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Abstract

Lewis signaling games are a class of simple communication games for simulating1

the emergence of language. In these games, two agents must agree on a commu-2

nication protocol in order to solve a cooperative task. Previous work has shown3

that agents trained to play this game with reinforcement learning tend to develop4

languages that display undesirable properties from a linguistic point of view (lack5

of generalization, lack of compositionality, etc). In this paper, we aim to provide6

better understanding of this phenomenon by analytically studying the learning7

problem in Lewis games. As a core contribution, we demonstrate that the standard8

objective in Lewis games can be decomposed in two components: a co-adaptation9

loss and an information loss. This decomposition enables us to surface two po-10

tential sources of overfitting, which we show may undermine the emergence of a11

structured communication protocol. In particular, when we control for overfitting12

on the co-adaptation loss, we recover desired properties in the emergent languages:13

they are more compositional and generalize better.14

1 Introduction15

Understanding the dynamics of language evolution has been a challenging if not controversial research16

topic in the language sciences [28, 12]. Given that the very first human language cannot be unearthed17

from fossils [5], computational models have been designed to simulate the emergence of a structured18

language within a controlled environment. In this line of work, Lewis signaling games [50] are among19

the most widespread playground environments to model language emergence: they are inherently20

simple, yet they exhibit a rich set of communication behaviors [16, 61]. Therefore, understanding21

Lewis games dynamics may shed light on the prerequisites of language emergence.22

In their original form, Lewis signaling games involve two agents: a speaker and a listener. The speaker23

observes a random state from its environment, e.g. an image, and sends a signal to the listener. The24

listener then undertakes an action based on this signal. Finally, both agents are equally rewarded based25

on the outcome of the listener’s action. The resolution of this cooperative two-player game requires26

the emergence of a shared protocol between the agents [50, 16]. One way to model the emergence of27

such protocol is to give the agents the capacity to learn. The agents, and therefore, the communication28

protocol, are shaped by a sequence of trials and errors over multiple games [72, 40, 66, 61]. This29

learning-centric approach allows for a fine analysis of the language emergence dynamics [61, 32]. It30

also raises challenging learning-specific questions: What are the inductive biases present in the agent31

architecture and loss function that shape the emergent language [39]? How do agents generalize from32

their training set? Is the resulting language compositional [8]? What is the impact of overfitting [48]?33

Recently, there has been a resurgence of interest for such learning-based approaches following34

advances in machine learning [47]. In these approaches, the speakers and listeners are modeled as deep35

reinforcement learning agents optimized to solve instances of the Lewis games [48, 29, 56, 51, 25].36
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The vast majority of these works explore Lewis games from an empirical perspective. However,37

some of the recent experimental results are at odds with experimental findings from the linguistics38

literature. For instance, the emergent protocols lack interpretability [44], generalization does not39

always correlate with language compositionality [9], successful strategies are not naturally adopted in40

populations [59, 11], and anti-efficient communication may even emerge [10]. It is unclear whether41

those empirical observations result from a learning failure, e.g. optimization problems, overfitting,42

or whether they are symptomatic of more fundamental limitations of Lewis games for modeling43

language emergence, e.g. lack of embodiment [27, 4, 54, 33]. Overall, it is crucial to establish new44

analytical insight to analyze Lewis games in the learning setting.45

In this paper, we introduce such an analytical framework to diagnose the learning dynamics of deep46

reinforcement learning agents in Lewis signaling games. As a core contribution, we demonstrate under47

mild assumptions that the loss of the speaker and listener can be decomposed into two components48

when resolving Lewis signaling games: (i) an information loss that maximizes the mutual information49

between the observed states and speaker messages; (ii) a co-adaptation loss that aligns the speaker50

and listener’s interpretation of the messages (Section 2). Based on this decomposition, we empirically51

examine the evolution of these two losses during the learning process (Section 5). In particular,52

we identify an overfitting problem in the co-adaptation loss between the agents which undermines53

the emergence of structured language. We then show that the standard setup used in the deep54

language emergence literature consistently suffers from this overfitting issue (Section 5.1). This55

realization explains some of the contradictory observations [9] and experimental choice from past56

works [56, 51, 59]. Finally, we explore regularization methods to tackle this co-adaptation overfitting.57

We observe that reducing the co-adaptation overfitting allows for developing a more structured58

communication protocol (Section 5.2).59

All in all, our contributions are three-fold: (i) we provide a formal description of Lewis games from a60

learning standpoint (Section 2.3); (ii) we apply this framework in experiments to show that degenerate61

results are primarily due to overfitting in the co-adaptation component of the game (Section 5.1) ;62

(iii) we propose natural ways of tackling this overfitting issue and show that, when we control the63

receiver’s level of convergence, we obtain a well-structured emergent protocol (Section 5.2).64

2 Analyzing Lewis Games65

We show that Lewis games’ objective decomposes into two terms: (i) an information loss that66

measures whether each message refers to a unique input; (ii) a co-adaptation loss that quantifies the67

alignment of the speaker’s and listener’s interpretation of the messages. For the sake of simplicity68

and to ease the reader intuition, we focus on the reconstruction variant of Lewis games in the main69

paper, but generalize our analysis to a more general class of Lewis games in Appendix A.70

2.1 Background: Lewis Reconstruction Games71

Game formalism In reconstruction Lewis games, a speaker observes a random object of its envi-72

ronment. The speaker then sends a descriptive message, which a second agent, the listener, uses73

to reconstruct the object. The success of the game is quantified by how well the original object is74

reconstructed [36, 10, 58, 59]. Formally, the observed object denoted by x is selected from a set75

of objects denoted by X . We denote by X the random variable characterizing x, sampled from76

distribution p. The intermediate message sent by the speaker m belongs to the set of all potential77

messages M. The speaker follows a policy πθ which samples a message m with probability πθ(m|x)78

conditioned on object x. We denote by Mθ the random variable characterizing the message m,79

sampled from πθ(·|X). We denote by πθ(m) =
∑

x πθ(m|x)p(x) the marginal probability of a80

message given policy πθ. Given a message m, the listener outputs a probability distribution over81

inputs ρϕ(·|m), and the probability of reconstructing the entire object x given m is thus ρϕ(x|m).82

Game objectives In reconstruction games, the listener minimizes the negative log likelihood of83

the reconstructed object whereas the speaker maximizes a reward rϕ(x,m), encoding the listener’s84

reconstruction success. The speaker-listener optimization system is therefore:85 {
Lθ = −Ex∼p,m∼πθ(·|x)[rϕ(x,m)]
Lϕ = −Ex∼p,m∼πθ(·|x)[log ρϕ(x|m)]· (1)
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We here consider the case where the speaker’s reward is the opposite of the listener’s loss, rϕ(x,m) =86

log ρϕ(x|m). Thus, both agents optimize the same objective:87

Lθ,ϕ = −Ex∼p,m∼πθ(·|x)[log ρϕ(x|m)], (2)

where optimizing the speaker is a reinforcement learning problem whose parameters θ are optimized88

using policy gradient [67] and optimizing the listener is a supervised learning problem whose89

parameters ϕ are optimized with gradient descent.90

2.2 Building Intuition on the Lewis Reconstruction Game Learning Dynamics91

To get a better intuition of the dynamic of Lewis reconstruction games, we can analyze the form taken92

by the optimal listener, given speaker πθ. Given a message m, the optimal listener’s distribution93

ρθ(·|m) can be written in closed-form:94

ρθ(x|m) :=
p(x)πθ(m|x)∑

x′∈X p(x′)πθ(m|x′)
· (3)

At each update, the listener gets closer to its optimum ρθ(·|m). If we suppose that the listener95

perfectly fits ρθ(·|m) at any moment, the loss becomes:96

Lθ,ϕ = −Ex∼p,m∼πθ(·|x)[log ρ
θ(x|m)] = H(X|Mθ) = −I(X;Mθ) +H(X) (4)

where H(X|Mθ) is the conditional entropy of X conditioned on Mθ and I(X;Mθ) is the mutual97

information between X and Mθ. Thus, if the listener is optimal at every point in time, the speaker’s98

task merely becomes the construction of a message protocol that maximizes the mutual information99

between objects and messages, i.e. the construction of an unambiguous message protocol.100

In practice, the listener never perfectly fits the optimum. In the following, we elucidate the effect of101

this gap between the listener and its optimum on the dynamics of the game.102

2.3 Analytical Result: The Lewis Reconstruction Games Loss Decomposition103

In Lewis reconstruction games, the agents’ loss can be decomposed into two terms:

Lθ,ϕ = H(X|Mθ)︸ ︷︷ ︸
Linfo

+Em∼πθ
DKL(ρ

θ(·|m)||ρϕ(·|m))︸ ︷︷ ︸
Ladapt

, (5)

• An information term Linfo quantifies the degree of ambiguity of the language protocol. It
is minimal when each message refers to a unique object;

• A co-adaptation term Ladapt quantifies the gap between the listener and its optimum: the
speaker’s posterior distribution. This co-adaptive term is optimized both by the speaker
and the listener. When the listener is optimal, this co-adaptation objective is zeroed.

104

The proof is provided in Appendix A and extends to general cooperative rewards, e.g. covers the105

accuracy reward, and more general variants of Lewis signaling games, e.g. discrimination games.106

This decomposition gives us insights on the game dynamics and the constraints that shape languages107

in the game with neural agents:108

The information loss Linfo captures the speaker’s intrinsic objective: to develop an unambiguous109

protocol. Linfo is minimal, equals to 0, when the communication protocol is unambiguous, i.e. every110

message from the speaker’s policy πθ refers to a unique object. Conversely, Linfo is maximal, equal111

to H(X), when the message protocol is fully ambiguous, and X and Mθ are independent variables.112

The co-adaptation loss Ladapt is specific to learning agents. This loss measures how far the listener113

ρϕ is from its optimum ρθ. If Ladapt = 0, the listener and its optimum coincide. Ladapt has the114

particularity to be optimized by the two agents. From the listener’s side, it merely corresponds to the115

optimization of its supervised task. From the speaker’s side, it brings out that the speaker must adapt116

its language to the listener in addition to build an unambiguous message protocol. In other words, the117

co-adaptation loss pushes the speaker to develop a language that can be easily recognized by listeners.118

This pressure diminishes as the listener approaches its optimum.119
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From a practical perspective, Equation (5) yields the following individual gradients:120 {
∇θLθ = −∇θI(X,Mθ) +∇θEm∼πθ

DKL(ρ
θ(·|m)||ρϕ(·|m))

∇ϕLϕ = ∇ϕEm∼πθ
DKL(ρ

θ(·|m)||ρϕ(·|m)),
(6)

where the listener only receives gradients from the co-adaptation term, and the speaker receives121

gradients from both terms.122

This loss decomposition also finds echoes in the cognitive science literature in the form of an123

expressivity vs. learnability trade-off [63]; see Section 6 for a detailed discussion.124

2.4 Generalization Gaps in Lewis Reconstruction Games125

We explore another facet of the loss decomposition that arises from learning. As agents are trained126

on partial views of their environment, it opens questions of overfitting and generalization to unseen127

objects. As is customary in machine learning, we consider agents trained on a fixed, finite sample128

from the data distribution: the training set. Let us denote by ptrain the empirical object distribution129

over the training set and Xtrain an object sampled from ptrain. Similarly let M train
θ denote a130

message sampled from πθ(.|Xtrain), πtrain
θ (m) =

∑
x πθ(m|x)ptrain(x) the marginal probability131

of a message on the training set, and ρθtrain(x|m) = ptrain(x)πθ(m|x)∑
x∈X ptrain(x)πθ(m|x) the speaker’s posterior132

distribution with respect to the prior distribution ptrain. The training loss can be written as follow:133

Ltrain
θ,ϕ = −Ex∼ptrain,m∼πθ(·|x)[log ρϕ(x|m)] = H(Xtrain|M train

θ )︸ ︷︷ ︸
Ltrain

info

+Em∼πtrain
θ

DKL(ρ
θ
train(·|m)||ρϕ(·|m))·︸ ︷︷ ︸

Ltrain
adapt

Decomposing the gap between Ltrain
θ,ϕ and Lθ,ϕ uncovers two sources of overfitting:134

Ltrain
θ,ϕ = Lθ,ϕ + Ltrain

info − Linfo︸ ︷︷ ︸
information overfitting

+ Ltrain
adapt − Ladapt︸ ︷︷ ︸

co-adaptation overfitting

· (7)

Intuitively, information overfitting occurs when the speaker only develops an unambiguous language135

on the training set, but ambiguities remain on the total dataset. Co-adaptation overfitting occurs when136

the two agents agree on a common communication protocol on the training data, but not on all data.137

3 Method138

This section gathers the methodological tools required to empirically study the loss decomposition.139

3.1 Probing the Information and Co-adaptation Losses140

Figure 1: Probing method: (1) the speaker and listener are frozen and the probe listener is initialized.
(2) the probe listener is trained on ptrain (resp. p) with the speaker’s messages until convergence; (3)
The speaker takes inputs from ptrain (resp. ptest) and messages the probe listener and the listener.
The resulting loss of the probe listener is L̂info, and the loss of the listener is used to estimate L̂adapt.

Computing Linfo and Ladapt directly necessitates estimating the posterior distribution of the speaker,141

ρθ(. | m). Doing so requires summing over all X which is intractable. Fortunately, deep model are142
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large enough so that they can perfectly solve their task on their train set. We can leverage this fact to143

compute empirical estimates L̂info and L̂adapt of Linfo and Ladapt respectively by using an auxiliary144

listener trained to optimality.145

We here detail an empirical probing mechanism to obtain estimates L̂info and L̂adapt given speaker146

πθ and listener ρϕ. As noted in Equation 3, the posterior ρθ also corresponds to the optimal listener.147

Therefore, we obtain an estimate of the posterior by training a listener to optimality, and use this148

optimal listener to decompose the loss. In practice, to obtain this optimal listener, we freeze speaker149

πθ and listener ρϕ and initialize a new, auxiliary listener from scratch, which we refer to as the probe150

listener. As illustrated in Figure 1, the probe listener is trained to reconstruct object x from message151

m, with x drawn from distribution p or ptrain and m sampled according to the frozen speaker policy152

πθ(.|x), until a stopping criterion is met. We then distinguish between the train and test estimates:153

L̂train
info = −Ex∼ptrain,m∼πθ(·|x)[log ρ

train
ω∗ (x|m)]

L̂train
adapt = −Ex∼ptrain,m∼πθ(·|x)[log ρϕ(x|m)]− L̂train

info

(8)

and,154

L̂test
info = −Ex∼ptest,m∼πθ(·|x)[log ρω∗(x|m)]

L̂test
adapt = −Ex∼ptest,m∼πθ(·|x)[log ρϕ(x|m)]− L̂test

info

(9)

where ρtrainω∗ and ρω∗ are the probe listeners trained over distributions ptrain and p respectively.1 Note155

that this probing mechanism, while tractable, is computationally costly as it necessitates training a156

new probe listener to convergence, and so we only use it as a valuable diagnosis tool.157

3.2 Decreasing the Importance of the Co-adaptation Loss in the Speaker’s Loss158

As explained in Section 2.3, the information loss alone is sufficient for the speaker to develop an159

unambiguous language. This begets the question: does the co-adaptation loss have any bearing on the160

emergent language at all? We elucidate this question by reducing the weight of the co-adaptation term161

in the decomposition. To that end, we use the probing method described above. With ρtrainω∗ (x|m) the162

probe listener’s estimate of the speaker’s posterior on the train set, we build the following reward:163

rϕ(x,m;α) = (1− α)× log ρtrainω∗ (x|m)︸ ︷︷ ︸
probe listener reward

+ α× log ρϕ(x|m)︸ ︷︷ ︸
standard listener reward

(10)

where α is a weight in [0, 1]. As derived in Appendix B, the speaker’s loss then becomes:164

Lθ(α) = L̂train
info + αL̂train

adapt where α ∈ [0, 1] (11)

Hence, α balances the two speaker objectives (up to an approximation error). When α = 1, the loss165

falls back to the classic setting. When α = 0, the co-adaptation term is removed on the speaker side;166

note that the Lewis game can still be solved since the listener still optimizes the co-adaptation term.167

We experimentally analyse the effect of α on resulting languages in Section 5.1.168

3.3 Controlling the Listener’s Co-adaptation Loss Level of Convergence169

As mentioned in 2.2, the influence of Ladapt on the co-adaptation term in the speaker’s loss is170

modulated by the listener’s level of convergence to its optimum. To understand the effect of this171

co-adaptation, we decouple the speaker and listener training and train the listener via three procedures:172

Continuous listener The listener is continuously trained, jointly with the speaker. This is the standard173

setting in the emergent communication literature, and serves to report the baseline behavior.174

Partial listener The listener is re-initialized after each of the speaker’s update and trained on the175

training set for Nstep before updating the speaker again. This baseline enables fine-grained analysis176

of the influence of under-training (low Nstep) and over-training (large Nstep) the listener.177

1The estimate is trained on p, the full distribution of objects, and not ptest. Training on ptest would result in
an optimal listener overfitting on the test set, which would results in bad estimates of the mutual information.
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Early stopping listener The listener is also re-initialized after each of the speaker’s update but is178

now trained until an early stopping criterion is met on the validation set. This allows us to get the179

best estimate of the posterior ρθ(.|m). This can be seen as a variant of the partial listener with an180

adaptive number of steps Nstep.181

4 Experimental settings182

4.1 Game description183

Unless specified, all our experiments are run on the reconstruction game defined in Section 2.1.184

Experiments are run over 6 seeds and reach > 99% training reconstruction scores unless otherwise185

stated. Our implementation is based on the EGG toolkit [35] and the code is available at HIDDEN.186

Environment We consider objects x =: (x1, ..., xK) ∈ X =: X1 × ... × XK characterized by K187

attributes where attribute i may take |Xi| different values. By design, this synthetic environment allows188

us to test the ability of agents to refer to unseen objects by communicating their attributes [3, 44].189

Each object is the concatenation of one-hot representations of the attributes (xi)1≤i≤K . Objects have190

K = 6 attributes, each taking 10 different values, for a total of 1 million objects. Training, validation191

and test sets are randomly drawn from this pool of objects (uniformly and without overlap), and are192

respectively composed of 4000, 1000 and 1000 elements. Thus, the agents only have access to a193

small fraction (< 1%) of the environment, making the generalization problem challenging.194

Communication channel Messages m =: (mj)
T
j=1 ∈ M =: VT are sequences of T tokens where195

each token is taken from a finite vocabulary V , finishing by a hard-coded end-of-sentence token196

EoS. In our experiments, messages have maximum length T = 10 and symbols are taken from a197

vocabulary of size |V| = 10 to prevent a bottleneck in the communication channel.198

Speaker model The speaker follows a recurrent policy: given an input object x, it samples for all199

t ∈ [1, T ] a token mt with probability πθ(mt|m<t, x). The speaker takes in the object x as a vector200

of size K × |X.| and passes it through a linear layer of size 128 to obtain an object embedding, used201

to initialize a LSTM [31] of size 128 with layer normalization [2]. At each time step, the LSTM’s202

output is fed into a linear layer of size |V|, followed by a softmax, to produce πθ(mt|m<t, x)203

Listener model Given a message m = (m1, ...,mT ), the listener outputs for each attribute k a204

probability distribution over the |Xk| values: ρkϕ(·|m). The probability of reconstructing the entire205

object x given m is then ρϕ(x|m) :=
∏

k ρ
k
ϕ(x

k|m). The listener passes each message mt through206

an embedding layer of dimension 128 followed by a LSTM with layernorm of size 128. The final207

recurrent state hl
T is passed through K linear projections of size |X.|, each followed by a softmax,208

providing K independent probability distributions of sizes |X.| to predict each attribute of x.209

Optimization The agents are optimized using Adam [38] with a learning rate of 5 · 10−4, β1 = 0.9210

and β2 = 0.999 and a batch size of 1024. For the speaker we use policy gradient [67], with a baseline211

computed as the average reward within the minibatch, and an entropy regularization of 0.01 to the212

speaker’s loss [73].213

4.2 Evaluating emergent languages properties214

Generalization We measure generalization by computing the average test reconstruction score over215

all the attributes of a probe listener trained on the training set using an early stopping criterion on216

the validation set. Indeed, the trained listener ρϕ may overfit to the training set, and so using it may217

under-estimate. Using a separate listener removes this bias.218

Compositionality Compositionality is a fundamental feature of natural language often seen as a219

precondition to generalize [6, 68, 70]. We assess the compositionality by computing the topographic220

similarity [8, 48]. It is defined as the Spearman correlation [43, 71] between the distance in input221

space, i.e. the average number of common attributes, and the distance in message space, i.e. the222

edit-distance between the corresponding messages [49]. As we here deal with large object space and223

stochastic policies, we use a bootstrapped estimate of topographic similarity as in [42] to get reliable224

numbers. We sub-sample 1000 elements x from the object space X , and sample the corresponding225

message m from the speaker’s policy πθ(·|x). We compute the topographic similarity for this batch of226

1000 pairs (x,m). We repeat this protocol 100 times and take the mean to measure compositionality.227
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5 Empirical results228

5.1 Visualizing the loss decomposition dynamics229
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Figure 2: (a) Training dynamics (α = 1). (b,c): Agents score as a function of co-adaptation weight α.

We here visualize the loss decomposition dynamics. Following the protocol of 3.2, we control Ltrain
adapt230

in speaker’s loss with weight α to understand the influence of the co-adaptation term on the language.231

The co-adaptation task overfits rapidly We plot information and co-adaptation training dynamics232

in the standard setting (α = 1). Note that both train and test information losses quickly converge233

to 0, in other words the speaker succeeds in developing a protocol that is unambiguous on both the234

training set and the overall distribution. On the other hand, the test co-adaptation loss diverges while235

the train co-adapation keeps dismishing, highlighting a clear overfitting problem.236

The co-adaptation task promotes generalization We then display in Figure 2 the evolution of the237

information and co-adaptation losses for different co-adaptation weight α (models selected by early238

stopping). We observe that up-weighting Ltrain
info tends to enforce both information and co-adaptation239

overfitting. Thus, even though the co-adaptation loss overfits, it is important to encourage the speaker240

to build a better language. This is confirmed when looking at generalization accuracies. From α = 0241

to α = 1 there is a gain of 15 points of generalization. In conclusion, we note that (i) balancing242

the loss in favor of Ltrain
info has a negative impact on generalization, (ii) the co-adaptation loss Ltrain

adapt243

pushes the speaker to develop a language that generalizes better.244

These experiments highlight two keys findings: (i) co-adaptation is crucial for generalization ; (ii) in245

standard settings, the co-adaptation loss overfits substantially, whereas the information loss does not.246

5.2 Countering co-adaptation overfitting247

We here investigate whether limiting overfitting in the co-adaptation loss may push towards languages248

that generalize better and are more stuctured. As described in 3.3, we compare three control baselines:249

Continuous listener, Partial listener with varying levels of convergence, and Early stopping listener.250

5 700

Figure 3: (a,b) Evolution of generalization and top.sim with Partial listener’s number of learning
steps Nstep ; (c) Top. sim VS. generalization. The color level of orange dots increases with Nstep.
Blue (resp. green) lines and points refer to the Continuous listener (resp. Early stopping listener).

Countering co-adaptation overfitting improves generalization In Figure 3, we observe that the251

level of convergence of the Partial listener between each speaker’s update (controlled by Nstep)252

has a strong impact on the generalization of the emergent protocol. Overall, we recover classic253
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machine learning trends when varying Nstep: when Nstep < 50, both train and test accuracy are low254

— the agents underfit. When 50 < Nstep < 250, the train and test accuracy are almost optimal —255

the agents are in good training regime. Finally, when Nstep > 250, the train accuracy is maximal256

while the test accuracy collapses — the agents overfit. These observations reveal that the level257

of convergence of the listener has a substantial impact on the final emergent language capacity to258

generalize. Recall that, in these experiments, the direct effect of the listener’s overfitting is mitigated,259

as we measure generalization using an auxiliary listener that is early stopped, and should therefore260

not overfit as noted in Section 4. The listener’s overfitting impacts the speaker’s update through the261

co-adaptation loss, which, by inducing a poorer final language leads to a degradation in generalization.262

Additionally, Figure 3 shows that the continuous listener, standard in the Lewis games literature,263

provides generalization performance similar to the worst overfitting listeners.264

Controlling the listener’s co-adaptation level appears crucial to let the speaker develop a language that265

generalizes well; this effect may have been underestimated in the standard Lewis learning dynamic.266

Countering co-adaptation overfitting improves compositionality Figure 3 reveals that composi-267

tionality follows the same pattern. In the underfitting regime, the topographic similarity is low but still268

outperforms the Continuous listener. Similarly, it is also low in the overfitting regime. In-between269

the two — which corresponds to high generalization in Figure 3 — the topographic similarity reaches270

high values, which suggests that more compositional languages emerge. This indicates that the271

listener’s lack of co-adaptation overfitting promotes structured languages.272

Compositionality correlates with generalization In Figure 3, we plot the correlation between273

generalization and compositionality. As opposed to [9], we observe a strong correlation between274

generalization and topographic similarity when varying the Partial listener’s level of convergence.275

In particular, we identify two correlation branches: one belonging to the underfitting regime and276

the second to the overfitting regime. Together, they retrace the evolution of generalization and277

compositionality with respect to Nstep. We see that Continuous listeners belong to the end of this278

trajectory, in the overfitting regime. Note that the blue rectangle — which delineates the range of279

values reached with the Continuous listener — corresponds to the classic learning setting in the280

literature. As shown, this range is tight, which may explain the initial negative results reported by [9].281

In conclusion, the listener exerts a necessary pressure on the speaker to develop a structured language282

that generalizes better. This pressure can be controlled by limiting the listener’s level of overfitting,283

which is inevitably too high when the listener is trained continuously as is usually done.284

Comparison with standard regularization methods In practice, re-initializing the listener as done285

with the Partial or Early stopping listener is costly. We thus test whether performances comparable to286

Figure 3 can be obtained by controlling the listener’s level of overfitting with standard regularization287

methods. In Table 1, we report the influence of applying common regularization methods to the288

listener on various metrics of the language. We find that regularization consistently results in289

noticeable improvements. Moreover, once again, gains of generalization correlate with gains of290

compositionality. These trends corroborate our hypothesis that controlling the listener’s learning is291

key to encourage the speaker to develop more structured languages. However, those methods remain292

under the upper bound reached by the Early stopping listener, which suggests that further research293

on regularization in cooperative games is warranted.294

We complement this analysis in Appendix C.2 by studying the impact of regularization on the295

speaker’s side, and show that such regularization does not result in similar improvements. This296

indicates that the listener is the main contributor to the co-adaptation overfitting.297

5.3 Scaling to the Image Discrimination Games298

To validate our empirical findings beyond synthetic games, we scale our approach to complex games299

with natural images as advocated by [11]. We thus train our agents on a discriminative game on top of300

the CelebA [52] and ImageNet [60, 18] datasets while applying previous protocol. We only use a small301

ratio of the training set to increase the generalization difficulty of the task. We provide all the training302

details and game settings in Appendix D.1 and report our results in Table 1. In all cases, overfitting303

and generalization issues still occur and performances can indeed be improved by controlling the304

listener’s level of convergence. However, Appendix ?? shows that gain of generalization does not305

correlate with gain of topographic similarity, supporting that agents’ language structure is not captured306

by the topographic similarity in image based settings [11, 1].307
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Gen. ↑ Compo. ↑ L̂test
adapt ↓

Continuous 0.58±0.05 0.22±0.02 4.64±1.22

Dropout 0.64±0.03 0.24±0.01 4.86±0.52

No LN. 0.70±0.03 0.24±0.02 4.68±0.38

Weight decay 0.72±0.03 0.25±0.03 4.29±0.56

No LN. + WD 0.87±0.07 0.30±0.03 2.12±0.67

Early stopping 0.95±0.04 0.39±0.04 1.10±0.69

Top Partial 0.95±0.03 0.42±0.02 0.97±0.55

Generalization ↑

CelebA 1/20 1/100

Continuous 0.67±0.02 0.39±0.07

Early stopping 0.80±0.03 0.69±0.04

ImageNet 1/20 1/100

Continuous 0.77±0.01 0.51±0.03

Early stopping 0.81±0.01 0.64±0.01

Table 1: (left) Performance comparisons between Continuous listener, Partial listener, Early stopping
listener and classic listener regularization, e.g. weight decay [30, 45], Dropout [65] and layernorm [2].
Regularization parameters were tuned and are detailed in Appendix C.1 ; (right) Generalization scores
for continuous baselines and Early stopping listener on visual Lewis Games. 1/20 (resp. 1/100)
refers the subset ratio of the dataset.

6 Related work308

The decomposition of the loss function in the Lewis Game that we introduced finds echos in the309

cognitive science literature. According to Skyrms [61], communicative organisms or systems are310

confronted with two types of information: about the environmental states shared by the agents311

(called objective information), and about how an agent would react to a signal (called subjective312

information). Communication protocols emerge as a trade-off between constraints related to those313

two types of information [40, 41]: the sender should be expressive [22, 21] and transcribe the314

information available in the world with as little ambiguity as possible, which has been described as a315

bias against ambiguity [64] ; sender and receiver should agree on the same referring system, which316

has been described as a conceptual pact [7]. The latter has been shown to impose compressibility317

and learnability pressures promoting structure [69, 63, 75]. This analysis resonates well with our318

analytical decomposition of the loss function in the Lewis game.319

The first term of the decomposition, which we called the information loss, has been addressed by320

previous work that assumed that linguistic structure and generalization emerge from the requirement321

of creating an unambiguous language. In this line of work, studies have either manipulated the322

complexity of the environment [11, 26, 62, 53], restricted the bandwidth of the communication323

channel [44, 57], or added noise to the message [46, 76]. In our main experiment, we do not324

apply such information constraints to better focus on the second term of the decomposition, the325

co-adaptation constraint, less studied within a machine learning approach. Previous work have326

assumed that the co-adaptive dynamics encourage speakers to develop a more structured language for327

learnability reasons [51]. Support for this hypothesis can be found directly via the implementation of328

a neural variant of Iterated Learning [56] or the introduction of learning speed heterogeneities [59]329

and indirectly via the restriction of agents capacity [57], the variation of the communication-graph in330

populations [25, 37] or the addition of newborn agents [14]. In our paper, we demonstrate that a co-331

adaptation term is always present in standard agents optimization protocols and show that controlling332

co-adaptation overfitting enhances language properties. The existence of an overfitting regime found333

under the default setting (continuous training) may explain the counter-intuitive lack of relationship334

between compositionality and generalization previously reported with neural agents [47, 9, 34, 19].335

7 Conclusion336

In this paper, we propose a methodological approach to better understand the dynamics in Lewis337

signaling games for language emergence. It allows us to surface two components of the training:338

(i) an information loss, (ii) a co-adaptation loss. We shed light that the agents tend to overfit this339

co-adaptation term during training, which hinders the learning dynamic and degrades the resulting340

language. As soon as this overfitting is controlled, agents develop compositional languages that better341

generalize. Remarkably, this emergent compositionality does not result from environmental factors,342

e.g. communication bottleneck [39], under-parametrization [44, 23], population dynamics [11, 59],343

memory restriction [14, 15] or inductive biases [58], but only through a trial-and-error process.344

Therefore, we advocate for a better comprehension of the optimization and machine learning issues.345

As illustrated in this paper, such understanding may unveil contradictions between computational346

models and language empirical observations and better expose the existing synergies between learning347

dynamics and environmental factors [24, 74, 55, 13, 17, 20].348
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