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1 ALGORITHM DETAILS FOR DUALFED
The training procedure for DualFed is presented in Algorithm 1. It
mainly consists of the following steps within a single global round:
• The sever sends a global encoder and classifier to each client.
• Each client loads the parameters from the received global
encoder and classifier into its local ones, then iteratively
updates the main branch (including the global encoder, the
personalized projector, and the personalized classifier) and
the global classifier using its local data.
• Once local updating is completed, each client uploads its
latest global encoder and classifier to the server.
• The sever aggregates these uploaded global encoder and
classifier to generate the new ones.

The above steps are repeated until the model converges.

2 DATASET DESCRIPTION
Our experiments are conducted on three datasets: PACS [8], Do-
mainNet [15], and Office-Home [17]. The PACS dataset includes 4
distinct domains: Photo (P), Art (A), Cartoon (C), and Sketch (S),
each containing images from 7 common classes. The DomainNet
dataset encompasses 6 distinct domains: Clipart (C), Infograph (I),
Painting (P), Quickdraw (Q), Real (R), and Sketch (S). Initially, each
domain in DomainNet dataset comprises 345 classes. Following
previous studies [10, 18], we narrow these domains down to 10
commonly-used classes to create our experimental dataset. The
Office-Home dataset contains images from 4 distinct domains: Art
(A), Clipart (C), Product (P), and Real-World (R), each containing
65 classes. We retain all classes in Office-Home to conduct a com-
prehensive evaluation of DualFed on a larger-scale scenario. Figure
1 presents some example images in these three datasets. For each
domain, we show the images from 5 representing classes. It can be
observed that significant variations exist among different domains,
suggesting that personalized representations can vary considerably
across these domains. Therefore, it is crucial to explore both general-
ized representations shared across these domains and personalized
representations specific to each domain to enhance collaboration
in federated learning (FL) with heterogenous data.

For these three datasets, we select the images from a single do-
main to form the dataset of an individual client. Consequently, there
are 4 clients for PACS, 6 clients for DomainNet, and 4 clients for
Office-Home, respectively. In both PACS and DomainNet datasets,
we chose a subset of 500 training images per client from the same
domain to comprise the training dataset. For Office-Home daatset,
we consider a more extensive experimental scenario with more
samples. We set the number of training samples to 2, 000 for the
Clipart, Product, and Real-World domains. In the case of the Art
domain, the number is limited to 1, 942, matching the total number
of samples available in this domain. All the images from the test

Algorithm 1 DualFed
Notations:𝑇 : global updating rounds, 𝐸: local updating epochs,
𝐵: local minibatch size, 𝜂: learning rate, 𝜆: loss-balanced hy-
perparameters, 𝜃 𝑓 ,𝑠,𝑡𝑚 : parameters of global encoder, 𝜃ℎ,𝑠,𝑡𝑚 : pa-
rameters of global classifier, 𝜃𝑔,𝑝,𝑡𝑚 : parameters of personalized
projection network, 𝜃ℎ,𝑝,𝑡𝑚 : parameters of personalized classifier,
Θ𝑡
𝑚 := {𝜃 𝑓 ,𝑠,𝑡𝑚 , 𝜃

ℎ,𝑠,𝑡
𝑚 , 𝜃

𝑔,𝑝,𝑡
𝑚 , 𝜃

ℎ,𝑝,𝑡
𝑚 }: parameters of local model,

Θ
𝑡
𝑚 := {𝜃 𝑓 ,𝑠,𝑡𝑚 , 𝜃

𝑔,𝑝,𝑡
𝑚 , 𝜃

ℎ,𝑝,𝑡
𝑚 }: parameters of main branch, 𝜃 𝑓 ,𝑠,𝑡 :

aggregated parameters of global encoder, 𝜃ℎ,𝑠,𝑡 : aggregated
paramters of global classifier.
Sever Executes:

1: # model initialization
2: broadcast initialized model Θ1 to each client
3: for 𝑡 = 1, 2, 3, . . . ,𝑇 do
4: # performing local updating
5: for each client𝑚 in parallel do
6: 𝜃

𝑓 ,𝑠,𝑡+1
𝑚 , 𝜃

ℎ,𝑠,𝑡+1
𝑚 ← ClientUpdate(𝑚, 𝑡, 𝜃 𝑓 ,𝑠,𝑡 , 𝜃ℎ,𝑠,𝑡 )

7: end for
8: # aggregating global encoder and classifier
9: 𝜃 𝑓 ,𝑠,𝑡+1 =

∑𝑀
𝑚=1

1
𝑀
𝜃
𝑓 ,𝑠,𝑡+1
𝑚 , 𝜃ℎ,𝑠,𝑡+1 =

∑𝑀
𝑚=1

1
𝑀
𝜃
ℎ,𝑠,𝑡+1
𝑚

10: end for
ClientUpdate(𝑚, 𝑡, 𝜃 𝑓 ,𝑠,𝑡 , 𝜃ℎ,𝑠,𝑡 ):

11: # loading global encoder and classifier
12: 𝜃

𝑓 ,𝑠,𝑡
𝑚 ← 𝜃 𝑓 ,𝑠,𝑡 , 𝜃

ℎ,𝑠,𝑡
𝑚 ← 𝜃ℎ,𝑠,𝑡

13: # updating main branch
14: B ← (split local dataset into batches of size B)
15: for 𝑖 = 1, 2, 3, . . . , 𝐸 do
16: for batch (𝒙𝑏 ,𝒚𝑏 ) ∈ B do
17: 𝒛 = 𝑓 (𝒙𝑏 ;𝜃 𝑓 ,𝑠,𝑡𝑚 ), 𝒖 = 𝑓 (𝒛;𝜃𝑔,𝑝,𝑡𝑚 ), 𝒚̂𝑝 = 𝑓 (𝒖;𝜃ℎ,𝑝,𝑡𝑚 )
18: Θ

𝑡
𝑚 ← Θ

𝑡
𝑚 − 𝜂 ▽Θ𝑡

𝑚

L𝑝𝑐𝑙𝑠 (𝒚̂𝑝 ,𝒚𝑏 ) + 𝜆L𝑐𝑜𝑛 (𝒖)
19: end for
20: end for
21: # updating global classifier
22: B ← (split local dataset into batches of size B)
23: for 𝑖 = 1, 2, 3, . . . , 𝐸 do
24: for batch (𝒙𝑏 ,𝒚𝑏 ) ∈ B do
25: 𝒛 = 𝑓 (𝒙𝑏 ;𝜃 𝑓 ,𝑠,𝑡𝑚 ), 𝒚̂𝑠 = 𝑓 (𝒛;𝜃ℎ,𝑠,𝑡𝑚 )
26: 𝜃

ℎ,𝑠,𝑡
𝑚 ← 𝜃

ℎ,𝑠,𝑡
𝑚 − 𝜂 ▽

𝜃
ℎ,𝑠,𝑡
𝑚
L𝑠𝑐𝑙𝑠 (𝒚̂𝑠 ,𝒚𝑏 )

27: end for
28: end for
29: 𝜃

𝑔,𝑝,𝑡+1
𝑚 ← 𝜃

𝑔,𝑝,𝑡
𝑚 , 𝜃

ℎ,𝑝,𝑡+1
𝑚 ← 𝜃

ℎ,𝑝,𝑡
𝑚

30: return 𝜃 𝑓 ,𝑠,𝑡+1𝑚 , 𝜃
ℎ,𝑠,𝑡+1
𝑚 to server

dataset are reserved for evaluation for these datasets. In line with
the experimental settings of previous studies, the images are resized
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Figure 1: Visualization of example images in the adopted dataset, (a) PACS, (b)DomainNet, (c)Office-Home. We present images
from 5 classes for each domain in these datasets.

to 256 × 256 for DomainNet, 227 × 227 for PACS, and 224 × 224
for Office-Home, respectively, before feeding into the model. Addi-
tionally, we apply random flipping and rotational augmentations
to these images during the training.

3 IMPLEMENTATION DETAILS OF
EXPERIMENTS

In our experiments, we compare DualFed with multiple bench-
mark FL methods, including FedAvg[13], FedProx[9], FedPer[1],
FedRep[3], LG-FedAvg[12], FedBN[10], FedProto[16], SphereFed[4],
Fed-RoD[2], FedETF[11]. Additionally, the SingleSet method, where
separate models are trained and tested for each client using only
their private data, is also used for comparison in our experiments.
We reproduce these FL methods based on the discussions in their
original paper and the official code 1,2, 3, 4, 5, when available.

We modify the ResNet18 model, originally pretrained on the
ImageNet dataset, by removing its final fully connected (FC) layer,
thereby transforming it into an encoder [5]. This encoder is fol-
lowed by a projector network, which consists of an FC network
with the architecture: [Linear(512, 256) - ReLU - BN - Linear(256,
512) - BN]. To ensure uniform model capacity, all compared meth-
ods employ this Encoder-Projector architecture for representation
extraction, with only specific alterations made to the classifiers in
some approaches. Specifically, SphereFed initializes its classifier
orthogonally and maintains it unchanged throughout the training
process. In FedETF, the classifier is initialized as an ETF (Equian-
gular Tight Frame) architecture and kept fixed during the training.
FedRoD employs both global and personalized classifiers simulta-
neously during training. All classifiers utilized in our experiments
consist of an FC layer, with 512 input neurons and a number of
output neurons that matches the class count.

1https://github.com/litian96/FedProx
2https://github.com/med-air/FedBN
3https://github.com/yuetan031/FedProto
4https://github.com/hongyouc/Fed-RoD
5https://github.com/ZexiLee/ICCV-2023-FedETF

We conduct all experiments on a Nvidia V100 four-card cluster,
utilizing the PyTorch [14] framework. The model is optimized by
stochastic gradient descent (SGD) with momentum. The learning
rate is consistently set at 0.01, with a momentum of 0.5, applicable
to all methods except SphereFed. Due to the differing loss value
magnitudes in SphereFed compared to other methods [4], we care-
fully adjust its learning rates for each dataset. Consequently, we
set the learning rate to 1.0 for Office-Home and to 0.1 for both
DomainNet and PACS. During local updates, a batch size of 256 is
consistent across all methods. The epoch of local updating is set to
1 for all methods except FedRep. For FedRep, it has a total of 5 local
epochs, with the initial 4 epochs focusing on classifier optimization
and the last epoch on encoder and projector optimization. The total
count of global rounds is set to 300 for all methods.

In our experiments with FedProx, we set the hyperparameter
𝜇—responsible for balancing the loss terms—to 0.01 for all datasets.
After extensive searching, we set the hyperparameter for aligning
global and local prototypes in FedProto to 1.0 across all datasets. For
DualFed, the temperature for representation contrastive learning is
set to 0.2 for PACS, and 0.05 for DomainNet and OfficeHome. The 𝜆
used to balance the cross entropy loss and contrastive loss is set to
40, 10 and 2 for PACS, DomainNet, and Office-Home, respectively.

To mitigate cross-domain interference and potential privacy
issues related to batch normalization (BN) layers, we localize the
running-mean and running-var components within these layers for
all methods.

The stage of model evaluation, a critical factor for comparison, is
determined based on the settings described in the original papers of
the compared FL methods. For FedETF, the model is evaluated after
local finetuning on each client. According to its official source code
5, the global model in FedETF is finetuned for 1 round firstly, then
the ETF classifier and projection network are alternately finetuned
for 20 rounds. In each of alternative finetuned rounds, both the ETF
classifier and projection layer are finetuned for 3 rounds. Apart
from FedETF, all other methods undergo evaluation post model
aggregation. It should be noted that although SphereFed proposes
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Table 1: Experiments with Different Projector Architecture.

𝐷 𝐻 BN Detailed Architecture PACS DomainNet Office-Home
1 256 ✓ [Linear(512, 512) - BN] 94.72±0.18 86.16±0.09 79.96±0.24
2 256 ✓ [Linear(512, 256) - ReLU - BN - Linear(256, 512) - BN] 95.01±0.31 86.14±0.12 79.74±0.37

3 256 ✓
[Linear(512, 256) - ReLU - BN -Linear(256, 256) - ReLU - BN -

Linear(256, 512) - BN] 94.97±0.18 85.91±0.26 79.31±0.36

2 64 ✓ [Linear(512, 64) - ReLU - BN - Linear(64, 512) - BN] 95.35±0.19 86.06±0.32 79.43±0.24
2 128 ✓ [Linear(512, 128) - ReLU - BN - Linear(128, 512) - BN] 95.15±0.18 85.95±0.18 79.49±0.21
2 512 ✓ [Linear(512, 512) - ReLU - BN - Linear(512, 512) - BN] 95.21±0.17 86.23±0.23 79.97±0.35
2 256 ✗ [Linear(512, 256) - ReLU - Linear(256, 512)] 95.13±0.19 86.23±0.26 79.22±0.38

to conduct model evaluation after the fast federated calibration
(FFC), we find this operation is harmful to the model in our settings
and report the accuracy after the model aggregation.

During the experiments, we choose the accuracy on the test
dataset as the metric to quantifying the model performance. To
ensure the reliability of our results, each experiment is repeated
5 times with different random seeds: {0, 1, 2, 3, 4}. We report the
mean and standard deviation of the highest test accuracy achieved
during FL training for all methods.

4 ADDITIONAL ANALYSIS OF DUALFED
4.1 Effect of Projection Network Architecture
We investigate the impact of the architecture of the projection net-
work in three key aspects: the depth of projection network (𝐷),
the dimension of hidden layers (𝐻 ), the impact of BN layers. In
the experiments, we set 𝐷 to {1, 2, 3} and 𝐻 to {64, 128, 256, 512},
respectively. The detailed architecture of projectoion network and
the corresponding results are shown in Table 1. From Table 1, we
can derive the following conclusions. While increasing 𝐷 can lead
to more generalized pre-projection representations, it simultane-
ously reduces their discriminative power. Therefore, it is advisable
to select an optimal 𝐷 that maintains a balance in the discrimina-
tive and generalized ability of the pre-projection representations.
Increasing 𝐻 can enhance the model performance in most times, as
it enables the task-relevant information within the post-projection
representations to be effectively passed to the pre-projection repre-
sentations. The importance of BN layers becomes more pronounced
as the scale of the dataset increases.

4.2 Quantitative evaluation of representations
We employ two metrics to quantitatively evaluate the evolution of
generalized and personalized representations during training. To
quantify the generalization of representations, we adopt the linear
centered kernel alignment (CKA) [7] to measure the similarity of
representations across clients. This metric is resistant to rotation
and isotropic scaling in the representation space, allowing us to
effectively measure the similarity of representations across clients.

With a little abuse of notations, we define 𝑍𝑖 ∈ R𝑛𝑖×𝑘 and
𝑍 𝑗 ∈ R𝑛 𝑗×𝑘 as two stacked representations (can be pre-projection
representations or post-projector representations) on client 𝑖 and 𝑗
respectively. Here, 𝑛𝑖 and 𝑛 𝑗 represent the number of samples on

client 𝑖 and client 𝑗 respectively, and 𝑘 the dimension of represen-
tations. The original linear CKA is used to calculate the similarity
between representations generated by the same dataset but at the
different stages in the model. However, in this paper, we use it to
measure the similarity of the representation of different clients in
the same dimension, which is calculated as follows:

𝐶𝐾𝐴𝑙𝑖𝑛𝑒𝑎𝑟 (𝑍𝑖 , 𝑍 𝑗 ) =
vec(cov(𝑍𝑇

𝑖
)) · vec(cov(𝑍𝑇

𝑗
))

| |cov(𝑍𝑇
𝑖
) | |𝐹 | |cov(𝑍𝑇𝑗 ) | |𝐹

, (1)

where cov(·) denotes the covariance matrices, | | · | |𝐹 denotes the
Frobenius norm. Higher linear CKA values indicate greater simi-
larity between two representations of different clients in the same
dimension.

Additionally, we adopt the within-class variance in [6], to mea-
sure the class-wise separation of representation on local clients.
This metric is determined by the ratio of the average within-class
cosine distance, denoted by 𝑑𝑤𝑖𝑡ℎ𝑖𝑛, to the overall average cosine
distance, denoted by 𝑑𝑡𝑜𝑡𝑎𝑙 . The one minus operation is performed
to this ratio to get a closed-form index of class separation that is
between 0 and 1, as follows:

𝑅2 = 1 − 𝑑𝑤𝑖𝑡ℎ𝑖𝑛

𝑑𝑡𝑜𝑡𝑎𝑙
. (2)

Given an arbitrary client𝑚, 𝑑𝑤𝑖𝑡ℎ𝑖𝑛 and 𝑑𝑡𝑜𝑡𝑎𝑙 are calculated as
follows:

𝑑𝑤𝑖𝑡ℎ𝑖𝑛 =

𝐶∑︁
𝑐=1

𝑁 𝑐
𝑚∑︁

𝑖=1

𝑁 𝑐
𝑚∑︁

𝑗=1

1 − 𝒛𝑐,𝑖𝑚 ⊙ 𝒛𝑐,𝑗𝑚

𝐶 (𝑁𝑐
𝑚)2

, (3)

𝑑𝑡𝑜𝑡𝑎𝑙 =

𝐶∑︁
𝑐=1

𝐶∑︁
𝑘=1

𝑁 𝑐
𝑚∑︁

𝑖=1

𝑁𝑘
𝑚∑︁

𝑗=1

1 − 𝒛𝑐,𝑖𝑚 ⊙ 𝒛𝑘,𝑗𝑚

𝐶2𝑁𝑐
𝑚𝑁

𝑘
𝑚

, (4)

where ⊙ is the cosine similarity, and 𝑁𝑐
𝑚 indicates the number of

samples belonging to class 𝐶 on client𝑚.
Figure 2 presents the varying of 𝑅2 during training. It can be

seen that the personalized representations can achieve higher sep-
aration compared with the generalized representations. However,
as shown in Figure 3, the similarity between clients of generalized
representations is significant higher that that of the personalized
representations. This demonstrates the DualFed can effectively de-
couple the optimization objectives of PFL (personalized federated
learning) into two stages of the model representation extraction.
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Figure 2: Class-wise separation during training.
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Figure 3: Client-wise CKA similarity during training.

4.3 Comparison of Training Strategy
DualFed employs a stage-wise training strategy, ensuring that the
pre-projection representation remain undisturbed by specific local
tasks, thereby maintaining its generalization. Here, we compare this
training strategy with the one that training all parameters simul-
taneously. Figure 4 presents the comparison of these two training
strategies. As shown in Table 2, when 𝐸 is relatively small (i.e.,
𝐸 = 1), simultaneous training can, in fact, outperforms stage-wise
training. However, as 𝐸 increases (i.e., 𝐸 = 20), simultaneous train-
ing lead to a obvious performance drop in PACS and DomainNet.
This trend can be attributed to the fact that an increased number of
local epochs causes the pre-projection representations to alignmore
closely with the local task, thereby reducing their generalization.

Table 2: Experiments with Different Training Strategy.

𝐸 Strategy PACS DomainNet Office-Home

1 Stage-wise 95.01±0.31 86.14±0.12 79.74±0.37
Simu. 95.15±0.16 86.68±0.20 80.57±0.09

20 Stage-wise 94.17±0.28 84.49±0.18 75.93±0.77
Simu. 93.85±0.30 84.71±0.33 75.42±0.65

4.4 Effect of Position of Global Classifier
In DualFed, we employ a global classifier for generalized representa-
tions and a personalized classifier for personalized representations.
Here we conduct experiments when placing the global classifier to
the personalized representations. In these experiments, wemaintain
a shared encoder and investigated two configurations: sharing the
projection network (DualFed-G) and personalizing it (DualFed-P).
Figure 5 presents the differences of the above two configurations,
along with the original DualFed. As indicated in Table 3, removing

Frozen ParametersTrainable Parameters

Encoder Projection Network Classifier

Forward Propagation

Backward Propagation

Updating Main Branch Updating Global Classifier

ℒ𝑝𝑐𝑙𝑠

ℒ𝑐𝑜𝑛

⋮ ⋮ ℒ𝑠𝑐𝑙𝑠

ℒ𝑝𝑐𝑙𝑠

ℒ𝑐𝑜𝑛

⋮
ℒs𝑐𝑙𝑠

(a)

(b)

Figure 4: Illustration of different training strategies, (a) Si-
multaneous training, (b) Stage-wise training.

the global classifier to the same stage as the personalized classifier
results in a significant performance decrease. This observation un-
derscores the importance of the representations at different stages,
as they provide complementary information (both generalized and
personalized information) that can enhance the overall performance
of the model.

Table 3: Experimental Results when Placing Global Classifier
at Different Positions.

PACS DomainNet Office-Home
DualFed 95.01±0.31 86.14±0.12 79.74±0.37
DualFed-P 94.95±0.18 85.55±0.09 78.24±0.29
DualFed-G 94.84±0.12 84.90±0.42 78.08±0.17

(a)

Global Parameters Personalized Parameters

Encoder Projection Network Classifier

Client 1

Client M

⋮
Client 1

⋮

Client M

Client 1
⋮

Client M

(b) (c)

Figure 5: Illustration of different positions of the global clas-
sifier, (a) DualFed, (b) DualFed-P, (c) DualFed-G.
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