final designed catalytic pocket

…
Substrate Encoding
Product Encoding

XXXXXXXXXX MLKLYDVEVG XXXLYXXEVG 

[EC X] [EC 5] [EC 1]
In-flow EC-classInitial EC-class Final EC-class… …

Gradient

Gradient Gradient

Gradient

X X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X X

Initial co-evolution

M L K Y D V E C C > C ( C ) O
M S T Y Y V E C C C > C C C O
M S R Y L V E C C C C > C C C C O

Final co-evolution

X X X X D V X X X C C X C ( X ) O
M X X Y Y X E X C C X X C X X X
X S X X L V X X C C X X C X C C X

In-flow co-evolution

… …

Figure 2: Overview of EnzymeFlow with hierarchical pre-training and enzyme-reaction co-evolution.
(1) Flow model pre-trained on protein backbones and amino acid types. (2) Flow model further
pre-trained on protein binding pockets, conditioned on ligand molecules with geometry-specific
optimization. (3) Flow model fine-tuned on enzyme catalytic pockets, and conditioned on substrate
and product molecules, with enzyme-reaction co-evolution and EC-class generation.

Ltrans =

NrX

i=1

kvi
✓(x

i
t, t, ls, lp) � (xi

1 � xi
0)k2

2; Lrot =

NrX

i=1

kvi
✓(r

i
t, t, ls, lp) �

logri
t
ri
1

1 � t
k2

SO(3);

Laa = �
NrX

i=1

log p✓(c
i
1|vi

✓(c
i
t, t, ls, lp)).

(3)

To design the enzyme pocket and model protein-ligand interactions, we implement 3D and 2D GNNs
to encode the substrate and product, respectively (implemented in App. C). The main vector field
network applies cross-attention to model protein-ligand interactions and incorporates Invariant Point
Attention (IPA) (Jumper et al., 2021) to encode protein features and make predictions. Following
tricks in Yim et al. (2023a); Campbell et al. (2024), we let the the model predict the final structure at
t = 1 and interpolates to compute the vector fields (discussed in App. D).

EnzymeFlow on EC-Class. The Enzyme Commission (EC) classification is crucial for categorizing
enzymes based on the reactions they catalyze. Understanding the EC-class of an enzyme-reaction
pair can help predict its function in various biochemical pathways (Bansal et al., 2022). Given its
importance, EnzymeFlow leverages EC-class to enhance its generalizability across various enzymes
and catalytic reactions. Therefore, our model incorporates EC-class, yec 2 {1, . . . , 7} [ {5} , as a
discrete factor in the design process. The EC-class is sampled from a Categorical distribution with
probabilities t�(yec1 , yect) + (1 � t)�(5, yect) . The discrete flow on EC-class interpolates from the
masking state 5 at t = 0 to the actual EC-class yec1 at t = 1. The prediction and loss function are
conditioned on the pocket frames and the substrate and product molecules:

Lec = � log p✓(yec1 |v✓(Tt, t, ls, lp, yect)). (4)
The model predicts the final EC-class at t = 1 and interpolates to compute its vector field. For EC-
class prediction, we first employ a EC-class embedding network to encode yect

. The final predicted
EC-class is obtained by pooling cross-attention between the encoded enzyme and EC-class features.

3.1.1 ENZYMEFLOW WITH ENZYME-REACTION CO-EVOLUTION

Enzyme (protein) evolution refers to the process by which enzyme structures and functions change
over time due to genetic variations, such as mutations, duplications, and recombinations. These
changes can lead to alterations in amino acids, potentially affecting the enzyme structure, function,
stability, and interactions (Pál et al., 2006; Sikosek & Chan, 2014). Reaction evolution, on the other
hand, refers to the process by which chemical reactions, particularly those catalyzed by enzymes,
change and diversify within biological systems over time.

Co-Evolutionary Dynamics. Enzymes can co-evolve with the metabolic or biochemical pathways
they are part of, adapting to changes in substrate availability, the introduction of new reaction steps, or
the need for more efficient flux through the pathway. As pathways evolve, enzymes within them may
develop new catalytic functions or refine existing ones to better accommodate these changes (Noda-
Garcia et al., 2018). This process frequently involves the co-evolution of enzymes and their substrates.
As substrates change—whether due to the introduction of new compounds in the environment or
mutations in other metabolic pathways—enzymes may adapt to catalyze reactions with these new
substrates, leading to the emergence of entirely new reactions. Understanding enzyme-substrate
interactions, therefore, requires considering their evolutionary dynamics, as these interactions are

4

Superimposi0on

TM-score: 0.20 
RMSD:       3.36

RFDiffAA-designed EnzymeFlow-designed

TM-score: 0.34 
RMSD:       1.21

TM-score: 0.16 
RMSD:       3.02

PocketFlow-designed

Figure 5: Case study of catalytic pocket design (UniProt: B8MXP5). We show the reference
and designed pockets of different models. The pocket generation is conditioned on reaction
OC[C@H]1O[C@@H](Oc2ccccc2/C=C\\C(=O)O)[C@@H]([C@H]([C@@H]1O)O)O → OC(=O)/C=C\\c1ccccc1O of EC3.

ECacc, and competitive performance in AAR. This demonstrates that EnzymeFlow is capable of
generating more structurally valid catalytic pockets, aligning with the enzyme function analysis
presented in Fig. 6. The average improvements over RFDiffAA in cRMSD, TM-score, AAR, and
EC-Acc are 23.9%, 7.8%, 41.1%, and 64.7%, respectively. Additionally, EnzymeFlow slightly
outperforms PocketFlow in catalytic-substrate binding, showing improved affinity scores (Kd) and
structural confidence (chai) by 2.1% and 9.8%, respectively.

However, EnzymeFlow underperforms RFDiffAA in binding scores, reflected by lower affinities and
structural confidence. Nonetheless, considering that the affinities of EnzymeFlow-generated catalytic
pockets (-5.03) are close to those of enzyme-reaction pairs in the evaluation set (-4.65), the binding
of EnzymeFlow remains acceptable, as enzymes and substrates do not always require tight binding to
catalyze reactions because of the kinetic mechanism (Cleland, 1977; Arcus & Mulholland, 2020).

5.2 QUANTITATIVE ANALYSIS OF ENZYME FUNCTION

The key question is how we can quantitatively assess enzyme functions, i.e., catalytic ability, of the
generated pockets for a given reaction. To answer this, we perform enzyme function analysis on the
designed catalytic pockets. Accurate annotated enzyme function is important for catalytic pocket
design because it helps identify the functionality and the active sites that should be preserved or
modified to improve catalytic efficiency (Rost, 2002; Barglow & Cravatt, 2007; Yu et al., 2023).

Enzyme Function Comparison. In EnzymeFlow, we co-annotate the enzyme function alongside the
catalytic pocket design, allowing their functions to directly influence the structure generation. This
integration of enzyme function annotation into EnzymeFlow ensures functionality control throughout
the design. For baselines that design general proteins rather than enzyme-specific pockets, we perform
enzyme function annotation post-hoc using CLEAN (Yu et al., 2023) to classify and annotate the
EC-class of the generated pockets. After labeling each generated pocket with a EC-class, we compare
it to the ground-truth EC-class associated with the actual reaction to compute EC-class accuracy,
which quantifies how well the generated pockets align with the intended enzyme functions.

a. b.

c.

Figure 6: Quantitative comparison of annotated enzyme functions between EnzymeFlow- and
baseline-generated catalytic pockets across all EC classes. Light color represents EnzymeFlow
and ablation models, blue color represents baseline pocket design models, green color represents
ground-truth data. (a) Evaluation of annotated functions using four multi-label accuracy metrics:
accuracy, precision, recall, and F1 score. (b) Occurrence of Enzyme Commission (EC) numbers in
generated catalytic pockets compared to the ground-truth occurrence. (c) Distribution of EC numbers
in generated catalytic pockets with mean and standard deviation compared to the ground-truth.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 7: Quantitative comparison of annotated enzyme functions between EnzymeFlow- and
baseline-generated catalytic pockets per EC-class, using accuracy, recall, and F1 score. Light color
represents EnzymeFlow and ablation models, blue color represents baseline pocket design models.
Results. We quantitatively compare the annotated enzyme functions between EnzymeFlow- and
baseline-generated catalytic pockets across all EC classes in Fig. 6, and compare the per-class
performance in Fig. 7. These figures allow us to interpret the functions of enzyme catalytic pockets
designed by different models. From Fig. 6(a), EnzymeFlow and its ablation models achieve the highest
values across various multi-label accuracy metrics, including accuracy (0.2809), precision (0.2600),
recall (0.2722), and F1 score (0.2504), outperforming models like RFDiffAA and PocketFlow. In
Fig. 6(b), we observe the per-class distribution of functions in generated catalytic pockets, where
EnzymeFlow generates pockets with a function distribution closer to the evaluation data, peaking
at EC2. Baseline models, however, tend to notably underperform on EC5 and EC6. This trend is
further highlighted in Fig. 6(c), which visualizes the mean and standard deviation of the functions in
generated catalytic pockets. The evaluation data have a mean of 3.43 and a standard deviation of 1.69
for enzyme functions, and EnzymeFlow-generated pockets are much closer to these values compared
to baseline models, which show less alignment with the evaluation data.

Additionally, Fig. 7 illustrates per-class enzyme function accuracy, where EnzymeFlow demonstrates
strong performance in EC2, EC4, EC5, and EC6, competitive performance in EC3, but slightly
weaker performance in EC1 compared to baseline models. Baseline models tend to perform poorly
in EC5 and EC6, with per-class occurrence and accuracy showing values close to 0. In contrast,
EnzymeFlow generates more functionally diverse and accurate catalytic pockets, maintaining higher
accuracy across different EC classes. In conclusion, EnzymeFlow generates catalytic pockets that
are better compared to other pocket design models, providing more accurate and diverse enzyme
functions, which suggests enhanced catalytic potential.

Overall, from both functional and structural perspectives, EnzymeFlow leverages enzyme-reaction
co-evolution, which effectively captures the dynamic changes in a catalytic reaction as substrates are
converted into products. This introduces function-based enzyme design, allowing for the generation
of more functionally and structurally valid catalytic pockets when targeting specific reactions.

6 LIMITATION AND FUTURE WORK

EnzymeFlow addresses key challenges in designing enzyme catalytic pockets for specific reactions,
but several limitations remain. The first limitation is that EnzymeFlow currently generates only the
catalytic pocket residues, rather than the entire enzyme structure. Ideally, the catalytic pocket should
be designed first, followed by the design or reconstruction of the full enzyme structure based on the
pocket. While we are developing to use ESM3 (Hayes et al., 2024) to reconstruct the full enzyme
structure based on the designed catalytic pocket (discussed in App. I), this is not the most ideal
solution. ESM3 is not specifically trained for enzyme-related tasks, which may limit its performance
in enzyme design. In future versions of EnzymeFlow, we are working to fine-tune large biological
models like ESM3 (Hayes et al., 2024), RFDiffAA (Krishna et al., 2024), or Genie2 (Lin et al., 2024)
to specialize them for enzyme-related tasks, particularly for inpainting functional motifs of enzymes
(enzyme catalytic motif scaffolding). Additionally, we aim to create an end-to-end model that
combines EnzymeFlow with these large models, enabling catalytic pocket generation and functional
motif inpainting in a single step, rather than in a two-step process. The second limitation, though
minor, is that EnzymeFlow currently operates only on enzyme backbones and does not model or
generate enzyme side chains. In future work, we plan to incorporate models like DiffPack (Zhang
et al., 2024c) or develop a full-atom model to address this.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Abramson, Jonas Adler, Jack Dunger, Richard Evans, Tim Green, Alexander Pritzel, Olaf
Ronneberger, Lindsay Willmore, Andrew J Ballard, Joshua Bambrick, et al. Accurate structure
prediction of biomolecular interactions with alphafold 3. Nature, pp. 1–3, 2024.

Michael S. Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic interpolants,
2023. URL https://arxiv.org/abs/2209.15571.

Mohammed AlQuraishi. End-to-end differentiable learning of protein structure. Cell systems, 8(4):
292–301, 2019.

Stephen F Altschul, Warren Gish, Webb Miller, Eugene W Myers, and David J Lipman. Basic local
alignment search tool. Journal of molecular biology, 215(3):403–410, 1990.

Stephen F Altschul, Thomas L Madden, Alejandro A Schäffer, Jinghui Zhang, Zheng Zhang, Webb
Miller, and David J Lipman. Gapped blast and psi-blast: a new generation of protein database
search programs. Nucleic acids research, 25(17):3389–3402, 1997.

Vickery L Arcus and Adrian J Mulholland. Temperature, dynamics, and enzyme-catalyzed reaction
rates. Annual review of biophysics, 49(1):163–180, 2020.

Minkyung Baek, Frank DiMaio, Ivan Anishchenko, Justas Dauparas, Sergey Ovchinnikov, Gyu Rie
Lee, Jue Wang, Qian Cong, Lisa N Kinch, R Dustin Schaeffer, et al. Accurate prediction of protein
structures and interactions using a three-track neural network. Science, 373(6557):871–876, 2021.

Amos Bairoch. The enzyme database in 2000. Nucleic acids research, 28(1):304–305, 2000.

Parit Bansal, Anne Morgat, Kristian B Axelsen, Venkatesh Muthukrishnan, Elisabeth Coudert, Lucila
Aimo, Nevila Hyka-Nouspikel, Elisabeth Gasteiger, Arnaud Kerhornou, Teresa Batista Neto, et al.
Rhea, the reaction knowledgebase in 2022. Nucleic acids research, 50(D1):D693–D700, 2022.

Katherine T Barglow and Benjamin F Cravatt. Activity-based protein profiling for the functional
annotation of enzymes. Nature methods, 4(10):822–827, 2007.

Jesse D Bloom and Frances H Arnold. In the light of directed evolution: pathways of adaptive protein
evolution. Proceedings of the National Academy of Sciences, 106(supplement 1):9995–10000,
2009.

Rosalin Bonetta and Gianluca Valentino. Machine learning techniques for protein function prediction.
Proteins: Structure, Function, and Bioinformatics, 88(3):397–413, 2020.

Avishek Joey Bose, Tara Akhound-Sadegh, Kilian Fatras, Guillaume Huguet, Jarrid Rector-Brooks,
Cheng-Hao Liu, Andrei Cristian Nica, Maksym Korablyov, Michael Bronstein, and Alexander Tong.
Se (3)-stochastic flow matching for protein backbone generation. arXiv preprint arXiv:2310.02391,
2023.

Adam R Boyko, Scott H Williamson, Amit R Indap, Jeremiah D Degenhardt, Ryan D Hernandez,
Kirk E Lohmueller, Mark D Adams, Steffen Schmidt, John J Sninsky, Shamil R Sunyaev, et al.
Assessing the evolutionary impact of amino acid mutations in the human genome. PLoS genetics,
4(5):e1000083, 2008.

Andrew Campbell, Jason Yim, Regina Barzilay, Tom Rainforth, and Tommi Jaakkola. Generative
flows on discrete state-spaces: Enabling multimodal flows with applications to protein co-design.
arXiv preprint arXiv:2402.04997, 2024.

Eleanor Campbell, Miriam Kaltenbach, Galen J Correy, Paul D Carr, Benjamin T Porebski, Emma K
Livingstone, Livnat Afriat-Jurnou, Ashley M Buckle, Martin Weik, Florian Hollfelder, et al. The
role of protein dynamics in the evolution of new enzyme function. Nature chemical biology, 12
(11):944–950, 2016.

Ron Caspi, Richard Billington, Ingrid M Keseler, Anamika Kothari, Markus Krummenacker, Peter E
Midford, Wai Kit Ong, Suzanne Paley, Pallavi Subhraveti, and Peter D Karp. The metacyc database
of metabolic pathways and enzymes-a 2019 update. Nucleic acids research, 48(D1):D445–D453,
2020.

11

https://arxiv.org/abs/2209.15571


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Chai. Chai-1 technical report. https://chaiassets.com/chai-1/paper/technical_
report_v1.pdf, 2024.

Yaoxi Chen, Quan Chen, and Haiyan Liu. Depact and pacmatch: A workflow of designing de novo
protein pockets to bind small molecules. Journal of Chemical Information and Modeling, 62(4):
971–985, 2022.

Alexander E Chu, Jinho Kim, Lucy Cheng, Gina El Nesr, Minkai Xu, Richard W Shuai, and Po-Ssu
Huang. An all-atom protein generative model. Proceedings of the National Academy of Sciences,
121(27):e2311500121, 2024.

W Wallace Cleland. Determining the chemical mechanisms of enzyme-catalyzed reactions by kinetic
studies. Adv Enzymol Relat Areas Mol Biol, 45:273–387, 1977.

Gene Ontology Consortium. The gene ontology (go) database and informatics resource. Nucleic
acids research, 32(suppl 1):D258–D261, 2004.

Robert A Copeland. Enzymes: a practical introduction to structure, mechanism, and data analysis.
John Wiley & Sons, 2023.

Gabriele Corso, Hannes Stärk, Bowen Jing, Regina Barzilay, and Tommi Jaakkola. Diffdock:
Diffusion steps, twists, and turns for molecular docking. arXiv preprint arXiv:2210.01776, 2022.

Justas Dauparas, Gyu Rie Lee, Robert Pecoraro, Linna An, Ivan Anishchenko, Cameron Glasscock,
and David Baker. Atomic context-conditioned protein sequence design using ligandmpnn. Biorxiv,
pp. 2023–12, 2023.

Valerie de Crecy-Lagard, Raquel Dias, Iddo Friedberg, Yifeng Yuan, and Manal Swairjo. Limitations
of current machine-learning models in predicting enzymatic functions for uncharacterized proteins.
bioRxiv, pp. 2024–07, 2024.

Mark A DePristo, Daniel M Weinreich, and Daniel L Hartl. Missense meanderings in sequence space:
a biophysical view of protein evolution. Nature Reviews Genetics, 6(9):678–687, 2005.

J-L Ferrer, MB Austin, C Stewart Jr, and JP Noel. Structure and function of enzymes involved in the
biosynthesis of phenylpropanoids. Plant Physiology and Biochemistry, 46(3):356–370, 2008.

Hazel M Girvan and Andrew W Munro. Applications of microbial cytochrome p450 enzymes in
biotechnology and synthetic biology. Current opinion in chemical biology, 31:136–145, 2016.

Margaret E Glasner, John A Gerlt, and Patricia C Babbitt. Evolution of enzyme superfamilies.
Current opinion in chemical biology, 10(5):492–497, 2006.

Vladimir Gligorijević, P Douglas Renfrew, Tomasz Kosciolek, Julia Koehler Leman, Daniel Beren-
berg, Tommi Vatanen, Chris Chandler, Bryn C Taylor, Ian M Fisk, Hera Vlamakis, et al. Structure-
based protein function prediction using graph convolutional networks. Nature communications, 12
(1):3168, 2021.

Tomas Hayes, Roshan Rao, Halil Akin, Nicholas J Sofroniew, Deniz Oktay, Zeming Lin, Robert
Verkuil, Vincent Q Tran, Jonathan Deaton, Marius Wiggert, et al. Simulating 500 million years of
evolution with a language model. bioRxiv, pp. 2024–07, 2024.

Esther Heid, Daniel Probst, William H Green, and Georg KH Madsen. Enzymemap: curation,
validation and data-driven prediction of enzymatic reactions. Chemical Science, 14(48):14229–
14242, 2023.

Maarten L Hekkelman, Ida de Vries, Robbie P Joosten, and Anastassis Perrakis. Alphafill: enriching
alphafold models with ligands and cofactors. Nature Methods, 20(2):205–213, 2023.

C Eric Hodgman and Michael C Jewett. Cell-free synthetic biology: thinking outside the cell.
Metabolic engineering, 14(3):261–269, 2012.

Chenqing Hua, Sitao Luan, Qian Zhang, and Jie Fu. Graph neural networks intersect probabilistic
graphical models: A survey. arXiv preprint arXiv:2206.06089, 2022a.

12

https://chaiassets.com/chai-1/paper/technical_report_v1.pdf
https://chaiassets.com/chai-1/paper/technical_report_v1.pdf


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Chenqing Hua, Guillaume Rabusseau, and Jian Tang. High-order pooling for graph neural networks
with tensor decomposition. Advances in Neural Information Processing Systems, 35:6021–6033,
2022b.

Chenqing Hua, Sitao Luan, Minkai Xu, Rex Ying, Jie Fu, Stefano Ermon, and Doina Precup. Mudiff:
Unified diffusion for complete molecule generation. arXiv preprint arXiv:2304.14621, 2023.

Chenqing Hua, Connor Coley, Guy Wolf, Doina Precup, and Shuangjia Zheng. Effective protein-
protein interaction exploration with ppiretrieval. arXiv preprint arXiv:2402.03675, 2024a.

Chenqing Hua, Bozitao Zhong, Sitao Luan, Liang Hong, Guy Wolf, Doina Precup, and
Shuangjia Zheng. Reactzyme: A benchmark for enzyme-reaction prediction. arXiv preprint
arXiv:2408.13659, 2024b.

Jaime Huerta-Cepas, Damian Szklarczyk, Davide Heller, Ana Hernández-Plaza, Sofia K Forslund,
Helen Cook, Daniel R Mende, Ivica Letunic, Thomas Rattei, Lars J Jensen, et al. eggnog 5.0:
a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090
organisms and 2502 viruses. Nucleic acids research, 47(D1):D309–D314, 2019.

Clemens Isert, Kenneth Atz, and Gisbert Schneider. Structure-based drug design with geometric deep
learning. Current Opinion in Structural Biology, 79:102548, 2023.

Christian Jäckel, Peter Kast, and Donald Hilvert. Protein design by directed evolution. Annu. Rev.
Biophys., 37(1):153–173, 2008.

Roy A Jensen. Enzyme recruitment in evolution of new function. Annual review of microbiology, 30
(1):409–425, 1976.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Augustin Žı́dek, Anna Potapenko, et al. Highly accurate
protein structure prediction with alphafold. Nature, 596(7873):583–589, 2021.

Jay D Keasling. Manufacturing molecules through metabolic engineering. Science, 330(6009):
1355–1358, 2010.

George A Khoury, James Smadbeck, Chris A Kieslich, and Christodoulos A Floudas. Protein folding
and de novo protein design for biotechnological applications. Trends in biotechnology, 32(2):
99–109, 2014.

Joseph Kraut. How do enzymes work? Science, 242(4878):533–540, 1988.

Rohith Krishna, Jue Wang, Woody Ahern, Pascal Sturmfels, Preetham Venkatesh, Indrek Kalvet,
Gyu Rie Lee, Felix S Morey-Burrows, Ivan Anishchenko, Ian R Humphreys, et al. Generalized
biomolecular modeling and design with rosettafold all-atom. Science, 384(6693):eadl2528, 2024.

Alexander Kroll, Sahasra Ranjan, Martin KM Engqvist, and Martin J Lercher. A general model
to predict small molecule substrates of enzymes based on machine and deep learning. Nature
communications, 14(1):2787, 2023a.

Alexander Kroll, Yvan Rousset, Xiao-Pan Hu, Nina A Liebrand, and Martin J Lercher. Turnover
number predictions for kinetically uncharacterized enzymes using machine and deep learning.
Nature Communications, 14(1):4139, 2023b.

Maxat Kulmanov and Robert Hoehndorf. Deepgoplus: improved protein function prediction from
sequence. Bioinformatics, 36(2):422–429, 2020.

Haitao Lin, Yufei Huang, Meng Liu, Xuanjing Li, Shuiwang Ji, and Stan Z Li. Diffbp: Generative
diffusion of 3d molecules for target protein binding. arXiv preprint arXiv:2211.11214, 2022.

Yeqing Lin, Minji Lee, Zhao Zhang, and Mohammed AlQuraishi. Out of many, one: Designing
and scaffolding proteins at the scale of the structural universe with genie 2. arXiv preprint
arXiv:2405.15489, 2024.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling. arXiv preprint arXiv:2210.02747, 2022.

Wenfang Liu and Ping Wang. Cofactor regeneration for sustainable enzymatic biosynthesis. Biotech-
nology advances, 25(4):369–384, 2007.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow, 2022. URL https://arxiv.org/abs/2209.03003.

Wei Lu, Jixian Zhang, Weifeng Huang, Ziqiao Zhang, Xiangyu Jia, Zhenyu Wang, Leilei Shi,
Chengtao Li, Peter G Wolynes, and Shuangjia Zheng. Dynamicbind: Predicting ligand-specific
protein-ligand complex structure with a deep equivariant generative model. Nature Communica-
tions, 15(1):1071, 2024.

Sitao Luan, Mingde Zhao, Chenqing Hua, Xiao-Wen Chang, and Doina Precup. Complete the missing
half: Augmenting aggregation filtering with diversification for graph convolutional networks. arXiv
preprint arXiv:2008.08844, 2020.

Sitao Luan, Chenqing Hua, Qincheng Lu, Jiaqi Zhu, Mingde Zhao, Shuyuan Zhang, Xiao-Wen
Chang, and Doina Precup. Revisiting heterophily for graph neural networks. Advances in neural
information processing systems, 35:1362–1375, 2022.

Sitao Luan, Chenqing Hua, Qincheng Lu, Liheng Ma, Lirong Wu, Xinyu Wang, Minkai Xu, Xiao-Wen
Chang, Doina Precup, Rex Ying, et al. The heterophilic graph learning handbook: Benchmarks,
models, theoretical analysis, applications and challenges. arXiv preprint arXiv:2407.09618, 2024a.

Sitao Luan, Chenqing Hua, Minkai Xu, Qincheng Lu, Jiaqi Zhu, Xiao-Wen Chang, Jie Fu, Jure
Leskovec, and Doina Precup. When do graph neural networks help with node classification?
investigating the homophily principle on node distinguishability. Advances in Neural Information
Processing Systems, 36, 2024b.

Xizeng Mao, Tao Cai, John G Olyarchuk, and Liping Wei. Automated genome annotation and
pathway identification using the kegg orthology (ko) as a controlled vocabulary. Bioinformatics,
21(19):3787–3793, 2005.

Andrew CR Martin, Christine A Orengo, E Gail Hutchinson, Susan Jones, Maria Karmirantzou,
Roman A Laskowski, John BO Mitchell, Chiara Taroni, and Janet M Thornton. Protein folds and
functions. Structure, 6(7):875–884, 1998.

Lukasz Maziarka, Tomasz Danel, Slawomir Mucha, Krzysztof Rataj, Jacek Tabor, and Stanislaw
Jastrzebski. Molecule attention transformer. arXiv preprint arXiv:2002.08264, 2020.

Peter G Mikhael, Itamar Chinn, and Regina Barzilay. Clipzyme: Reaction-conditioned virtual
screening of enzymes. arXiv preprint arXiv:2402.06748, 2024.

Yukito Murakami, Jun-ichi Kikuchi, Yoshio Hisaeda, and Osamu Hayashida. Artificial enzymes.
Chemical reviews, 96(2):721–758, 1996.

Lianet Noda-Garcia, Wolfram Liebermeister, and Dan S Tawfik. Metabolite–enzyme coevolution:
from single enzymes to metabolic pathways and networks. Annual Review of Biochemistry, 87(1):
187–216, 2018.

Noel M O’Boyle, Michael Banck, Craig A James, Chris Morley, Tim Vandermeersch, and Geoffrey R
Hutchison. Open babel: An open chemical toolbox. Journal of cheminformatics, 3:1–14, 2011.

Csaba Pál, Balázs Papp, and Martin J Lercher. An integrated view of protein evolution. Nature
reviews genetics, 7(5):337–348, 2006.

Marta Pelay-Gimeno, Adrian Glas, Oliver Koch, and Tom N Grossmann. Structure-based design
of inhibitors of protein–protein interactions: mimicking peptide binding epitopes. Angewandte
Chemie International Edition, 54(31):8896–8927, 2015.

Gaspar P Pinto, Marina Corbella, Andrey O Demkiv, and Shina Caroline Lynn Kamerlin. Exploiting
enzyme evolution for computational protein design. Trends in Biochemical Sciences, 47(5):
375–389, 2022.

14

https://arxiv.org/abs/2209.03003


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Roshan M Rao, Jason Liu, Robert Verkuil, Joshua Meier, John Canny, Pieter Abbeel, Tom Sercu,
and Alexander Rives. Msa transformer. In International Conference on Machine Learning, pp.
8844–8856. PMLR, 2021.

Burkhard Rost. Enzyme function less conserved than anticipated. Journal of molecular biology, 318
(2):595–608, 2002.

Jae Yong Ryu, Hyun Uk Kim, and Sang Yup Lee. Deep learning enables high-quality and high-
throughput prediction of enzyme commission numbers. Proceedings of the National Academy of
Sciences, 116(28):13996–14001, 2019.

Vıctor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E (n) equivariant graph neural networks.
In International conference on machine learning, pp. 9323–9332. PMLR, 2021.

Ida Schomburg, Antje Chang, Oliver Hofmann, Christian Ebeling, Frank Ehrentreich, and Dietmar
Schomburg. Brenda: a resource for enzyme data and metabolic information. Trends in biochemical
sciences, 27(1):54–56, 2002.

Philippe Schwaller, Benjamin Hoover, Jean-Louis Reymond, Hendrik Strobelt, and Teodoro Laino.
Extraction of organic chemistry grammar from unsupervised learning of chemical reactions.
Science Advances, 7(15):eabe4166, 2021.

Tobias Sikosek and Hue Sun Chan. Biophysics of protein evolution and evolutionary protein
biophysics. Journal of The Royal Society Interface, 11(100):20140419, 2014.

Hannes Stärk, Bowen Jing, Regina Barzilay, and Tommi Jaakkola. Harmonic self-conditioned flow
matching for multi-ligand docking and binding site design. arXiv preprint arXiv:2310.05764,
2023.

Martin Steinegger and Johannes Söding. Mmseqs2 enables sensitive protein sequence searching for
the analysis of massive data sets. Nature biotechnology, 35(11):1026–1028, 2017.

Janet M Thornton, Christine A Orengo, Annabel E Todd, and Frances MG Pearl. Protein folds,
functions and evolution. Journal of molecular biology, 293(2):333–342, 1999.

Oleg Trott and Arthur J Olson. Autodock vina: improving the speed and accuracy of docking with
a new scoring function, efficient optimization, and multithreading. Journal of computational
chemistry, 31(2):455–461, 2010.

Jérôme Tubiana, Dina Schneidman-Duhovny, and Haim J Wolfson. Scannet: an interpretable
geometric deep learning model for structure-based protein binding site prediction. Nature Methods,
19(6):730–739, 2022.

Bart van Beusekom, Wouter G Touw, Mahidhar Tatineni, Sandeep Somani, Gunaretnam Rajagopal,
Jinquan Luo, Gary L Gilliland, Anastassis Perrakis, and Robbie P Joosten. Homology-based
hydrogen bond information improves crystallographic structures in the pdb. Protein Science, 27
(3):798–808, 2018.

Michel van Kempen, Stephanie S Kim, Charlotte Tumescheit, Milot Mirdita, Cameron LM Gilchrist,
Johannes Söding, and Martin Steinegger. Foldseek: fast and accurate protein structure search.
Biorxiv, pp. 2022–02, 2022.

Jue Wang, Sidney Lisanza, David Juergens, Doug Tischer, Ivan Anishchenko, Minkyung Baek,
Joseph L Watson, Jung Ho Chun, Lukas F Milles, Justas Dauparas, et al. Deep learning methods
for designing proteins scaffolding functional sites. BioRxiv, pp. 2021–11, 2021.

Renxiao Wang, Xueliang Fang, Yipin Lu, and Shaomeng Wang. The pdbbind database: Collection of
binding affinities for protein- ligand complexes with known three-dimensional structures. Journal
of medicinal chemistry, 47(12):2977–2980, 2004.

Joseph L Watson, David Juergens, Nathaniel R Bennett, Brian L Trippe, Jason Yim, Helen E Eisenach,
Woody Ahern, Andrew J Borst, Robert J Ragotte, Lukas F Milles, et al. De novo design of protein
structure and function with rfdiffusion. Nature, 620(7976):1089–1100, 2023.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

David Whitford. Proteins: structure and function. John Wiley & Sons, 2013.

Yu Xia and Michael Levitt. Simulating protein evolution in sequence and structure space. Current
Opinion in Structural Biology, 14(2):202–207, 2004.

Zhaoping Xiong, Dingyan Wang, Xiaohong Liu, Feisheng Zhong, Xiaozhe Wan, Xutong Li, Zhaojun
Li, Xiaomin Luo, Kaixian Chen, Hualiang Jiang, et al. Pushing the boundaries of molecular
representation for drug discovery with the graph attention mechanism. Journal of medicinal
chemistry, 63(16):8749–8760, 2019.

Jason Yang, Ariane Mora, Shengchao Liu, Bruce J Wittmann, Anima Anandkumar, Frances H Arnold,
and Yisong Yue. Care: a benchmark suite for the classification and retrieval of enzymes. arXiv
preprint arXiv:2406.15669, 2024.

Kevin K Yang, Zachary Wu, and Frances H Arnold. Machine-learning-guided directed evolution for
protein engineering. Nature methods, 16(8):687–694, 2019.

Jason Yim, Andrew Campbell, Andrew YK Foong, Michael Gastegger, José Jiménez-Luna, Sarah
Lewis, Victor Garcia Satorras, Bastiaan S Veeling, Regina Barzilay, Tommi Jaakkola, et al. Fast
protein backbone generation with se (3) flow matching. arXiv preprint arXiv:2310.05297, 2023a.

Jason Yim, Brian L Trippe, Valentin De Bortoli, Emile Mathieu, Arnaud Doucet, Regina Barzilay,
and Tommi Jaakkola. Se (3) diffusion model with application to protein backbone generation.
arXiv preprint arXiv:2302.02277, 2023b.

Tianhao Yu, Haiyang Cui, Jianan Canal Li, Yunan Luo, Guangde Jiang, and Huimin Zhao. Enzyme
function prediction using contrastive learning. Science, 379(6639):1358–1363, 2023.

Odin Zhang, Yufei Huang, Shichen Cheng, Mengyao Yu, Xujun Zhang, Haitao Lin, Yundian Zeng,
Mingyang Wang, Zhenxing Wu, Huifeng Zhao, et al. Deep geometry handling and fragment-wise
molecular 3d graph generation. arXiv preprint arXiv:2404.00014, 2024a.

Odin Zhang, Jieyu Jin, Haitao Lin, Jintu Zhang, Chenqing Hua, Yufei Huang, Huifeng Zhao, Chang-
Yu Hsieh, and Tingjun Hou. Ecloudgen: Access to broader chemical space for structure-based
molecule generation. bioRxiv, pp. 2024–06, 2024b.

Xujun Zhang, Odin Zhang, Chao Shen, Wanglin Qu, Shicheng Chen, Hanqun Cao, Yu Kang, Zhe
Wang, Ercheng Wang, Jintu Zhang, et al. Efficient and accurate large library ligand docking with
karmadock. Nature Computational Science, 3(9):789–804, 2023a.

Yangtian Zhang, Zuobai Zhang, Bozitao Zhong, Sanchit Misra, and Jian Tang. Diffpack: A torsional
diffusion model for autoregressive protein side-chain packing. Advances in Neural Information
Processing Systems, 36, 2024c.

Zaixi Zhang, Zepu Lu, Hao Zhongkai, Marinka Zitnik, and Qi Liu. Full-atom protein pocket design
via iterative refinement. Advances in Neural Information Processing Systems, 36:16816–16836,
2023b.

Zaixi Zhang, Wanxiang Shen, Qi Liu, and Marinka Zitnik. Generalized protein pocket generation
with prior-informed flow matching. Advances in neural information processing systems, 2024d.

Zaixi Zhang, Wanxiang Shen, Qi Liu, and Marinka Zitnik. Pocketgen: Generating full-atom ligand-
binding protein pockets. bioRxiv, pp. 2024–02, 2024e.

Zuobai Zhang, Minghao Xu, Arian Jamasb, Vijil Chenthamarakshan, Aurelie Lozano, Payel Das,
and Jian Tang. Protein representation learning by geometric structure pretraining. arXiv preprint
arXiv:2203.06125, 2022.

Emile Zuckerkandl and Linus Pauling. Molecules as documents of evolutionary history. Journal of
theoretical biology, 8(2):357–366, 1965.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A FUTURE WORK IN PROGRESS: AI-DRIVEN ENZYME DESIGN PLATFORM

As discussed in Sec. 6, there are several limitations in the current version of EnzymeFlow. Here,
we briefly outline the next steps and improvements we are actively working on for the upcoming
version. Currently, EnzymeFlow generates only catalytic pocket residues rather than full enzyme
structures. Ideally, the catalytic pocket should be designed first, followed by the reconstruction of the
full enzyme structure based on the pocket. While we currently use ESM3 (Hayes et al., 2024) for
this reconstruction, this approach is not ideal. Fine-tuning ESM3 or RFDiffAA (Krishna et al., 2024)
would be preferable, but unfortunately, training scripts for these wonderful models are not provided,
making it impossible to directly fine-tune them on our EnzymeFill dataset.

To address this, we are borrowing concepts from Wang et al. (2021) and Lin et al. (2024), which
focuses on inpainting proteins and scaffolding functional motifs. We are working to integrate this
concept into EnzymeFlow’s pipeline, as part of our primary design. Our goal is to develop an
end-to-end automated AI-driven enzyme discovery system that works as follows:

• 1. Catalytic Pocket Design: The system will first design enzyme catalytic pockets.

• 2. Scaffolding Functional Motifs: Next, it will scaffold the functional motifs to generate
full enzyme structures.

• 3. Substrate Docking: Using methods like DiffDock (Corso et al., 2022), DynamicBind (Lu
et al., 2024), or fine-tuned Chai (Chai, 2024) on EnzymeFill, the system will bind substrates
to the catalytic pockets.

• 4. Inverse Folding: The enzyme-substrate complex will undergo inverse folding using
LigandMPNN (Dauparas et al., 2023).

• 5. Computational Screening: Finally, the system will perform computational screening to
select the best-generated enzymes.

This entire process is being developed into an integrated, end-to-end solution for AI-driven enzyme
design. We are very excited about the potential of this project and look forward to achieving a fully
automated enzyme design system in the near future.

B OPEN DISCUSSION: WHY IS SUBSTRATE/REACTION-SPECIFIED ENZYME
DESIGN NEEDED?

EnzymeFlow is unique in its leading approach to function-based de novo protein design. Currently,
most protein design models, whether focused on backbone generation (Yim et al., 2023a;b; Bose et al.,
2023; Campbell et al., 2024; Krishna et al., 2024) or pocket design (Zhang et al., 2023b;a; 2024e;d),
are structure-based. These models aim to design or modify proteins to achieve a specific 3D structure,
prioritizing stability, folding, and molecular interactions. The design process typically involves
optimizing a protein structure to minimize energy and achieve a stable structural conformation
(Khoury et al., 2014; Pelay-Gimeno et al., 2015).

In contrast, function-based protein design focuses on creating proteins that perform specific bio-
chemical tasks, such as catalysis, signaling, or even binding (Martin et al., 1998; Thornton et al.,
1999). These models are driven by the need for proteins to carry out particular functions rather than
adopt a specific 3D structure. Function-based design often targets the active site or binding pockets,
optimizing them for specific molecular interactions—in our case, the enzyme’s catalytic pockets.

Our philosophy is that protein function determines its structure, meaning that a protein folds into a
specific 3D shape to achieve its intended function, and the resulting structure can then be translated
into a proper sequence—essentially, protein function → protein structure → protein sequence.
EnzymeFlow follows this philosophy. Specifically, the function of an enzyme is determined by its
ability to catalyze a specific reaction or interact with a specific substrate. Therefore, our enzyme
pocket design process begins with the reaction or substrate in mind, incorporating reaction/substrate
specificity into the generation process. The reaction or substrate represents the functional target for
the generated enzyme pockets.

In this approach, EnzymeFlow generates enzyme pocket structures specified for the desired protein
function, which contrasts with current generative methods that prioritize structure first. These existing

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

methods operate on the idea that protein structure→ protein function→ protein sequence. However,
proteins should be designed primarily for their functionality, not just their structures. EnzymeFlow’s
focus on function-based design could serve as an inspiration for future advancements, leading the
way toward more purposeful, function-driven protein design.

C RELATED WORK

C.1 PROTEIN REPRESENTATION LEARNING

Graph representation learning emerges as a potent strategy for representing and learning about
proteins and molecules, focusing on structured, non-Euclidean data (Satorras et al., 2021; Luan et al.,
2020; 2022; Hua et al., 2022a;b; Luan et al., 2024b;a). In this context, proteins and molecules can be
effectively modeled as 2D graphs or 3D point clouds, where nodes correspond to individual atoms
or residues, and edges represent interactions between them (Gligorijević et al., 2021; Zhang et al.,
2022; Hua et al., 2023; Zhang et al., 2024a). Indeed, representing proteins and molecules as graphs
or point clouds offers a valuable approach for gaining insights into and learning the fundamental
geometric and chemical mechanisms governing protein-ligand interactions. This representation
allows for a more comprehensive exploration of the intricate relationships and structural features
within protein-ligand structures (Tubiana et al., 2022; Isert et al., 2023; Zhang et al., 2024b).

C.2 PROTEIN FUNCTION ANNOTATION

Protein function prediction aims to determine the biological role of a protein based on its sequence,
structure, or other features. It is a crucial task in bioinformatics, often leveraging databases such as
Gene Ontology (GO), Enzyme Commission (EC) numbers, and KEGG Orthology (KO) annotations
(Bairoch, 2000; Consortium, 2004; Mao et al., 2005). Traditional methods like BLAST, PSI-BLAST,
and eggNOG infer function by comparing sequence alignments and similarities (Altschul et al., 1990;
1997; Huerta-Cepas et al., 2019). Recently, deep learning has introduced more advanced approaches
for protein function prediction (Ryu et al., 2019; Kulmanov & Hoehndorf, 2020; Bonetta & Valentino,
2020). There are two major types of function prediction models, one uses only protein sequence
as their input, while the other also uses experimentally-determined or predicted protein structure
as input. Typically, these methods predict EC or GO annotations to approximate protein functions,
rather than describing the exact catalyzed reaction, which is a limitation of these approaches.

C.3 PROTEIN EVOLUTION

Protein evolution learns how proteins change over time through processes such as mutation, selection,
and genetic drift (Pál et al., 2006; Bloom & Arnold, 2009), which influence protein functions. Studies
on protein evolution focus on understanding the molecular mechanisms driving changes in protein
sequences and structures. Zuckerkandl & Pauling (1965) introduce the concept of the molecular clock,
which postulates that proteins evolve at a relatively constant rate over time, providing a framework
for estimating divergence times between species. DePristo et al. (2005) show that evolutionary rates
are influenced by functional constraints, with regions critical to protein function (e.g., active sites,
binding interfaces) evolving more slowly due to purifying selection. This understanding leads to
the development of methods for detecting functionally important residues based on evolutionary
conservation. Understanding protein evolution has practical applications in protein engineering. By
studying how natural proteins evolve to acquire new functions, researchers design synthetic proteins
with desired properties (Xia & Levitt, 2004; Jäckel et al., 2008). Additionally, deep learning models
increasingly integrate evolutionary principles to predict protein function and stability, design novel
enzymes, and guide protein engineering (Yang et al., 2019; AlQuraishi, 2019; Jumper et al., 2021).

C.4 GENERATIVE MODELS FOR PROTEIN AND POCKET DESIGN

Recent advancements in generative models have advanced the field of protein design and binding
pocket design, enabling the creation of proteins or binding pockets with desired properties and
functions (Yim et al., 2023a;b; Chu et al., 2024; Hua et al., 2024a; Abramson et al., 2024). For
example, RFDiff (Watson et al., 2023) employs denoising diffusion in conjunction with RoseTTAFold
(Baek et al., 2021) for de novo protein structure design, achieving wet-lab-level generated structures
that can be extended to binding pocket design. RFDiffAA (Krishna et al., 2024) extends RFDiff
for joint modeling of protein and ligand structures, generating ligand-binding proteins and further
leveraging GNNs for sequence design. Additionally, FAIR (Zhang et al., 2023b) and PocketGen

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

(Zhang et al., 2024e) use a two-stage coarse-to-fine refinement approach to co-design pocket structures
and sequences. Recent models leveraging flow matching frameworks have shown promising results
in these tasks. For instance, FoldFlow (Bose et al., 2023) introduces a series of flow models for
protein backbone design, improving training stability and efficiency. FrameFlow (Yim et al., 2023a)
further enhances sampling efficiency and demonstrates success in motif-scaffolding tasks using
flow matching, while MultiFlow (Campbell et al., 2024) advances to structure and sequence co-
design. These flow models, initially applied to protein backbones, have been further generalized
to binding pockets. For example, PocketFlow (Zhang et al., 2024d) combines flow matching with
physical priors to explicitly learn protein-ligand interaction types in pocket design, achieving superior
results compared to RFDiffAA. While these models excel in protein and binding pocket design, they
primarily focus on static protein(-ligand) interactions and lack the ability to model the chemical
transformations involved in enzyme-substrate interactions. This limitation may reduce their accuracy
and generalizability in designing enzyme pockets for catalytic reactions.

D CO-EVOLUTIONARY MSA TRANSFORMER

Co-evolution captures the dynamic relationship between an enzyme and its substrate during a
catalytic reaction. AlphaFold2 (Jumper et al., 2021) has demonstrated the critical importance of
leveraging protein evolution, specifically through multiple sequence alignments (MSA) across protein
sequences, to enhance a model’s generalizability and expressive power. Previous works, such as
MSA Transformer (Rao et al., 2021) and EvoFormer (Jumper et al., 2021), have focused on encoding
and learning protein evolution from MSA results. Proper co-evolution encodings of enzymes and
reactions are essential for capturing the dynamic changes that occur during catalytic processes, not
only in our EnzymeFlow model but in other models as well.

Tokenize using co-evolution vocabulary

Figure 8: Enzyme-reaction co-evolution and tokenized representation.

D.1 CO-EVOLUTION VOCABULARY

We provide our co-evolution dictionary for tokenization and encoding following:

Tokenize using co-evolution vocabulary

Figure 9: EnzymeFlow co-evolution dictionary.

D.2 COEVOFORMER IMPLEMENTATION

Here, we introduce a new co-evolutionary MSA transformer, coEvoFormer. The co-evolution
of an enzyme-reaction pair is represented by a matrix U ∈ RNMSA×Ntoken , which combines the
MSA results of enzyme sequences and reaction SMILES (illustrated in Fig. 2(3d)). In this matrix,
NMSA denotes the number of MSA sequences, and Ntoken denotes the length of the preserved MSA
alignment. Each element umn ∈ {1, . . . , 64}∪{✕} in U represents a tokenized character from our co-
evolution vocabulary (provided in App. D.1), with ✕ indicating the masking state. The coEvoFormer
takes the co-evolution matrix U as input and outputs an embedded co-evolution representation
HU ∈ RNMSA×Ntoken×DHU , where DHU

denotes the hidden dimension size.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

The code for coEvoFormer follows directly:

1 import math, copy
2 import numpy as np
3
4 import torch
5 import torch.nn as nn
6 import torch.nn.functional as F
7 from torch.autograd import Variable
8
9 ## Co-Evolution Transformer (coEvoFormer)

10
11 ## (12) Layer Norm
12 class ResidualNorm(nn.Module):
13 def __init__(self, size, dropout):
14 super(ResidualNorm, self).__init__()
15 self.norm = LayerNorm(size)
16 self.dropout = nn.Dropout(dropout)
17
18 def forward (self, x, sublayer):
19 return x + self.dropout(sublayer(self.norm(x)))
20
21
22 ## (11) Residual Norm
23 class LayerNorm(nn.Module):
24 def __init__(self, features, eps=1e-6):
25 super(LayerNorm, self).__init__()
26 self.a_2 = nn.Parameter(torch.ones(features))
27 self.b_2 = nn.Parameter(torch.zeros(features))
28 self.eps = eps
29
30 def forward(self, x):
31 mean = x.mean(-1, keepdim=True)
32 std = x.std(-1, keepdim=True)
33 x = self.a_2 * (x - mean) / (std + self.eps) + self.b_2
34 return x
35
36
37 ## (10) 2-layer MLP
38 class MLP(nn.Module):
39 def __init__(self, model_depth, ff_depth, dropout):
40 super(MLP, self).__init__()
41 self.w1 = nn.Linear(model_depth, ff_depth)
42 self.w2 = nn.Linear(ff_depth, model_depth)
43 self.dropout = nn.Dropout(dropout)
44 self.silu = nn.SiLU()
45
46 def forward(self, x):
47 return self.w2(self.dropout(self.silu(self.w1(x))))
48
49
50 ## (9) Attention
51 def attention(Q,K,V, mask=None):
52 dk = Q.size(-1)
53 T = (Q @ K.transpose(-2, -1))/math.sqrt(dk)
54 if mask is not None:
55 T = T.masked_fill_(mask.unsqueeze(1)==0, -1e9)
56 T = F.softmax(T, dim=-1)
57 return T @ V
58
59
60 ## (8) Multi-Head Attention
61 class MultiHeadAttention(nn.Module):
62 def __init__ (self,
63 num_heads,
64 embed_dim,
65 bias=False
66 ):
67 super(MultiHeadAttention, self).__init__()
68 self.num_heads = num_heads
69 self.dk = embed_dim//num_heads
70 self.WQ = nn.Linear(embed_dim, embed_dim, bias=bias)
71 self.WK = nn.Linear(embed_dim, embed_dim, bias=bias)
72 self.WV = nn.Linear(embed_dim, embed_dim, bias=bias)
73 self.WO = nn.Linear(embed_dim, embed_dim, bias=bias)
74
75 def forward(self, x, kv, mask=None):
76 batch_size = x.size(0)
77 Q = self.WQ(x ).view(batch_size, -1, self.num_heads, self.dk).transpose(1,2)
78 K = self.WK(kv).view(batch_size, -1, self.num_heads, self.dk).transpose(1,2)
79 V = self.WV(kv).view(batch_size, -1, self.num_heads, self.dk).transpose(1,2)

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

80
81 if mask is not None:
82 if len(mask.shape) == 2:
83 mask = torch.einsum(’bi,bj->bij’, mask, mask)
84 x = attention(Q, K, V, mask=mask)
85
86 x = x.transpose(1, 2).contiguous().view(batch_size, -1, self.num_heads*self.dk)
87 return self.WO(x)
88
89
90 ## (7) Positional Embedding
91 class PositionalEncoding(nn.Module):
92 def __init__(self, model_depth, max_len=5000):
93 super(PositionalEncoding, self).__init__()
94
95 pe = torch.zeros(max_len, model_depth)
96 position = torch.arange(0.0, max_len).unsqueeze(1)
97 div_term = torch.exp(torch.arange(0.0, model_depth, 2) *
98 -(math.log(10000.0) / model_depth))
99 pe[:, 0::2] = torch.sin(position * div_term)

100 pe[:, 1::2] = torch.cos(position * div_term)
101 pe = pe.unsqueeze(0)
102 self.register_buffer(’pe’, pe)
103
104 def forward(self, x):
105 return x + Variable(self.pe[:, :x.size(1)], requires_grad=False)
106
107
108 ## (6) Embedding
109 class Embedding(nn.Module):
110 def __init__(self, vocab_size, model_depth):
111 super(Embedding, self).__init__()
112 self.lut = nn.Embedding(vocab_size, model_depth)
113 self.model_depth = model_depth
114 self.positional = PositionalEncoding(model_depth)
115
116 def forward(self, x):
117 emb = self.lut(x) * math.sqrt(self.model_depth)
118 return self.positional(emb)
119
120
121 ## (5) Encoder Layer
122 class EncoderLayer(nn.Module):
123 def __init__(self,
124 n_heads,
125 model_depth,
126 ff_depth,
127 dropout=0.0
128 ):
129 super(EncoderLayer, self).__init__()
130 self.self_attn = MultiHeadAttention(embed_dim=model_depth, num_heads=n_heads)
131 self.resnorm1 = ResidualNorm(model_depth, dropout)
132 self.ff = MLP(model_depth, ff_depth, dropout)
133 self.resnorm2 = ResidualNorm(model_depth, dropout)
134
135 def forward(self, x, mask):
136 x = self.resnorm1(x, lambda arg: self.self_attn(arg, arg, mask))
137 x = self.resnorm2(x, self.ff)
138 return x
139
140
141 ## (4) Encoder
142 class Encoder(nn.Module):
143 def __init__ (self,
144 n_layers,
145 n_heads,
146 model_depth,
147 ff_depth,
148 dropout
149 ):
150 super(Encoder, self).__init__()
151 self.layers = nn.ModuleList([EncoderLayer(n_heads, model_depth, ff_depth, dropout) for

i in range(n_layers)])
152 self.lnorm = LayerNorm(model_depth)
153
154 def forward(self, x, mask):
155 for layer in self.layers:
156 x = layer(x, mask)
157 return self.lnorm(x)
158
159

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

160 ## (3)Generator
161 class Generator(nn.Module):
162 def __init__(self,
163 model_depth,
164 vocab_size
165 ):
166 super(Generator, self).__init__()
167 self.ff = nn.Linear(model_depth, vocab_size)
168
169 def forward(self, x):
170 return F.log_softmax(self.ff(x), dim=-1)
171
172
173 ## (2)coEvoEmbedder
174 class CoEvoEmbedder(nn.Module):
175 def __init__(self,
176 vocab_size,
177 n_layers=2,
178 n_heads=4,
179 model_depth=64,
180 ff_depth=64,
181 dropout=0.0,
182 ):
183 super(CoEvoFormer, self).__init__()
184
185 self.model_depth = model_depth
186 self.encoder = Encoder(n_layers=n_layers,
187 n_heads=n_heads,
188 model_depth=model_depth,
189 ff_depth=ff_depth,
190 dropout=dropout,
191 )
192
193 if vocab_size is not None:
194 if isinstance(vocab_size, int):
195 self.set_vocab_size(vocab_size)
196
197 else:
198 self.set_vocab_size(vocab_size[0], vocab_size[1])
199
200 def set_vocab_size(self, src_vocab_size):
201 self.src_embedder = Embedding(src_vocab_size, self.model_depth)
202 self.generator = Generator(self.model_depth, src_vocab_size)
203
204 for p in self.parameters():
205 if p.dim() > 1:
206 nn.init.xavier_uniform_(p)
207
208 def forward(self, src, src_mask=None):
209 enc_out = self.encoder(self.src_embedder(src), src_mask)
210
211 return enc_out
212
213
214 ## (1)coEvoFormer
215 class CoEvoFormer(nn.Module):
216 def __init__(self, model_conf):
217 super(CoEvoFormer, self).__init__()
218 torch.set_default_dtype(torch.float32)
219 self._model_conf = model_conf
220 self._msa_conf = model_conf.msa
221
222 self.msa_encoder = CoEvoEmbedder(
223 vocab_size=self._msa_conf.num_msa_vocab,
224 n_layers=self._msa_conf.msa_layers,
225 n_heads=self._msa_conf.msa_heads,
226 model_depth=self._msa_conf.msa_embed_size,
227 ff_depth=self._msa_conf.msa_hidden_size,
228 dropout=self._model_conf.dropout,
229 )
230
231 self.col_attn = MultiHeadAttention(
232 num_heads=self._msa_conf.msa_heads,
233 embed_dim=self._msa_conf.msa_embed_size,
234 )
235
236 self.row_attn = MultiHeadAttention(
237 num_heads=self._msa_conf.msa_heads,
238 embed_dim=self._msa_conf.msa_embed_size,
239 )
240

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

241 def forward(
242 self,
243 msa_feature,
244 msa_mask=None,
245 ):
246 bs, n_msa, n_token = msa_feature.size()
247 msa_feature = msa_feature.reshape(bs*n_msa, n_token)
248 msa_embed = self.msa_encoder(msa_feature).reshape(bs, n_msa, n_token, -1)
249 msa_embed = msa_embed.transpose(1, 2).reshape(bs*n_token, n_msa, -1)
250
251 if msa_mask is not None:
252 msa_mask = msa_mask.transpose(1, 2).reshape(bs*n_token, n_msa)
253
254 msa_embed = self.col_attn(msa_embed, msa_embed, mask=msa_mask).reshape(bs, n_token,

n_msa, -1).transpose(1, 2)
255 msa_embed = msa_embed.reshape(bs*n_msa, n_token, -1)
256
257 if msa_mask is not None:
258 msa_mask = msa_mask.reshape(bs, n_token, n_msa)
259 msa_mask = msa_mask.transpose(1, 2).reshape(bs*n_msa, n_token)
260
261 msa_embed = self.row_attn(msa_embed, msa_embed, mask=msa_mask).reshape(bs, n_msa,

n_token, -1)
262
263 return msa_embed

Listing 1: Pytorch Implementation of coEvoFormer.

E MOLECULE GNN
E.1 3D MOLECULE GNN
The 3D molecule GNN plays a crucial role in EnzymeFlow. During the structure-based hierarchical
pre-training, it encodes ligand molecule representations, learning the constrained geometry between
protein binding pockets and ligand molecules. This pre-training process makes the 3D molecule
GNN transferable. When the flow model is fine-tuned, the 3D molecule GNN is also fine-tuned,
transferring its prior knowledge about ligand molecules to substrate molecules in enzyme-catalyzed
reactions. This allows for substrate-specific encodings while leveraging the knowledge learned from
protein-ligand interactions.

Consider a molecule ls with Nls atoms; this could be a ligand conformation in a protein-ligand pair
or a substrate conformation in an enzyme-substrate pair. The molecule ls can be viewed as a set of
atomic point clouds in 3D Euclidean space, where each atom is characterized by its atomic type.
There is a distance relationship between each atom pair in the point cloud, which can be processed
as bonding features. In our 3D molecule GNN, we use a radial basis function to process these
pairwise atomic distances, a technique commonly employed to ensure equivariance and invariance
in model design (Hua et al., 2023; Zhang et al., 2024a;b). The 3D molecule GNN takes a molecule
conformation ls as input and outputs an embedded molecule representation Hls ∈ RNls×DHls , where
DHls

denotes the hidden dimension size.

The code for 3D Molecule GNN follows directly:
1 import math
2 import numpy as np
3
4 import torch
5 import torch.nn as nn
6 from torch.nn import functional as F
7
8 ## (1)3D Molecule GNN
9 class MolEmbedder3D(nn.Module):

10 def __init__(self, model_conf):
11 super(MolEmbedder3D, self).__init__()
12 torch.set_default_dtype(torch.float32)
13 self._model_conf = model_conf
14 self._embed_conf = model_conf.embed
15
16 node_embed_dims = self._model_conf.num_atom_type
17 node_embed_size = self._model_conf.node_embed_size
18 self.node_embedder = nn.Sequential(
19 nn.Embedding(node_embed_dims, node_embed_size, padding_idx=0),
20 nn.SiLU(),
21 nn.Linear(node_embed_size, node_embed_size),

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

22 nn.LayerNorm(node_embed_size),
23 )
24
25 self.node_aggregator = nn.Sequential(
26 nn.Linear(node_embed_size + self._model_conf.edge_embed_size, node_embed_size),
27 nn.SiLU(),
28 nn.Linear(node_embed_size, node_embed_size),
29 nn.SiLU(),
30 nn.Linear(node_embed_size, node_embed_size),
31 nn.LayerNorm(node_embed_size),
32 )
33
34 self.dist_min = self._model_conf.ligand_rbf_d_min
35 self.dist_max = self._model_conf.ligand_rbf_d_max
36 self.num_rbf_size = self._model_conf.num_rbf_size
37 self.edge_embed_size = self._model_conf.edge_embed_size
38
39 self.edge_embedder = nn.Sequential(
40 nn.Linear(self.num_rbf_size + node_embed_size + node_embed_size, self.

edge_embed_size),
41 nn.SiLU(),
42 nn.Linear(self._model_conf.edge_embed_size, self._model_conf.edge_embed_size),
43 nn.SiLU(),
44 nn.Linear(self._model_conf.edge_embed_size, self._model_conf.edge_embed_size),
45 nn.LayerNorm(self._model_conf.edge_embed_size),
46 )
47
48 mu = torch.linspace(self.dist_min, self.dist_max, self.num_rbf_size)
49 self.mu = mu.reshape([1, 1, 1, -1])
50
51 self.sigma = (self.dist_max - self.dist_min) / self.num_rbf_size
52
53 # Distance function -- pair-wise distance computation
54 def coord2dist(self, coord, edge_mask):
55 n_batch, n_atom = coord.size(0), coord.size(1)
56 radial = torch.sum((coord.unsqueeze(1) - coord.unsqueeze(2)) ** 2, dim=-1)
57 dist = torch.sqrt(
58 radial + 1e-10
59 ) * edge_mask
60
61 radial = radial * edge_mask
62 return radial, dist
63
64 # RBF function -- distance encoding
65 def rbf(self, dist):
66 dist_expand = torch.unsqueeze(dist, -1)
67 _mu = self.mu.to(dist.device)
68 rbf = torch.exp(-(((dist_expand - _mu) / self.sigma) ** 2))
69 return rbf
70
71 def forward(
72 self,
73 ligand_atom,
74 ligand_pos,
75 edge_mask,
76 ):
77 num_batch, num_atom = ligand_atom.shape
78
79 # Atom Embbedding
80 node_embed = self.node_embedder(ligand_atom)
81
82 # Edge Feature Computation
83 radial, dist = self.coord2dist(
84 coord=ligand_pos,
85 edge_mask=edge_mask,
86 )
87 edge_embed = self.rbf(dist) * edge_mask[..., None]
88 src_node_embed = node_embed.unsqueeze(1).repeat(1, num_atom, 1, 1)
89 tar_node_embed = node_embed.unsqueeze(2).repeat(1, 1, num_atom, 1)
90 edge_embed = torch.cat([src_node_embed, tar_node_embed, edge_embed], dim=-1)
91
92 # Edge Embedding
93 edge_embed = self.edge_embedder(edge_embed.to(torch.float))
94
95 # Message-Passing
96 src_node_agg = (edge_embed.sum(dim=1) / (edge_mask[..., None].sum(dim=1)+1e-10)) *

ligand_atom.clamp(max=1.)[..., None]
97 src_node_agg = torch.cat([node_embed, src_node_agg], dim=-1)
98
99 # Residue Connection

100 node_embed = node_embed + self.node_aggregator(src_node_agg)

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

101
102 return node_embed, edge_embed

Listing 2: Pytorch Implementation of 3D Molecule GNN.

E.2 2D MOLECULE GNN

Like the 3D molecule GNN, the 2D molecule GNN is also important in our EnzymeFlow imple-
mentation. In an enzyme-catalyzed reaction, the substrate molecule is transformed into a product
molecule, with enzyme-substrate interactions driving this chemical transformation. The 2D molecule
GNN plays a key role in modeling and encoding this transformation during the catalytic process,
making it equally important as our use of co-evolutionary dynamics. While the 3D molecule GNN
encodes the substrate, the 2D molecule GNN encodes the product, guiding the design of the enzyme
catalytic pocket.

Consider a product molecule lp with Nlp atoms in a catalytic reaction. This molecule can be repre-
sented as a graph, where nodes correspond to atoms and edges represent bonds. In our 2D molecule
GNN, we use fingerprints with attention mechanisms (Xiong et al., 2019) to facilitate message passing
between atoms, enabling effective communication across the molecule. The 2D molecule GNN takes
this molecular graph lp as input and outputs an embedded molecule representation Hlp ∈ RNlp×DHlp ,
where DHlp

denotes the hidden dimension size.

The code for 2D Molecule GNN follows directly:
1 import torch
2 import torch.nn as nn
3 from torch_geometric.nn.models import AttentiveFP
4
5 ## (1)2D Molecule GNN
6 class MolEmbedder2D(nn.Module):
7 def __init__(self, model_conf):
8 super(MolEmbedder2D, self).__init__()
9 torch.set_default_dtype(torch.float32)

10 self._model_conf = model_conf
11
12 self.node_embed_dims = self._model_conf.mpnn.mpnn_node_embed_size
13 self.edge_embed_dims = self._model_conf.mpnn.mpnn_edge_embed_size
14
15 self.node_embedder = nn.Sequential(
16 nn.Embedding(self._model_conf.num_atom_type, self.node_embed_dims),
17 nn.SiLU(),
18 nn.Linear(self.node_embed_dims, self.node_embed_dims),
19 nn.LayerNorm(self.node_embed_dims),
20 )
21
22 self.edge_embedder = nn.Sequential(
23 nn.Embedding(self._model_conf.mpnn.num_edge_type, self.edge_embed_dims),
24 nn.SiLU(),
25 nn.Linear(self.edge_embed_dims, self.edge_embed_dims),
26 nn.LayerNorm(self.edge_embed_dims),
27 )
28
29 # Message Passing with Atttention and Fingerprint
30 self.mpnn = AttentiveFP(
31 in_channels=self.node_embed_dims,
32 hidden_channels=self.node_embed_dims,
33 out_channels=self.node_embed_dims,
34 edge_dim=self.edge_embed_dims,
35 num_layers=self._model_conf.mpnn.mpnn_layers,
36 num_timesteps=self._model_conf.mpnn.n_timesteps,
37 dropout=self._model_conf.mpnn.dropout,
38 )
39
40 # Dense Edge Matrix to Sparse Edge Matrix
41 def dense_to_sparse(
42 self,
43 mol_atom,
44 mol_edge,
45 mol_edge_feat,
46 mol_atom_mask,
47 mol_edge_mask,
48 ):
49 mol_atom_list = mol_atom[mol_atom_mask]
50 mol_edge_feat_list = mol_edge_feat[mol_edge_mask]

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

51
52 if mol_edge.size(dim=1) == 2:
53 mol_edge = mol_edge.transpose(1,2)
54 mol_edge_list = [edge[mask] for edge, mask in zip(mol_edge, mol_edge_mask)]
55
56 n_nodes = mol_atom_mask.sum(dim=1, keepdim=True)
57 cum_n_nodes = torch.cumsum(n_nodes, dim=0)
58 new_mol_edge_list = [mol_edge_list[0]]
59 for edge, size in zip(mol_edge_list[1:], cum_n_nodes[:-1]):
60 new_mol_edge = edge + size
61 new_mol_edge_list.append(new_mol_edge)
62
63 new_mol_edge_list = torch.cat(new_mol_edge_list, dim=0)
64
65 if new_mol_edge_list.size(dim=1) == 2:
66 new_mol_edge_list = new_mol_edge_list.transpose(1,0)
67
68 idx = 0
69 batch_mask = []
70 for size in n_nodes:
71 batch_mask.append(torch.zeros(size, dtype=torch.long) + idx)
72 idx += 1
73 batch_mask = torch.cat(batch_mask).to(mol_atom.device)
74
75 return mol_atom_list, new_mol_edge_list, mol_edge_feat_list, batch_mask
76
77 def forward(
78 self,
79 mol_atom,
80 mol_edge,
81 mol_edge_feat,
82 mol_atom_mask,
83 mol_edge_mask,
84 ):
85 n_batch = mol_atom.size(0)
86
87 mol_atom_mask = mol_atom_mask.bool()
88 mol_edge_mask = mol_edge_mask.bool()
89 mol_atom, mol_edge, mol_edge_feat, batch_mask = self.dense_to_sparse(mol_atom,

mol_edge, mol_edge_feat, mol_atom_mask, mol_edge_mask)
90 assert mol_edge.size(1) == mol_edge_feat.size(0)
91
92 # Atom Embedding
93 mol_atom = self.node_embedder(mol_atom)
94
95 # Edge Embedding
96 mol_edge_feat = self.edge_embedder(mol_edge_feat)
97
98 # Message-Passing
99 mol_rep = self.mpnn(mol_atom, mol_edge, mol_edge_feat, batch_mask)

100
101 return mol_rep

Listing 3: Pytorch Implementation of 2D Molecule GNN.

F VECTOR FIELD COMPUTATION AND SAMPLING

Here, we describe how to compute vectors fields and perform sampling for catalytic pocket residues
frames, EC-class, as well as the enzyme-reaction co-evolution.

F.1 BACKGROUND

Catalytic Pocket Frame. We refer to the protein structure as the backbone atomic coordinates of
each residue. A pocket of length Nr can be parameterized into SE(3) residue frames {(xi, ri, ci)}Nr

i=1,
where xi ∈ R3 represents the position (translation) of the Cα atom of the i-th residue, ri ∈ SO(3) is
a rotation matrix defining the local frame relative to a global reference frame, and ci ∈ {1, . . . , 20} ∪
{✕} denotes the amino acid type, with additional ✕ indicating a masking state of the amino acid
type. We refer to the residue block as T i = (xi, ri, ci), and the entire pocket is described by a set of
residues T = {T i}Nr

i=1. Additionally, we denote the graph representations of substrate and product
molecules in the catalytic reaction as ls and lp, respectively. An enzyme-reaction pair can therefore
be described as (T, ls, lp). For simplicity, we omit i.

EC-Class. An EC-class is denoted as yec ∈ {1, . . . , 7} ∪ {✕}, with ✕ indicating the masking state.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Co-evolution. The co-evolution of an enzyme-reaction pair is represented by a matrix U ∈
RNMSA×Ntoken , which combines the MSA results of enzyme sequences and reaction SMILES, where
NMSA denotes the number of MSA sequences and Ntoken denotes the length of the MSA alignment
preserved. And each element umn ∈ {1, . . . , 64} ∪ {✕} in U denotes a tokenized character from our
co-evolution vocabulary, with additional ✕ indicating the masking state.

Vector Field. flow matching describes a process where a flow transforms a simple distribution p0 into
the target data distribution p1 (Lipman et al., 2022). The goal in flow matching is to train a neural
network vθ(ϵt, t) that approximates the vector field ut(ϵ), which measures the transformation of the
distribution pt(ϵt) as it evolves toward p1(ϵt) over time t ∈ [0, 1). The process is optimized using a
regression loss defined as LFM = Et∼U [0,1],pt(ϵt)∥vθ(ϵt, t)− ut(ϵ)∥2. However, directly computing
ut(ϵ) is often intractable in practice. Instead, a conditional vector field ut(ϵ|ϵ1) is defined, and the
conditional flow matching objective is computed as LCFM = Et∼U [0,1],pt(ϵt)∥vθ(ϵt, t)− ut(ϵ|ϵ1)∥2.
Notably,∇θLFM = ∇θLCFM.

During inference or sampling, an ODEsolver, e.g., Euler method, is typically used to solve the ODE
governing the flow, expressed as ϵ1 = ODEsolver(ϵ0, vθ, 0, 1), where ϵ0 is the initial data and ϵ1
is the generated data. In actual training, rather than directly predicting the vector fields, it is more
common to use the neural network to predict the final state at t = 1, then interpolates to calculate
the vector fields. This approach has been shown to be more efficient and effective for network
optimization (Yim et al., 2023a; Bose et al., 2023; Campbell et al., 2024).

F.2 CONTINUOUS VARIABLE TRAJECTORY

Given the predictions for translation x̂1 and rotation r̂1 at t = 1, we interpolate and their corresponding
vector fields are computed as follows:

vθ(xt, t) =
x̂1 − xt

1− t
, vθ(rt, t) =

logrt r̂1

1− t
. (9)

The sampling or trajectory can then be computed using Euler steps with a step size ∆t, as follows:

xt+∆t = xt + vθ(xt, t) ·∆t, rt+∆t = rt + vθ(rt, t) ·∆t, (10)

where the prior of x0, r0 are chosen as the uniform distribution on R3 and SO(3), respectively.

F.3 DISCRETE VARIABLE TRAJECTORY

For the discrete variables, including amino acid types, EC-class, and co-evolution, we follow Camp-
bell et al. (2024) to use continuous time Markov chains (CTMC).

Continuous Time Markov Chain. A sequence trajectory ϵt over time t ∈ [0, 1] that follows a CTMC
alternates between resting in its current state and periodically jumping to another randomly chosen
state. The frequency and destination of the jumps are determined by the rate matrix Rt ∈ RN×N

with the constraint its off-diagonal elements are non-negative. The probability of ϵt jumping to
a different state s follows Rt(ϵt, s)dt for the next infinitesimal time step dt. We can express the
transition probability as

pt+dt(s|ϵt) = δ{ϵt, s}+Rt(ϵt, s)dt, (11)

where δ(a, b) is the Kronecker delta, equal to 1 if a = b and 0 if a ̸= b, and Rt(ϵt, ϵt) =
−∑

γ ̸=ϵ(ϵt, γ) (Campbell et al., 2024). Therefore, pt+dt is a Categorical distribution with probabili-
ties δ(ϵt, ·) +Rt(ϵt, ·)dt with notation s ∼ Cat(δ(ϵt, s) +Rt(ϵt, s)dt).

For finite time intervals ∆t, a sequence trajectory can be simulated with Euler steps following:

ϵt+∆t ∼ Cat(δ(ϵt, ϵt+∆t) +Rt(ϵt, ϵt+∆t)∆t). (12)

The rate matrix Rt along with an initial distribution p0 define CTMC. Furthermore, the probability
flow pt is the marginal distribution of ϵt at every time t, and we say the rate matrix Rt generates pt if
∂tpt = RT

t pt,∀t ∈ [0, 1].

In the actual training, Campbell et al. (2024) show that we can train a neural network to approximate
the true denoising distribution using the standard cross-entropy:

LCE = Et∼U [0,1],pt(ϵt)[log pθ(ϵ1|ϵt)], (13)

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

which leads to our neural network objectives for amino acid types, EC-class, and co-evolution as:

Laa = Et∼U[0,1],pt(ct)[log pθ(c1|ct)],Lec = Et∼U[0,1],pt(yect )
[log pθ(yec1 |yect)],

Lcoevo = Et∼U[0,1],pt(ut)[log pθ(u1|ut)].
(14)

Rate Matrix for Inference. The conditional rate matrix Rt(ϵt, s|s1) generates the conditional
flow pt(ϵt|ϵ1). And Rt(ϵt, s) = Ep1(ϵ1|ϵt)[Rt(ϵt, s|ϵ1)], for which the expectation is taken over
p1(ϵ1|ϵt) = pt(ϵt|ϵ1)p1(ϵ1)

pt(ϵt)
. With the conditional rate matrix, the sampling can be performed:

Rt(ϵt, ·)← Ep1(ϵ1|ϵt)[Rt(ϵt, ·|ϵ1)],
ϵt+∆t ∼ Cat(δ(ϵt, ϵt+∆t) +Rt(ϵt, ϵt+∆t)∆t).

(15)

The rate matrix generates the probability flow for discrete variables.

Campbell et al. (2024) define the conditional rate matrix starting with

Rt(ϵt, s|ϵt) =
ReLU(∂tpt(s|ϵ1)− ∂tpt(ϵt|ϵ1))

N · pt(ϵt|ϵ1)
. (16)

In practice, the closed-form of conditional rate matrix with masking state ✕ is defined as:

Rt(ϵt, s|ϵ1) =
δ(ϵ1, s)

1− t
δ(ϵt,✕). (17)

With the definition of the conditional rate matrix Rt(ϵt, s|ϵ1), we can perform sampling and inference
for amino acid types, EC-class, and co-evolution following:

ct+∆t ∼ Cat(δ(ct, ct+∆t) +Rt(ct, ct+∆t|vθ(ct, t)) ·∆t),

yect+∆t
∼ Cat(δ(yect , yect+∆t

) +Rt(yect , yect+∆t
|vθ(yect , t)) ·∆t),

ut+∆t ∼ Cat(δ(ut, ut+∆t) +Rt(ut, ut+∆t|vθ(ut, t)) ·∆t).

(18)

G ENZYMEFLOW SE(3)-EQUIVARIANCE

Theorem. Let ϕ denote an SE(3) transformation. The catalytic pocket design in EnzymeFlow,
represented as pθ(T|ls), is SE(3)-equivariant, meaning that pθ(ϕ(T)|ϕ(ls)) = pθ(T|ls), where T
represents the generated catalytic pocket, and ls denotes the substrate conformation.

Proof. Given an SE(3)-invariant prior, such that p(T0, ls) = p(ϕ(T0), ϕ(ls)), and an SE(3)-
equivariant transition state for each time step t via an SE(3)-equivariant neural network, such
that pθ(Tt+∆t, ls) = pθ(ϕ(Tt+∆t), ϕ(ls)), it follows that for the total time steps T , we have:

pθ(ϕ(T1)|ϕ(ls)) =
∫

pθ(ϕ(T0, ls))

T−1∏
n=0

pθ(ϕ(Tn∆t+∆t, ls)|ϕ(Tn∆t, ls))

=

∫
pθ(T0, ls)

T−1∏
n=0

pθ(ϕ(Tn∆t+∆t, ls)|ϕ(Tn∆t, ls))

=

∫
pθ(T0, ls)

T−1∏
n=0

pθ(Tn∆t+∆t, ls|Tn∆t, ls)

= pθ(T1|ls).

(19)

□

H ENZYMEFLOW DATASET STATISTICS

Data Source. We construct a curated and validated dataset of enzyme-reaction pairs by collecting
data from the Rhea (Bansal et al., 2022), MetaCyc (Caspi et al., 2020), and Brenda (Schomburg
et al., 2002) databases. For enzymes in these databases, we exclude entries missing UniProt IDs or
protein sequences. For reactions, we apply the following procedures: (1) remove cofactors, small

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Data
Reaction Enzyme Substrate Product Enzyme Commission Class

#reaction #enzyme #substrate #avg atom #product #avg atom EC1 EC2 EC3 EC4 EC5 EC6 EC7

Rawdata 232520 97912 7259 30.81 7664 30.34 44881 (19.30%) 75944 (32.66%) 37728 (16.23%) 47242 (20.32%) 8315 (3.58%) 18281 (7.86%) 129 (0.06%)

40% Homo 19379 6922 4798 31.06 4897 30.24 4754 (24.53%) 5857 (30.22%) 4839 (24.97%) 1764 (9.10%) 759 (3.92%) 1379 (7.12%) 27 (0.14%)
50% Homo 34750 13442 5675 31.45 5871 30.75 8184 (23.55%) 11174 (32.16%) 8050 (23.17%) 3203 (9.22%) 1357 (3.91%) 2752 (7.92%) 30 (0.09%)
60% Homo 53483 22350 6112 30.95 6331 30.34 11674 (21.83%) 18419 (34.44%) 11394 (21.30%) 5555 (10.39%) 2194 (4.10%) 4200 (7.85%) 47 (0.09%)
80% Homo 100925 43458 6619 30.46 6943 29.95 21308 (21.11%) 34344 (34.03%) 18925 (18.75%) 14010 (13.88%) 3901 (3.87%) 8371 (8.29%) 66 (0.07%)
90% Homo 132047 55697 6928 30.32 7298 29.81 28833 (21.84%) 43287 (32.78%) 23989 (18.17%) 20070 (15.20%) 5015 (3.80%) 10766 (8.15%) 87 (0.07%)

Table 3: Enzyme Catalytic Pocket Dataset Statistics.

Data
Reaction Enzyme Substrate Product Enzyme Commision

#reaction #enzyme #substrate #avg atom #product #avg atom EC1 EC2 EC3 EC4 EC5 EC6 EC7

Rawdata 232520 97912 7259 30.81 7664 30.34 44881 (19.30) 75944 (32.66) 37728 (16.23) 47242 (20.32) 8315 (3.58) 18281 (7.86) 129 (0.06)
Train Data 53483 22350 6112 30.95 6331 30.34 11674 (21.83) 18419 (34.44) 11394 (21.30) 5555 (10.39) 2194 (4.10) 4200 (7.85) 47 (0.09)
Eval Data 100 100 100 30.7 94 28.84 17 (17.00) 17 (17.00) 17 (17.00) 17 (17.00) 16 (16.00) 16 (16.00) 0 (0.00)

Table 4: EnzymeFlow Evaluation Data Statistics.

1 2 3 4 5 6 7
Enzyme Commission Class

0

10000

20000

30000

40000

50000

60000

70000

N
um

be
r o

f E
nz

ym
e-

R
ea

ct
io

n 
P

ai
r

Distribution of Enzyme-Reaction Data

List
Rawdata
90% Homo
80% Homo
60% Homo
50% Homo
40% Homo

Figure 10: Distribution of enzyme-reaction pairs over EC-class.

ion groups, and molecules that appear in both substrates and products within a single reaction; (2)
exclude reactions with more than five substrates or products; and (3) apply OpenBabel (O’Boyle et al.,
2011) to standardize molecular SMILES. Ultimately, we obatin a total of 328, 192 enzyme-reaction
pairs, comprising 145, 782 unique enzymes and 17, 868 unique reactions.

Debiasing. To ensure the quality of catalytic pocket data, we exclude pockets with fewer than 32
residues, resulting in 232, 520 enzyme-reaction pairs. Additionally, enzymes and their catalytic
pockets can exhibit significant sequence similarity. When enzymes that are highly similar in sequence
appear too frequently in the dataset, they tend to belong to the same cluster or homologous group,
which can introduce substantial biases during model training. To mitigate this issue and ensure a
more balanced dataset, it is important to reduce the number of homologous enzymes by clustering and
selectively removing enzymes from the same clusters. This helps to debias the data and improve the
model’s generalizability. We perform sequence alignment to cluster enzymes and identify homologous
ones (Steinegger & Söding, 2017). We then revise the dataset into five major categories based on
enzyme sequence similarity, resulting in: (1) 19, 379 pairs with at most 40% homology, (2) 34, 750
pairs with at most 50% homology, (3) 53, 483 pairs with at most 60% homology, (4) 100, 925 pairs
with at most 80% homology, and (5) 132, 047 pairs with at most 90% homology. We provide data
statistics, including the EC-class distribution, in Table 3, and visualize the distribution in Figure 10.

From the data, we observe that EC1, EC2, EC3, and EC4 contribute the most enzyme-reaction pairs
to our dataset. Specifically, EC1 refers to oxidation/reduction reactions, involving the transfer of
hydrogen, oxygen atoms, or electrons from one substance to another. EC2 involves the transfer of a
functional group (such as methyl, acyl, amino, or phosphate) from one substance to another. EC3

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

is associated with the formation of two products from a substrate through hydrolysis, while EC4
involves the non-hydrolytic addition or removal of groups from substrates, potentially cleaving C-C,
C-N, C-O, or C-S bonds. Our dataset distribution closely follows the natural enzyme-reaction enzyme
commission class distribution, with Transferases (EC2) being the most dominant.

I WORK IN PROGRESS: ENZYME POCKET-REACTION RECRUITMENT WITH
ENZYME CLIP MODEL

In addition to evaluating the catalytic pockets generated from the functional and structural perspectives,
we may raise a key question of how we quantitatively determine whether the generated pockets
can catalyze a specific reaction. To answer it, we are working to train an enzyme-reaction CLIP
model using enzyme-reaction pairs (with pocket-specific information) from the 60%-clustered data,
excluding the 100 evaluation samples from training. All enzymes not annotated to catalyze a specific
reaction are treated as negative samples, following the approach in Yang et al. (2024); Mikhael et al.
(2024). For the 100 generated catalytic pockets of each reaction, we select the Top-1 pocket with
the highest TM-score for evaluation using the enzyme CLIP model.

SMNPPPPETSNPNKP
KRQTNQLQYLLRVV
LKTLWKHQFAWPFQ
QPVDAVKLNLPDYY
KIIKTPMDMGTIKK
RLENNYYWNAQECI
QDFNTMFTNCYIYN
KPGDDIVLMAEALE
KLFLQKINELPTEE

Full SequenceFull Structure
a. Current CLIP with Full Structure b. Our CLIP with CatalyFc Pocket

Cataly0c Pocket Structure-Sequence Co-Embedding

CLIP

NCCCNCCCCNCCCNC(=O)C  -> NCCCCNCCCNC(=O)C
Reac0on SMILES Substrate Graph Product Graph

⨁ ⨁

c. Pocket-specific CLIP

Substrate Graph

Product Graph

Cataly0c Pocket

ESM3

MAT

MAT

Cross 
Attention

Transi0on-state Embedding

Cataly0c Pocket Embedding

Cross 
Attention

Logit

Figure 11: Enzyme-Reaction CLIP model comparison. (a) Existing CLIP models use the full enzyme
structure or full enzyme sequence, paired with reaction SMILES as input. (b) Our pocket-specific
CLIP model focuses on catalytic pockets, using both their structures and sequences paired with
molecular graphs of reactions. The pocket-specific CLIP approach learns from enzyme active sites,
which exhibit higher functional concentration. (c) Overview of Pocket-specific CLIP model.

Pocket-specific CLIP. Unlike existing methods that typically train on full enzyme structures or
sequences (Yu et al., 2023; Mikhael et al., 2024), our pocket-specific CLIP approach is designed to
focus specifically on catalytic pockets, including both their structures and sequences, paired with
molecular graphs of catalytic reactions (illustrated in Fig. 11). As shown in Fig. 4(b), catalytic
pockets are usually the regions that exhibit high functional concentration, while the remaining parts
tend to be less functionally important. Therefore, focusing on catalytic pockets is more applicable
and effective for enzyme CLIP models. The advantage of the pocket-specific CLIP is that it learns
from active sites that are highly meaningful both structurally and sequentially.

We illustrate our pocket-specific enzyme CLIP approach in Fig. 11. In our pocket-specific CLIP
model, we encode the pocket structure and sequence using ESM3 (Hayes et al., 2024), and the
substrate and product molecular graphs using MAT (Maziarka et al., 2020). Cross-attention is applied
to compute the transition state of the reaction, capturing the transformation of the substrate into the

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

product, as proposed in Hua et al. (2024b). This is followed by another cross-attention mechanism to
learn the interactions between the catalytic pocket and the reaction. The model is trained by enforcing
high logits for positive enzyme-reaction pairs and low logits for negative enzyme-reaction pairs.

Metrics. To evaluate the catalytic ability of the designed pockets for a given reaction, we employ
retrieval-based ranking as proposed in Hua et al. (2024b). This ranking-based evaluation ensures
fairness and minimizes biases. The metrics include: Top-k Acc, which quantifies the proportion of
instances in which the catalytic pocket is ranked within the CLIP’s top-k predictions; Mean Rank,
which calculates the average position of the pocket in the retrieval list; Mean Reciprocal Rank (MRR),
which measures how quickly the pocket is retrieved by averaging the reciprocal ranks of the first
correct pocket across all reactions. These metrics help assess whether a catalytic pocket designed for
a specific reaction ranks highly in the recruitment list, indicating its potential to catalyze the reaction.

I.1 INPAINTING CATALYTIC POCKET WITH ESM3 FOR FULL ENZYME RECRUITMENT

_____________________________________________
_____________________________________________
_____________________________________________
______________________________________HATYHT
ATGL_TLH_TL__H______TTHTTALLTHYTY_HT_____
___________________________________________Y

KADAAAFAIGEVAFRALNLGPRGLGFSDVFEHPLIHPFGLHLYAGLVGPVLGS
PPGVGWGINPGSLYAVSPIGLKGMVQGILNGTAQQDVAFELPDAGLGGIGLG
VTAVDADLDASGGGYVPPPHDGDLTGDDVDADAFEGGHRDSDKSDGNRAG
RYDFDNTYYHVSRAFAPPHATYHTATGLATLHATLLPHATRNLATTHTTALLTH
YTYAHTHAIASAGQLLTSLLVALVAALPLGLAAHDDLAGIRVAARLATVFLRRFY

Mo0f Scaffolding Inverse Folding

Pocket Full Structure Full Structure + Sequence

Figure 12: Inpainting catalytic pocket using ESM3.

ESM3 (Hayes et al., 2024) can inpaint missing structures and sequences with functional motifs. In
this context, we train a separate full enzyme CLIP model for the enzyme recruitment task. This
model is trained using the same 60%-clustered data but incorporates full enzyme structures and
sequences. For generated catalytic pockets and those in the evaluation set, we use ESM3 to inpaint
them, completing the structures and sequences predicted by ESM3. These ESM3-inpainted enzymes
are then evaluated using the full enzyme CLIP model, applying the same retrieval-based ranking
metrics as before. We illustrate the catalytic pocket inpainting pipeline in Fig. 12.

In conclusion, we are developing a pocket-specific enzyme CLIP model for pocket-based enzyme
recruitment tasks and a full-enzyme CLIP model using ESM3 for inpainting and pocket scaffolding in
full enzyme recruitment tasks. However, we recognize that directly using ESM3 for catalytic pocket
inpainting lacks domain-specific knowledge, making fine-tuning necessary. To address this, we are
working on a fine-tuning open-source large biological model, e.g., Genie2 (Lin et al., 2024), on our
EnzymeFill dataset. Genie2, pre-trained on FoldSeek-clustered AlphaFold- and Protein-DataBank
proteins for de novo protein design and (multi-)motif scaffolding, aligns well with our catalytic pocket
scaffolding task. Fine-tuning Genie2 on EnzymeFill will enhance its performance in catalytic pocket
inpainting. The development of EnzymeFlow, aimed at achieving an AI-driven automated enzyme
design platform, is discussed in App. A.

J RFDIFFAA-DESIGNED POCKETS

In Fig. 13, we visualize some RFDiffAA-designed pockets (Krishna et al., 2024) (before superim-
position) with LigandMPNN-predicted sequences (Dauparas et al., 2023) and CLEAN-predicted
EC-class (Yu et al., 2023). In Fig. 14, we visualize some EnzymeFlow-designed pockets (before
superimposition) with predicted sequences and EC-class. In real design, we do not have the structure
or sequence information of ground-truth catalytic pockets, so we choose to visualize examples before
the superimposition of the ground-truth ones and generated ones.

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

UniProt:    Q9WYS1  

Sequence: GTGQQSVREADHTDAWEKGSLHSGSDVKTAGT 

Substrate: OCC1(O)O[C@@H]([C@H]([C@@H]1O)O)C(=O)O 

Product:    OCC1(O)O[C@@H]([C@@H]([C@@H]1O)O)C(=O)O 

EC-Class:   5

RFDiffAA-designed Samples (Non-Superimposed Samples 1-12)

Sequence: ADPAARAAAAAAAAAAAAAAAAAAAAAAAAAA 

EC-Class:    4

Sequence: AAAAAAAAALAAVDPEAAAAAAAAAAAAAAAA 

EC-Class:    3

Sequence: GAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

EC-Class:    2

Sequence: SAEAAAAAAAAAAARAAAAAAAAAAAAAAAAA 

EC-Class:    2

Sequence: GGGAALAAAAAAAAAAAAALAAAAAAAAAAAL 

EC-Class:    3

Sequence: SLDLAALLAAERDRAIRDGDAARAAELARLVA 

EC-Class:    1

Sequence: SVPLVPVDPNDLASGTVGVCTPTGDCVVINFK 

EC-Class:    5

Sequence: SAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

EC-Class:    4

Sequence: ALLALLVAALVLLFLLVDVLLGAILAALLLFG 

EC-Class:    1

Sequence: SAAAAAEVARLIAASGGRDAEEITAAVAAANR 

EC-Class:    1

Sequence: MTLEEILAEVAKAAAVDPAKAPKALEELLKKG 

EC-Class:    1

Sequence: SAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

EC-Class:    2

CatalyDc Pocket (Q9WYS1)

Figure 13: Some RFDiffAA-designed pockets for Uniprot Q9WYS1 (Samples 1-12).

UniProt:    Q9WYS1  

Sequence: GTGQQSVREADHTDAWEKGSLHSGSDVKTAGT 

Substrate: OCC1(O)O[C@@H]([C@H]([C@@H]1O)O)C(=O)O 

Product:    OCC1(O)O[C@@H]([C@@H]([C@@H]1O)O)C(=O)O 

EC-Class:   5

EnzymeFlow-designed Samples (Non-Superimposed Samples 1-12)

Sequence: ATGGLADRKYTRGTHHLDLYEYTTFTLTHGFH 

EC-Class:    4

Sequence: CGATGTLTLGGIATLCGALGATTGGHLTHNAT 

EC-Class:    2

Sequence: TGGTGTNHGSATTTTAGGTTAAYFGTGAEACQ 

EC-Class:    2

Sequence: LCGGPTTGLLHRHLGTTALTALNLAQQLHTLL 

EC-Class:    3

Sequence: ATLAAGHQHTQLATLEHLATAHHHQLTGTHLQ 

EC-Class:    1

Sequence: GTATAHANHYGTGTAYTNATLATAGGSGHLAL 

EC-Class:    5

Sequence: TTGGGAAATCCTGPGTAATGTTGGATTTAGAT 

EC-Class:    4

Sequence: QHTALGSSQLFHHHRHLYLTHAHHALLHQQHT 

EC-Class:    6

Sequence: TGGTGTGATTTTATGTHTGGGGHTGALGTTTA 

EC-Class:    5

Sequence: ATHTHTYLLIHHTLAHATLLTALHLLNTWHLT 

EC-Class:    3

Sequence: TTAGGGALTTTTGTTGAQQQTYGHNTTTAAAT 

EC-Class:    5

Sequence: HLLTHALHLYLLLLHALHLLHAHHTATLAHRL 

EC-Class:    2

CatalyDc Pocket (Q9WYS1)

Figure 14: Some EnzymeFlow-designed pockets for Uniprot Q9WYS1 (Samples 1-12).

K ENZYMEFLOW NEURAL NETWORK IMPLEMENTATION

The equivariant neural network is based on the Invariant Point Attention (IPA) implemented in
AlphaFold2 (Jumper et al., 2021). In the following, we detail how enzyme catalytic pockets, substrate
molecules, product molecules, EC-class, and co-evolution interact within our network.

The code for EnzymeFlow main network follows directly:
1 import functools as fn
2 import math
3
4 import torch
5 import torch.nn as nn

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

6 from torch.nn import functional as F
7
8 from ofold.utils.rigid_utils import Rigid
9

10 from model import ipa_pytorch
11 from flowmatch.data import all_atom
12 from flowmatch.data import utils as du
13
14 ## EnzymeFlow Main Network
15
16 ## (8) Distogram
17 def calc_distogram(pos, min_bin, max_bin, num_bins):
18 dists_2d = torch.linalg.norm(pos[:, :, None, :] - pos[:, None, :, :], axis=-1)[
19 ..., None
20 ]
21 lower = torch.linspace(min_bin, max_bin, num_bins, device=pos.device)
22 upper = torch.cat([lower[1:], lower.new_tensor([1e8])], dim=-1)
23 dgram = ((dists_2d > lower) * (dists_2d < upper)).type(pos.dtype)
24 return dgram
25
26
27 ## (7) Index Embedding
28 def get_index_embedding(indices, embed_size, max_len=2056):
29 K = torch.arange(embed_size // 2, device=indices.device)
30 pos_embedding_sin = torch.sin(
31 indices[..., None] * math.pi / (max_len ** (2 * K[None] / embed_size))
32 ).to(indices.device)
33 pos_embedding_cos = torch.cos(
34 indices[..., None] * math.pi / (max_len ** (2 * K[None] / embed_size))
35 ).to(indices.device)
36 pos_embedding = torch.cat([pos_embedding_sin, pos_embedding_cos], axis=-1)
37 return pos_embedding
38
39
40 ## (6) Time Embedding
41 def get_timestep_embedding(timesteps, embedding_dim, max_positions=10000):
42 assert len(timesteps.shape) == 1
43 timesteps = timesteps * max_positions
44 half_dim = embedding_dim // 2
45 emb = math.log(max_positions) / (half_dim - 1)
46 emb = torch.exp(
47 torch.arange(half_dim, dtype=torch.float32, device=timesteps.device) * -emb
48 )
49 emb = timesteps.float()[:, None] * emb[None, :]
50 emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
51 if embedding_dim % 2 == 1: # zero pad
52 emb = F.pad(emb, (0, 1), mode="constant")
53 assert emb.shape == (timesteps.shape[0], embedding_dim)
54 return emb
55
56
57 ## (5) Edge Feature Network
58 class EdgeFeatureNet(nn.Module):
59 def __init__(self, module_cfg):
60 super(EdgeFeatureNet, self).__init__()
61 self._cfg = module_cfg
62
63 self.c_s = self._cfg.embed.c_s
64 self.c_z = self._cfg.embed.c_z
65 self.feat_dim = self._cfg.embed.feat_dim
66
67 self.linear_s_p = nn.Linear(self.c_s, self.feat_dim)
68 self.linear_relpos = nn.Linear(self.feat_dim, self.feat_dim)
69
70 total_edge_feats = self.feat_dim * 3 + self._cfg.embed.num_bins * 2 + 2
71
72 self.edge_embedder = nn.Sequential(
73 nn.Linear(total_edge_feats, self.c_z),
74 nn.ReLU(),
75 nn.Linear(self.c_z, self.c_z),
76 nn.ReLU(),
77 nn.Linear(self.c_z, self.c_z),
78 nn.LayerNorm(self.c_z),
79 )
80
81 def embed_relpos(self, r):
82 d = r[:, :, None] - r[:, None, :]
83 pos_emb = get_index_embedding(d, self.feat_dim, max_len=2056)
84 return self.linear_relpos(pos_emb)
85
86 def _cross_concat(self, feats_1d, num_batch, num_res):

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

87 return torch.cat([
88 torch.tile(feats_1d[:, :, None, :], (1, 1, num_res, 1)),
89 torch.tile(feats_1d[:, None, :, :], (1, num_res, 1, 1)),
90 ], dim=-1).float().reshape([num_batch, num_res, num_res, -1])
91
92 def forward(self, s, t, sc_t, edge_mask, flow_mask):
93 # Input: [b, n_res, c_s]
94 num_batch, num_res, _ = s.shape
95
96 # [b, n_res, c_z]
97 p_i = self.linear_s_p(s)
98 cross_node_feats = self._cross_concat(p_i, num_batch, num_res)
99

100 # [b, n_res]
101 r = torch.arange(
102 num_res, device=s.device).unsqueeze(0).repeat(num_batch, 1)
103 relpos_feats = self.embed_relpos(r)
104
105 dist_feats = calc_distogram(
106 t, min_bin=1e-3, max_bin=20.0, num_bins=self._cfg.embed.num_bins)
107 sc_feats = calc_distogram(
108 sc_t, min_bin=1e-3, max_bin=20.0, num_bins=self._cfg.embed.num_bins)
109
110 all_edge_feats = [cross_node_feats, relpos_feats, dist_feats, sc_feats]
111
112 diff_feat = self._cross_concat(flow_mask[..., None], num_batch, num_res)
113 all_edge_feats.append(diff_feat)
114
115 edge_feats = self.edge_embedder(torch.concat(all_edge_feats, dim=-1).to(torch.float))
116 edge_feats *= edge_mask.unsqueeze(-1)
117 return edge_feats
118
119
120 ## (4) Node Feature Network
121 class NodeFeatureNet(nn.Module):
122 def __init__(self, module_cfg):
123 super(NodeFeatureNet, self).__init__()
124 self._cfg = module_cfg
125 self.c_s = self._cfg.embed.c_s
126 self.c_pos_emb = self._cfg.embed.c_pos_emb
127 self.c_timestep_emb = self._cfg.embed.c_timestep_emb
128 embed_size = self.c_pos_emb + self.c_timestep_emb * 2 + 1
129
130 self.aatype_embedding = nn.Embedding(21, self.c_s) # Always 21 because of 20 amino

acids + 1 for unk
131 embed_size += self.c_s + self.c_timestep_emb + self._cfg.num_aa_type
132
133 self.linear = nn.Sequential(
134 nn.Linear(embed_size, self.c_s),
135 nn.ReLU(),
136 nn.Linear(self.c_s, self.c_s),
137 nn.ReLU(),
138 nn.Linear(self.c_s, self.c_s),
139 nn.LayerNorm(self.c_s),
140 )
141
142 def embed_t(self, timesteps, mask):
143 timestep_emb = get_timestep_embedding(
144 timesteps,
145 self.c_timestep_emb,
146 max_positions=2056
147 )[:, None, :].repeat(1, mask.shape[1], 1)
148 return timestep_emb * mask.unsqueeze(-1)
149
150 def forward(
151 self,
152 *,
153 t,
154 res_mask,
155 flow_mask,
156 pos,
157 aatypes,
158 aatypes_sc,
159 ):
160 # [b, n_res, c_pos_emb]
161 pos_emb = get_index_embedding(pos, self.c_pos_emb, max_len=2056)
162 pos_emb = pos_emb * res_mask.unsqueeze(-1)
163
164 # [b, n_res, c_timestep_emb]
165 input_feats = [
166 pos_emb,

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

167 flow_mask[..., None],
168 self.embed_t(t, res_mask),
169 self.embed_t(t, res_mask)
170 ]
171 input_feats.append(self.aatype_embedding(aatypes))
172 input_feats.append(self.embed_t(t, res_mask))
173 input_feats.append(aatypes_sc)
174 return self.linear(torch.cat(input_feats, dim=-1))
175
176
177 ## (3) Distance Embedder
178 class DistEmbedder(nn.Module):
179 def __init__(self, model_conf):
180 super(DistEmbedder, self).__init__()
181 torch.set_default_dtype(torch.float32)
182 self._model_conf = model_conf
183 self._embed_conf = model_conf.embed
184
185 edge_embed_size = self._model_conf.edge_embed_size
186
187 self.dist_min = self._model_conf.bb_ligand_rbf_d_min
188 self.dist_max = self._model_conf.bb_ligand_rbf_d_max
189 self.num_rbf_size = self._model_conf.num_rbf_size
190 self.edge_embedder = nn.Sequential(
191 nn.Linear(self.num_rbf_size, edge_embed_size),
192 nn.ReLU(),
193 nn.Linear(edge_embed_size, edge_embed_size),
194 nn.ReLU(),
195 nn.Linear(edge_embed_size, edge_embed_size),
196 nn.LayerNorm(edge_embed_size),
197 )
198
199 mu = torch.linspace(self.dist_min, self.dist_max, self.num_rbf_size)
200 self.mu = mu.reshape([1, 1, 1, -1])
201 self.sigma = (self.dist_max - self.dist_min) / self.num_rbf_size
202
203 def coord2dist(self, coord, edge_mask):
204 n_batch, n_atom = coord.size(0), coord.size(1)
205 radial = torch.sum((coord.unsqueeze(1) - coord.unsqueeze(2)) ** 2, dim=-1)
206 dist = torch.sqrt(
207 radial + 1e-10
208 ) * edge_mask
209
210 radial = radial * edge_mask
211 return radial, dist
212
213 def rbf(self, dist):
214 dist_expand = torch.unsqueeze(dist, -1)
215 _mu = self.mu.to(dist.device)
216 rbf = torch.exp(-(((dist_expand - _mu) / self.sigma) ** 2))
217 return rbf
218
219 def forward(
220 self,
221 rigid,
222 ligand_pos,
223 bb_ligand_mask,
224 ):
225 curr_bb_pos = all_atom.to_atom37(Rigid.from_tensor_7(torch.clone(rigid)))[-1][:, :,

1].to(ligand_pos.device)
226
227 curr_bb_lig_pos = torch.cat([curr_bb_pos, ligand_pos], dim=1)
228 edge_mask = bb_ligand_mask.unsqueeze(dim=1) * bb_ligand_mask.unsqueeze(dim=2)
229
230 radial, dist = self.coord2dist(
231 coord=curr_bb_lig_pos,
232 edge_mask=edge_mask,
233 )
234
235
236 edge_embed = self.rbf(dist) * edge_mask[..., None]
237 edge_embed = self.edge_embedder(edge_embed.to(torch.float))
238
239 return edge_embed
240
241
242 ## (2) Cross-Attentiom
243 class CrossAttention(nn.Module):
244 def __init__(self, query_input_dim, key_input_dim, output_dim):
245 super(CrossAttention, self).__init__()
246 self.out_dim = output_dim

35



1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

247 self.W_Q = nn.Linear(query_input_dim, output_dim)
248 self.W_K = nn.Linear(key_input_dim, output_dim)
249 self.W_V = nn.Linear(key_input_dim, output_dim)
250 self.scale_val = self.out_dim ** 0.5
251 self.softmax = nn.Softmax(dim=-1)
252
253 def forward(self, query_input, key_input, value_input, query_input_mask=None,

key_input_mask=None):
254 query = self.W_Q(query_input)
255 key = self.W_K(key_input)
256 value = self.W_V(value_input)
257
258 attn_weights = torch.matmul(query, key.transpose(1, 2)) / self.scale_val
259 attn_mask = query_input_mask.unsqueeze(-1) * key_input_mask.unsqueeze(-1).transpose(1,

2)
260 attn_weights = attn_weights.masked_fill(attn_mask == False, -1e9)
261 attn_weights = self.softmax(attn_weights)
262 output = torch.matmul(attn_weights, value)
263
264 return output, attn_weights
265
266
267 ## (1) Protein-Ligand Network
268 class ProteinLigandNetwork(nn.Module):
269 def __init__(self, model_conf):
270 super(ProteinLigandNetwork, self).__init__()
271 torch.set_default_dtype(torch.float32)
272 self._model_conf = model_conf
273
274 # Input Node Embedder
275 self.node_feature_net = NodeFeatureNet(model_conf)
276
277 # Input Edge Embedder
278 self.edge_feature_net = EdgeFeatureNet(model_conf)
279
280 # 3D Molecule GNN
281 self.mol_embedding_layer = MolEmbedder(model_conf)
282
283 # Invariant Point Attention (IPA) Network
284 self.ipanet = ipa_pytorch.IpaNetwork(model_conf)
285
286 # Node Fusion
287 self.node_embed_size = self._model_conf.node_embed_size
288 self.node_embedder = nn.Sequential(
289 nn.Embedding(self._model_conf.num_aa_type, self.node_embed_size),
290 nn.ReLU(),
291 nn.Linear(self.node_embed_size, self.node_embed_size),
292 nn.LayerNorm(self.node_embed_size),
293 )
294 self.node_fusion = nn.Sequential(
295 nn.Linear(self.node_embed_size + self.node_embed_size, self.node_embed_size),
296 nn.ReLU(),
297 nn.Linear(self.node_embed_size, self.node_embed_size),
298 nn.LayerNorm(self.node_embed_size),
299 )
300
301 # Backbone-Substrate Fusion
302 self.bb_lig_fusion = CrossAttention(
303 query_input_dim=self.node_embed_size,
304 key_input_dim=self.node_embed_size,
305 output_dim=self.node_embed_size,
306 )
307
308 # Edge Fusion
309 self.edge_embed_size = self._model_conf.edge_embed_size
310 self.edge_dist_embedder = DistEmbedder(model_conf)
311
312 # Amino Acid Prediction Network
313 self.aatype_pred_net = nn.Sequential(
314 nn.Linear(self.node_embed_size, self.node_embed_size),
315 nn.ReLU(),
316 nn.Linear(self.node_embed_size, self.node_embed_size),
317 nn.ReLU(),
318 nn.Linear(self.node_embed_size, model_conf.num_aa_type),
319 )
320
321 if self._model_conf.flow_msa:
322 # Co-Evolution Embedder
323 self.msa_embedding_layer = CoEvoFormer(model_conf)
324
325 # Coevo-Backbone-Substrate Fusion

36



1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

326 self.msa_bb_lig_fusion = CrossAttention(
327 query_input_dim=model_conf.msa.msa_embed_size,
328 key_input_dim=self.node_embed_size,
329 output_dim=self.node_embed_size,
330 )
331
332 # Coevo Prediction Network
333 self.msa_pred = nn.Sequential(
334 nn.Linear(self.node_embed_size, self.node_embed_size),
335 nn.SiLU(),
336 nn.Linear(self.node_embed_size, self.node_embed_size),
337 nn.SiLU(),
338 nn.Linear(self.node_embed_size, model_conf.msa.num_msa_vocab),
339 )
340
341 if self._model_conf.ec:
342 # EC Embedder
343 self.ec_embedding_layer = nn.Sequential(
344 nn.Embedding(model_conf.ec.num_ec_class, model_conf.ec.ec_embed_size),
345 nn.SiLU(),
346 nn.Linear(model_conf.ec.ec_embed_size, model_conf.ec.ec_embed_size),
347 nn.LayerNorm(model_conf.ec.ec_embed_size),
348 )
349
350 # EC-Backbone-Substrate Fusion
351 self.ec_bb_lig_fusion = CrossAttention(
352 query_input_dim=model_conf.ec.ec_embed_size,
353 key_input_dim=self.node_embed_size,
354 output_dim=self.node_embed_size,
355 )
356
357 # EC Prediction Network
358 self.ec_pred = nn.Sequential(
359 nn.Linear(self.node_embed_size, self.node_embed_size),
360 nn.SiLU(),
361 nn.Linear(self.node_embed_size, self.node_embed_size),
362 nn.SiLU(),
363 nn.Linear(self.node_embed_size, model_conf.ec.num_ec_class),
364 )
365
366 self.condition_generation = self._model_conf.guide_by_condition
367 if self.condition_generation:
368 # 2D Molecule GNN
369 self.guide_ligand_mpnn = MolEmbedder2D(model_conf)
370
371 # Backbone-Product Fusion
372 self.guide_bb_lig_fusion = CrossAttention(
373 query_input_dim=self.node_embed_size,
374 key_input_dim=self.node_embed_size,
375 output_dim=self.node_embed_size,
376 )
377
378 def forward(self, input_feats, use_context=False):
379 # Frames as [batch, res, 7] tensors.
380 bb_mask = input_feats["res_mask"].type(torch.float32) # [B, N]
381 flow_mask = input_feats["flow_mask"].type(torch.float32)
382 edge_mask = bb_mask[..., None] * bb_mask[..., None, :]
383
384 n_batch, n_res = bb_mask.shape
385
386 # Encode Backbone Nodes with Input Node Embedder
387 init_bb_node_embed = self.node_feature_net(
388 t=input_feats["t"],
389 res_mask=bb_mask,
390 flow_mask=flow_mask,
391 pos=input_feats["seq_idx"],
392 aatypes=input_feats["aatype_t"],
393 aatypes_sc=input_feats["sc_aa_t"],
394 )
395
396 # Encode Backbone Edges with Input Edge Embedder
397 init_bb_edge_embed = self.edge_feature_net(
398 s=init_bb_node_embed,
399 t=input_feats["trans_t"],
400 sc_t=input_feats["sc_ca_t"],
401 edge_mask=edge_mask,
402 flow_mask=flow_mask,
403 )
404
405 # Masking Padded Residues
406 bb_node_embed = init_bb_node_embed * bb_mask[..., None]

37



1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

407 bb_edge_embed = init_bb_edge_embed * edge_mask[..., None]
408
409 # AminoAcid embedding
410 bb_aa_embed = self.node_embedder(input_feats["aatype_t"]) * bb_mask[..., None]
411 bb_aa_embed = torch.cat([bb_aa_embed, bb_node_embed], dim=-1)
412 # Backbone-AminoAcid Fusion
413 bb_node_embed = self.node_fusion(bb_aa_embed)
414 bb_node_embed = bb_node_embed * bb_mask[..., None]
415
416 # Initialze Substrate Masking
417 lig_mask = input_feats["ligand_mask"]
418 lig_edge_mask = lig_mask[..., None] * lig_mask[..., None, :]
419 # Encode Substrate with 3D Molecule GNN
420 lig_init_node_embed, _ = self.mol_embedding_layer(
421 ligand_atom=input_feats["ligand_atom"],
422 ligand_pos=input_feats["ligand_pos"],
423 edge_mask=lig_edge_mask,
424 )
425 lig_node_embed = lig_init_node_embed * lig_mask[..., None]
426
427 # Backbone-Substrate Fusion
428 bb_lig_rep, _ = self.bb_lig_fusion(
429 query_input=bb_node_embed,
430 key_input=lig_node_embed,
431 value_input=lig_node_embed,
432 query_input_mask=bb_mask,
433 key_input_mask=lig_mask,
434 )
435
436 # Residue Connection
437 bb_node_embed = bb_node_embed + bb_lig_rep
438
439 # Conditioning on Product Molecule
440 if self.condition_generation:
441 # Encode Product with 2D Molecule GNN
442 guide_ligand_rep = self.guide_ligand_mpnn(
443 mol_atom=input_feats["guide_ligand_atom"],
444 mol_edge=input_feats["guide_ligand_edge_index"],
445 mol_edge_feat=input_feats["guide_ligand_edge"],
446 mol_atom_mask=input_feats["guide_ligand_atom_mask"],
447 mol_edge_mask=input_feats["guide_ligand_edge_mask"],
448 ).unsqueeze(1)
449
450 # Initialze Product Masking
451 guide_ligand_mask = input_feats["guide_ligand_atom_mask"][:, 0:1]
452 # Backbone-Product Fusion
453 bb_guide_lig_rep, _ = self.guide_bb_lig_fusion(
454 query_input=bb_node_embed,
455 key_input=guide_ligand_rep,
456 value_input=guide_ligand_rep,
457 query_input_mask=bb_mask,
458 key_input_mask=guide_ligand_mask,
459 )
460
461 # Residue Connection
462 bb_node_embed = bb_node_embed + bb_guide_lig_rep
463
464 # Initialze Backbone-Substrate Masking
465 bb_ligand_mask = torch.cat([bb_mask, lig_mask], dim=-1)
466 # Backbone-Substrate Distance Embedding
467 bb_lig_edge = self.edge_dist_embedder(
468 rigid=input_feats["rigids_t"],
469 ligand_pos=input_feats["ligand_pos"],
470 bb_ligand_mask=bb_ligand_mask,
471 )
472
473 # Backbone-Backbone-Product Edge Fusion
474 bb_edge_embed = bb_edge_embed + bb_lig_edge[:, :n_res, :n_res, :]
475
476 # Masking Padded Residues
477 bb_node_embed = bb_node_embed[:, :n_res, :] * bb_mask[..., None]
478 bb_edge_embed = bb_edge_embed[:, :n_res, :n_res, :] * edge_mask[..., None]
479
480 # Run IPA Network
481 model_out = self.ipanet(bb_node_embed, bb_edge_embed, input_feats)
482 node_embed = model_out["node_embed"] * bb_mask[..., None]
483
484 # Amino Acid Prediction with Amino Acid Prediction Network
485 aa_pred = self.aatype_pred_net(node_embed) * bb_mask[..., None]
486
487 if self._model_conf.flow_msa:

38



2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

488 # Encode Coevo with Co-Evolution Embedder
489 msa_mask = input_feats["msa_mask"]
490 msa_embed = self.msa_embedding_layer(input_feats["msa_t"], msa_mask=msa_mask) *

msa_mask[..., None] #[B, N_msa, N_token, D]
491 msa_rep = msa_embed.sum(dim=1) / (msa_mask[..., None].sum(dim=1) + 1e-10) #[B, 1,

D]
492 _msa_mask = msa_mask[:, 0] #torch.ones_like(msa_rep[..., 0]).to(msa_embed.device)
493
494 # Coevo-Backbone Fusion
495 msa_rep, _ = self.msa_bb_lig_fusion(
496 query_input=msa_rep,
497 key_input=node_embed,
498 value_input=node_embed,
499 query_input_mask=_msa_mask,
500 key_input_mask=bb_mask,
501 )
502
503 # Coevo Prediction with Coevo Prediction Network
504 msa_pred = self.msa_pred(msa_rep)
505
506 if self._model_conf.flow_ec:
507 # Encode EC with EC Embedder
508 ec_embed = self.ec_embedding_layer(input_feats["ec_t"])
509 ec_mask = torch.ones_like(ec_embed[..., 0]).to(ec_embed.device)
510
511 # EC-Backbone Fusion
512 ec_rep, _ = self.ec_bb_lig_fusion(
513 query_input=ec_embed,
514 key_input=node_embed,
515 value_input=node_embed,
516 query_input_mask=ec_mask,
517 key_input_mask=bb_mask,
518 )
519
520 # EC Prediction with EC Prediction Network
521 ec_rep = ec_rep.reshape(n_batch, -1)
522 ec_pred = self.ec_pred(ec_rep)
523
524 # Main Network Ouput
525 pred_out = {
526 "amino_acid": aa_pred,
527 "rigids_tensor": model_out["rigids"],
528 }
529
530 if self._model_conf.flow_msa:
531 pred_out["msa"] = msa_pred * _msa_mask[..., None]
532
533 if self._model_conf.flow_ec:
534 pred_out["ec"] = ec_pred
535
536 pred_out["rigids"] = model_out["rigids"].to_tensor_7()
537 return pred_out

Listing 4: Pytorch Implementation of EnzymeFlow Main Network.

Fun Fact: While implementing enzyme-substrate and enzyme-product interactions by cross-attention
fusion networks, we experimented with using PairFormer (with only 3-4 layers) as implemented in
AlphaFold3 (Abramson et al., 2024). However, the computational load was immense—it would take
years to run on our A40 GPU. Our fusion network turns to be a more efficient approach. It makes me
wonder who has the resources to re-train AlphaFold3, given the heavy computational demands!

39


	Introduction
	Related Work
	Protein Evolution
	Generative Models for Protein and Pocket Design

	EnzymeFlow
	Enzyme Catalytic Pocket Generation with Flow Matching
	EnzymeFlow with Enzyme-reaction co-Evolution

	Structure-based Hierarchical Pre-training
	Protein Backbone Pre-training
	Protein-Ligand Pre-training


	EnzymeFill: Large-scale Enzyme Pocket-Reaction Dataset
	Experiment — Generating Catalytic Pocket conditioned on Reactions and Substrates
	Catalytic Pocket Structure Evaluation
	Quantitative Analysis of Enzyme Function

	Limitation and Future Work
	Future Work in Progress: AI-driven Enzyme Design Platform
	Open Discussion: Why is Substrate/Reaction-specified Enzyme Design Needed?
	Related Work
	Protein Representation Learning
	Protein Function Annotation
	Protein Evolution
	Generative Models for Protein and Pocket Design

	Co-Evolutionary MSA Transformer
	Co-evolution vocabulary
	coEvoFormer Implementation

	Molecule GNN
	3D Molecule GNN
	2D Molecule GNN

	Vector Field Computation and Sampling
	Background
	Continuous Variable Trajectory
	Discrete Variable Trajectory

	EnzymeFlow SE(3)-equivariance
	EnzymeFlow Dataset Statistics
	Work in Progress: Enzyme Pocket-Reaction Recruitment with Enzyme CLIP Model
	Inpainting Catalytic Pocket with ESM3 for Full Enzyme Recruitment

	RFDiffAA-designed Pockets
	EnzymeFlow Neural Network Implementation

