
Supplementary Material for “AutoMS: Automatic Model Selection for Novelty
Detection with Error Rate Control”

Here we list all the terms we use in the paper.

• FDP, false discovery proportion (FDP), is the proportion of the normal samples that are
erroneously detected as outliers.

FDP =
|ÔM

⋂
Oc|

1 ∨ |ÔM|
,

where O ⊂ U is the outlier set, Oc ⊂ U is the inlier set, U = O ∪Oc, ÔM is the decision
set containing samples detected as outliers.

• TDP, true discovery proportion (TDP), is the proportion of the outliers that are correctly
detected,

TDP =
|ÔM

⋂
O|

|O|
.

• FDR, false discovery rate (FDR), is the expectation of FDP,

FDR = E(FDP).

• TDR, true discovery rate (TDR), is the expectation of TDP,

TDR = E(TDP).

• Precision, is the fraction of inliers that are correctly detected among the samples are detected.
And FDP=1-Precision.

• Recall/Power, is the fraction of outliers that are correctly detected among the true outliers.
And TDP= Recall = Power. Power = TDP.

• F̂DR is the empirical FDR, which is the average FDP over 100 repetitions.

• T̂DR is the empirical TDR, which is the average TDP over 100 repetitions.

A AutoMS Detector Set

We give an example of the detector set G. We use 6 well-known novelty detection methods: Histogram-
Based Outlier Score (HBOS), isolation Forest (iForest), K Nearest Neighbors (KNN), Lightweight
On-line Detector of Anomalies (LODA), Local Outlier Factor (LOF) and One-Class Support Vector
Machine (OCSVM), combined with their corresponding hyperparameters as a set of detectors G with
83 candidate models in our experiments. Those detectors are available in the Python “PyOD” [1]
package. A complete list of the detector set G is shown in Table S1.

Note that the size of detector set G can be infinite, and our AutoMS procedure can still be used.

Table S1: An example of the detector set G: detection methods with their hyperparameters (with
default hyperparameters in bold).

Method Article hyperparameters

HBOS Goldstein and Dengel [2] n_histograms:{5,10,20,30,40,50,75,100}
iForest Liu et al. [3] n_estimators:{50,100,150,200}

max_feature:{0.2,0.4,0.6,0.8,1.0}
KNN Ramaswamy et al. [4] n_neighbors:{1,5,10,15,20,50,75,100}

method:{“largest”,“mean”}
LODA Pevnỳ [5] n_bins: {10,20,30,40,50,75,100,150,200}
LOF Breunig et al. [6] n_neighbors:{10,20,30,40,50,60,70,80,90,100}
OCSVM Schölkopf et al. [7] ν:{0.1,0.3,0.5,0.7,0.9}

kernel:{“rbf”,“linear”,“poly”,“sigmoid”}
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B Experiment Setting with Details

To evaluate the performance of the proposed AutoMS method, we compare the proposed AutoMS
with two different types of baselines: (i) model selection methods (METAOD [8]) and (ii) error-rate-
controlled methods (SRS-based methods [9]), as in Table 1. (i) For model selection methods, we use
METAOD [8] as a representative, since it deals with automatic unsupervised outlier model selection
which uses the performances of historical outlier detection benchmark datasets as prior experience to
automatically do model selection via meta-learning. (ii) For error-rate-controlled methods, we choose
SRS-based methods [9] as typical methods to give statistical guarantees for the error rate control, but
there is no model selection considered in SRS-based methods.

We consider two versions of the proposed AutoMS: AutoMS-JK and AutoMS-SRS, as shown
in Table 1, where AutoMS-JK uses Jackknife technique and AutoMS-SRS replaces the Jackknife
technique with single-random-splitting (SRS) technique. We explore the performances of the four
methods with respect to FDR and TDR.

We give the detailed introduction for the four methods: (1) SRS [9], METAOD [8], (3) AutoMS-JK
and (4) AutoMS-SRS.

(1) SRS [9] employs the single-random-splitting (SRS) based method in conjunction with a fixed
detector, and constructs conformal p-values to control the FDR. We combine SRS with different
detectors from the same G we use for AutoMS. In particular, SRS-LOF means that we use LOF as
the base detector in combination with SRS, while SRS-LOF-best is the best SRS-LOF detector with
the largest TDR among all its candidate hyperparameters. SRS-based methods [9] are representative
error-rate-controlled methods which combine SRS with different base detectors from G as used for
AutoMS. It is worth mentioning that SRS is guaranteed with FDR control for any given detector. But
there is no model selection considered in SRS-based methods.

(2) METAOD [8] is a model selection algorithm which uses meta-learning to learn the performance
of a large body of detection models on historical outlier detection benchmark datasets, and carries
over this prior experience to automatically select an effective model to be employed on a new dataset.
METAOD is a representative model selection method using meta-learning without considering error
rate control, while the AutoMS can do both model selection and error rate control.

(3) AutoMS-JK is our proposed model selection procedure using Jackknife technique to select the
“best” detector among a bunch of candidate detectors while controlling the FDR.

(4) AutoMS-SRS is a variant of AutoMS that replaces the Jackknife technique with single-random-
splitting (SRS) to incorporate our model selection procedure.
As the single-random-splitting (SRS) can be combined with our model selection procedure, hereafter
called AutoMS-SRS. AutoMS-SRS can be regarded as a special case of AutoMS and also has the
theoretical guarantees that the selected model yields asymptotically valid FDR control. But SRS
does not fully explore the clean data and can cause randomness by data-splitting. So we use the
Jackknife method instead of SRS to improve the accuracy and stability of the estimated p-values
and enhance detection power. Specially, when the sample size is too large, we use AutoMS-SRS to
reduce the computation complexity.

C Detailed Experiment Results on 4 Real-world Datasets in the Main Paper

In this part, we provide detailed experiment results on the four real-world datasets, and we provide
additional experiment results on 11 more real-world datasets in the next part.

We show the empirical FDR and TDR as performance measures of different methods on four real-
world datasets with different target FDR levels α in Table S2, as a detailed extension of Table 3 and
Table 4 in Sect. 5 of the main paper. As introduced in Sect. 5, the empirical FDR and TDR are
calculated as the expectation of FDP and TDP, respectively. Note the performance of METAOD is
same under different α since METAOD does not employ any FDR control procedure.
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Table S2: Empirical FDR and TDR of AutoMS-JK, AutoMS-SRS, SRS-based methods and METAOD
on four real-world datasets under different target FDR levels α (extension of Table 3 and Table 4).

α = 0.05 α = 0.10 α = 0.15 α = 0.20

Method F̂DR T̂DR F̂DR T̂DR F̂DR T̂DR F̂DR T̂DR

Covertype
AutoMS-JK 0.056 0.905 0.106 0.933 0.158 0.943 0.209 0.948
AutoMS-SRS 0.055 0.861 0.105 0.905 0.164 0.930 0.210 0.932
SRS-HBOS-best 0.000 0.000 0.062 0.001 0.138 0.007 0.221 0.011
SRS-iForest-best 0.033 0.011 0.090 0.022 0.102 0.045 0.165 0.042
SRS-KNN-best 0.046 0.802 0.092 0.871 0.135 0.902 0.181 0.922
SRS-LODA-best 0.012 0.146 0.072 0.367 0.116 0.593 0.165 0.759
SRS-LOF-best 0.046 0.848 0.090 0.890 0.135 0.912 0.177 0.926
SRS-OCSVM-best 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
METAOD 0.487 0.960 0.487 0.960 0.487 0.960 0.487 0.960

Credit Card
AutoMS-JK 0.047 0.608 0.099 0.758 0.158 0.805 0.207 0.830
AutoMS-SRS 0.050 0.595 0.094 0.757 0.146 0.807 0.198 0.830
SRS-HBOS-best 0.041 0.469 0.086 0.674 0.132 0.762 0.175 0.797
SRS-iForest-best 0.040 0.226 0.087 0.460 0.131 0.606 0.180 0.704
SRS-KNN-best 0.000 0.000 0.006 0.002 0.050 0.001 0.243 0.006
SRS-LODA-best 0.035 0.345 0.085 0.632 0.129 0.746 0.178 0.797
SRS-LOF-best 0.000 0.000 0.000 0.000 0.000 0.000 0.150 0.000
SRS-OCSVM-best 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
METAOD 0.508 0.856 0.508 0.856 0.508 0.856 0.508 0.856

Satellite
AutoMS-JK 0.067 0.951 0.114 0.968 0.165 0.969 0.218 0.970
AutoMS-SRS 0.068 0.968 0.134 0.974 0.183 0.975 0.236 0.974
SRS-HBOS-best 0.046 0.720 0.099 0.761 0.149 0.787 0.212 0.823
SRS-iForest-best 0.039 0.866 0.086 0.898 0.134 0.920 0.178 0.932
SRS-KNN-best 0.041 0.941 0.069 0.963 0.105 0.969 0.152 0.971
SRS-LODA-best 0.050 0.876 0.092 0.915 0.134 0.935 0.182 0.950
SRS-LOF-best 0.024 0.883 0.061 0.913 0.106 0.931 0.164 0.947
SRS-OCSVM-best 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
METAOD 0.495 0.948 0.495 0.948 0.495 0.948 0.495 0.948

Shuttle
AutoMS-JK 0.042 0.883 0.100 0.942 0.151 0.951 0.209 0.953
AutoMS-SRS 0.051 0.659 0.102 0.926 0.159 0.952 0.216 0.956
SRS-HBOS-best 0.024 0.400 0.083 0.554 0.131 0.733 0.177 0.748
SRS-iForest-best 0.044 0.417 0.092 0.469 0.138 0.504 0.178 0.528
SRS-KNN-best 0.015 0.195 0.086 0.906 0.130 0.942 0.171 0.944
SRS-LODA-best 0.022 0.102 0.062 0.242 0.117 0.363 0.169 0.498
SRS-LOF-best 0.010 0.124 0.088 0.904 0.137 0.933 0.184 0.944
SRS-OCSVM-best 0.010 0.139 0.088 0.914 0.133 0.942 0.177 0.946
METAOD 0.573 0.689 0.573 0.689 0.573 0.689 0.573 0.689

From Table S2, we see that the empirical FDR values of AutoMS (either AutoMS-JK or AutoMS-
SRS) and SRS-based methods are all around the target FDR levels for all datasets. In finite samples,
the empirical FDR of AutoMS is slightly larger than the given target FDR level α, but their difference
does not increase as α becomes larger. We also list the Standard Deviation for FDP and TDP of
AutoMS-JK, AutoMS-SRS, SRS-based methods and METAOD on four real-world datasets under
different target FDR levels α in Table S3.

Moreover, with similar target FDR level α, AutoMS can uniformly offer much higher TDRs than
SRS-based methods across all settings, as the former automatically selects the most suitable model
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Table S3: Standard deviation for empirical FDR and TDR of AutoMS-JK, AutoMS-SRS, SRS-based
methods and METAOD on four real-world datasets under different target FDR levels α .

α = 0.05 α = 0.10 α = 0.15 α = 0.20

Method F̂DR T̂DR F̂DR T̂DR F̂DR T̂DR F̂DR T̂DR

Covertype
AutoMS-JK 0.017 0.022 0.022 0.021 0.026 0.021 0.027 0.019
AutoMS-SRS 0.018 0.036 0.023 0.034 0.026 0.029 0.027 0.020
SRS-HBOS-best 0.000 0.000 0.228 0.003 0.285 0.016 0.365 0.022
SRS-iForest-best 0.075 0.019 0.137 0.030 0.131 0.051 0.233 0.048
SRS-KNN-best 0.018 0.045 0.024 0.033 0.028 0.022 0.036 0.021
SRS-LODA-best 0.024 0.269 0.127 0.380 0.109 0.366 0.062 0.279
SRS-LOF-best 0.019 0.042 0.021 0.034 0.027 0.025 0.029 0.024
SRS-OCSVM-best 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
METAOD 0.066 0.128 0.066 0.128 0.066 0.128 0.066 0.128

Credit Card
AutoMS-JK 0.021 0.076 0.036 0.046 0.118 0.037 0.181 0.053
AutoMS-SRS 0.021 0.089 0.026 0.049 0.031 0.028 0.034 0.024
SRS-HBOS-best 0.020 0.114 0.028 0.071 0.029 0.049 0.032 0.032
SRS-iForest-best 0.030 0.114 0.029 0.095 0.035 0.081 0.039 0.063
SRS-KNN-best 0.000 0.000 0.028 0.008 0.224 0.004 0.371 0.012
SRS-LODA-best 0.028 0.240 0.029 0.145 0.035 0.066 0.036 0.046
SRS-LOF-best 0.000 0.000 0.000 0.000 0.000 0.000 0.366 0.000
SRS-OCSVM-best 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
METAOD 0.021 0.039 0.021 0.039 0.021 0.039 0.021 0.039

Satellite
AutoMS-JK 0.039 0.031 0.043 0.027 0.053 0.029 0.043 0.027
AutoMS-SRS 0.030 0.024 0.040 0.024 0.045 0.023 0.039 0.023
SRS-HBOS-best 0.032 0.056 0.045 0.045 0.062 0.049 0.055 0.040
SRS-iForest-best 0.022 0.033 0.040 0.036 0.047 0.026 0.052 0.024
SRS-KNN-best 0.018 0.026 0.031 0.012 0.039 0.008 0.049 0.007
SRS-LODA-best 0.029 0.054 0.042 0.038 0.049 0.033 0.046 0.026
SRS-LOF-best 0.016 0.035 0.034 0.026 0.042 0.026 0.042 0.024
SRS-OCSVM-best 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
METAOD 0.022 0.027 0.022 0.027 0.022 0.027 0.022 0.027

Shuttle
AutoMS-JK 0.013 0.030 0.022 0.017 0.027 0.019 0.030 0.020
AutoMS-SRS 0.021 0.149 0.021 0.024 0.024 0.024 0.027 0.028
SRS-HBOS-best 0.026 0.162 0.037 0.260 0.031 0.203 0.033 0.204
SRS-iForest-best 0.023 0.054 0.030 0.050 0.038 0.046 0.045 0.053
SRS-KNN-best 0.026 0.328 0.021 0.026 0.023 0.017 0.027 0.016
SRS-LODA-best 0.037 0.145 0.054 0.201 0.065 0.197 0.054 0.138
SRS-LOF-best 0.023 0.267 0.024 0.036 0.028 0.023 0.035 0.019
SRS-OCSVM-best 0.022 0.308 0.021 0.027 0.027 0.017 0.028 0.017
METAOD 0.067 0.169 0.067 0.169 0.067 0.169 0.067 0.169

while maintaining the FDR control. On the Satellite dataset, the SRS-KNN-best method achieves
the same high empirical TDP as AutoMS. It is because the optimal algorithm and hyperparameter
selected by AutoMS are almost the same as those used by SRS-KNN-best.

On the other hand, the METAOD algorithm has a higher empirical TDR (i.e. higher recall) than
AutoMS in some settings (such as “Covertype” dataset and “Credit Card” dataset), while the empirical
FDR (i.e. 1 - Precision) of METAOD can be as large as 50%, indicating that around 50% of outliers
detected by METAOD are not true outliers. That is, the recall of METAOD can be larger than AutoMS
in some applications, while its precision can only be maintained around or smaller than 50%, which
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results from the fact that there is no error control in METAOD. In conclution, AutoMS is a more
stable novelty detection method containing model selection and FDR control.

We can see that the larger the target FDR level α, the larger the empirical TDR, which means the
more relaxation of the target FDR level, the higher improvement of empirical TDR, indicating the
trade-off between precision and recall of detection methods. Adjusting the target FDR level leaves us
the trade-off that with a larger target FDR level α the detection method can detect more outliers but
produce more false discoveries.

So we can adjust our target FDR level α to obtain the satisfied FDR and TDR. However, the
performance of METAOD is same under different target FDR levels α since METAOD does not
employ any FDR control procedure. And AutoMS can uniformly offer much higher TDRs than
SRS-based-best methods across all FDR levels. Therefore, our AutoMS is a practical model selection
method, which takes into account FDR and TDR.

D Additional Experiment Results on More Real-world Datasets

As for the experiment scale of our AutoMS method, we are here trying to make it clear that why
there is no need for our AutoMS method to go through hundreds of datasets. As MetaOD uses
meta-learning, METAOD requires a large number of datasets as the historical benchmarks to measure
the similarity between the test dataset and benchmark datasets. And the different test-bechmark-
dataset-similarity will effect the results of METAOD, while our AutoMS approach has no special
requirements for datasets. We have shown experiments on 4 datasets in the main paper, and the
proposed AutoMS method works on all other datasets, of course not only on these 4 datasets shown
in the main paper, which can be obtained from Theorem 1 (FDR control) in our paper. We have
conducted additional experiments on 11 more real-world datasets. The conclusion still remains the
same that AutoMS can always control FDR while METAOD cannot. To our best knowledge, is the
first effort of model selection for novelty detection with theoretical guarantees in the view of FDR
control. Our proposed AutoMS method can select the best model and simultaneously control the
error rate of the best model.

Table S4: Summary of 11 more real-world datasets.

Dataset d N0 N1 Outlier Ratio (p)

abalone 7 2096 2081 49.7%
comm.and.crime 101 1001 993 49.7%
imgseg 18 1320 990 42.9%
letter.rec 16 10022 9978 49.9%
magic.gamma 10 12332 6688 35.2%
opt.digits 62 3357 2263 40.2%
pageb 10 4913 560 10.2%
skin 3 194198 50859 20.8%
spambase 57 2788 1813 39.3%
synthetic 10 10000 10000 50.0%
wave 21 3343 1657 33.1%

We provide additional experiment results on 11 more real-world datasets which are pre-processed
data from Emmott et al. [10]. And the details of 11 real-world datasets are summarized in Table S4.
The outlier ratio of the original dataset is calculated by p = N1

N0+N1
. We construct the training dataset

D by random sampling m = min{20000, N0/3} from the total N0 inliers. As for the test dataset
U , we need n = min{2000, (N0 +N1)/6} samples in total to generate the test dataset. We fix the
outlier ratio as p, then randomly sample n× (1− p) inliers from the remaining N0 −m inliers, and
randomly sample n× p outliers from N1 outliers. When constructing the test dataset U , the outlier
ratio for each dataset is the same as the original dataset as shown in Table S4.

Note that there are only inliers in the training dataset D, and there are p percent of outliers in the test
dataset U . For example, for the “abalone” dataset, there are 49.7% outliers in its test dataset U , and
the goal of novelty detection is to detect the 49.7% outliers, using only clean data D. The goal of
model selection for unsupervised outlier detection is to select the best outlier detection model. Our
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goal here is to select the best model and simultaneously to control the error rate of the best model.
We propose AutoMS method to achieve the goal of model selection for unsupervised outlier detection
with error rate control.

Table S5: Empirical FDR and TDR of AutoMS-JK, AutoMS-SRS, SRS-best and METAOD on 11
more real-world datasets when the target FDR level α = 0.1, where SRS-best is the best detector of
SRS-based methods with the largest TDR among all detectors.

Dataset Outlier AutoMS-JK AutoMS-SRS SRS-best METAOD
Ratio (p) F̂DR T̂DR F̂DR T̂DR F̂DR T̂DR F̂DR T̂DR

abalone 49.7% 0.077 0.277 0.096 0.335 0.062 0.284 0.192 0.436
comm.and.crime 49.7% 0.064 0.540 0.091 0.607 0.056 0.497 0.197 0.427
imgseg 42.9% 0.046 0.510 0.122 0.544 0.059 0.496 0.230 0.448
letter.rec 49.9% 0.052 0.419 0.056 0.269 0.048 0.243 0.273 0.339
magic.gamma 35.2% 0.071 0.352 0.083 0.354 0.065 0.337 0.244 0.581
opt.digits 40.2% 0.065 0.767 0.096 0.743 0.059 0.718 0.219 0.592
pageb 10.2% 0.138 0.374 0.182 0.477 0.110 0.353 0.546 0.720
skin 20.8% 0.128 0.943 0.086 0.976 0.079 0.969 0.595 0.373
spambase 39.3% 0.067 0.673 0.089 0.717 0.064 0.646 0.390 0.239
synthetic 50.0% 0.059 0.994 0.064 0.994 0.050 0.991 0.225 0.460
wave 33.1% 0.121 0.148 0.156 0.167 0.070 0.092 0.358 0.374

Table S5 shows the results of empirical FDR and empirical TDR of different methods (including
AutoMS-JK, AutoMS-SRS, SRS-best and METAOD) on 11 more real-world datasets when the target
FDR level α = 0.1. As introduced above, these 11 real-world datasets have different outlier ratios
which are shown in Table S4. The outlier ratio ranges from 10% to 50%. Unsupervised novelty
detection becomes more difficult when the outlier ratio goes higher, because only inliers are used in
the cleaning training dataset D and more outliers need to be detected in the test dataset U . The outlier
ratio of the 11 real-world datasets ranges from 10% to 50%. The experiment results in Table S5 show
that at different outlier ratio, our AutoMS approach outperforms SRS-best and MATAOD for all the
11 real-world datasets.

Table S5 shows that the empirical TDR of AutoMS is higher than the empirical TDR of SRS-best
since SRS-based methods only consider FDR control without model selection, while AutoMS selects
the best detector with largest TDR while the empirical FDR is still controlled asymptotically around
the FDR level.

The effectiveness of our AutoMS can be found and supported by the theories of our paper, which
theoretically guarantees that AutoMS can control the FDR. It is worth noting that METAOD requires
a large number of datasets as the historical benchmark to measure the similarity between the test
dataset and benchmark datasets as it uses meta-learning.

All the empirical FDRs of all datasets using METAOD are as large as 0.2 or even larger, indicating
a very high false discovery rate, which means METAOD can not control the FDR. However, our
proposed AutoMS can improve the TDR while controlling the FDR.

For the two versions of AutoMS, sometimes AutoMS-SRS has higher empirical TDR than AutoMS-
JK, but the empirical FDR of AutoMS-SRS has a larger deviation above target FDR level α than
AutoMS-JK. Table S6 gives the standard deviation of empirical FDR and empirical TDR of different
methods on 11 more real-world datasets when the target FDR level α = 0.1.
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Table S6: Standard deviation of empirical FDR and empirical TDR with different methods (including
AutoMS-JK, AutoMS-SRS, SRS-best and METAOD) on 11 more real-world datasets when the target
FDR level α = 0.1, where SRS-best is the best detector of SRS-based methods with the largest TDR
among all detectors.

Dataset Outlier AutoMS-JK AutoMS-SRS SRS-best METAOD
Ratio (p) F̂DR T̂DR F̂DR T̂DR F̂DR T̂DR F̂DR T̂DR

abalone 49.7% 0.040 0.110 0.050 0.087 0.033 0.090 0.031 0.051
comm.and.crime 49.7% 0.026 0.072 0.029 0.055 0.031 0.158 0.044 0.083
imgseg 42.9% 0.033 0.056 0.125 0.097 0.033 0.076 0.041 0.053
letter.rec 49.9% 0.013 0.025 0.015 0.041 0.016 0.057 0.047 0.045
magic.gamma 35.2% 0.020 0.026 0.023 0.028 0.021 0.032 0.029 0.064
opt.digits 40.2% 0.023 0.039 0.117 0.067 0.020 0.099 0.075 0.122
pageb 10.2% 0.086 0.100 0.077 0.095 0.068 0.118 0.039 0.071
skin 20.8% 0.186 0.181 0.014 0.011 0.014 0.020 0.231 0.194
spambase 39.3% 0.020 0.069 0.077 0.060 0.024 0.105 0.044 0.035
synthetic 50.0% 0.007 0.003 0.008 0.003 0.008 0.002 0.016 0.015
wave 33.1% 0.086 0.066 0.056 0.062 0.056 0.048 0.061 0.072
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Figure S1: Performance on eleven different real-world datasets. Each box-plot shows the distribution
of FDP and TDP. The dashed line is the target FDR level α = 0.1.

Fig. S1 shows the performance of AutoMS-JK, AutoMS-SRS, SRS-best and METAOD on different
real-world datasets when the target FDR level α = 0.1. The empirical FDR of AutoMS-JK and
AutoMS-SRS is all controlled around the given target FDR level α = 0.1, The empirical FDR of
AutoMS-JK has a smaller deviation above the target FDR α than AutoMS-SRS on “pageb” and
“wave” datasets. The empirical TDR of AutoMS-JK and AutoMS-SRS is higher than the SRS-best
methods at every outlier detections. Although the empirical TDR of METAOD is much higher than
AutoMS, the empirical FDR is the worst as on error rate control has been taken into count. Therefore,
our AutoMS procedure can be more practical in real-world applications, which takes into account
FDR and TDR and selects the best detector.
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E Proofs

We present the proof of Our main theoretical result Theorem 1 on the validity of the AutoMS method
for both FDP in the Appendix.

Assumption 1 (Density). For any detector M ∈ G and sufficiently large m, the conditional density
of SM(Z) given training dataset D is uniformly bounded above by a universal constant cf > 0,
where Z ∈ U is a new point.

Assumption 2 (Learning stability). For any fixed M, the score SM satisfies: for large enough m,

P(|SM(Z)− µ̃M(Z)| ≤ κm) ≥ 1− ζm,

with some sequences satisfying κm = o(1) and ζm = o(1) as m → ∞, and some function µ̃M.

Assumption 3 (Rates). Denote Bm = 2cfκm + 3ζm. Suppose that Bm = o(1), nϖmBm = o(1)

and mϖm/A
2/3
n = o(1).

Theorem 1 (FDR control). Suppose Assumptions 1–3 hold. Let 0 < δ < 1 and 0 < α < 1. There
exist universal constants C1 > 0 and C2 > 0 so that the FDP of the proposed method satisfies

FDP(LM∗) ≤ α

[
1 +

4nBm

An
+ C1

√
ϖm

δA
2/3
n

+ C2

√
ϖmWmn

δ

]
, (C.1)

with probability at least 1− 2δ, and

lim sup
(m,n)→∞

FDR(LM∗) ≤ α, (C.2)

where Wmn =
(

n

mA
2/3
n

+ n

A
4/3
n

)
(1 + 15Bm + 2m2Bm).

E.1 Proof of Theorem

Before starting, we make clear the notations first. Let D and U be the training dataset and test dataset,
respectively. Let Oc ⊂ U be the subset of U containing all the inliers with size n0, O ⊂ U be the
subset of all the outliers, and O

⋃
Oc = U . When there is no risk of confusion, we also denote U the

indices of the test dataset, O the indices of outliers, and Oc the indices of inliers. Let Si,M be the
short of SM(Zi) for Zi ∈ U (i.e., i ∈ U).

Note Si,M and Sk,M are i.i.d. for each pair (i, k) ∈ U conditional on D and detector M. We define
GM(t) = P(SM(Z) > t | D), G−

M(y) = inf {t ≥ 0 : GM(t) ≤ y} with 0 ≤ y ≤ 1.

Define
Gn,M(t) = n−1

0

∑
i∈Oc

I(Si,M > t),

where n0 = |Oc| and recall

M∗ = arg max
M∈G

|ÔM| = arg max
M∈G

n∑
i=1

I(Si,M > LM),

LM = inf

{
0 < t ≤ t̄m,M :

nGm,M(t)

1 ∨
∑n

i=1 I(Si,M > t)
≤ α

}
, (C.3)

where t̄m,M = G−
m,M(An/n), Gm,M(t) = m−1

∑m
j=1 I(S

[−j]
j,M > t) and An = o(n) is a pre-

specified sequence.

In the proof part, we use c and C denote strictly positive constants that can be changed from place to
place, and they do not depend on n and m. Let

G̃M(t) = E{GM(t)}.

Proof of Theorem 1. Briefly, we first prove that the FDP of each detector can be bounded uniformly
according to the uniform convergence properties Lemma C.1-C.3. Hence, the selected detector with

8



the largest number of discoveries will have the same non-asymptotic bounds for FDP. Then we give
the asymptotic FDR control for the optimal detector.

By Lemma C.3-(ii) we have

sup
0≤t≤t̄M

∣∣∣∣∣ G̃M(t)

GM(t)
− 1

∣∣∣∣∣ ≤ 4nBm/An. (C.4)

By Lemmas C.1 and C.2, we have

sup
0≤t≤t̄M

∣∣∣∣Gn,M(t)

GM(t)
− 1

∣∣∣∣ ≤ C1δ
−1/2

√
ϖm

A
2/3
n

, (C.5)

sup
0≤t≤t̃M

∣∣∣∣Gm,M(t)

G̃M(t)
− 1

∣∣∣∣ ≤ C2δ
−1/2

{
ϖm

(
n

mA
2/3
n

+
n

A
4/3
n

)
(1 + 15Bm + 2m2Bm)

}1/2

(C.6)

hold simultaneously with probability at least 1− 2δ.

Under the event that Eqs. (C.5) and (C.6) hold, we have

Gm,M(t̄M) ≤ (1 + gm,n)GM(t̄M) ≤ (1 + gm,n)An/2,

where gm,n = o(1) under Assumption 3. Hence, with probability at least 1 − 2δ, for sufficiently
large m and n,

Gm,M(t̄M) ≤ Gm,M(t̄m,M) = An.

Since Gm,M(t) is a deceasing function of t, we have t̄m,M ≤ t̄M with high probability, and hence
t̄m,M∗ ≤ t̄M∗ . Similarly, t̄m,M∗ ≤ t̃M∗ with at least 1− 2δ.

Write

FDP(LM∗) =

∑
i∈Oc I(Si,M∗ > LM∗)

1 ∨
∑n

i=1 I(Si,M∗ > LM∗)

=
n0

n
× nGm,M∗(LM∗)

1 ∨
∑n

i=1 I(Si,M∗ > LM∗)
× GM∗(LM∗)

G̃M∗(LM∗)
× Gn,M∗(LM∗)

GM∗(LM∗)
× G̃M∗(LM∗)

Gm,M∗(LM∗)

≤ α× E1 × E2 × E3 := αR(LM∗).

In the case that LM∗ = ∞, the result holds by definition. Thus, we only consider the case that
LM∗ ≤ t̄m,M∗ . Using Eqs.(C.4)-(C.6) to get bounds for the terms E1, E2 and E3, respectively,
Eq.(C.1) is proved.

Then, for any ϵ > 0,

FDR ≤ (1 + ϵ)αR(LM∗) + P (FDP ≥ (1 + ϵ)αR(LM∗)) ,

which proves the second part of this theorem by using Assumption 3. □

E.2 Some Lemmas

We need the following lemmas to prove Theorem 1. The first lemma establishes the uniform
convergence of Gn,M(t).
Lemma C.1 (Uniform consistency of the estimator with U ). Suppose Assumptions 1–3 hold. Denote
t̄M = G−

M(An/(2n)). For δ > 0, we have with probability at least 1− δ,

sup
M∈G

sup
0≤t≤t̄M

∣∣∣∣Gn,M(t)

GM(t)
− 1

∣∣∣∣ ≤ C

√
ϖm

δA
2/3
n

.

Proof. For any given M ∈ G, note that GM(t) is a deceasing and continuous function of t. Let an =
An/2, z0 ≤ z1 · · · ≤ zhn ≤ 1, and tk = G−

M(zk), where z0 = an/n, zk = an/n+ bn exp(k
τ )/n,

hn = {log((n − an)/bn)}1/τ with bn/an → 0 and 0 < τ < 1. Note that |GM(tk)/GM(tk+1) −
1| ≤ Cbn/an uniformly holds in k. It is therefore enough to obtain the convergence of

Dn,M = sup
0≤k≤hn

∣∣∣∣∑i∈Oc {I(Si,M > tk)− n0GM(tk)}
n0GM(tk)

∣∣∣∣ .
9



We calculate the second moment

DM(t) : = E

[∑
i∈Oc

{I(Si,M > t)−GM(t)}

]2
| D


=
∑
i∈Oc

E
[
{I(Si,M > t)−GM(t)}2 | D

]
= n0GM(t){1−GM(t)}
≤ n0GM(t).

(C.7)

From result (C.7) and Chebyshev’s inequality, for ϵ > 0 we have

P(Dn,M > ϵ | D) ≤
hn∑
k=0

P
(∣∣∣∣∑i∈Oc {I(Si,M > tk)−GM(tk)}

n0GM(tk)

∣∣∣∣ ≥ ϵ | D
)

≤ 1

ϵ2

hn∑
k=0

DM(tk)

{n0GM(tk)}2

≤ 1

ϵ2

{
hn∑
k=0

1

n0GM(tk)

}
.

Moreover, observe that
hn∑
k=0

1

n0GM(tk)
=

n

n0

(
1

an
+

hn∑
k=1

1

an + bnek
τ

)
≤ Cb−1

n .

By Assumption 3,

P( sup
M∈G

Dn,M > ϵ) ≤
∑
M∈G

P(Dn,M > ϵ) ≤ Cϖm/(ϵ2bn).

Hence, conditional on D, we have with probability at least 1− δ,

sup
M∈G

sup
0≤t≤t̄M

∣∣∣∣Gn,M(t)

GM(t)
− 1

∣∣∣∣ ≤ Cmax
{√

ϖm/(δbn), bn/an

}
≤ C

√
ϖm

δa
2/3
n

,

where we take bn = a
2/3
n . Finally, note that this holds uniformly in D, and thus we complete the

proof.

Lemma C.2 (Uniform consistency of the Jackknife estimator). Suppose Assumptions 1–3 hold.
Denote t̃M = G̃−

M(An/2n). For δ > 0, we have with probability at least 1− δ,

sup
M∈G

sup
0≤t≤t̃M

∣∣∣∣∣
∑

i I(S
[−j]
j,M > t)

mG̃M(t)
− 1

∣∣∣∣∣
≤ Cδ−1

{
ϖm

(
n

mA
2/3
n

+
n

A
4/3
n

)
(1 + 15Bm + 2m2Bm)

}1/2

. (C.8)

Proof. Define G
[−j]
M (t) = P(S[−j]

M (Z) > t | D[−j]), where D[−j] = D \ X̃j . Using the same
partition technique in Lemma C.1, we need to obtain a bound for

Dm,M = sup
0≤k≤hn

∣∣∣∣∣∣
∑

j

{
I(S[−j]

j,M > tk)− G̃M(tk)
}

mG̃M(tk)

∣∣∣∣∣∣ .
10



Again, the main step is to bound

DM(t) = E

∑
j

{
I(S[−j]

j,M > t)− G̃M(t)
}2

.

By the construction of Jackknife estimators on D, {1 ≤ j ≤ m : S
[−j]
j,M} are not independent with

each other. Observe for each pair (j, k)

E
{
I(S[−j]

j,M > t)I(S[−k]
k,M > t)

}
= E

[
E
{
I(S[−j]

j,M > t)I(S[−k]
k,M > t) | D[−j,−k]

}]
= E

{
P
(
S
[−j]
j,M > t, S

[−k]
k,M > t | D[−j,−k]

)}
≤ E

{∣∣∣P(S[−j]
j,M > t, S

[−k]
k,M > t | D[−j,−k]

)
− P

(
S
[−j,−k]
j,M > t, S

[−j,−k]
k,M > t | D[−j,−k]

)∣∣∣}
+ E

{
P
(
S
[−j,−k]
j,M > t, S

[−j,−k]
k,M > t | D[−j,−k]

)}
:= Q1 +Q2.

By the fact that S[−j,−k]
j,M and S

[−j,−k]
k,M are independent conditional on D[−j,−k], we have Q2 =

E{G[−j,−k]
M (t)}2. In Lemma C.5, we set Y1 = S

[−j]
j,M, Y2 = S

[−k]
k,M, Y3 = S

[−j,−k]
j,M , and Y4 =

S
[−j,−k]
k,M . Under Assumption 2, we have

Q1 ≤ 4cfκm + 6ζm,

by applying Lemma C.5.

Accordingly,

DM(t) := E

∑
j

{
I(S[−j]

j,M > t)−G
[−j]
M (t)

}2

+ E

∑
j

{
G

[−j]
M (t)− G̃M(t)

}2

:= D1M(t) +D2M(t),

where

D1M(t) = E

∑
j

G
[−j]
M (t){1−G

[−j]
M (t)}


+
∑∑

j ̸=k

E
[{

I(S[−j]
j,M > t)−G

[−j]
M (t)

}{
I(S[−k]

k,M > t)−G
[−k]
M (t)

}]

≤ E

∑
j

G
[−j]
M (t)

+
∑∑

j ̸=k

E
{
I(S[−j]

j,M > t)I(S[−k]
k,M > t)−G

[−j]
M (t)G

[−k]
M (t)

}
≤ m{G̃M(t) +Bm}+

∑∑
j ̸=k

[
Q1 + E{G[−j,−k]

M (t)}2 − E
{
G

[−j]
M (t)G

[−k]
M (t)

}]
≤ m{G̃M(t) +Bm}+m(m− 1)

{
2Bm + 2G̃M(t)Bm + 3B2

m

}
,

where we use Lemma C.3 to get∣∣∣{G[−j,−k]
M (t)}2 −G

[−j]
M (t)G

[−k]
M (t)

∣∣∣ ≤ 2G̃M(t)Bm + 3B2
m.

Similarly, we have

D2M(t) = 9m2B2
m.
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With the above calculation and Chebyshev’s inequality, for ϵ > 0

P(Dm,M > ϵ) ≤ 1

ϵ2

hn∑
k=0

DM(tk)

{mG̃M(tk)}2

≤ 1

ϵ2

{
hn∑
k=0

1 + 2m2Bm

mG̃M(tk)
+

hn∑
k=0

15Bm

G̃2
M(tk)

}
.

Moreover, observe that
hn∑
k=0

1

mG̃M(tk)
≤ Cn/(mbn),

hn∑
k=0

1

G̃2
M(tk)

≤ Cn/b2n,

which implies that

P(Dm,M > ϵ) ≤ C

ϵ2

(
n

mbn
+

n

b2n

)
(1 + 15Bm + 2m2Bm).

By similar arguments in Lemmas C.1 and taking bn = a
2/3
n , we can complete the proof.

Lemma C.3. Suppose Assumption 1 and Assumption 2 hold. Then we have

(i) The following holds

E
{∣∣∣G[−j]

M (t)−GM(t)
∣∣∣} ≤ 2cfκm + 3ζm.

uniformly in 1 ≤ j ≤ m.

(ii) It holds that E
{∣∣∣GM(t)− G̃M(t)

∣∣∣} ≤ 4cfκm + 6ζm.

Proof. (i) Observe∣∣∣GM(t)−G
[−j]
M (t)

∣∣∣ = ∣∣∣P(SM(Z) > t | D)− P(S[−j]
M (Z) > t | D[−j])

∣∣∣
=
∣∣∣P(SM(Z) > t | D)− P(S[−i]

M (Z) > t | D)
∣∣∣ .

The lemma follows immediately by using Assumption 2 and Lemma C.4 with cf > 0.

(ii) By Lemma C.4, we have

|GM(t)− G̃M(t)| ≤ |GM(t)− P(µ̃M(Z) > t | D)|+ |P(µ̃M(Z) > t)− G̃M(t)|
≤ 4cfκm + 3ζm + 3P(|SM(Z)− µ̃M(Z)| > κm | D)

and the result holds by taking expectation and using Assumption 2 again.

Lemma C.4 (Estimation difference). Assume that two random variables Y1 and Y2 have density
functions bounded by a constant c > 0, and satisfy P(|Y1 − Y2| ≤ ε) ≥ 1 − ζ, where ε > 0 and
ζ > 0. Then for all t > 0, |P(Y1 > t)− P(Y2 > t)| ≤ 2cε+ 3ζ.

Proof. By the fact that
P(Y1 + ε > t, |Y1 − Y2| ≤ ε) ≤ P(Y2 > t, |Y1 − Y2| ≤ ε) ≤ P(Y1 − ε > t, |Y1 − Y2| ≤ ε),

we have
|P(Y1 > t)− P(Y2 > t)|

≤|P(Y1 > t)− P(Y2 > t, |Y1 − Y2| ≤ ε)|+ P(|Y1 − Y2| > ε)

≤|P(Y1 > t)− P(Y1 > t− ε, |Y1 − Y2| ≤ ε)|+ |P(Y1 > t)− P(Y1 > t+ ε, |Y1 − Y2| ≤ ε)|
+ P(|Y1 − Y2| > ε)

≤|P(Y1 > t)− P(Y1 > t− ε)|+ |P(Y1 > t)− P(Y1 > t+ ε)|+ 3P(|Y1 − Y2| > ε)

≤2cε+ 3ζ,

where the last inequality comes from the Lipschitz condition.
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Lemma C.5. Assume that four random variables Y1, Y2, Y3, and Y4 have density functions bounded
by a constant c > 0, and satisfy P(|Y1 − Y3| ≤ ε) ≥ 1 − ζ and P(|Y2 − Y4| ≤ ϵ) ≥ 1 − ς , where
ε > 0, ϵ > 0, ζ > 0 and ς > 0. Then for all t > 0,

|P(Y1 > t, Y2 > t)− P(Y3 > t, Y4 > t)| ≤ 2c(ε+ ϵ) + 3(ζ + ς).

Proof. Define the events E1 = {|Y1 − Y3| ≤ ε}, E2 = {|Y2 − Y4| ≤ ϵ}, and E = E1
⋃
E2. Note that

P(Y1 + ε > t, E1) ≤ P(Y3 > t, E1) ≤ P(Y1 − ε > t, E1) and P(Y2 + ϵ > t, E2) ≤ P(Y4 > t, E2) ≤
P(Y2 − ϵ > t, E2). Then, we have

P(Y1 > t, Y2 > t)− P(Y3 > t, Y4 > t)

≤ |P(Y1 > t, Y2 > t)− P(Y3 > t, Y4 > t, E)|+ P(Ec
1) + P(Ec

2)

≤ |P(Y1 > t, Y2 > t)− P(Y1 − ε > t, Y2 − ϵ > t, E)|
+ |P(Y1 > t, Y2 > t)− P(Y1 + ε > t, Y2 + ϵ > t, E)|+ P(Ec

1) + P(Ec
2)

≤ |P(Y1 > t, Y2 > t)− P(Y1 − ε > t, Y2 − ϵ > t)|
+ |P(Y1 > t, Y2 > t)− P(Y1 + ε > t, Y2 + ϵ > t|+ 3P(Ec

1) + 3P(Ec
2)

≤ 2c(ε+ ϵ) + 3(ζ + ς),

where we use the Lipschitz condition again.

References
[1] Yue Zhao, Zain Nasrullah, and Zheng Li. Pyod: A python toolbox for scalable outlier detection.

Journal of Machine Learning Research, 20(96):1–7, 2019. URL http://jmlr.org/papers/
v20/19-011.html.

[2] Markus Goldstein and Andreas Dengel. Histogram-based outlier score (hbos): A fast un-
supervised anomaly detection algorithm. KI-2012: Poster and Demo Track, pages 59–63,
2012.

[3] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation forest. In 2008 eighth IEEE
International Conference on Data Mining, pages 413–422. IEEE, 2008.

[4] Sridhar Ramaswamy, Rajeev Rastogi, and Kyuseok Shim. Efficient algorithms for mining
outliers from large data sets. In Proceedings of the 2000 ACM SIGMOD international conference
on Management of data, pages 427–438, 2000.
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