
Under review as a conference paper at ICLR 2021

A EXPERIMENT SETUP

We perform experiments on six commonly used classification datasets: PERMUTED MNIST,
ROTATED MNIST (LeCun et al., 1998), SPLIT SVHN (Netzer et al., 2011), SPLIT CIFAR10
(Krizhevsky et al., 2009), SPLIT CIFAR100 (Krizhevsky et al., 2009), and SPLIT MINIIMAGENET
(Vinyals et al., 2016).

• PERMUTED MNIST (Goodfellow et al., 2013) is a variant of the MNIST dataset of
handwritten digits (LeCun et al., 1998), where each task applies a fixed random pixel
permutation to the original dataset. The benchmark dataset consists of 20 tasks, each with
1000 samples from 10 different classes.

• ROTATED MNIST (Lopez-Paz & Ranzato, 2017) is another variant of the MNIST dataset
of handwritten digits (LeCun et al., 1998), where each task applies a fixed random image
rotation to the original dataset. The benchmark dataset consists of 20 tasks, each with 1000
samples from 10 different classes.

• SPLIT SVHN is a variant of the SVHN dataset (Netzer et al., 2011) that consists of 5 tasks,
each with two consecutive classes. Since the benchmark dataset is much more challenging
than the MNIST variants, we use all of its 73,257 training samples (i.e. 14,650 samples per
task) to train our model and the baselines.

• SPLIT CIFAR10 is a variant of the CIFAR-10 dataset (Krizhevsky et al., 2009). Similar
SPLIT SVHN, the benchmark dataset consists of 5 tasks, each with two consecutive classes.
We use all of its 50,000 training samples (i.e. 10,000 samples per task) to train our model
and the baselines.

• SPLIT CIFAR100 is a variant of the CIFAR-100 dataset (Krizhevsky et al., 2009). The
benchmark dataset consists of 20 tasks, each with 5 consecutive classes. We use all of its
50,000 training samples (i.e. 2,500 samples per task) to train our model and the baselines.

• SPLIT MINIIMAGENET is a variant of the MINIIMAGENET dataset (Krizhevsky et al.,
2009). The benchmark dataset consists of 20 tasks, each with 5 consecutive classes. We use
all of its 50,000 training samples (i.e. 2,500 samples per task) to train our model and the
baselines. Each image is resized to 84 ⇥ 84 pixels.

B MODEL ARCHITECTURES

As mentioned, while most of previous work uses multi-head architectures and assumes knowledge of
task boundaries at test time, we employ a shared classifier head for all tasks. For the MNIST datasets,
the image encoders f✓1 (for graph construction) and f✓2 (for latent computation) share a multi-layered
perceptron with two hidden layers of 256 ReLU neurons, followed by two separate linear mappings,
one for each of the encoders. For SPLIT SVHN, SPLIT CIFAR10, SPLIT CIFAR100, and SPLIT
MINIIMAGENET, the image encoders share a simple convolutional network with the following
structure: conv 64! conv 64! maxpool! conv 64! conv 64! maxpool! conv 64!

conv 64! maxpool, where conv NF is a 3⇥ 3 convolution with NF output filters, BatchNorm, and
ReLU activations. For all datasets, another linear mapping follows the image encoder f✓1 before a
Gaussian kernel computes the similarities between image embeddings. Finally, the classifier head
consists of a RELU activation and a single linear mapping.

C BASELINE ARCHITECTURES

We use the same neural network architectures for all the baselines described in the paper: a multi-
layered perceptron with two hidden layers of 400 ReLU neurons on PERMUTED MNIST and
ROTATED MNIST, following (Hsu et al., 2018), and a ResNet-18 (He et al., 2016) with 20 filters
across all layers on SPLIT SVHN and SPLIT CIFAR10, following (Lopez-Paz & Ranzato, 2017). For
all datasets, the baselines consist of more parameters than our corresponding models. The numbers
of parameters in each experiment are detailed in Table 4.

13

Under review as a conference paper at ICLR 2021

We adopt the implementations of EWC (Kirkpatrick et al., 2017), GEM (Lopez-Paz & Ranzato,
2017), and MER (Riemer et al., 2018) from the authors’ repositories 1 2. Our implementation of GCL
is available at https://bit.ly/2S5kQ2t.

Table 4: Number of trainable parameters in continual learning models.

Method Finetune EWC GEM ER MER GCL
SPLIT MNIST 478K 478K 478K 478K 478K 406K
PERMUTED MNIST 478K 478K 478K 478K 478K 406K
ROTATED MNIST 478K 478K 478K 478K 478K 406K

SPLIT SVHN 1.09M 1.09M 1.09M 1.09M - 326K
SPLIT CIFAR10 1.09M 1.09M 1.09M 1.09M - 326K
SPLIT CIFAR100 1.09M 1.09M 1.09M 1.09M - 326K
SPLIT MINIIMAGENET 1.09M 1.09M 1.09M 1.09M - 343K

D ADDITIONAL TASK-FREE BASELINES

We also note that despite our attempts to tune parameters for MER (Riemer et al., 2018) on SPLIT
SVHN and SPLIT CIFAR10, the baseline does not perform reasonably well. The model uses a batch
size of 1 and requires multiple passes through the episodic memory per batch, so it is much slower
than our model and all other baselines. Due to limited time and computational resources, we do not
further investigate the baseline and therefore avoid reporting immature results for fairness.

However, we include results of CN-DPM (Lee et al., 2020), a competitive task-free model based
on Dirichlet process mixture models in Table 5. Our setup for SPLIT CIFAR10 is analogous to
that of Lee et al. (2020), so we directly quote the numbers for CN-DPM from the paper. Although
CN-DPM performs favorably among task-free approaches to continually learning, including GSS
(Aljundi et al., 2019c), our model outperforms CN-DPM by a significant margin, even when using a
smaller memory size.

Table 5: GCL results and CN-DPM results with different memory sizes.

Method SPLIT SVHN SPLIT CIFAR10

250 500 500 1000

ER (Chaudhry et al., 2019) 45.51 ± 3.03 57.51 ± 2.77 36.08 ± 1.09 45.75 ± 1.82
CN-DPM (Lee et al., 2020) � � 43.07 ± 0.16 45.21 ± 0.18
GCL (Ours) 60.68 ± 1.67 65.79 ± 1.54 53.87 ± 0.97 57.26 ± 0.28

E MEMORY USAGE

Both GCL and ER (Chaudhry et al., 2019) uses an episodic memory to store images and labels from
past tasks. The only additional memory usage of GCL comes from the context graph G, which
is represented by a square matrix whose entries intuitively describe pairwise similarities between
such images. Given a memory consisting of |M| images of size C ⇥H ⇥W , it only requires |M|

2

floating points to store the matrix.

1https://github.com/facebookresearch/GradientEpisodicMemory
2https://github.com/mattriemer/mer

14

Under review as a conference paper at ICLR 2021

Table 6: Memory usage of ER and GCL for various datasets.

DATASET |M| Image Size ER GCL

PERMUTED MNIST 1000 1 ⇥ 28 ⇥ 28 3.284 MB 7.284 MB
ROTATED MNIST 1000 1 ⇥ 28 ⇥ 28 3.284 MB 7.284 MB
SPLIT CIFAR10 250 3 ⇥ 32 ⇥ 32 3.109 MB 3.359 MB
SPLIT SVHN 250 3 ⇥ 32 ⇥ 32 3.109 MB 3.359 MB
SPLIT CIFAR100 500 3 ⇥ 32 ⇥ 32 6.219 MB 7.199 MB
SPLIT MINIIMAGENET 500 3 ⇥ 84 ⇥ 84 42.408 MB 43.389 MB

As seen from Table 6, the memory usage of GCL are very similar the same as that of ER, except
when both are very small as in the case of PERMUTED MNIST and ROTATED MNIST, because (1)
continual learning algorithms are often required to use a very small |M| and (2) the cost for storing
natural images are often much higher than that of the context graph.

As the number of tasks increases, it is perhaps essential to expand the episodic memory, in which case
the quadratic growth of the latter might dominate the linear increase of the former (e.g. |M| = 5000
and images are of size 3⇥ 32⇥ 32). Although we have not practically encountered such a problem
with GCL, we note that the quadratic growth of the number of entries in the context graph can be
reduced to a linear growth in memory requirements. More specifically, each entry is the output of
the kernel function ⌧ (see Section 3, e.g. ⌧ (ui,uj) = exp

�
�

⌧
2kui � ujk

2
2

�
), so we could easily

store |M| intermediate embeddings {ui} at each step and apply the kernel function on the fly, which
is especially beneficial when ui are much lower dimensional than the original images.

F ADDITIONAL EXPERIMENT RESULTS

Table 7: Classification results (%) on SPLIT CIFAR100 with different number of epochs. When used, episodic
memories contain 5 samples per class on average. The symbol " (#) indicates that a higher (lower) number is
better.

TRAINING 1 EPOCH 10 EPOCHS

Method ACC (") FGT (#) ACC (") FGT (#)
Finetune 47.47 ± 2.77 10.94 ± 2.29 55.39 ± 1.94 25.94 ± 1.89
EWC 48.39 ± 0.99 6.49 ± 1.28 55.60 ± 1.11 23.53 ± 1.19

ICARL 52.18 ± 0.27 8.63 ± 2.71 58.74 ± 0.74 9.02 ± 2.49
GEM 57.90 ± 1.13 7.51 ± 1.52 65.66 ± 0.70 15.52 ± 0.41
ER 65.61 ± 1.28 5.05 ± 2.23 69.40 ± 1.21 11.25 ± 1.24
GCL 69.82 ± 1.05 4.27 ± 2.35 74.51 ± 0.99 6.54 ± 1.26

Figure 7: t-SNE visualization of image embeddings (small circles) from the penultimate layers and class
embeddings (large circles) from the weights of the last layers on SPLIT SVHN. The left figure shows that
Finetune, a model naively trained on the data stream, fails to recognize the class-based clustering structure and
bias the image embeddings toward the last task (class 8 & 9). In contrast, the right figure shows that GCL (our
model) maintains the relational structure and is more robust to the distributional shifts incurred by task changes.

15

Under review as a conference paper at ICLR 2021

100 250 500 1000

0

25

50

75

100

Memory Size

A
v
e
r
a
g
e

A
c
c
u
r
a
c
y

(
%

)

SPLIT SVHN

100 250 500 1000

0

25

50

75

100

Memory Size

SPLIT CIFAR10

ER Ours

Figure 8: Average forgetting as a function of memory size on SPLIT SVHN and SPLIT CIFAR10.

100 250 500 1000

0

25

50

75

Memory Size

A
v
e
r
a
g
e

A
c
c
u
r
a
c
y

(
%

)

SPLIT SVHN

100 250 500 1000

0

25

50

75

Memory Size

SPLIT CIFAR10

ER GCL

Figure 9: Average accuracy as a function of memory size.

0 5 10 15 20
55

60

65

70

75

80

85

90

A
v
e
r
a
g
e

A
c
c
u
r
a
c
y

(
%

)

PERMUTED MNIST

0 5 10 15 20
40

50

60

70

80

90

100
ROTATED MNIST

Finetune EWC

GEM ER

MER GCL

1 2 3 4 5
0

20

40

60

80

100

A
v
e
r
a
g
e

A
c
c
u
r
a
c
y

(
%

)

SPLIT SVHN

1 2 3 4 5
0

20

40

60

80

100
SPLIT CIFAR10

Figure 10: Average accuracy as a function of the number of tasks trained.

G HYPER-PARAMETERS

Following Lopez-Paz & Ranzato (2017), we report the hyper-parameter grids considered in our
experiments. These hyper-parameters are selected independently for each model, and the best values
are given in parenthesis.

• Finetune

16

Under review as a conference paper at ICLR 2021

– optimizer: [Adam (Split SVHN, Split CIFAR10), SGD (Permuted

MNIST, Rotated MNIST)]

– learning rate: [0.0002, 0.001 (Split SVHN, Split CIFAR10), 0.01,

0.1 (Permuted MNIST, Rotated MNIST), 0.3, 1.0]

• EWC (Kirkpatrick et al., 2017)
– optimizer: [Adam, SGD (Permuted MNIST, Rotated MNIST, Split

SVHN, Split CIFAR10)]

– learning rate: [0.0002 (Split SVHN, Split CIFAR10), 0.001, 0.01,

0.1 (Permuted MNIST, Rotated MNIST), 0.3, 1.0]

– regularization: [0.1, 1, 10 (Permuted MNIST, Rotated MNIST), 100

(Split SVHN, Split CIFAR10), 1000]

• GEM (Lopez-Paz & Ranzato, 2017)
– optimizer: [Adam (Split SVHN, Split CIFAR10), SGD (Permuted

MNIST, Rotated MNIST)]

– learning rate: [0.0002, 0.001 (Split CIFAR10), 0.01, 0.1

(Permuted MNIST, Rotated MNIST), 0.3, 1.0]

– margin: [0.0, 0.1, 0.5 (Permuted MNIST, Rotated MNIST), 1.0

(Split SVHN, Split CIFAR10)]

• MER (Riemer et al., 2018)
– optimizer: [SGD (Permuted MNIST, Rotated MNIST)]

– learning rate: [0.0002, 0.001, 0.01, 0.1 (Permuted MNIST,

Rotated MNIST), 0.3, 1.0]

– within batch meta-learning rate (beta): [0.01 (Permuted MNIST,

Rotated MNIST, Split CIFAR10), 0.03, 0.1, 0.3, 1]

• ER (Chaudhry et al., 2019)
– optimizer: [Adam (Split SVHN, Split CIFAR10), SGD (Permuted

MNIST, Rotated MNIST)]

– learning rate: [0.0002, 0.001 (Split SVHN, Split CIFAR10), 0.01,

0.1 (Permuted MNIST, Rotated MNIST), 0.3, 1.0]

• GCL
– optimizer: [Adam (Permuted MNIST, Rotated MNIST, Split SVHN,

Split CIFAR10), SGD]

– learning rate: [0.0002, 0.001 (Permuted MNIST, Rotated MNIST,

Split SVHN, Split CIFAR10), 0.01, 0.1, 0.3, 1.0]

– graph regularization: [0, 10, 50 (Split SVHN, Split CIFAR10),

100, 1000, 5000 (Rotated MNIST)]

– context temperature: [0.1 (Permuted MNIST, Rotated MNIST), 0.3,

1 (Split SVHN, Split CIFAR10), 5, 10]

– target temperature: [0.1, 0.3, 1, 5 (Permuted MNIST, Rotated

MNIST, Split SVHN, Split CIFAR10), 10]

17

