
Under review as a conference paper at ICLR 2020

FAST BILINEAR MATRIX NORMALIZATION
VIA RANK-1 UPDATE

Anonymous authors
Paper under double-blind review

ABSTRACT

Bilinear pooling has achieved an impressive improvement over classical average
and max pooling in many computer vision tasks. Recent studies discover that
matrix normalization is vital for improving the performance of bilinear pooling
since it effectively suppresses the burstiness. Nevertheless, exiting matrix nor-
malization methods such as matrix square-root and matrix logarithm are based
on singular value decomposition (SVD), which is not supported well in the GPU
platform, limiting its efficiency in training and inference. To boost the efficiency
in the GPU platform, recent methods rely on Newton-Schulz (NS) iteration which
approximates the matrix square-root through several times of matrix-matrix mul-
tiplications. Despite that Newton-Schulz iteration is well supported by GPU, it
takes O(KD3) computation complexity where D is dimension of local features
and K is the number of iterations, which is still costly. Meanwhile, NS iteration
is applicable only to full bilinear matrix. In contrast, a compact bilinear feature
obtained from tensor sketch or random projection has broken the matrix structure,
cannot be normalized by NS iteration. To overcome these limitations, we propose
a rank-1 update normalization (RUN), which reduces the computational cost from
O(KD3) to O(KDN) where N is the number of local feature per image. More
importantly, it supports the normalization on compact bilinear features. Mean-
while, the proposed RUN is differentiable, and thus it is feasible to plug it in a
convolutional neural network as a layer to support an end-to-end training. Com-
prehensive experiments on four public benchmarks show that, for full bilinear
pooling, the proposed RUN achieves comparable accuracies with a 330× speedup
over NS iteration. For compact bilinear pooling, our RUN achieves comparable
accuracies with a 5400× speedup over the SVD-based normalization.

1 INTRODUCTION

In the past decade, convolutional neural network (CNN) has achieved a great success in many com-
puter vision tasks ranging from image recognition (He et al. (2016)), object detection (Ren et al.
(2015)), semantic segmentation (Long et al. (2015)) to action recognition (Simonyan & Zisserman
(2014a)). Despite CNN architecture has evolved significantly, it still inherits the basic architecture
from the pioneering work, AlexNet (Krizhevsky et al. (2012)). To be specific, it consists of three
parts: a feature extractor, an aggregation module and a classifier, as visualized in Figure 1. The
feature extractor normally consists of a series of convolution, pooling, batch normalization and non-
linear rectification layers. It generates a feature map F of W ×H ×D size, where W and H are
the width and height of the feature map and D is the depth of the feature map, i.e., the number
of channels. To enhance the performance of a CNN, many efforts have been devoted to boosting
effectiveness of the feature extractor. For instance, GoogLeNet (Szegedy et al. (2014)) proposes an
Inception module which fuses feature maps from different scales and encodes richer visual informa-
tion than the vanilla CNN. ResNet (He et al. (2016)) adopts a residual architecture based on identity
mapping, which overcomes the performance degeneration as network goes deep. It has achieved
record-breaking performance in many computer vision tasks. DenseNet (Huang et al. (2017)) ex-
tends the residual module to a densely-connected module, achieving a better performance.

The aggregation module converts the feature map F generated by the feature extractor into a holistic
feature vector f ∈ Rd. The early work such as AlexNet and VGGNet (Simonyan & Zisserman
(2014b)) implement the aggregate module by a fully-connected layer. To be specific, they unfold the

1

Under review as a conference paper at ICLR 2020

conv pool conv pool... aggregate classifer

last feature mapfeature extractor

Figure 1: The basic architecture of a convolutional neural network (CNN). It consists of tree parts,
a feature extractor, an aggregate module and a classifier.

(a) CUB (b) Airplane (c) MIT (d) DTD

Figure 2: The scatter plots of singular values of bilinear matrices on some typical computer vision
datasets: CUB (Welinder et al. (2010)), Airplane (Maji et al. (2013)), MIT (Quattoni & Torralba
(2009)) and DTD (Cimpoi et al. (2014)). The indices of singular values are along x axis and scaled
magnitudes of singular values are on y axis. For the ease of illustration, each magnitude is divided
by its corresponding largest singular value and the scaled magnitudes are in the range of [0, 1]. We
plot the first 100 singular values of all samples on each dataset.

three-dimensional feature map F into one dimension vector vec(F) ∈ RWHD and obtain a global
vector f = Wvec(F) + b, where W ∈ Rd×WHD and b ∈ Rd are parameters of a fully-connected
layer. In contrast, some more advanced architectures such as Inception and ResNet implement the
aggregation module by a global average pooling. To be specific, they conduct average pooling
along the width and height dimensions, and generate a holistic vector f ∈ RD. Compared with a
fully-connected layer, global average pooling is more robust to spatial transforms. To obtain a more
effective holistic feature, NetVLAD (Arandjelovic et al. (2016)) incorporates VLAD (Jegou et al.
(2011)) in the convolutional neural network. Similarly, Miech et al. (2017) integrate Fisher Vector
in the neural network and propose a learnable pooling. In parallel, bilinear convolutional neural
network (Lin et al. (2015)) implements the aggregation module by a bilinear pooling operation,
which encodes the second-order information. It achieves a better performance than average pooling
in many tasks, such as fine-grained recognition, generic image recognition and video classification.

The burstiness phenomenon (Jégou et al. (2009)) in computer vision was first discussed in the con-
text of the bag-of-word model, which points to that most regions are assigned to the same visual
words. In this case, the representation of an image is determined by a single visual word and some
low-frequency visual words which might be important but be ignored. To obtain a more effective
feature, Perronnin et al. (2010) conduct element-wise square-root normalization which balances con-
tributions of different visual words. In the context of bilinear features, singular vectors correspond to
visual words, the bustiness corresponds to that the first a few singular values are significantly larger
than the rest ones, as shown in Figure 2. The normalization is conducted on singular values. Recent
studies (Li et al. (2017); Lin & Maji (2017)) show that, due to burstiness, the matrix normalization
is vital for achieving high recognition performance. Existing normalization methods such as matrix
square root (Li et al. (2017)) and matrix logarithm (Ionescu et al. (2015)) rely on the singular value
decomposition (SVD). But SVD is not easily parallelizable and not well supported in the parallel
GPU platform. To boost the efficiency in the GPU platform, improved B-CNN (Lin & Maji (2017))
and i-SQRT (Li et al. (2018)) approximate the matrix square root by Newton-Schulz (NS) iteration
(Higham (2008)). Since NS iteration only needs matrix-matrix product, it is well supported in the
GPU platform. The NS iteration has a computation complexity ofO(KD3), where D is the number
of channels of the last features map and K is the number of iterations. Since D is large, NS iteration
is still costly. Meanwhile, NS iteration is conducted on the bilinear matrix and cannot normalize
compact bilinear features (Gao et al. (2016)) from tensor sketch or random projection.

2

Under review as a conference paper at ICLR 2020

Method Algorithm Complexity GPU Support Compact Support
O2P SVD O(D3) limited No

G2DeNet SVD O(D3) limited No
MPN-COV Eigen Decomp O(D3) limited No

Improved B-CNN Newton-Schulz O(D3) good in FP No
iQRT-COV Newton-Schulz O(KD3) good No

MoNet SVD O(D3) limited Yes
Ours Power Method O(KDN) good Yes

Table 1: Differences between our method with related methods including O2P (Ionescu et al.
(2015)), G2DeNet (Wang et al. (2017)), MPN-COV (Lin & Maji (2017)), Improved B-CNN (Lin &
Maji (2017)), iQRT-COV (Li et al. (2018)) and Monet (Gou et al. (2018)). Here, K is the number
of iterations, D is the dimension of local features and N is the number of local features.

To speed up the matrix normalization, we propose a rank-1 update normalization (RUN), reducing
the computation complexity from O(KD3) to O(KDN). Here, N = WH is the number of
local features per image, which is in a comparable scale with D. Moreover, our RUN supports
the normalization on a compact bilinear feature generated from tensor sketch or random projection.
Meanwhile, the proposed RUN is differentiable, and thus we plug it in a neural network to support an
end-to-end training. Experiments on four public benchmarks show the effectiveness and efficiency
of our method. Table 1 summarizes main differences between our method and other related work.

2 MATRIX NORMALIZATION AND COMPACT BILINEAR POOLING

Given a feature map F , bilinear pooling reshapes F into a two-dimensional matrix F ∈ RWH×D

and calculates the bilinear matrix by B = F>F. Lin et al. (2015) implement the bilinear pooling as
a layer and propose a bilinear convolutional neural network (B-CNN) which supports an end-to-end
training. It achieves better performance on fine-grained image classification than standard AlexNet
with a fully-connected layer as aggregation module. The research on B-CNN proceeds along two
main directions: 1) improve the effectiveness of bilinear pooling through matrix normalization (Lin
& Maji (2017); Li et al. (2017)); 2) improve the efficiency of bilinear feature through compact bilin-
ear pooling (Gao et al. (2016); Cui et al. (2017)). Below we review these two directions, respectively.

2.1 MATRIX NORMALIZATION

There are two popularly used matrix normalization methods, matrix square-root normalization used
in Improved B-CNN (Lin & Maji (2017)) and matrix logarithm normalization used in O2P (Ionescu
et al. (2015)). They first conduct singular value decomposition (SVD) on the bilinear matrix B by

B→ UΣU>. (1)

Then they conduct normalization on singular values and obtain the normalized bilinear feature by

B̂← Ug(Σ)U>, (2)

where g(Σ) is conducted on singular values in an element-wise manner. Matrix square-root nor-
malization adopts g(Σ) = Σ1/2 and matrix logarithm normalization adopts g(Σ) = log(Σ). Nev-
ertheless, SVD is not easily parallelizable and not well supported in the GPU platform, limiting its
efficiency in training and inference. Improved B-CNN (Lin & Maji (2017)) and i-SQRT (Li et al.
(2018)) utilize Newton-Schulz (NS) iteration to approximate the matrix square root. Given a bilinear
matrix B, NS initializes Y0 = B and Z0 = I. For each iteration, NS updates Zk and Yk by

Yk =
1

2
Yk−1(3I− Zk−1Yk−1),

Zk =
1

2
(3I− Zk−1Yk−1)Zk−1,

(3)

where Yk converges to B1/2. Since it involves only matrix-matrix product, it is easily parallelizable
and well supported in the GPU platform. The computation complexity of each iteration is O(D3),
where D is the local feature dimension. Since D is large, computing Newton-Schulz iteration is
still costly. Meanwhile, we will show in next subsection that, the Newton-Schulz iteration is not
compatible with existing compact bilinear pooling methods, limiting its usefulness.

3

Under review as a conference paper at ICLR 2020

Algorithm 1 Tensor Sketch
Input: x ∈ Rd

Output: φTS(x) ∈ RD

1: Generate random vectors h1,h2 ∈ Nc and s1, s2 ∈ {+1,−1}c. h1(i) and h2(i) are uniformly
sampled from {1, 2, · · · , D}, s1(i) and s2(i) are uniformly sampled from {+1,−1}.

2: Sketch Ψ(x, h, s) = {(Qx)1, · · · , (Qx)D}, where Q(x)j =
∑

t:h(t)=j s(t)x(t).
3: Compute φTS(x) = FFT−1(FFT(Ψ(x,h1, s1)) � FFT(Ψ(x,h2, s2))), where � denotes

element-wise multiplication.
4: return φTS(x)

Algorithm 2 Random Maclaurin
Input: x ∈ Rd

Output: φRM (x) ∈ RD

1: Generate random matrices W1,W2 ∈ Rd×D with each entry 1 or −1 with equal probability.
2: φRM (x)← 1√

D
(W1x)� (W2x).

3: return φRM (x)

2.2 COMPACT BILINEAR POOLING

The dimension of a bilinear feature isD×D, which is extremely high. On one hand, it is more prone
to over-fitting due to huge number of model parameters in the classifier, especially in the few-shot
learning scenario. On the other hand, in the retrieval application, it is extremely expensive to store
and compare high-dimensional bilinear features. To overcome these drawbacks, Gao et al. (2016)
propose a compact bilinear pooling (CBP). They treat the outer product used in bilinear pooling as
a kernel embedding, and seek to approximate the explicit kernel feature map. To be specific, by
rearranging the feature map F to F = [f1, · · · , fWH]>, the bilinear matrix B is obtained by

B = F>F =

WH∑
i=1

fif
>
i =

WH∑
i=1

h(fi), (4)

where h(fi) ∈ RD×D is the explicit feature map of the polynomial kernel. CBP seeks for a low-
dimensional projection function φ(fi) ∈ Rd with d� D2 such that

〈φ(x), φ(y)〉 ≈ 〈vec(h(x)), vec(h(y))〉. (5)

In this case, the approximated low-dimensional bilinear feature is obtained by B̃ =
∑WH

i=1 φ(fi).

CBP investigates two types of approximation methods: Random Maclaurin (Kar & Karnick (2012))
and Tensor Sketch (Pham & Pagh (2013)), which are given in Algorithm 1 and Algorithm 2. Since
the compact bilinear feature B̃ has broken the matrix structure, the matrix normalization methods
conducted on the bilinear feature B, such as Newton-Schulz iteration, is no longer feasible for nor-
malizing B̃. To tackle this, MoNet (Gou et al. (2018)) conducts SVD directly on the original feature
F instead of B and then conducts compact bilinear pooling. Nevertheless, as we mentioned before,
the SVD is not well supported on GPU platform, limiting the training and inference efficiency.

3 RANK-1 UPDATE NORMALIZATION (RUN)
To overcome the limitations of previous methods, we propose a rank-1 update normalization (RUN).
Below we give the details of the proposed RUN method.

Assuming that, through SVD, the bilinear feature B can be decomposed into B = UΣU>, where

U = [u1, · · · ,uD], Σ = diag([σ1, · · · , σd]) (6)

We initialize a random vector v0 = [v1, ..., vD], where {vi}Di=1 are i.i.d. random variables with
normal distribution. We iteratively conduct vk+1 = Bvk for K times and obtain

vK = BKv0 = UΣKU>v0. (7)

4

Under review as a conference paper at ICLR 2020

We define a = U>v0. Since U is orthonormal, the entries of a are also i.i.d. random variables with
normal distribution. We rewrite the Eq. (7) into

vK = UΣKa =

D∑
i=1

aiσ
k
i ui. (8)

We conduct `2-normalization on vK and obtain:

v̂K = vK/‖vK‖2 =

D∑
i=1

aiσ
k
i ui/

√√√√ D∑
i=1

(aiσk
i)2. (9)

We construct a rank-1 matrix by

RK = Bv̂K v̂>K =

D∑
l=1

D∑
m=1

alamσ
k+1
l σk

mulu
>
m/

D∑
i=1

(aiσ
k
i)2. (10)

Next, we derive the expectation of R̂K :

E(R̂K) =

D∑
l=1

D∑
m=1

E
(
alamσ

k+1
l σk

mulu
>
m/

D∑
i=1

(aiσ
k
i)2
)

(11)

=

D∑
l=1

[∑
m 6=l

σk+1
l σk

mulu
>
mE(alam/

D∑
i=1

(aiσ
k
i)2) + σlulu

>
l E((alσ

k
l)2/

D∑
i=1

(aiσ
k
i)2)

]
,

where {ai}Di=1 are i.i.d random variables with normalization distribution, and {σi}Di=1 as well as
{ui}Di=1 are constants. We define gl,m = alam/

∑D
i=1(aiσ

k
i)2 and fl,m as the probability density

of gl,m. When l 6= m,

gl,m(a1, · · · , al, · · · , aD) = −gl,m(a1, · · · ,−al, · · · , aD),

fl,m(a1, · · · , al, · · · , aD) = fl,m(a1, · · · ,−al, · · · , aD).
(12)

Therefore, E(gl,m) = 0 when l 6= m and∑
m 6=l

σk+1
l σk

mulu
>
mE(gl,m) =

∑
m6=l

σk+1
l σk

mulu
>
mE(alam/

D∑
i=1

(aiσ
k
i)2) = 0. (13)

We define

hl = (alσ
k
l)2/

D∑
i=1

(aiσ
k
i)2, αl = E(hl). (14)

Plugging Eq. (13) and Eq. (14) in Eq. (11), we obtain

E(R̂K) =

D∑
l=1

αlσlulu
>
l . (15)

Then we obtain a new matrix B̂K by rank-1 update:

B̂K = B− εR̂K . (16)

The expectation of B̂K is obtained by

E(B̂K) = U diag([σ1(1− εα1), σ2(1− εα2), · · · , σD(1− εαD))U>. (17)

Since α1 ≥ α2 ≥ · · · ≥ αD as proved in Appendix A and ε > 0, the operation in the above
equation subtracts a larger value from a larger singular value, making the singular values of E(B̂K)

more balanced than that of B. B̂K is an estimation of E(B̂K). When a1 6= 0 and σ1 6= σ2,

lim
K→+∞

β1 = ε, lim
K→+∞

βi = 0, i ∈ [2, D]

lim
K→+∞

E(B̂K) = lim
K→+∞

B̂K = U diag([σ1(1− ε), · · · , σD])U>.
(18)

5

Under review as a conference paper at ICLR 2020

Computing B̂K only requires K times of matrix-vector multiplications, takes O(KD2) complexity
and is well supported in GPU platform. Nevertheless, obtaining the above approximated normalized
bilinear feature B̂K requires the original bilinear matrix B obtained from bilinear pooling. Thus, it
is not applicable to the compact bilinear feature which has broken the structure of square matrix. To
make the proposed fast matrix normalization method compatible with compact bilinear pooling, we
seek to directly conduct normalization on the original feature map F ∈ RN×D, where N = WH is
the number of local features andD is the local feature dimension. It is based on following iterations:

vk = F>Fvk−1. (19)

We construct the normalized feature map F̄K by

F̄K = F− ηFvKv>K
‖vK‖22

, (20)

where vK is obtained by conducting Eq. (19) for K iterations. In total, the complexity of obtaining
the normalized F̄K isO(KDN). The bilinear feature is obtained by B̄K = F̄>KF̄K and the compact
bilinear feature is obtained by B̄c

K =
∑N

i=1 φ(F̄K [i, :]), where F̄K [i, :] denotes the i-th row of F̄K

and φ is the embedding function implemented by tensor sketch or random Maclaurin. When the
largest two singular values of F are not equal, B̄K satisfies

lim
K→+∞

B̄K = VF diag([σ2
F,1(1− η)2, · · · , σ2

F,D])V>F , (21)

where VF contains the right singular vectors of F. We implement the proposed RUN as a layer of
a CNN. The layer takes the original feature map F as input and outputs the normalized feature map
F̄K . In the forward path, F̄K is computed by Eq. (20). Below we derive its backward path. Note
that, despite that one can rely on auto-grad tool in existing deep learning framework such as Pytorch,
PaddlePaddle and Tensorflow to obtain the backward path, we still derive this process for readers to
better understand the proposed algorithm. We compute the differentiation of F̄K based on Eq. (20):

dF̄K = dF−η (dF)vKv>K + F(dvK)v>K + FvK(dv>K)

v>KvK
+η

(dv>K)vK + v>KdvK

(v>KvK)2
FvKv>K . (22)

Meanwhile, Eq. (19) leads to
vK = (F>F)Kv0 (23)

Since v0 is a constant vector, based on Eq. (23), we further obtain

dvK ≡ K(F>F)K−1[(dF>)F + F>dF]v0,

dv>K ≡ Kv>0 [(dF>)F + F>dF](F>F)K−1,
(24)

Plugging Eq. (24) in Eq. (22), we obtain

dF̄K =

4∑
i=0

l1i (F)dFr1i (F) +

4∑
j=1

l2j (F)(dF)>r2j (F), (25)

where {l1i (F), r1i (F)}4i=0 and {l2i (F), r2i (F)}4i=1 are given in details in Appendix B. According to
the definition,

dL ≡ vec(
∂L

∂F
)>vec(dF) ≡ vec(

∂L

∂F̄K
)>vec(dF̄K). (26)

Since trace(AB>) ≡ vec(A)>vec(B), we further obtain

trace(dF>
∂L

∂F
) ≡ trace[dF̄>K

∂L

∂F̄K
] (27)

Plugging Eq. (25) into Eq. (27), we obtain

trace(dF>
∂L

∂F
) ≡ trace

{[5∑
i=1

l1i (F)dFr1i (F) +

4∑
j=1

l2j (F)(dF)>r2j (F)
]> ∂L

∂F̄K

}

≡ trace
{
dF>

[5∑
i=1

l1i (F)>
∂L

∂F̄K
r1i (F)> +

4∑
j=1

r2j (F)(
∂L

∂F̄K
)>l2j (F)

]}
.

(28)

6

Under review as a conference paper at ICLR 2020

Compare the LHS and RHS of Eq. (28), we obtain

∂L

∂F
=
[5∑
i=1

l1i (F)>
∂L

∂F̄K
r1i (F)> +

4∑
j=1

r2j (F)(
∂L

∂F̄K
)>l2j (F)

]
. (29)

Eq. (29) gives the backward path which takes ∂L/∂F̄K as input and outputs ∂L/∂F.

After obtaining F̄K , it is feasible to conduct the original bilinear pooling (BP) or compact bilinear
pooling (CBP). Figure 3 illustrates the architecture of the proposed network.

feature map

 feature
extractor

 BP/CBP
 soft-max
 classifier

 normalized map

RUN

Figure 3: The architecture of the proposed convolutional neural network. RUN denotes the proposed
rank-1 update normalization layer, which takes input the feature map of the last convolutional layer.
BP denotes the bilinear pooling and CBP represents compact bilinear pooling.

4 EXPERIMENTS

4.1 DATASETS

We conduct experiments on three tasks: 1) fine-grained recognition, 2) scene recognition and 3) tex-
ture recognition. On the fine-grained recognition task, experiments are conducted on CUB (Welinder
et al. (2010)) and Airplane (Maji et al. (2013)) datasets. On the scene recognition task, experiments
are conducted on MIT (Quattoni & Torralba (2009)) dataset. On the texture recognition task, we test
our method on DTD (Cimpoi et al. (2014)) dataset. Table 2 gives a summary of datasets.

Fine-grained Scene Texture
CUB Airplane MIT DTD

classes 200 100 67 47
training samples 5, 994 6, 667 4, 014 1, 880
testing samples 5, 794 3, 333 1, 339 3, 760

Table 2: The number of classes and the number of training and testing samples of four datasets.

4.2 IMPLEMENTATION DETAILS

We use VGG16 (Simonyan & Zisserman (2014b)) as the backbone network to make a fair compari-
son with existing methods. After scaling and cropping, the input size of an input image is 448×48×3
and the size of the feature map is 28 × 28 × 512. After we the bilinear feature, we further conduct
element-wise signed square-root normalization followed by `2-normalization as the original BCNN
(Lin et al. (2015)). We adopt a two-phase training strategy. In the first phase, we only update the
weights of the last fully-connected layer and fix the other layers. The initial learning rate is set as
0.2 on airplane dataset and 1 on other datasets, and it decreases to 0.1 of the current learning rate if
the validation error does not drop in continuous 5 epochs. We set weight decay as 10−8 in the first
phase. The first phase finishes in 50 epochs. In the second phase, we update the weights of all layers
and the initial learning rate is set as 0.02 on CUB dataset and 0.01 on other datasets, and it decreases
to 0.1 of the current learning rate if the validation error does not drop in continuous 5 epochs. We
set weight decay as 10−5 in the second phase. The second phase finishes in 40 epochs.

4.3 ABLATION STUDY ON RUN USING ORIGINAL BILINEAR POOLING

In this section, we test RUN using original bilinear pooling. The feature dimension is 262K.

7

Under review as a conference paper at ICLR 2020

Influence of η. η in Eq. (21) controls the strength of suppressing the large singular values. Recall
from Eq. (21) that, when K is large, the normalized bilinear feature B̄K satisfies:

B̄K ≈ VF diag[(1− η)2σ2
F,1, · · · , σ2

F,d]V>F . (30)

From the above equation, we observe that, when η ∈ (2,+∞) ∪ (−∞, 0), the largest value of the
normalized bilinear matrix B̄K is even larger than that of the original bilinear matrix B. Hence a
good value of η should in the range [0, 2]. Ideally, we can select the value of η according to the gap
between σF,1 and σF,2. Since singular values change for different samples or different epochs, we
can compute the σF,1 and σF,2 online for each sample in each epoch. But computing σF,1 and σF,2

will double the time cost compared with the proposed RUN using a manually set η which only needs
compute σF,1. An alternative solution is to compute the average σF,1/σF,2 of all samples using the
pre-trained model and then use the average value to guide the choice of the η. But the average value
changes in the training process, the average value computed from the pre-trained model might not
be effective for the whole training process. Table 3 shows the average σF,1/σF,2 of samples on each
dataset. Since each experiment lasts for tens of epochs and it is difficult to report the ratio of each
epoch, we just report the average σF,1/σF,2 in the first epoch and that in the last epoch. From Table
3, we observe that the average σF,1/σF,2 in the first epoch is different from that in the last epoch.

CUB Airplane MIT DTD
first epoch 2.23 1.53 2.38 5.09
last epoch 3.68 1.69 4.53 7.40

Table 3: The average σF,1/σF,2 on four datasets.

We further test the influence of η on the classification accuracy. As shown in Table 5, when η =
0, i.e., without RUN, the accuracies are not as good as that when η ∈ [0.4, 1.5]. Note that, on
Airplane dataset, the accuracy drop when η = 0 is not large, it is in accordance with the small
value of σF,1/σF,2 on Airplane dataset in Table 3. In contrast, on DTD dataset, the accuracy drop is
significant, it is also in accordance with the large value of σF,1/σF,2 on DTD dataset in Table 3.

Recall that Table 3 shows that the average value of σF,1/σF,2 varies significantly on four datasets,
thus we might expect that the optimal η are different on four dataset. Surprisingly, as shown in Table
5, when η ∈ [0.4, 1.5] the performance is stable and not sensitive to the change of η. By default, we
set η = 0.6 on all datasets. Another observation is that, when η = 2.0, its performance is as bad as
that when η = 0.0. The bad performance when η = 2.0 is expected since it leads to the condition
that (1− η)2 = 1. It is equivalent to removing the matrix normalization.

η CUB Airplane MIT DTD
0.0 84.1 88.9 79.8 65.6
0.1 84.8 89.3 80.6 66.6
0.2 85.3 89.5 81.0 67.8
0.4 86.0 89.6 80.5 68.3
0.6 86.3 89.8 80.8 68.7
0.8 86.2 89.7 80.7 68.4
1.0 86.4 89.8 80.9 68.3
1.2 86.0 89.8 80.9 68.2
1.5 86.2 89.7 80.5 68.3
2.0 83.9 89.0 79.7 65.7

Table 4: The influence of η on the performance of the proposed FMN.

Influence of K. K in Eq. (20) represents the number of iterations in our RUN. The time cost of
the proposed RUN is linear with K. Recall from Eq. (18) that, when K is large, the normalization
focuses only on the largest singular value and keeps the others unchanged. In contrast, if K is not
large, it also normalizes other large singular values besides the largest one. As shown in Table 5, on
DTD dataset, it achieves the best accuracy using only 2 iterations. In contrast, on Airplane dataset, it
achieves the best accuracy with 5 iterations. But using 2 iterations, the accuracy on Airplane dataset
is comparable with that using 5 iterations. By default, we set N = 2 on all datasets.

8

Under review as a conference paper at ICLR 2020

K CUB Airplane MIT DTD
1 85.7 89.7 80.5 68.7
2 86.3 89.8 80.8 68.4
3 86.2 89.8 80.8 68.3
5 86.2 89.9 80.7 68.4
10 86.1 89.9 80.7 68.4

Table 5: The influence of K on the performance of the proposed RUN.

Time cost evaluation. We compare the time cost in matrix normalization in the GPU platform of
the proposed method with existing methods based on SVD (Lin & Maji (2017)), and Newton-Schulz
(NS) iteration. We conduct experiments based on 4 Nvidia K40 GPU cards and set the batch size
as 32. Note that, in these experiments we conduct the original bilinear pooling rather than compact
bilinear pooling since Newton-Schulz method is not compatible with compact bilinear pooling. As
shown in Table 6, SVD-based method is very slow in the GPU platform. The FLOPs of ours is less
than 0.1% of NS iteration used in Li et al. (2018). Meanwhile, considering the GPU time, the factual
speed-up ratio of ours over NS iteration is beyond 330. The significant reduction in FLOPs and
GPU time is contributed by two factors. Firstly, in each iteration, we only need twice matrix-vector
multiplications whereas NS iteration takes three times of matrix-matrix multiplications. Secondly,
ours takes only 2 iterations for a good performance whereas NS iteration takes 5 iterations to achieve
a good performance suggested by Li et al. (2018).

Algorithm FLOPs GPU Time Accuracy
CUB Airplane MIT DTD

SVD 1.88G 6731ms 85.8 88.5 80.6 68.4
NS iteration 4.03G 833ms 85.7 89.6 80.5 68.3

power method (ours) 3.2M 2.5ms 86.3 89.8 80.8 68.4

Table 6: Comparisons with SVD-based method (Lin & Maji (2017)) and Newton-Schulz (NS) iter-
ation (Li et al. (2018)).

4.4 ABLATION STUDY ON RUN USING COMPACT BILINEAR POOLING

Influence of the dimension. We adopt two types of CBP, tensor sketch (TS) and random Maclaurin
(RM). We set η = 0.6 and iteration number K = 2, and change the dimension after CBP among
{1K, 2K, 4K, 8K, 10K}. As shown in Table 7, the accuracies generally increase as the dimension
increases. The accuracies achieved by TS is comparable with that by RM. By default, we use TS.

Dim CUB Airplane MIT DTD
RM TS RM TS RM TS RM TS

1K 83.1 83.8 88.9 88.5 78.0 76.1 59.9 63.4
2K 84.6 83.9 89.8 89.3 78.8 78.2 63.6 66.5
4K 84.4 84.8 88.8 90.5 79.9 79.4 67.0 66.9
8K 85.0 85.5 89.0 90.5 80.4 80.1 67.5 66.9
10K 85.2 85.7 89.1 91.0 80.7 80.5 67.5 67.3

Table 7: The influence of the dimension based on tensor sketch (TS) and random Maclaurin (RM).

Time cost evaluation. We evaluate the time cost used in matrix normalization for compact bilinear
pooling (CBP). Since the Newton-Schulz iteration cannot be conducted on the original feature F, it
is incompatible with CBP. Thus, we only compare with Monet-2 (Gou et al. (2018)) which conducts
SVD on F. F ∈ R784×512 is in a larger size than B ∈ R512×512. Meanwhile, B is symmetric and
only needs compute its left singular vectors U as well as the singular values Σ. But F is asymmetric
and thus needs compute its right singular vectors VF besides UF and σF . Therefore, the FLOPs of
computing SVD on F shown in Table 8 is larger than the FLOPs of computing SVD on B shown in
Table 6. In contrast, the FLOPs of our RUN used for CBP is as the same as that used for original BP.
As shown in Table 8, achieving comparable or even better accuracies, we reduce the FLOPs from
4.21G to 3.2M. Moreover, we reduce the time cost in the GPU platform from 13850ms to 2.5ms,

9

Under review as a conference paper at ICLR 2020

i.e., we achieve a 5540× speedup. Note that, the GPU time cost speedup is larger than the FLOPs
reduction ratio since SVD is not well supported in the GPU platform.

Method Algorithm Dim FLOPs GPU Time Accuracy
CUB Airplane

Monet-2 SVD 10K 4.21G 13850ms 85.7 86.7
Ours power method 10K 3.2M 2.5ms 85.7 91.0

Table 8: Comparisons between ours and Monet-2 (Gou et al. (2018)).

4.5 COMPARISON WITH OTHER POOLING METHODS.

Method Dim Norm Time CUB Airplane MIT DTD
Max-pooling 512 0ms 69.6 78.9 50.4 55.1
Sum-pooling 512 0ms 71.7 82.1 58.7 58.2

BCNN (Lin et al. (2015)) 262K 0ms 84.0 84.1 − −
Improved BCNN (Lin & Maji (2017)) 262K 6.7s 85.8 88.5 − −

BCNN + Newton-Schulz 262K 833 ms 85.7 89.6 80.5 68.3
CBP (Gao et al. (2016)) 8192 0ms 84.0 − 76.2 64.5

Monet-2 (Gou et al. (2018)) 10K 13.9s 85.7 86.7 − −
BP + RUN (Ours) 262K 2.5ms 86.3 89.8 80.8 68.4

CBP + RUN (Ours) 10K 2.5ms 85.7 91.0 80.5 67.3

Table 9: Comparisons with other pooling methods. We compare the feature dimension (Dim), the
time cost for matrix normalization per batch (Norm Time) and the accuricies on four benchmarks.

We compare with other pooling methods. First of all, we compare with two baselines, which re-
place the bilinear pooling by max-pooling and sum-pooling, respectively. As shown in Table 9,
the features from max-pooling and sum-pooling are compact, and they do not need the matrix nor-
malization. But accuracies achieved by them are low. We further compare with B-CNN and CBP.
Neither of them adopt matrix normalization, the accuracies they achieved are not as good as that
of their counterparts with matrix normalization as shown in Table 9. We further compare with
Improved BCNN (Lin & Maji (2017)) and BCNN + Newton-Schulz. Both of them adopt matrix
normalization. As shown in Table 9, they achieve high accuracies but generate high-dimension
features and take high cost in matrix normalization. Then we compare with Monet-2 (Gou et al.
(2018)). Monet-2 achieves high accuracies and generate compact feature, but the time cost in the
matrix normalization is extremely high. As shown in Table 9, when combining with CBP, our RUN
achieves high accuracies, generates compact features and is very fast in matrix normalization.

5 CONCLUSION

We propose a fast rank-1 update normalization (RUN) for addressing the burstiness in bilinear matrix
efficiently. Since it only takes several times of matrix-vector multiplications, the proposed RUN not
only takes cheap computation complexity in theory but also is well supported in the GPU platform in
practice. More importantly, the proposed RUN supports normalization on compact bilinear features
which have broken the matrix structure. Meanwhile, our RUN is differentiable and feasible to be
plugged in a convolutional neural network, which supports an end-to-end training. Our experiments
on four datasets show that, combined with original bilinear pooling, we achieve comparable or even
better accuracies with a 330× speedup over the state-of-the-art method based on Newton-Schulz
iteration. Moreover, combined with compact bilinear pooling, we achieve comparable or even better
accuracies with a 5540× speedup over the state-of-the-art method based on SVD.

10

Under review as a conference paper at ICLR 2020

REFERENCES

Relja Arandjelovic, Petr Gronat, Akihiko Torii, Tomas Pajdla, and Josef Sivic. Netvlad: Cnn archi-
tecture for weakly supervised place recognition. In CVPR, 2016.

Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. De-
scribing textures in the wild. In CVPR, 2014.

Yin Cui, Feng Zhou, Jiang Wang, Xiao Liu, Yuanqing Lin, and Serge Belongie. Kernel pooling for
convolutional neural networks. In CVPR, 2017.

Yang Gao, Oscar Beijbom, Ning Zhang, and Trevor Darrell. Compact bilinear pooling. In CVPR,
2016.

Mengran Gou, Fei Xiong, Octavia Camps, and Mario Sznaier. Monet: Moments embedding net-
work. In CVPR, 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Sun Jian. Deep residual learning for image recog-
nition. In CVPR, 2016.

Nicholas J Higham. Functions of matrices: theory and computation, volume 104. Siam, 2008.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In CVPR, 2017.

Catalin Ionescu, Orestis Vantzos, and Cristian Sminchisescu. Matrix backpropagation for deep
networks with structured layers. In ICCV, 2015.

Hervé Jégou, Matthijs Douze, and Cordelia Schmid. On the burstiness of visual elements. In CVPR,
2009.

Herve Jegou, Florent Perronnin, Matthijs Douze, Jorge Sánchez, Patrick Perez, and Cordelia
Schmid. Aggregating local image descriptors into compact codes. IEEE T-PAMI, 2011.

Purushottam Kar and Harish Karnick. Random feature maps for dot product kernels. In AISTATS,
2012.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. In NIPS, 2012.

Peihua Li, Jiangtao Xie, Qilong Wang, and Wangmeng Zuo. Is second-order information helpful for
large-scale visual recognition? In ICCV, 2017.

Peihua Li, Jiangtao Xie, Qilong Wang, and Zilin Gao. Towards faster training of global covariance
pooling networks by iterative matrix square root normalization. In CVPR, 2018.

Tsung-Yu Lin and Subhransu Maji. Improved bilinear pooling with cnns. In BMVC, 2017.

Tsung Yu Lin, Aruni Roychowdhury, and Subhransu Maji. Bilinear cnn models for fine-grained
visual recognition. In ICCV, 2015.

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic
segmentation. In CVPR, 2015.

S. Maji, J. Kannala, E. Rahtu, M. Blaschko, and A. Vedaldi. Fine-grained visual classification of
aircraft. Technical report, 2013.

Antoine Miech, Ivan Laptev, and Josef Sivic. Learnable pooling with context gating for video
classification. arXiv preprint arXiv:1706.06905, 2017.

Florent Perronnin, Jorge Sanchez, and Thomas Mensink. Improving the fisher kernel for large-scale
image classification. In ECCV, 2010.

Ninh Pham and Rasmus Pagh. Fast and scalable polynomial kernels via explicit feature maps. In
SIGKDD, pp. 239–247. ACM, 2013.

11

Under review as a conference paper at ICLR 2020

Ariadna Quattoni and Antonio Torralba. Recognizing indoor scenes. In CVPR, 2009.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object
detection with region proposal networks. In NIPS, 2015.

Karen Simonyan and Andrew Zisserman. Two-stream convolutional networks for action recognition
in videos. In NIPS, 2014a.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014b.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Du-
mitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions.
2014.

Qilong Wang, Peihua Li, and Lei Zhang. G2denet: Global gaussian distribution embedding network
and its application to visual recognition. In CVPR, 2017.

Peter Welinder, Steve Branson, Takeshi Mita, Catherine Wah, Florian Schroff, Serge Belongie, and
Pietro Perona. Caltech-ucsd birds 200. 2010.

A APPENDIX

In this section, we prove that αs ≥ αt if s < t, as we mentioned in Section 3. Recall that

hl = (alσ
k
l)2/

D∑
i=1

(aiσ
k
i)2, αl = E(hl) (31)

where {ai}Di=1 are i.i.d random variables with normal distribution and {σi}Di=1 are constants with
σ1 ≥ σ2 ≥ ... ≥ σD. This is equivalent to proving that E(hs − ht) ≥ 0 if s < t. As we know

E(hs − ht) = E
(a2sσ2k

s − a2sσ2k
t∑D

i=1 a
2
iσ

2k
i

)
. (32)

We define bi = a2i and yi = σ2k
i , then seek to prove

E(hs − ht) = E
(bsys − btyt∑D

i=1 biyi

)
≥ 0, if s < t. (33)

As ys ≥ yt and y1 ≥ y2 · · · ≥ yD, we obtain

bsys − btyt∑D
i=1 biyi

≥ yt
y1

bs − bt∑D
i=1 bi

. (34)

Thus,

E
(bsys − btyt∑D

i=1 biyi

)
≥ yt
y1

E
(bs − bt∑D

i=1 bi

)
. (35)

Since {ai}D1 are i.i.d, {bi}D1 are also i.i.d. Therefore,

E
(bs − bt∑D

i=1 bi

)
= E

(bs∑D
i=1 bi

)
− E

(bt∑D
i=1 bi

)
= 0. (36)

Plugging Eq. (36) into Eq. (35), we obtain

E
(bsys − btyt∑D

i=1 biyi

)
≥ 0. (37)

12

Under review as a conference paper at ICLR 2020

B APPENDIX

In this section, we give the details of {l1i (F), r1i (F)}4i=0 and {l2i (F), r2i (F)}4i=1 in Eq. (25).

l10(F) = I, r10(F) = I− ηvKv>K/(v
>
KvK),

l11(F) =
−ηKF(F>F)K−1F>

v>KvN
, r21(F) = v0v

>
K ,

l12(F) =
−ηKFvKv>0 F>

v>KvN
, r12(F) = (F>F)K−1,

l13(F) =
ηKv>0 F>

(v>KvK)2
, r13(F) = (F>F)K−1vKFvKv>K ,

l14(F) =
ηKv>K(F>F)K−1F>

(v>KvK)2
, r14(F) = v0FvKv>K ,

l21(F) =
−ηKF(F>F)K−1

v>KvK
, r21(F) = FvKv>K ,

l22(F) =
−ηKFvKv>0

v>KvK
, r22(F) = F(F>F)K−1,

l23(F) =
ηKv>0

(v>KvK)2
, r13(F) = F(F>F)K−1vKFvKv>K ,

l24(F) =
ηKv>K(F>F)K−1

(v>KvK)2
, r24(F) = Fv0FvKv>K .

(38)

13

	Introduction
	Matrix Normalization and Compact Bilinear Pooling
	Matrix Normalization
	Compact Bilinear Pooling

	Rank-1 Update Normalization (RUN)
	Experiments
	Datasets
	Implementation Details
	Ablation Study on RUN Using Original Bilinear Pooling
	Ablation Study on RUN Using Compact Bilinear Pooling
	Comparison with other pooling methods.

	Conclusion
	Appendix
	Appendix

