
A Proofs

A.1 i-SIR Algorithm

We analyze a slightly modified version of the i-SIR algorithm, with an extra randomization of the
state position. The k-th iteration is defined as follows. Given a state Yk ∈ X,

(i) draw Ik+1 ∈ {1, . . . ,N} uniformly at random and set XIk+1

k+1 = Yk;

(ii) draw X
1:N\{Ik+1}
k+1 independently from the proposal distribution λ;

(iii) compute, for i ∈ {1, . . . ,N}, the normalized importance weights

ωiN ,k+1 = w(Xi
k+1)/

N∑
`=1

w(X`
k+1);

(iv) select Yk+1 from the set X1:N
k+1 by choosing Xi

k+1 with probability ωiN ,k+1.

Thus, compared to the simplified i-SIR algorithm given in the introduction, the state is inserted
uniformly at random into the list of candidates instead of being inserted at the first position. Of course,
this change has no impact as long as we are interested in integrating functions that are permutation
invariant with respect to candidates, which is the case throughout our work. Still, this randomization
makes the analysis much more transparent.

A.2 Proof of Theorem 1

We write

ϕN (d(y,x1:N )) =
1

N

N∑
i=1

π(dy)δy(dxi)
∏
j 6=i

λ(dxj)

=
1

Nλ(w)

N∑
i=1

w(xi)λ(dxi)δxi(dy)
∏
j 6=i

λ(dxj)

=
1

λ(w)

N∏
j=1

λ(dxj)ΓN1X(x1:N )

N∑
i=1

w(xi)∑N
`=1 w(x`)

δxi(dy),

where we recognize, and after having recalled definitions (3) and (4) of πN and ΠN , respectively,
the right-hand side as πN (dx1:N )ΠN (x1:N , dy). This completes the proof.

A.3 Proof of Theorem 2

Using (4) we get∫
πN (dx1:N )ΠNf(x1:N ) =

∫
1

Nλ(w)

N∑
`=1

w(x`)ΠNf(x1:N )

N∏
j=1

λ(dxj)

=
1

Nλ(w)

∫ N∑
i=1

w(xi)f(xi)

N∏
j=1

λ(dxj) = π(f),

and the proof is complete.

A.4 Proof of Theorem 5

Proof. We first check that ϕN is an invariant distribution for PN . For every A ∈ X�(N+1), using
that π is the marginal of ϕN with respect to the state and applying Theorem 1 yields∫
ϕN (d(y,x1:N ))PN (y,x1:N ,A) =

∫
π(dy)

∫∫
ΛN (y, dx̄1:N )ΠN (x̄1:N , dȳ)1A(ȳ, x̄1:N )

=

∫∫∫
πN (dx̄1:N )ΠN (x̄1:N , dy)ΠN (x̄1:N , dȳ)1A(ȳ, x̄1:N )

= ϕN (A),
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which establishes invariance. We now show that PN is reversible with respect to π. For this purpose,
let g and h be two nonnegative measurable functions and write, using Theorem 1 twice,∫∫

π(dy)PN (y, dȳ)g(y)h(ȳ) =

∫
π(dy)ΛN (y, dx1:N )ΠN (x1:N , dȳ)g(y)h(ȳ)

=

∫
πN (dx1:N )ΠN (x1:N , dy)ΠN (x1:N , dȳ)g(y)h(ȳ)

=

∫
π(dȳ)ΛN (ȳ, dx1:N )ΠN (x1:N , dy)g(y)h(ȳ)

=

∫∫
π(dȳ)PN (ȳ, dy)g(y)h(ȳ).

A.5 Proof of Theorem 6

For completeness, we repeat the arguments in [28, 5]. Under A1, we have, for (x,A) ∈ X×X ,

PN (x,A) =

∫
δx(dx1)

N∑
i=1

w(xi)∑N
j=1 w(xj)

1A(xi)

N∏
j=2

λ(dxj)

=

∫
w(x)

w(x) +
∑N
j=2 w(xj)

1A(x)

N∏
j=2

λ(dxj) +

∫ N∑
i=2

w(xi)

w(x) +
∑N
j=2 w(xj)

1A(xi)

N∏
j=2

λ(dxj)

≥
N∑
i=2

∫
w(xi)

w(x) + w(xi) +
∑N
j=2,j 6=i w(xj)

1A(xi)

N∏
j=2

λ(dxj)

≥
N∑
i=2

∫
π(dxi)1A(xi)

∫
λ(w)

w(x) + w(xi) +
∑N
j=2,j 6=i w(xj)

N∏
j=2,j 6=i

λ(dxj).

Finally, since the function f : z 7→ (z+ a)−1 is convex on R+ and a > 0, we get for i ∈ {2, . . . ,N},∫
λ(w)

w(x) + w(xi) +
∑N
j=2,j 6=i w(xj)

N∏
j=2,j 6=i

λ(dxj)

≥ λ(w)∫
w(x) + w(xi) +

∑N
j=2,j 6=i w(xj)

∏N
j=2,j 6=i λ(dxj)

≥ 1

w(x)/λ(w) + w(xi)/λ(w) +N − 2
≥ 1

2ω +N − 2
.

We finally obtain the inequality

PN (x,A) ≥ π(A)× N − 1

2ω +N − 2
= εNπ(A). (14)

This means that the whole spaceX is (1, εNπ)-small (see [10, Definition 9.3.5]). Since PN (x, ·) and
π are probability measures, (14) implies

‖PN (x, ·)− π‖TV = sup
A∈X
|PN (x,A)− π(A)| ≤ 1− εN = κN .

Now the statement follows from [10, Theorem 18.2.4] applied with m = 1.

A.6 Proof of Theorem 3

Proof of (ii). Using the identity (a+ b)2 ≤ (1 + ε2)a2 + (1 + ε−2)b2 we obtain the decomposition
{ΠNf(X1:N

k )− π(f)}2 ≤ (1 + (N − 1)−1/2)I(1) + (1 + (N − 1)1/2)I(2), with

I(1) = {ΠNf(X1:N
k )− aN (Yk−1)/bN (Yk−1)}2,

I(2) = {aN (Yk−1)/bN (Yk−1)− π(f)}2,
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where aN (Yk−1) = ΛNΓNf(Yk−1) and bN (Yk−1) = ΛNΓN1X(Yk−1).

Using the identity a/b− c/d = (1/d)[(a/b)(d− b)− (c− a)], we obtain

ΠNf(X1:N
k )− aN (Yk−1)/bN (Yk−1)

= bN (Yk−1)−1
[
ΠNf(X1:N

k )(bN (Yk−1)− ΓN1X(X1:N
k ))− (aN (Yk−1)− ΓNf(X1:N

k ))
]

.

Therefore, using the trivial bound (a+ b)2 ≤ 2(a2 + b2), we get

I(1) ≤ 2

bN (Yk−1)2
[ΠNf(X1:N

k )2{ΓN1X(X1:N
k )− bN (Yk−1)}2 + {ΓNf(X1:N

k )− aN (Yk−1)}2].

Since ΠNf(X1:N
k )2 ≤ 1, Pξ-a.s., and bN (y) ≥ (N − 1)/Nλ(w), it holds, Pξ-a.s.,

I(1) ≤ 2N2

(N − 1)2λ(w)2
[
{ΓN1X(X1:N

k )− bN (Yk−1)}2 + {ΓNf(X1:N
k )− aN (Yk−1)}2

]
.

Therefore, using Lemma 7,

Eξ[{ΠNf(X1:N
k )− aN (Yk−1)/bN (Yk−1)}2]

= Eξ
[
Eξ
[
{ΠNf(X1:N

k )− aN (Yk−1)/bN (Yk−1)}2
∣∣Yk−1]]

≤ 2N2

(N − 1)2λ(w)2
[
(N − 1)/N2λ({w − λ(w)}2) + (N − 1)/N2λ({wf − λ(wf)}2)

]
≤ 4(N − 1)−1κ[π,λ].

We turn to I(2) and note that (12) implies that I(2) ≤ 4N−2(1 + ω)2, which completes the proof.

Proof of (iii). Note that

I(3) = Eξ
[
{ΠNf(X1:N

k )− π(f)}{ΠNf(X1:N
k+`)− π(f)}

]
= Eξ[{ΠNf(X1:N

k )− π(f)}Eξ
[
ΠNf(X1:N

k+`)− π(f)
∣∣Yk+`−1]].

As Eξ
[
ΠNf(X1:N

k+`)
∣∣Yk+`−1] = ΦN (Yk+`−1) Pξ-a.s., it holds that

I(3) = Eξ[{ΠNf(X1:N
k )− π(f)}{ΦN (Yk+`−1)− π(f)}]

= Eξ[{ΠNf(X1:N
k )− π(f)}{Eξ [ΦN (Yk+`−1) |Yk]− π(f)}].

By the Markov property,

Eξ [ΦN (Yk+`−1) |Yk] = P`−1N ΦN (Yk) = δYk
P`−1N ΦN , Pξ-a.s.,

which, combined with (10), implies that

‖P`−1N ΦN − π(f)‖∞ ≤ ςbias(N − 1)−1κ`−1N .

Combining the results above, we finally establish that

|I(3)| ≤ ςbias(N − 1)−1κ`−1N Eξ[{ΠNf(X1:N
k )− π(f)}2]1/2

≤ ςbias(N − 1)−1κ`−1N

(
2∑
i=0

ςmse
i (N − 1)−1−i/2

)1/2

.

A.7 Proof of Theorem 4

We first consider the bias term, which can be bounded according to∣∣Eξ[Π(K0,K),N (f)]− π(f)
∣∣ ≤ (K −K0)−1

K∑
`=K0+1

∣∣Eξ[ΠNf(X1:N
` )]− π(f)

∣∣
≤ (K −K0)−1(N − 1)−1ςbias

K∑
`=K0+1

κ`−1N .
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Thus, the claimed bias bound can be established by noting that

K∑
`=K0+1

κ`−1N ≤
κK0

N

1− κN
≤ 4τmix,N (1/4)K0/τmix,N

3
.

We now turn to the MSE, and make the decomposition

Eξ[{Π(K0,K),N (f)− π(f)}2] ≤ (K −K0)−2

(
K∑

`=K0+1

Eξ[ΠNf(X1:N
` )]− π(f)

)2

+2

K∑
`=K0+1

K∑
j=`+1

Eξ[{ΠNf(X1:N
` )− π(f)}{ΠNf(X1:N

j )− π(f)}].

Using the MSE bound in Theorem 11, we obtain that

K∑
`=K0+1

Eξ[{ΠNf(X1:N
` )− π(f)}2] ≤ (K −K0)(N − 1)−1

2∑
i=0

ςmse
i (N − 1)−i/2.

In addition, the covariance bound of Theorem 11 yields

K∑
`=K0+1

K∑
j=`+1

Eξ[{ΠNf(X1:N
` )− π(f)}{ΠNf(X1:N

j )− π(f)}]

≤
2∑
i=0

ςcov
i (N − 1)−(3−i/2)/2

 K∑
`=K0+1

K∑
j=`+1

κ
(j−`)−1
N

 .

As
∑K
`=K0+1

∑K
j=`+1 κ

(j−`)−1
N ≤ (K −K0)(4/3)τmix,N , we may write

Eξ[(Π(K0,K),N (f)− π(f))2] ≤ ((K −K0)(N − 1))−1

(
2∑
i=0

ςmse
i (N − 1)−i/2

)

+(8/3)(K −K0)−1(N − 1)−3/2

(
2∑
i=0

ςcov
i (N − 1)−i/4

)
,

and the MSE bound may now be established by noting that (K −K0)(N − 1) = υM .

Establishing the high-probability bound requires more complex derivations. More precisely, we will
apply the decomposition

Π(K0,K),N (f)− π(f) = (K −K0)−1
K∑

k=K0+1

ΠNf(X1:N
k )− ΦN (Yk−1)

+ (K −K0)−1
K−1∑

k=K0+1

ΦN (Yk−1)− π(ΦN ),

where we used that π(f) = π(ΦN ). Therefore, for every t ≥ 0 it holds that

Pξ(|Π(K0,K),N (f)−π(f)| ≥ t) ≤ Pξ

(
(K −K0)−1

∣∣∣∣∣
K∑

k=K0+1

ΠNf(X1:N
k )− ΦN (Yk−1)

∣∣∣∣∣ ≥ t/2
)

+ Pξ

(
(K −K0)−1

∣∣∣∣∣
K−1∑

k=K0+1

ΦN (Yk−1)− π(ΦN )

∣∣∣∣∣ ≥ t/2
)

.
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We will show that for all t > 0, and for some absolute constants ζ(1) and ζ(2),

I(1) = Pξ

(
(K −K0)−1

∣∣∣∣∣
K∑

k=K0+1

ΠNf(X1:N
k )− ΦN (Yk−1)

∣∣∣∣∣ ≥ t
)
≤ 2 exp(−t2υM/(4ζ(1))),

I(2) = Pξ

(
(K −K0)−1

∣∣∣∣∣
K−1∑

k=K0+1

ΦN (Yk−1)− π(ΦN )

∣∣∣∣∣ ≥ t
)

≤ 2 exp(−t2ζ(2)(K −K0)(N − 1)2/τmix,N ).

We first consider I(1) and note that

I(1) = Eξ

[
Pξ

(
(K −K0)−1

∣∣∣∣∣
K∑

k=K0+1

ΠNf(X1:N
k )− ΦN (Yk−1)

∣∣∣∣∣ ≥ t | YK0:K−1

)]
.

By Theorem 5, the random elements (X1:N
k )Kk=K0+1 are independent conditionally to (Yk)K−1k=K0

.
Thus, using the generalized Hoeffding inequality (see [48, Theorem 2.6.2] or [49, Proposition 2.1])
we get, with ∆N ,k = ΠNf(X1:N

k )− ΦN (Yk−1), that, Pξ-a.s.,

Pξ

(
(K −K0)−1

∣∣∣∣∣
K∑

k=K0+1

∆N ,k

∣∣∣∣∣ ≥ t | YK0:K−1

)
≤ 2 exp

(
− t2(K −K0)2

4
∑K
k=K0+1 ‖∆N ,k‖2ψ2,Yk

)
,

where ψ2 : x 7→ exp(x2)− 1 and

‖∆N ,k‖ψ2,Yk−1
= inf {λ > 0 : Eξ [ψ2(|∆N ,k|/λ) |Yk−1] ≤ 1} .

In order to bound ‖∆N ,k‖ψ2,Yk−1
we use the decomposition ∆N ,k = ∆

(1)
N ,k + ∆

(2)
N ,k, where

∆
(1)
N ,k =

ΓNf(X1:N
k )

ΓN1X(X1:N
k )

− aN (Yk−1)

bN (Yk−1)
,

∆
(2)
N ,k =

aN (Yk−1)

bN (Yk−1)
− ΦN (Yk−1),

combined with Lemma 9 with φ = χ = ψ2 and [48, Proposition 2.6.1]. By (11) and by [48,
Equation 2.17] it holds that, Pξ-a.s.,

‖∆(2)
N ,k‖ψ2,Yk−1

≤ 2(log 2)−1/2(N − 1)−1κ[λ,π].

Using Lemma 9 with φ = χ = ψ2 and the fact that bN (y) ≥ (1− 1/N)λ(w) we obtain, Pξ-a.s.,

‖∆(1)
N ,k‖ψ2,Yk−1

≤ 2

(1− 1/N)λ(w)

(
‖ΓNf(X1:N

k )− aN (Yk−1)‖ψ2,Yk−1
+ 2‖ΓN1X(X1:N

k )− bN (Yk−1)‖ψ2,Yk−1

)
.

Furthermore, using [48, Proposition 2.6.1, Eq 2.17] we get, Pξ-a.s.,

‖ΓNf(X1:N
k−1)− aN (Yk−1)‖2ψ2,Yk−1

≤ (64e/ log 2)N−1
∥∥w(X1

k)f(X1
k)− Eξ

[
w(X1

k)f(X1
k)
∣∣Yk−1]∥∥2ψ2,Yk−1

,

≤ (256e/(log 2)2)N−1‖w‖2∞.

The same bound applies to ‖ΓN1X(X1:N
k )− bN (Yk−1)‖2ψ2,Yk−1

, and we may write

‖∆(1)
N ,k‖ψ2,Yk−1

≤ 96e1/2(log 2)−1(N − 1)−1/2ω.

We can now finalize the bound on I(1) by writing

‖∆N ,k‖2ψ2,Yk−1
≤ 2(‖∆(1)

N ,k‖
2
ψ2,Yk−1

+ ‖∆(2)
N ,k‖

2
ψ2,Yk−1

)

≤ (N − 1)−1(ζ(1,1)ω2 + ζ(1,2)κ[λ,π]2(N − 1)−1),
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where ζ(1,1) = 18432e(log 2)−2 and ζ(1,2) = 8(log 2)−1 are universal constants, which implies that

‖∆N ,k‖2ψ2,Yk−1
≤ ζ(1)(N − 1)−1,

with ζ(1) = 1.1 · 105ω2. This finally yields that I(1) ≤ 2 exp(−t2υM/4ζ(1)).

We treat I(2) using Lemma 12 with gi = ΦN (YK0+i−1) − π(ΦN ). As ‖gi‖∞ ≤ osc(ΦN ) ≤
(N − 1)−1ςbias, we obtain

I(2) ≤ 2 exp
(
−t2ζ(2)(K −K0)(N − 1)2/τmix,N

)
,

where ζ(2) = 2/(3ςbias)2. Finally, we obtain

Pξ(|Π(K0,K),N (f)− π(f)| ≥ t)

≤ 2 exp
(
−t2υM/4ζ(1)

) [
1 + exp

(
−t2υM{ζ(2)(N − 1)/τmix,N − (4ζI)

−1}
)]

.

We conclude by noting that for every δ ∈ (0, 1) and N − 1 ≥ τmix,N (4ζ(1)ζ(2))−1 it holds that

Pξ(|Π(K0,K),N (f)− π(f)| ≥ t) ≤ 4 exp
(
−t2υM/4ζ(1)

)
≤ δ

for all t ≥ 2ζ
1/2
I (υM)−1/2 log(4/δ)1/2. Letting ςhpd = 2ζ

1/2
I concludes the proof.

A.8 High-probability inequality for SNIS

Theorem 8. Assume that ω = ‖w‖∞/λ(w) < ∞. For all bounded measurable functions f on
(X,X ) such that ‖f‖∞ ≤ 1, it holds that for every M ∈ N∗ and δ ∈ (0, 1),

|π̂M (f)− π(f)| ≤ 12ω(M log 2)−1/2 log(2/δ)1/2

with probability larger than 1− δ.

Proof. Let αM = M−1
∑M
i=1 w(Xi)f(Xi), βM = M−1

∑M
i=1 w(Xi), a = E[αM ] = λ(wf), and

b = E[βM ] = λ(w). Note that π̂M (f) = αM/βM and π(f) = a/b. Using Lemma 9 with φ and χ
equal to the mapping x 7→ exp(x2)− 1 we obtain that

‖π̂M (f)− π(f)‖ψ2
≤ 2λ(w)−1 (‖αM − a‖ψ2

+ 2‖βM − b‖ψ2
) .

Moreover, using [48, Eq 2.17] yields, Pξ-a.s.,

‖αM − a‖2ψ2
≤M−1‖w(Xi)f(Xi)− λ(wf)‖2ψ2

≤ 4(M log 2)−1‖w‖2∞.

In the same way, ‖βM − b‖2ψ2
≤ 4(M log 2)−1‖w‖2∞. Therefore, we may conclude that

‖π̂M (f)− π(f)‖2ψ2
≤ (12ω)2(M log 2)−1.

Combining the previous bound with [48, Proposition 2.5.2] provides
P(|π̂M (f)− π(f)| ≥ t) ≤ 2 exp(−t2ζsnisM),

where ζsnis = (12ω)−2 log 2. The high-probability inequality of the theorem follows directly.

B Moments and high-probability bounds for ratio statistics

Let (Ui,Vi)i∈{1,...,n} be (possibly dependent) random variables defined on some probability space
(Ω,F ,P). Assume that Ui ≥ 0 P-a.s. Moreover, let αn = n−1

∑n
i=1 UiVi, βn = n−1

∑n
i=1 Ui, and

ρn = αn/βn as well as a = E[αn], b = E[βn], and r = a/b.

A continuous, even, convex function φ : R+ → [0, +∞] is a Young function if φ is monotonically
increasing for x > 0, φ(0) = 0, limx→∞ φ(x)/x =∞, and limx→0+ φ(x)/x = 0. We denote by φ∗
the Fenchel-Legendre conjugate of φ. Let X be a random variable and φ a Young function. Then the
Orlicz norm of X is

‖X‖φ = inf {λ > 0 : E [φ (|X|/λ)] ≤ 1} ,

with the convention that inf ∅ = ∞. The Orlicz space Lφ(Ω) of random variables is the family of
equivalence classes of random variables X such that ‖X‖φ <∞. Here Lφ(Ω) is a Banach space. If
φp(x) = |x|p for p ≥ 1, then Lφ(Ω) = Lp(Ω) and we denote ‖ · ‖p = ‖ · ‖φp . If X ∈ Lφ(Ω), then,
for every x > 0,

P(|X| ≥ x) ≤ 1/φ(x/‖X‖φ) and ‖1{|X|≥x}‖φ = 1/φ−1(1/P(|X| ≥ x)).
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Lemma 9. Let φ and χ be Young functions. If maxi ‖Vi‖∞ ≤ c|r|, then

‖ρn − r‖φ/|r| ≤ 2‖αn − a‖φ/b+ 2‖βn − b‖φ/b+ c/{(φ−1 ◦ χ)(b/2‖(βn − b)−‖χ)} .

Proof. We decompose the computation in two parts: first, when βn > b/2, we have

|ρn − r| =
∣∣∣∣αn − aβn

+ a

(
1

βn
− 1

b

)∣∣∣∣ ≤ |αn − a|b/2
+
|a||βn − b|

(b/2)b
=

2|αn − a|
b

+
2|r||βn − b|

b
.

Then, when βn ≤ b/2,

|ρn − r| ≤ |ρn|+ |r| ≤ |ρn|+
2|r||βn − b|

b
≤ max

i
|Vi|+

2|r||βn − b|
b

,

where the second inequality follows from |βn − b| ≥ b/2. Combining the two previous inequalities
yields

|ρn − r| ≤
2|αn − a|

b
+

2|r||βn − b|
b

+ max
i
|Vi|1{βn≤b/2}.

Recall that if |X| ≤ |Y | P-a.s., then ‖X‖φ ≤ ‖Y ‖φ; hence, we may proceed like

‖ρn − r‖φ ≤
∥∥∥∥2|αn − a|

b
+

2r|βn − b|
b

+ max
i
|Vi|1{βn≤b/2}

∥∥∥∥
φ

≤ 2‖αn − a‖φ
b

+
2|r|‖βn − b‖φ

b
+ c|r|‖1{βn≤b/2}‖φ

=
2‖αn − a‖φ

b
+

2|r|‖βn − b‖φ
b

+ c|r|/φ−1 (1/P(βn ≤ b/2)) .

Finally, we obtain the desired result by noting that for any Young function χ, P(βn ≤ b/2) =
P(|(βn − b)−| ≥ b/2) ≤ 1/χ(b/2‖(βn − b)−‖χ).

Theorem 10. Let p ≥ 1. If maxi ‖Vi‖∞ ≤ c|r|, then

‖ρn − r‖p
|r|

≤ 2‖αn − a‖p
b

+
2(1 + c)‖βn − b‖p

b
.

Proof. Apply Lemma 9 with χ(x) = φ(x) = xp.

Theorem 11. If |αn/βn| ≤ 1 P-a.s., then

|E[ρn]− r| ≤ (2b2)−1{3E[(βn − b)2] + E[(αn − a)2]}.

Proof. Using the identity

αn

βn
− a

b
=

αn

βn

(b− βn)2

b2
+

(αn − a)(b− βn)

b2
+
a(b− βn)

b2
+

αn − a
b

,

yields

E[ρn]− r = E
[
αn

βn

(b− βn)2

b2

]
+

E[(αn − a)(b− βn)]

b2
,

which completes the proof.

We conclude with a lemma that gives the concentration of a uniformly ergodic Markov chain. We
think that this Lemma is of independent interest, and we give it under general conditions.
Lemma 12. Let (Z,Z) be a state-space and Q a Markov kernel on (Z,Z) which is uniformly
ergodic with mixing time tmix and stationary distribution π. Let (gi)

n
i=1 be a family of Rd-valued

measurable functions on Z such that ‖g‖∞ = maxi∈{1,...,n} ‖gi‖∞ < ∞ and π(gi) = 0 for all
i ∈ {1, . . . ,n}. Then for every initial probability ξ on (Z,Z), n ∈ N, and t ≥ 0,

Pξ

(∥∥∥∥∥
n∑
i=1

gi(Zi)

∥∥∥∥∥ ≥ t
)
≤ 2 exp

(
−2t2

u2n

)
, (15)

where un = 3‖g‖∞
√
ntmix.

21



Proof. The functionϕ(x1:N1 , . . . ,x1:Nn ) = ‖
∑n
i=1 gi(x

1:N
i )‖ onZn satisfies the bounded differences

property. Applying [38, Corollary 2.10], we get, for t ≥ Eξ[‖
∑n
i=1 gi(Zi)‖],

Pξ

(∥∥∥∥∥
n∑
i=1

gi(Zi)

∥∥∥∥∥ ≥ t
)
≤ exp

{
−

2(t− Eξ[‖
∑n
i=1 gi(Zi)‖])2

9n‖g‖2∞tmix

}
.

It remains to bound Eξ [‖
∑n
i=1 gi(Zi)‖] from above. For this purpose, note that

Eξ

∥∥∥∥∥
n∑
i=1

gi(Zi)

∥∥∥∥∥
2
 =

n∑
i=1

Eξ
[
‖gi(Zi)‖2

]
+ 2

n−1∑
k=1

n−k∑
`=1

Eξ[gk(Zk)ᵀgk+`(Zk+`)],

where, using that π(gk+`) = 0,∣∣Eξ[gk(Zk)ᵀgk+`(Zk+`)]
∣∣ =

∣∣∣∣∫ gk(z)ᵀ
(

Q` gk+`(z)− π(gk+`)
)
ξQk(dz)

∣∣∣∣ ≤ ‖g‖2∞(1/4)d`/tmixe,

which implies that

n−1∑
k=1

n−k∑
`=1

|Eξ[gk(Zk)ᵀgk+`(Zk+`)]| ≤
n−1∑
k=1

‖g‖2∞(1/4)d`/tmixe ≤ (4/3)‖g‖2∞tmixn.

Combining the bounds above, we obtain the upper bound

Eξ

[∥∥∥∥∥
n∑
i=1

gi(Zi)

∥∥∥∥∥
]
≤

Eξ

∥∥∥∥∥
n∑
i=1

gi(Zi)

∥∥∥∥∥
2
1/2

≤ 2
√
n‖g‖∞

√
tmix

not.
= vn.

By plugging this result into (15), we obtain that

Pξ

(∥∥∥∥∥
n∑
i=1

gi(Zi)

∥∥∥∥∥ ≥ t
)
≤

{
1, t < vn,

exp
(
− 2(t−vn)2

9v2n

)
, t ≥ vn.

(16)

Now, since the right-hand side of (16) is, for every t ≥ 0, upper bounded by 2 exp(−2t2/(9v2n)), the
statement of the lemma follows.

C Experiments

C.1 Gaussian Mixture

Bias MSE trade-off: We display in Figures 4a and 4b the bias and the MSE of the BR-SNIS
estimators for the same configuration as in Figure 2 but with k0 = b0.625kmaxc. We observe 3 times
less bias than the SNIS estimators but only with a 10% increase of the MSE for the N = 129 setting.
This can be also seen in Figure 4c, where we show the ratio between BR-SNIS and SNIS for bias and
MSE with N = 129.

Parameters Gaussian mixture: The π in Section 3 is a Mixture of two Gaussians in dimension 7
with mean vectors µ1 = (1, . . . , 1)ᵀ and µ2 = (−2, 0, . . . , 0)ᵀ and covariance matrices Σ1 = d−1I
and Σ2 = d−1I, where p = 1/3 and I is the identity matrix In this setting, the quantities κ[π,λ] and
ω can be estimated by Monte Carlo and Gradient ascent respectively. Their values are approximately
7 · 102 and 1 · 104, respectively.

The sets A and B used to define the function f are the following:

A := [−2, 6]× [−1, 1]6, B := [0.75, 1.25]× [1, 2]× [−0.1, 0.1]5.

We used this example to illustrate numerically the bounds in Theorems 3 and 4, where each expectation
was calculated by Monte Carlo using 2 · 104 samples. We displayed in each figure the equivalent
SNIS estimation in a green dashed line. For all the bias related bounds(Theorem 3(i) in Figure 5a,
Theorem 4(i) in Figure 5c), we fixed a total budget of M = 6 · 103. For Figure 5a we added a fit of
the type y = exp(ak + b) to illustrate the exponential decay w.r.t. k.
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Figure 4: Comparison between SNIS and BR-SNIS for the same budget. In each boxplot the dotted
line represents the mean value of the samples. In Figure 4c we display the ratio between BR-SNIS
and SNIS for bias and MSE with N = 129.

We then increased the budget to M = 8 · 104 for the MSE and covariance bounds, in order to fully
observe the stabilisation of the MSE in Figure 5b for all the minibatch sizes N . For the true value
of π(f) needed for calculating the MSE, we use an estimation obtained by Monte Carlo (sampling
directly from π) with 4 · 107 samples. In Figure 5d we added dashed lines with the theoretical value
of the MSEis

υM with the same color as υ.
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Figure 5: Visualization of the theoretical bounds from Theorems 3 and 4.

Comparison with zero bias SNIS methods: There exists estimators based on SNIS that have no
bias, such as the estimator proposed in [33] and refered to as Unbiased-PIMH . One of the main
differences between such estimator and BR-SNIS is that BR-SNIS works under a pre-established
budget of samples, whereas in Unbiased-PIMH the number of samples used to produce an estimate
varies due to the accept-reject procedure. Even though the two estimators have different goals, it can
be of interest to compare both of them in the case where there is a restriction in the total number of
samples available.

We proceed to a fixed-budget (M ) comparison between BR-SNIS and the "Rao Blackwellized"
version of the algorithm proposed at [33] in the Gaussian Mixture example. In order to do so, it’s
necessary to impose the fixed-budget constraint to the Unbiased-PIMH estimator. A single iteration
of the estimator from Unbiased-PIMH with batch-size N needs rN samples where r ∈ N is a
random number satisfying r ≥ 2. Therefore, there are two ways of applying the constraint to
Unbiased-PIMH :

• Soft: For a given N , generate estimations using Unbiased-PIMH until the number of
samples is larger than M and keep the last estimation. Therefore, all the estimators from
Unbiased-PIMH will have used at least M samples. All the estimations generated are
averaged to generate a single estimate.

• Hard: For a given N , generate estimations using Unbiased-PIMH until the number of
total samples used is larger than M and discard the last estimation. Therefore, all the
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estimators from Unbiased-PIMH will have used at most M samples. If no estimations
were produced under the budget cap (first iteration used more than M samples), then
we consider it a miss. All the estimations generated are averaged to create a single estimate.

The code used to run the experiments is available at 2. For both cases, the following values of M are
used in the comparison: 216, 212, 29. For each estimator, a total of 1024 Monte Carlo replications
are used to estimate the mean and the standard deviation of the estimator. Note that in the Hard
framework, it can happen that less than 1024 replications are used for the Unbiased-PIMH
estimator. The number of failed estimations is reported in the tables for the framework Hard for
each configuration.

For each configuration of the BR-SNIS estimator (defined by N , kmax), we have used 90% burn-in
period (k0 = b0.9kmaxc) and kmax rounds of bootstrap (kmax permutations of the input samples).

The following values were calculated:

• Bias: The mean of the estimations minus ref over 1024 replications
• Std: The standard deviation of the estimations over 1024 replications.
• Fails: The number of replications that failed to produce a single estimation for a given

budget M . This is only applicable for the Unbiased-PIMH estimator and in the Hard
framework.

• average M: The average (over the 1024 replications) total cost of the estimator. For BR-
SNIS and SNIS this is always M . For Unbiased-PIMH in the Soft framework it is larger
than M . In the Hard framework it is smaller than M .

Algorithm 1: Unbiased-PIMH
Data: N ≥ 0

1 e1, lwav1 ← SNIS(N) ; /* SNIS also returning the average log weights */
2 e2, lwav2 ← SNIS(N);
3 if lwav1 < lwav2 then
4 swap(e1, lwav1; e2, lwav2)
5 end
6 u = log rand() ;
7 if u < lwav1 and u < lwav2 then
8 τ = 1;
9 end

10 t← 1;
11 τ =∞;
12 while τ =∞ do
13 e1 = e1 + (e1 − e2) ;
14 ep, lwavp = SNIS(N);
15 t = t+ 1;
16 u = log rand(); if u < lwavp− lwav1 then
17 e1, lwav1 = ep, lwavp;
18 end
19 if u < lwavp− lwav1 then
20 e2, lwav1 = ep, lwavp;
21 end
22 if u < lwav1 and u < lwav2 then
23 τ = t;
24 end
25 end

We have compared both estimators in two different frameworks (Hard and Soft) with three different
budgets M = 216 (tables 3 and 6), M = 212 (tables 4 and 7) and M = 29 (tables 5 and 8). We
observed that in general the BR-SNIS estimator has smaller standard deviation, with the difference of

2https://github.com/gabrielvc/br_snis/blob/master/notebooks/Comparison_Unbiased-PIMH.ipynb
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N k algorithm Bias std average M
65536 SNIS -0.0029 0.0605 65536.0

65 1024 BR-SNIS -0.0010 0.0658 65536.0
129 512 BR-SNIS -0.0006 0.0689 65536.0
257 256 BR-SNIS 0.0003 0.0678 65536.0
513 128 BR-SNIS 0.0019 0.0670 65536.0

16384 Unbiased-PIMH 0.0065 0.1005 71904.0
8192 Unbiased-PIMH 0.0058 0.1066 71040.0
4096 Unbiased-PIMH 0.0082 0.1139 69316.0
2048 Unbiased-PIMH 0.0053 0.1174 67764.0

Table 3: M = 216 in the Soft framework.

N k algorithm Bias std average M
4096 SNIS -0.0365 0.1946 4096.0
65 64 BR-SNIS -0.0314 0.2211 4096.0

129 32 BR-SNIS -0.0358 0.2214 4096.0
257 16 BR-SNIS -0.0281 0.2282 4096.0
513 8 BR-SNIS -0.0296 0.2351 4096.0
1024 Unbiased-PIMH 0.0587 0.6073 5388.0
512 Unbiased-PIMH 0.0678 0.8086 5027.5
256 Unbiased-PIMH 0.1258 1.1492 4730.0
128 Unbiased-PIMH 0.2364 1.9521 4629.6

Table 4: M = 212 in the Soft framework.

N k algorithm Bias std average M
512 SNIS -0.1458 0.2420 512.0
65 8 BR-SNIS -0.1537 0.2468 512.0

129 4 BR-SNIS -0.1543 0.2444 512.0
257 2 BR-SNIS -0.1426 0.2600 512.0
128 Unbiased-PIMH -0.0048 1.3924 841.5
64 Unbiased-PIMH 0.1997 2.5677 796.4
32 Unbiased-PIMH 0.2365 4.1642 708.1
16 Unbiased-PIMH 0.3670 5.1533 685.3

Table 5: M = 29 in the Soft framework.

N k algorithm Bias std average M Fails
65536 SNIS -0.0029 0.0605 65536.0

65 1024 BR-SNIS -0.0006 0.0650 65536.0
129 512 BR-SNIS -0.0023 0.0645 65536.0
257 256 BR-SNIS -0.0024 0.0657 65536.0
513 128 BR-SNIS 0.0000 0.0693 65536.0

16384 Unbiased-PIMH -0.0028 0.0885 57520.0 7
8192 Unbiased-PIMH -0.0008 0.1029 59264.0 0
4096 Unbiased-PIMH -0.0014 0.1026 61956.0 0
2048 Unbiased-PIMH 0.0008 0.1106 63244.0 0

Table 6: M = 216 in the Hard framework.
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N k algorithm Bias std average M Fails
4096 SNIS -0.0365 0.1946 4096.0

65 64 BR-SNIS -0.0252 0.2270 4096.0
129 32 BR-SNIS -0.0296 0.2221 4096.0
257 16 BR-SNIS -0.0338 0.2218 4096.0
513 8 BR-SNIS -0.0486 0.2243 4096.0

1024 Unbiased-PIMH -0.0901 0.2353 2922.0 103
512 Unbiased-PIMH -0.0833 0.3368 3343.0 24
256 Unbiased-PIMH -0.0547 0.4815 3554.8 9
128 Unbiased-PIMH -0.0634 0.4433 3683.1 4

Table 7: M = 212 in the Hard framework.

N k algorithm Bias std average M Fails
512 SNIS -0.1458 0.2420 512.0
65 8 BR-SNIS -0.1376 0.2636 512.0

129 4 BR-SNIS -0.1456 0.2565 512.0
257 2 BR-SNIS -0.1358 0.2585 512.0
128 Unbiased-PIMH -0.1962 0.2200 306.9 210
64 Unbiased-PIMH -0.1947 0.3200 367.8 73
32 Unbiased-PIMH -0.1999 0.4001 398.0 36
16 Unbiased-PIMH -0.2057 0.7366 423.2 16

Table 8: M = 29 in the Hard framework.

standard deviation being important for the smaller budgets (3 times less for M = 212 and 10 times
less for M = 29 in the Soft framework).

For the Hard framework, we can see that the empirical bias of BR-SNIS is always at most equal to
the empirical bias of Unbiased-PIMH . For the Soft framework, we observed that for M = 216 that
both methods have similar performance, with BR-SNIS having negligible bias in this setting. For
M = 212 and M = 29, BR-SNIS has in general a smaller empirical biais and the standard deviation
of Unbiased-PIMH is considerably higher.

C.2 Bayesian Logistic regression

The importance distribution used in the Bayesian logistic regression example is given by the mean-
field variational distribution [6]. More precisely, given the target π given in Section 3, the proposal λ
is a Gaussian distribution with mean µ and diagonal covariance diag(σ), where µ,σ are learnt by
maximization of the Evidence Lower Bound (ELBO):

L(µ,σ) =

∫
log(π(θ)/λ(θ))λ(θ)dθ.

In both Figures 3 and 6, the optimal k for a given budget M was chosen by grid search over all the
factors of M . The final settings are shown in Table 9.

C.3 Importance Weighted Auto-Encoders

We trained each network for a total of 100 epochs, using 512 batch samples for the gradient calcula-
tions, with learning rate equals 10−4. For IWAE and BR-IWAE , 64 samples were used for estimating
the gradient. For BR-IWAE, we used k = 8. The architecture used is described in table 10 where by
conv layer we mean a convolutional layer followed by batch norm and the ReLU activation function.
The train ELBO for each latent dimension is shown in Figure 7. For the log likelihood comparison in
Table 2, we use SNIS with the variational posterior as importance distribution and a total of 2 · 103

samples for a subset of 3232 samples from the validation set. Therefore, the estimation of the log
likelihood is:

L̂ = T−1
T∑
j=1

M∑
i=1

ωθ,φ,xj log pθ(xj | zji )

with ωθ,φ,x(z) = pθ(x)/qφ(z | x) where zji is sampled from qφ(· | xj).
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Dataset component M kmax N
breast 8 256 4 65
breast 8 512 8 65
breast 8 1024 16 65
breast 8 2048 16 129
breast 8 4096 64 65
breast 11 256 4 65
breast 11 512 8 65
breast 11 1024 16 65
breast 11 2048 32 65
breast 11 4096 64 65
breast 14 256 4 65
breast 14 512 8 65
breast 14 1024 16 65
breast 14 2048 32 65
breast 14 4096 64 65
heart 5 32 4 9
heart 5 64 8 9
heart 5 128 8 17
heart 5 256 32 9
heart 5 512 4 129
heart 8 32 4 9
heart 8 64 8 9
heart 8 128 8 17
heart 8 256 16 17
heart 8 512 32 17
heart 12 32 4 9
heart 12 64 8 9
heart 12 128 16 9
heart 12 256 4 65
heart 12 512 32 17

covertype 6 512 4 129
covertype 6 1024 8 129
covertype 6 2048 16 129
covertype 6 4096 2 2049
covertype 6 8192 4 2049
covertype 17 512 2 257
covertype 17 1024 2 513
covertype 17 2048 2 1025
covertype 17 4096 2 2049
covertype 17 8192 4 2049
covertype 23 512 2 257
covertype 23 1024 2 513
covertype 23 2048 4 513
covertype 23 4096 16 257
covertype 23 8192 32 257

Table 9: Optimal configurations for Figures 3 and 6
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Figure 6: Visualisation of the distribution of the bias for the Heart Failure and Breast cancer dataset
for other components of θ

Name kernel size stride padding out channels
Encoder conv 1 3 1 1 8
Encoder conv 2 3 1 1 16
Encoder conv 3 3 1 1 32

Encoder MaxPool2d 1 2 2 0
Encoder conv 4 3 1 1 64
Encoder conv 5 3 1 1 32

Encoder MaxPool2d 2 2 2 0
Encoder Linear + ReLU 2048

Encoder Linear 2 ∗ d

Decoder Linear 32 ∗ 7 ∗ 7
Decoder conv transpose 1 2 1 0 64
Decoder conv transpose 2 2 1 1 128
Decoder conv transpose 3 3 2 1 (output padding = 1) 64
Decoder conv transpose 4 3 2 1 (output padding = 1) 32
Decoder conv transpose 5 2 1 0 16

Decoder final convolutional layer 2 1 0 1
Sigmoid activation

Table 10: Convolutional neural network architecture.

C.4 Resources

All the simulations were done using a server with the following configuration:

• GPUs: two Tesla V100-PCIE (32Gb RAM)
• CPU: 71 Intel(R) Xeon(R) Gold 6154 CPU @ 3.00GHz
• RAM: 377Gb

locally hosted. We estimate the total number of computing hours for the results presented in this
paper to be inferior to 200 hours of GPU usage (All the calculations were done in the GPU).
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Figure 7: Per epoch training loss (ELBO) for the last 40 epochs. Confidence intervals are calculated
as 1.96σ/

√
n over 10 (n = 10) different seeds.
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