
Under review as a conference paper at ICLR 2020

TOWARDS SCALABLE IMITATION LEARNING FOR
MULTI-AGENT SYSTEMS WITH GRAPH NEURAL NET-
WORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose an implementation of GNN that predicts and imitates the motion be-
haviors from observed swarm trajectory data. The network’s ability to capture
interaction dynamics in swarms is demonstrated through transfer learning. We
finally discuss the inherent availability and challenges in the scalability of GNN,
and proposed a method to improve it with layer-wise tuning and mixing of data
enabled by padding.

1 INTRODUCTION

In multi-agent systems (MAS) (Arai et al., 2002), a group of agents has to effectively collaborate
in order to solve a complex task in a parallel manner. Individual agents have to synchronize their
actions and behaviors so as to produce a whole that is more than the sum of its parts. This syn-
chronization is a core characteristics of MAS and is of vital importance to a wide range of modern
application domains such as smart agriculture, military demining, or warehouse robotics. However,
developing control strategies that allows a group of agents to perform a task jointly is still consid-
ered to be a complex challenge. This statement is particularly true for mobile agents that need to
dynamically act in a physical space. To overcome this challenge, a variety of formalisms have been
proposed to support the modeling and design of multi-agent and multi-robot systems. A promi-
nent approach, called Boids or bird-oid, was proposed in Reynolds (1987). In the Boids model,
the system behavior emerges from the interplay of a few simple building-blocks. While simple to
implement, it can be challenging to control the overall behavior of the swarm due to the emergent
nature of the system dynamics. Other important formalisms for the specification of MAS are based
on graph theory (Mesbahi & Egerstedt, 2010), game theory, and formal languages. However, the
latter approaches still require substantial modeling, coding, and verification efforts in order to yield
practical controllers that can scale with the size of the system, i.e., the number of agents. Another
obvious choice to reduce or eliminate modeling effort is to use machine learning. Reinforcement
learning (Sartoretti et al., 2019), in particular, has previously gained attention for synthesizing col-
lective behavior in an MAS. However, due to the curse of dimensionality, reinforcement learning
approaches often struggles to scale to systems with large number of agents.

In this paper, we present an approach for learning multi-agent coordination through imita-
tion (Schaal, 1999). Rather than specifying the system dynamics, the designer only has to provide
demonstrations of successful coordination behavior. In turn, this data set is used to learn a neural
network representation of the underlying dynamics and rules of interaction. More specifically, we
leverage recent insights regarding graph neural networks (GNN) (Battaglia et al., 2018) to learn a
structured model of the dynamics. In contrast to traditional neural networks which take a vector, ma-
trix or tensor as input, our graph neural network processes a graph representation of the multi-agent
system. We show that the specific introduced in this paper can accurately capture the interaction
dynamics given a set of demonstrations. We also discuss and analyze difficulties in scaling learned
models up to an MAS with a larger set of agents. Based on this discussion, we then propose a
re-finement training procedure to address these issues. The re-finement procedure helps tuning a
learned model to a system with a different number of agents, i.e., scalability along the size of the
MAS.

1



Under review as a conference paper at ICLR 2020

2 MODEL

2.1 OVERVIEW

Demonstration Imitation Scaling and Augmentation

Figure 1: A depiction of the training and inference. For training the trajectories of a set of agents is
recorded as demonstrations. After we train our GNN model, it can be used to create a copy of the
swarm. In addition, it is possible to create larger and smaller swarms by changing the number of
agents.

In this section, we describe our methodology for imitation learning of MAS behavior. Fig. 1 depicts
an overview of both the training and inference process for MAS1. The input to the learning process
is a set of demonstration trajectories, or execution traces, of the agents in the swarm. Execution
traces are discretely sampled trajectories specifying the position and velocity of each agent at time
step t. These trajectories are used to train a graph neural network to model the group behavior
observed in the swarm. Our network takes the time series as input and generates the predicted next
steps in the time series. The prediction error is measured by the mean squared error between output
states and expected states from the true time series. The task of our network is to model the motion
dynamics of the MAS with minimum prediction error. Without the assumption that the dynamics
is first-order Markovian, states earlier than the present state carry predictive power for future states
and must be accounted for. Historical states and their higher order relations with the current states,
for example, velocity and acceleration, are necessary for making accurate predictions. Therefore,
we apply a series of one-dimensional convolutional layers to process a history states for the agents.
The 1D convolution acts along the time steps of each agent and abstracts a representation of its past
as the starting point for prediction. This representation will then be taken as the input of the GNN.

The interaction of the swarm system being embedded in a graph, the GNN directly models the
information propagation within the graph by explicitly computing the interaction between nodes
and account for the influence from the interactions to each node to update the graph’s state. The
procedures can in general be identified as 3 steps. Firstly, interactions between all pairs of nodes
connected through an edge are computed by a function universal across all edges. The interaction,
often called edge state, is determined only by its current state and the two nodes at both ends.
Secondly, centered on each individual node, all interactions directed to it are aggregated by another
function universal to all nodes to form the local influence to the node. This step is sometimes called
edge aggregation. Lastly, a third function universal to all nodes updates each node state based on the
node’s current state and aggregated influence, thus completing the state update of the entire network.
Evolution of graph dynamics is fully described by applying the procedures repeatedly. Details of
structure and training procedures will be explained in the following subsections.

2.2 DATA STRUCTURE

The input time series of motion states from an instance of swarm simulation are arranged to have
the shape of T ×N ×D, where T is the number of time steps, N is the number of agents, and D is
the dimension of the state vector si(t) of agent i at step t, where i, t ∈ N , i < N, t < T . The state
vector contains both the position and velocity, i.e., si(t) = [xi(t), ẋi(t)], where the square brackets
stand for concatenation of the position xi(t) and velocity ẋi(t). In all subsequent experiments
presented in this paper, all agents live in a two-dimensional space, which lets the dimension of state
vectors D = 4. A sequence with window length Tw of history states si(t − Tw + 1), si(t − Tw +

1We will henceforth use the term “swarm” and MAS interchangeably.

2



Under review as a conference paper at ICLR 2020

2), ..., si(t − 1), si(t) are processed to output the next future state si(t + 1). Long term prediction
is realized by repeatedly appending the predicted new step to the sequence of history state, dropping
the earlier states and feeding the new sequence of length Tw as input.

2.3 1D CONVOLUTIONS

The goal of one-dimensional convolutions is to abstract a concise representation of the historical
states. The 1D convolutions with no padding condense the time sequences for each agent, until the
output after the last 1D convolution layer is reduced to a 1 × N × C shaped tensor, with C being
the number of channels of the last layer. For history window length Tw and a universal kernel size
of K, this would require at least d(T − 1)/(K − 1)e layers since each layer condenses the length
by K − 1. We typically choose the number of 1D convolution layers L and Tw such that they
satisfy Tw = L(K − 1) + 1. K = 3 is what we have used throughout the experiments. As the 1D
convolutional filters slide through the entire time series of trajectories of length T , Ts = T + 1−Tw
sub-sequences are condensed, each serving as the basis for prediction, and are sent to the following
Graph Neural Network module to produce the predicted states for their corresponding next steps.

2.4 GRAPH NEURAL NETWORK

MAS along with their interactions are embedded in a directed graph G = (N , E), where N is the
set of nodes which represent the agents, and E = {(i, j)|i, j ∈ N , i 6= j} is the set of edges whose
element (i, j) represents the influence from agent i to agent j through interaction. The state of the
node i ∈ N is a vector of dimension dv , as vi ∈ Rdv , while the state of an edge (i, j), i, j ∈ N i 6=
j is a vector of dimension de, that is, eij ∈ Rde . In swarm motion, such interactions include pulling,
pushing and steering, and the edge states may be interpreted as an abstraction of the physical forces.

For each of the Ts slices from the output of 1D convolution module, the GNN module takes the
N × C tensor as states of the N nodes. The node state of the next step inevitably is influenced by
the interactions the node experiences. The interactions depend on the current and previous states
of the involved nodes. As introduced earlier, this information passing process is realized by GNN,
formulated by 3 functions below:

eij = φe(vi,vj), (1)

ēi = ψē(
∑
j∈Ni

eji), (2)

v′i = φv(vi, ēi), (3)

where Ni is the set of source nodes from the edges directed to node i. Function φe, computes
the influence from node i to node j. Function ψē aggregates the influences from all sources for
node i as the total influence ēi. And finally, function φv transforms the total influence and the
node’s historical states into the prediction of the next step. Definition similar to these equations
and thorough discussion of graph neural network my be found in Battaglia et al. (2018). All three
functions are each approximated by a multi-layer perceptron (MLP).

Note that in Eq. 2, summation on all edge state vectors is taken before ψē is applied. It can be argued
that influences from different sources may need to be weighted. However, the distinction between
edges relies on the distinction of the nodes attached, which is already taken care of by function φe.
This also brings forth the point, that if the distinction between edges is known before hand, a set of
individual functions φek(vi,vj) can be created to cover the different interactions, where k ∈ TE is
the label of edge ij among the set of known types TE . The interaction influence between nodes is
computed by φek(vi,vj) with respect to the edge labels k as part of input.

In principle, the group of GNN operations may be stacked one after another just like layers of multi-
layer perceptron, where the output vector v′i of intermediate layers would serve as hidden states and
only the output of the last layer is considered the update for the next step. In that case, interaction
horizon gets expanded from the nearest neighbors, since information propagates further down the
edges with each GNN layer added. Nevertheless, in this paper, we only employ one GNN layer in
our model, as is appropriate for the physical settings of a swarm system.

It is worth pointing out that vi and v′i, despite both being the ”node state” before and after GNN
operations, may carry different meanings semantically, as in the practice of this paper where we treat

3



Under review as a conference paper at ICLR 2020

the output v′i as the predicted change between the current state vector si(t) and future state vector
si(t + 1) of agent i, si(t + 1) = v′ + si(t), while we assign the representation of history states
to vi. The core algorithm of our GNN is presented in Algorithm 1. Parallelization in the actual
implementation is not included.

Data: History states S(1:Tw,1:N,1:D), Next state S∗(1:N,1:D), Edge type one-hot labels
E(1:N,1:N,1:TE)

Result: Conv1D parameters w, Function φe, ψē, φv parameters θ1, θ2, θ3

Random initialize w, θ1, θ2, θ3 S′(1:N,1:D) ← S(Tw,1:N,1:D) // Current state

V(1:N,1:D) ← Conv1D(S(1:Tw,1:N,1:D;w)) for i in 1 : N do
v ← V(i,1:D) ē← 0
for j in 1 : N do

u← V(j,1:D) for k in 1 : TE do
e← φe(v,u) ∗ E(i,j,k)

ē← ē + e
end
ē← ψē(ē)

end
v′ ← φv(v, ē)
S′(i,1:D) ← S′(i,1:D) + v′

end
L← MSE(S′(1:N,1:D),S

∗
(1:N,1:D))

(w, θ1, θ2, θ3)← Adam(L, (w, θ1, θ2, θ3))
Algorithm 1: A training step on swarm dataset

2.5 LOSS FUNCTION AND TRAINING

Prediction error is measured as the mean squared error (MSE) between the predicted states si(t+ 1)
and the ground truth s∗i (t + 1) from motion data. Supervised training is performed to adjust the
parameters in the functions by minimizing the MSE between si(t+ 1) and s∗i (t+ 1) over all agents
and all time steps.

Given that the simulated motion data is discretely sampled from trajectories, how fine grained the
sample rate is affects the manifest of the error. Because of this, the error is normalized by the average
”natural skip” in the ground truth data, i.e., the MSE of state vectors between two consecutive steps
in the ground truth trajectories, L̄,

L̄ =
1

2DN(T − 1)

T−1∑
t=1

N∑
i=1

(s∗i (t+ 1)− s∗i (t))
2 (4)

Normalized errorLnorm = L
L̄

rectifies the dependence of prediction error on the scale of the intrinsic
spacing in the ground-truth data.

Multistep prediction is enabled by appending the predicted state si(t+1) back to the sequence of Tw
states and taking the new last Tw states as the history ground for future prediction. Multi-step pre-
diction builds up predictions in the far future on the predictions in the near future, and thus imposes
a higher demand on the accuracy and encourages the model to learn the true mechanisms better,
despite harder to train. We gradually increase the difficulty of the prediction task by increasing the
required number of prediction steps. This curriculum learning (Bengio et al. (2009)) starting with
short term prediction helps to guide the model faster in the earlier stage while still granting good
long term prediction power later.

3 SCALABILITY

Keen observation on GNN’s update rules Eq. 1-3 reveals that all 3 equations operate locally on
the neighborhood of nodes. In other words, global attributes such as the number of nodes are not
involved. So long as swarm systems share the same set of mechanisms, manifested by the same set of

4



Under review as a conference paper at ICLR 2020

functions φe, ψē and φv in their underlying interaction graphs, the same GNN should be applicable
to all the systems without the need for modification to the parameters. Although we argue later that
Eq. 2 and 3 are not directly transferable, the statement still stands true that no change to the structure
of the GNN is required.

Indeed, closer inspection of Eq. 2 raises suspicion that the number of edges connected to a node i
may be implicitly correlated with the number of nodes in the graph. In reality, it is reasonable to
expect agents to interact with more neighbors in a larger swarm. Despite that the swarms share the
same set of functions, when transferring to a swarm of a different size, function ψē may be exposed
to an unseen range simply due to more edges to be aggregated. Adding to the fact that MLPs are
poor at extrapolation (Hettiarachchi et al., 2005), function ψē may fail to respond correctly, leading
to a drop in accuracy of the GNN.

The scalability issue caused by poor extrapolation ability by MLP of Eq. 2 and Eq. 3 would become
prominent in more realistic swarm models. In realistic swarms, not only does the size of agent
neighborhood change with the size of the swarm, but the neighborhood may change dynamically as
well. When long interaction range is assumed, agents are often effectively fully connected, extend-
ing the local neighborhood to the entire connectivity graph. The strong correlation between local
connectivity and swarm size under this assumption makes trans-swarm application of a trained GNN
almost impossible.

It is plausible that the simple summation in Eq. 1 is a bad choice. However, one may argue that
popular numerical models of swarms such as Boid (Reynolds, 1999) and Vicsek (Helbing et al.,
2000) that achieve high level of authenticity are partly or strictly physics based and are built on
superposition of accelerations caused by pair wise interactions, realized by simple summation. In
the scope of this paper, without deviating away from the proposed update rules of GNN, we propose
a layer-wise tuning method realized by data padding as an attempt to reduce GNN’s difficulty to
scale.

An intuitive answer to treat the lack of responsiveness is to adjust the functions for edge aggregation
and node update through transfer learning. To avoid catastrophic forgetting (Kirkpatrick et al.,
2017), however, the model has to constantly revisit previous data set. Although GNN in principle can
freely adapt to different numbers of nodes, having a mixed dimension of input data poses problems
to tensor based training frameworks. We note that a node with no interaction with any other node
in a graph exerts no influence on or be affected by the rest of the graph, and in reverse, adding an
isolated node to a graph does not change the dynamics of the members of the original graph. This
immediately implies that the input data of a certain swarm can be padded with an arbitrary number
”ghost” agents with 0 edges in the connectivity matrix. Through state update of the graph, the edge
message between a ”ghost” and any other node is never accounted for, so the GNN works equally
well on the real agents. In this way, input data may have a uniform shape in the dimension of N
when mixed with swarms of different sizes. We choose to initialize the states of ”ghost” with zeros.
Note that history states S(1:Tw,1:N,1:D) in Algorithm 1 is padded to the maximum N in dataset with
mixed N ’s. During transfer learning, w, θ1, θ2 are locked, and only θ3 is to be updated in the last
line.

4 EXPERIMENTS

Before exploring the solutions to scalability, we first show that our model performs better than other
models in motion prediction on swarms of the size it is trained on (Table 1). We test the accuracy
of models’ prediction on simulated Boid data and Vicsek data. In a Boid system, agents converge
towards a goal while trying to match neighbors’ position and velocity without collision. In a Vicsek
system, agents only avoid each other via repulsive force. We artificially inject goals to Vicsek
systems similar to those in Boid systems to guide the agents. All three models are trained on both
the Boid and the Vicsek data, with 10 agents only for each model, but are tested on respective models
of different sizes. Table 1 shows the MSE on test set for long term prediction upto 40 steps. The table
also illustrate how non-GNN base model such as Seq2Seq (Sutskever et al., 2014) is not able to be
applied to swarms of different sizes. Kipf’s GNN (Kipf et al., 2018) being tasked with inferring the
latent edge types, comes with the burden of a more complex structure, and is hard to train. Our GNN
variant, however, has the advantage of knowing the type labels of edges and a cleaner structure, can
more easily capture the dynamics of the interactions, and produce accurate long term predictions.

5



Under review as a conference paper at ICLR 2020

Table 1: Model comparison for prediction error

MODEL LOSS
5 boids 10 boids 20 boids 5 vicseks 10 vicseks 20 vicseks

Seq2Seq - 1.45±0.14 - - 1.50±0.13 -
Kipf’s GNN 111±16 11.7±0.88 ∼ 104 ∼ 104 10.6±0.6 ∼ 106

Our GNN 0.93±0.09 0.41±0.14 1.69±0.15 0.24±0.02 0.05±0.03 0.32±0.04

Not only that, it already shows better scalability on data of unseen sizes, possibly due to its slimmer
structure. Samples of predicted long term trajectories are shown in the left pane of Fig. 2.

Trained on 5, Tested on 5 Trained on 5, Tested on 10 Tuned on 10, Tested on 10

Figure 2: Predicted trajectories (colored arrows) overlaid on ground truth (gray dash lines). Only
Tw initial states are supplied, and the prediction is done repeatedly upto 40 steps in future. Left:
Trajectories of 5 boids by a network trained with data of 5 boids. Middle: Trajectories of 10 boids
by the same network used in the left pane. Right: Trajectories of 10 boids by the network after
tuning on padded data of 5 and 10 boids.

Secondly, following earlier discussion in Section 3 to prove the hypothesis that GNN naturally scales
with N , we designed a simplistic swarm model called chaser to run experiments on as follows. A
chaser is a agent that chases another particle with acceleration proportional to its displacement from
its target. In a chaser swarm, each particle is only influenced by one other particle as its target, which
means the interaction graph has only one edge attached towards each agent. The summation in Eq. 2
becomes trivial as it equals the single edge state associated with agent i, and function ψē can be
absorbed into function φe when chained together. The second input to Eq. 3,which is the aggregated
edge message ē, directly inherits the single edge message. So, just like each chaser is oblivious to
the rest of the group except for its target, the update rules are independent of N .

We trained our GNN on the simulated motion data from a chaser swarm of only a minimal number
of agent, N = 3. Without any modification to the trained GNN, the test results on chaser swarms of
various sizes N = 3, 5, 10, 20, 100 show perfect replication of the ground truth trajectory (Fig. 3),
given only one window length of Tw initial steps as starting points. This simplistic case also seems
to indicate that a learned function φe that governs the universal pair-wise interactions is transferable
across swarms of the same type.

To investigate how scalability is challenged by the change in size of the neighborhoods through
summation in Eq. 2, we modify the dynamic rules of the chaser model, such that each agent may
now chase more than 1 target. We again train our model only on a chaser swarm with N = 3 and
M = 1, M being the number of targets each chaser has. The trained model is tested on various
combinations of N and M . It is immediate to notice the accuracy degradation in the first row of
Table 2. To illustrate the shift in the input range to function ψē and subsequently function φv , we

6



Under review as a conference paper at ICLR 2020

Figure 3: Predicted trajectories for chaser swarms of different sizes N . Colored arrows mark the
predicted velocities and positions, against the grey dashed lines as the ground truth trajectories.
Every agent in these systems chases only 1 other agent. Training was done only on systems with
N = 3.

plot the distribution of the norm of output vectors of the functions’ preceding components (Fig. 4).
With the output of first function sharing similar distributions across systems, it is unsurprising that
the ones with higher M ’s have the distribution of summation shifted to the right. Less overlapping
is shared by the distributions when the distinction in M is larger, though same M still guarantees
almost identical distribution. The strong resemblance by the distributions of function φe’s output
favors the presumption that the learned function φe in GNN from one swarm is readily transferable
to other swarms with shared interaction rules.

Figure 4: Distribution of output vector norms of critical components in our GNN, before and after
tuning, on data sets with various (N,M). Left: Output of function φe. Middle: Output of edge
message summation before entering function ψē. Right: Final output of the network from function
φv , as changes to agent states.

Next we show in Table 2, how tuning only the Eq. 2 and Eq. 3 with padded data extend the per-
formance on swarms of with larger neighborhoods. For the chaser model, after training only on a
dataset with 3 agent, each with 1 target (N = 3,M = 1), only the validation set with the same size
of neighborhood sees the same level of performance (e.g. N = 3,M = 1 and N = 5,M = 1). We
tune the model with Eq. 1 locked on a mixed set of chasers with N = 10, and M varying between 1
and 9. Note at this moment, padding is not necessary, because the nature of chaser model also allows
a variety of neighborhood sizes without changing the swarm size. After tuning, performance on M
less than 9 achieves similar levels, and is also greatly improved on larger swarms with larger neigh-
borhoods. We see in Fig. 4 that tuning has corrected functions’ response to unseen ranges caused
by aggregation on higher number of edge messages. The apparent resemblance of the corrected
distributions in the final output may inspire an inductive bias as part of training objective. However,
this is due to the design of the chaser model, in which a particle chases the average position of all its
targets, thus resulting in similar changes regardless ofM . For other partly physics based models, the
bias is not applicable, since having a higher number of interactions is often coupled with stronger
changes. Fig. 5 shows the quality of the prediction even for larger unseen neighborhoods.

The ground for tuning only Eq. 2 and Eq. 3 is based on the premises that training on one dataset,
the network has already learned Eq. 1 as interaction rules universal to all sizes of the same swarms.
To show the importance of a learned function φe and rule out the suspicion that the performance is

7



Under review as a conference paper at ICLR 2020

Table 2: Chaser evaluation before and after tuning

TRAIN VALIDATION SET
(N,M) (3,1) (5,1) (5,2) (10,2) (10,5) (10,8) (20,9) (20,12) (20,17)

(3, 1) 0.051 0.036 17.02 14.27 104.93 275.3 350.7 701.4 1932
(10,x) 0.381 0.223 0.0939 0.0799 0.142 0.278 0.291 0.608 1.424

Figure 5: Predicted trajectories after tuning against the ground truth for chaser model with various
swarm sizesN and neighborhood sizesM . Only the trajectories of 2 agents are shown for legibility.

solely determined by subsequent functions, we lock function φe right after random initialization and
train the other functions from scratch, the training error is never able to be brought down below 1
even for 1 step prediction, let alone long term prediction.

For Boid, we assume the agents are fully connected. The number of interaction edges, i.e. the
size of neighborhood, is equivalent to the size of the swarms. We initially train the network from
scratch on 5 boids and tune it with parameters of Eq. 1 locked on a mix of padded data of 5 and 10
boids (Table 3. Compared to networks that is trained only on 5 boids or 10 boids from scratch, this
tuning and padding method preserves good performance on both data sizes and ones in between,
while also avoiding catastrophic forgetting that appears in other transfer learning processes without
mixed padded data. Trajectories in Fig. 2 show the improved performance from untuned network to
a tuned one. As comparison, catastrophic forget occurs when revisiting of old data is not available.
For instance in Table 3, the network that is trained first with 5 boids and tuned only with 10 boids,
performance peak has quickly moved from 5 boids to 10 boids. After tuning on 20 boids, the peak
moved to 20 boids as well.

Table 3: Training method comparison

METHOD LOSS
3 5 7 10 20

5 0.58±0.06 0.14±0.03 0.48±0.08 1.66±0.28 9.6±2.0
10 1.96±0.45 0.93±0.09 0.50±0.11 0.41±0.14 1.69±0.15
20 3.01±0.403 1.78±0.11 1.31±0.06 0.86±0.03 0.64±0.01
5→10 9.04±8.46 1.50±0.85 0.42±0.04 0.29±0.02 1.68±0.31
5→5-10 0.69±0.13 0.13±0.02 0.33±0.08 0.28±0.02 1.74±0.27
10→20 13.1±13.7 6.21±6.16 3.41±2.90 1.36±0.71 0.62±0.03

5 CONCLUSION

In this paper, we proposed an implementation of GNN that predicts and imitates the motion behav-
iors from observed swarm trajectory data. The network is combined with curriculum learning to
achieve high accuracy prediction for arbitrary time steps. We demonstrated the network’s ability
to capture interaction dynamics in swarms through transfer learning. We discussed the availability
and challenges in the scalability of GNN, and proposed a method to improve it, by using layer-wise
tuning and mixing of data enabled by padding.

8



Under review as a conference paper at ICLR 2020

REFERENCES

Tamio Arai, Enrico Pagello, and Lynne E. Parker. Editorial: Advances in Multi-Robot Systems (584
cites). Ieee Transactions on Robotics and Automation, 18(5):655–661, 2002.

Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi,
Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, Caglar
Gulcehre, Francis Song, Andrew Ballard, Justin Gilmer, George Dahl, Ashish Vaswani, Kelsey
Allen, Charles Nash, Victoria Langston, Chris Dyer, Nicolas Heess, Daan Wierstra, Pushmeet
Kohli, Matt Botvinick, Oriol Vinyals, Yujia Li, and Razvan Pascanu. Relational inductive biases,
deep learning, and graph networks. pp. 1–40, 2018. doi: 10.1017/S0031182005008516.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. Pro-
ceedings of the 26th annual international conference on machine learning, pp. 41–48, 2009.

Dirk Helbing, Illés Farkas, and Tamás Vicsek. Simulating dynamical features of escape panic.
Nature, 407(6803):487–490, 2000.

P. Hettiarachchi, M. J. Hall, and A. W. Minns. The extrapolation of artificial neural networks for the
modelling of rainfallrunoff relationships. Journal of Hydroinformatics, 7(4):291–296, 2005.

Thomas Kipf, Ethan Fetaya, Kuan-chieh Wang Max, and Welling Richard. Neural Relational Infer-
ence for Interacting Systems. 2018.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A.
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis Hass-
abis, Claudia Clopath, Dharshan Kumaran, and Raia Hadsell. Overcoming catastrophic forgetting
in neural networks. Proceedings of the National Academy of Sciences, 114(13):3521–3526, 2017.

Mehran Mesbahi and Magnus Egerstedt. Graph theoretic methods in multiagent networks. 2010.
ISBN 9780691140612.

C. W Reynolds. Steering behaviors for autonomous characters. Game Developers Conference, pp.
763–782, 1999.

Craig W. Reynolds. Flocks, herds and schools: A distributed behavioral model. ACM SIGGRAPH
Computer Graphics, 21:25–34, 1987.

Guillaume Sartoretti, Justin Kerr, Yunfei Shi, Glenn Wagner, T. K. Satish Kumar, Sven Koenig, and
Howie Choset. PRIMAL: Pathfinding via Reinforcement and Imitation Multi-Agent Learning.
IEEE Robotics and Automation Letters, 4(3):2378–2385, 2019.

Stefan Schaal. Is imitation learning the route to humanoid robots? Trends in cognitive sciences, 3
(6):233–242, 1999.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to Sequence Learning with Neural Net-
works. Nips, pp. 9, 2014.

9


	Introduction
	Model
	Overview
	Data Structure
	1D Convolutions
	Graph Neural Network
	Loss Function and Training

	Scalability
	Experiments
	Conclusion

