
A Graph Details100

In the following, we provide more details on all the considered Directed Acyclic Graphs (DAGs).101

A.1 Linear Structural Equation model102

We consider the following Linear Structural Equation model (SEM),103

S = US (1)
A = αS + UA

R = β1S + β2A+ UR,

where US , UA and UR are the exogenous error terms. The coefficients α, β1 and β2 are the path104

coefficients or the structural parameters, and carry causal information. For example, β2 stands for the105

change in R induced by raising A one unit, while keeping all other variables constant. In terms of106

do-calculus, β2 can be interpreted as the slope β2 = δ/δaE[R | do(a), do(s)]. The corresponding107

DAG is illustrated in Figure 2a.108
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Figure 2: Example of a Directed Acyclic Graph (DAG) for a T = 1 setting where (a) variable R
serves as a collider, and (b) R is not a collider. Variables conditioned on are depicted as rectangles.

A.2 Complete Graph Environment (CG1)109

We consider a finite horizon MDP with a time horizon of T = 7. In this setting, all variables are110

endogenous, as represented by the corresponding DAG in Figure 3. The behavior policy takes as111

input the previous time-point action and state variables. The action space is binary, with A = 1112

corresponding to “assign action" and A = 0 indicating “don’t assign action". The data-generating113

process (DGP) corresponding to the state variables is as follows,114

S1 ∼ Normal(0, σ)

St ∼ Normal(µa,t, σ), for 1 < t ≤ 3

St ∼ Normal(µb,t, σ), for t ≤ T

where µa,t = −0.7At−1 + 0.4St−1 and µb,t = 0.4At−1 + 0.4St−1. The reward at time t is equal115

to 1 if St exceeds the third quantile of the asymptotic distribution of St. Otherwise, it is 0. In116

the DAG shown in Figure 3, both states and actions are colliders. As rewards are descendants of117

colliders, conditioning on rewards will have the same effect as conditioning on the collider directly.118

By conditioning on the future, we introduce spurious associations between states and actions at earlier119

time points (which negatively affects the return) and later time points (which positively affects the120

return). As a result, the optimal policy learned by GCRL will be biased because it fails to correctly121

learn the optimal policy at the early time points.122

S1 A1

R1

S2 A2

R2

. . . S6 A6

R3

S7

Figure 3: DAG corresponding to the Complete Graph environment (CG1) with a horizon of T = 7.
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A.3 Incomplete Graph Environment (IG1)123

We consider a finite horizon DGP with a time horizon of T = 7. In this setting, all variables are124

endogenous except for an unknown, exogenous variable ϵ ∼ Normal(1, 0.2). The corresponding125

DAG is depicted in Figure 4. The behavior policy takes as input the previous time-point state and126

action variable. Similar to the previous scenario (CG1), the action space is binary. The data-generating127

process corresponding to the state variables is as follows,128

S1 ∼ 0.8ϵ

St ∼ Normal(µt, σ), for 1 < t ≤ T

where µt = −0.9At−1 − 0.9St−1 + 5ϵ. The reward at time t is equal to 1 if St exceeds the third129

quantile of the asymptotic distribution of St. Otherwise, it is 0. In the DAG depicted in Figure 4,130

states are colliders. It’s important to note that ϵ positively influences the outcome, while actions131

have a negative impact on the trajectory’s return. By conditioning on the future, we introduce an132

association between actions and ϵ, which results in a biased optimal policy learned by GCRL.133
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Figure 4: DAG corresponding to the Incomplete Graph environment (IG1) with T = 7. Dotted
arrows represent paths from unknown, exogenous (unobserved) variable to endogenous (observed)
state variables.

B Motivation for Examining Causality of GCRL134

What if the collected trajectories are not all from an expert, so now we have data with R = 1 and135

R = 0? Let’s say we aim to learn P (a | s, r) as in GCRL, where R = r. Note that P (a | s, r) =136

P (a, s | r)/P (r | s), thus we use the same approach as in the previous example, just with R = r.137

For both, we have unblocked extraneous information between S and A due to conditioning on the138

collider R, which falls under the rubric of spurious association [12]. Conditioning on R during data139

selection process, or while trying to learn population conditional probabilities, can induce spurious140

association between it’s parents, S and A. For instance, while correlation between A and S was 0.26141

when we condition on R = 1, it is 0.3 conditional on R = 0. In language of Pearl’s do-calculus,142

there is no do() operator on the state variable [12]. In comparison, in Figure 2b, R is no longer a143

collider. Now we can recover P (A = 1 | S = 0) from P (s, a | R = 1), and correlation between A144

and S conditional on R = 1 or R = 0 remains 0.23.145

B.1 Recoverability in the T = 1 Setting146

The following definition and notation follows from Bareinboim and Pearl [1]. We refer to DAG in147

Figure 2 with T = 1 and (S,A,R) structure, denoted as the Gr graph.148

Definition 1 (r-Recoverability). In the context of a causal graph denoted as Gr representing the149

selection mechanism, we define that the distribution Q = P (a | s) is considered r-recoverable150

from selection-biased data within Gr if the assumptions inherent in the causal model allow Q to be151

expressed in terms of the distribution under selection bias, denoted as P (a, s | R = 1).152

Lemma 1. P (a | s) is not r-recoverable from a DAG in Figure 2.153

Proof. The proof follows immediately from the subgraph Figure 1d considered in [2], where Gr \154

{S → R}. As the extra edge can be inactive in a compatible parametrization [12], lack of r-155

recoverability in Gr \ {S → R} proves P (a | s) is not r-recoverable in Gr.156
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C Experiment Results157

C.1 Is stochasticity driving performance?158

Recent studies indicate that GCRL algorithms struggle in stochastic environments [7, 4]. In our159

analysis, we evaluate the performance of GCRL and FQI across different levels of variability,160

represented by the parameter σ, in the DGPs of CG1 and IG1. The results, based on various training161

dataset sizes, are presented in Figure 5, revealing that FQI consistently outperforms GCRL under all162

levels of stochasticity.163

Figure 5: Mean return for CG1 and IG1 Data Generating Process (DGP) at t = 7 and its corresponding
standard error, calculated over 100 Monte Carlo (MC) iterations. In the upper panels (a)-(d), we
illustrate the CG1 DGP, while in the lower panels (a)-(d), we depict the IG1 DGP under different
levels of σ = 0.001, 0.01, 0.1, 1, indicating increasing stochasticity in the process. The training
dataset sizes considered are 50, 100, 500, 1000, 3000, 5000, and a validation size of 20 is used for all
cases.

C.2 Do we need different policy estimators?164

Practical recommendations suggest that simple implementations can achieve competitive performance,165

if not better, compared to more complex architectures and value-based RL methods [7]. Other point166

to importance of complex neural network architectures as, even if the behavior policy is simple,167

conditional policy learned by GCRL might not be [11, 5]. In our analysis, we explore various168

choices for policy estimation, including: (1) simple main terms generalized linear model (glm), (2)169

Super Learner (SL), an ensemble learner based on cross-validation, (3) high-capacity feed-forward170

fully-connected neural network and (4) high-capacity neural network with regularization. The SL171

is a convex combination of predictions made by glm, generalized additive model, shallow neural172

network, regularized gradient boosting and random forest [14, 6, 16, 15]. Figure 6 presents the results173

for different policy estimators at σ = 0.1. It demonstrates that FQI consistently outperforms GCRL174

across all considered policy estimators and sample sizes.175
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Figure 6: Mean return for CG1 and IG1 Data Generating Process (DGP) at σ = 0.1 and t = 7 with
its corresponding standard error, calculated over 100 Monte Carlo (MC) iterations. In the upper
panels (a)-(d), we illustrate the CG1 DGP, while in the lower panels (a)-(d), we depict the IG1
DGP with policy estimated using different estimators: linear models (LM), ensemble learner (SL),
Neural Network (NN) and Neural Network with dropout. The training dataset sizes considered are
50, 100, 500, 1000, 3000, 5000, and a validation size of 20 is used for all cases.

D Experiment Details176

In Table 1, we provide details about the neural network architecture used in all experiments, unless177

a different algorithm is explicitly mentioned. In the last row of Table 1 we specifically note that178

we investigated regularization through dropout as a separate estimator in our exploration of various179

conditional policy estimators. The table also enumerates all the algorithms included in the ensemble180

learner’s library, known as the Super Learner (SL) [14]. The Super Learner library comprised181

the following algorithms: (1) generalized linear model (glm), (2) single layer neural network, (3)182

generalized additive model, (4) random forest and (5) regularized gradient boosting. [6, 16, 15].183

We considered different configurations of random forests and gradient boosting based on their184

hyperparameters, such as the number of trees, maximum depth, and eta. The Super Learner employed185

10-fold cross-validation.186

In Table 2, we provide a comprehensive list of simulation parameters. Each experiment was con-187

ducted independently 100 times, corresponding to 100 Monte Carlo (MC) simulations or iterations188

(independent experiments). During each iteration, we trained both a GCRL and FQI algorithm using189

training sets of various sizes, where (n = 50, 100, 500, 1000, 3000, 5000). For every experiment, we190

used a validation set consisting of 20 trajectories. The final reported return is the average over 100191

Monte Carlo simulations. To achieve the desired return values for GCRL, we set the target return192

to be 0.7 for CG1 and 2.4 for IG1. These target values were determined based on the asymptotic193

distribution consistent with the dynamics of the CG1 and IG1 DGP at the end of each trajectory.194

Specifically, they correspond to the upper tails (3rd quantile) of the asymptotic distribution observed195

in CG1 and IG1 DGPs and are supported by the training data used in each experiment.196
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Table 1: Neural network architecture, ensemble learner specification and design parameters used for
considered experiments.

HYPERPARAMETER VALUE ENVIRONMENT

HIDDEN LAYERS 2 ALL
LAYER WIDTH 1024 ALL
NONLINEARITY RELU ALL
LEARNING RATE 1E-3 ALL
EPOCHS 20 ALL
DROPOUT 0 ALL

0.1 ALL

ENSEMBLE LEARNER GLM ALL
GAM ALL

NEURAL NETWORK ALL
RANDOM FOREST ALL

XGBOOST ALL
CV 10 ALL

Table 2: Simulation parameters used for considered experiments.

HYPERPARAMETER VALUE ENVIRONMENT

NUMBER OF MC ITERATIONS 100 ALL
TRAINING SIZE 50 ALL

100 ALL
500 ALL

1000 ALL
3000 ALL
5000 ALL

VALIDATION SIZE 20 ALL

GOAL MAX 0.7 CG1
GOAL MAX 2.4 IG1
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