
Under review as a conference paper at ICLR 2020

QUANTIZED REINFORCEMENT LEARNING (QUARL)

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent work has shown that quantization can help reduce the memory, compute,
and energy demands of deep neural networks without significantly harming their
quality. However, whether these prior techniques, applied traditionally to image-
based models, work with the same efficacy to the sequential decision making pro-
cess in reinforcement learning remains an unanswered question. To address this
void, we conduct the first comprehensive empirical study that quantifies the effects
of quantization on various deep reinforcement learning policies with the intent to
reduce their computational resource demands. We apply techniques such as post-
training quantization and quantization aware training to a spectrum of reinforce-
ment learning tasks (such as Pong, Breakout, BeamRider and more) and training
algorithms (such as PPO, A2C, DDPG, and DQN). Across this spectrum of tasks
and learning algorithms, we show that policies can be quantized to 6-8 bits of pre-
cision without loss of accuracy. We also show that certain tasks and reinforcement
learning algorithms yield policies that are more difficult to quantize due to their
effect of widening the models’ distribution of weights and that quantization aware
training consistently improves results over post-training quantization and often-
times even over the full precision baseline. Finally, we demonstrate real-world
applications of quantization for reinforcement learning. We use half-precision
training to train a Pong model 50% faster, and we deploy a quantized reinforce-
ment learning based navigation policy to an embedded system, achieving an 18×
speedup and a 4× reduction in memory usage over an unquantized policy.

1 INTRODUCTION

Deep reinforcement learning has promise in many applications, ranging from game playing (Sil-
ver et al., 2016; 2017; Kempka et al., 2016) to robotics (Lillicrap et al., 2015; Zhang et al., 2015)
to locomotion and transportation (Arulkumaran et al., 2017; Kendall et al., 2018). However, the
training and deployment of reinforcement learning models remain challenging. Training is expen-
sive because of their computationally expensive demands for repeatedly performing the forward and
backward propagation in neural network training. Achieving state of the art results in the game
DOTA2 required around 128,000 CPUs cores and 256 P100 GPUs—the total infrastructure cost in
the tens of millions of US dollars (OpenAI, 2018). Deploying deep reinforcement learning (DRL)
models is prohibitively expensive, if not even impossible, due to the resource constraints on embed-
ded computing systems typically used for applications, such as robotics and drone navigation.

Quantization may substantially reduce the memory, compute, and energy usage of deep learning
models without significantly harming their quality (Han et al., 2015; Zhou et al., 2016; Han et al.,
2016). However, it is unknown whether the same techniques carry over to reinforcement learning.
Unlike models in supervised learning, the quality of a reinforcement learning policy depends on
how effective it is in sequential decision making. Specifically, an agent’s current input and decision
heavily affect its future state and future actions; it is unclear how quantization affects the long-
term decision making capability of reinforcement learning policies. Also, there are many different
algorithms to train a reinforcement learning policy. Algorithms like actor-critic methods (A2C),
deep-q networks (DQN), proximal policy optimization (PPO) and deep deterministic policy gradi-
ents (DDPG) are significantly different in their optimization goals and implementation details, and
it is unclear whether quantization would be similarly effective across these algorithms. Finally, rein-
forcement learning policies are trained and applied to a wide range of environments, and it is unclear
how quantization affects performance in tasks of differing complexity.

1

Under review as a conference paper at ICLR 2020

Here, we aim to understand the effects of quantization on DRL policies with the overall goal of
reducing memory and compute to enable faster and cheaper training/deployment. Hence, we com-
prehensively benchmark the effects of quantization on policies trained by various reinforcement
learning algorithms on different tasks, conducting in excess of 350 experiments to present represen-
tative and conclusive analysis. We perform experiments over 3 major axes: (1) environments (Atari
Arcade, PyBullet, OpenAI Gym), (2) reinforcement learning training algorithms (Deep-Q Networks,
Advantage Actor-Critic, Deep Deterministic Policy Gradients, Proximal Policy Optimization) and
(3) quantization methods (post-training quantization, quantization aware training).

We show that DRL models can be quantized to 6-8 bits of precision without loss in quality. Fur-
thermore, we analyze how each axis affects the final performance of the quantized model to develop
insights into how to achieve better model quantization. Our results show that some tasks and train-
ing algorithms yield models that are more difficult to apply post-training quantization as they widen
the spread of the models’ weight distribution, yielding higher quantization error. This motivates
the use of quantization aware training, which we show demonstrates improved performance over
post-training quantization and oftentimes even over the full precision baseline.

To demonstrate the usefulness of quantization for DRL in real-world applications, we 1) use half
precision ops to train a Pong model 50% faster than full precision training and 2) deploy a quan-
tized reinforcement learning based navigation policy onto an embedded system and achieve an 18×
speedup and a 4× reduction in memory usage over an unquantized policy.

2 RELATED WORK

Reducing neural network resource requirements is an active research topic. Techniques include
quantization (Han et al., 2015; 2016; Zhu et al., 2016; Jacob et al., 2018; Lin et al., 2019; Polino
et al., 2018; Sakr & Shanbhag, 2018), deep compression (Han et al., 2016), knowledge distilla-
tion (Hinton et al., 2015; Chen et al., 2017), sparsification (Han et al., 2016; Alford et al., 2018; Park
et al., 2016; Louizos et al., 2018b; Bellec et al., 2017) and pruning (Alford et al., 2018; Molchanov
et al., 2016; Li et al., 2016). These methods are employed because they compress to reduce storage
and memory requirements as well as enable fast and efficient inference and training with specialized
operations. We provide background for these motivations and describe the specific techniques that
fall under these categories and motivate why quantization for reinforcement learning needs study.

Compression for Memory and Storage: Techniques such as quantization, pruning, sparsifica-
tion, and distillation reduce the amount of storage and memory required by deep neural networks.
These techniques are motivated by the need to train and deploy neural networks on memory-
constrained environments (e.g., IoT or mobile). Broadly, quantization reduces the precision of net-
work weights (Han et al., 2015; 2016; Zhu et al., 2016), pruning removes various layers and filters
of a network (Alford et al., 2018; Molchanov et al., 2016), sparsification zeros out selective network
values (Molchanov et al., 2016; Alford et al., 2018) and distillation compresses an ensemble of net-
works into one (Hinton et al., 2015; Chen et al., 2017). Various algorithms combining these core
techniques have been proposed. For example, Deep Compression (Han et al., 2015) demonstrated
that a combination of weight-sharing, pruning, and quantization might reduce storage requirements
by 35-49x. Importantly, these methods achieve high compression rates at small losses in accuracy
by exploiting the redundancy that is inherent within the neural networks.

Fast and Efficient Inference/Training: Methods like quantization, pruning, and sparsification may
also be employed to improve the runtime of network inference and training as well as their en-
ergy consumption. Quantization reduces the precision of network weights and allows more efficient
quantized operations to be used during training and deployment, for example, a ”binary” GEMM
(general matrix multiply) operation (Rastegari et al., 2016; Courbariaux et al., 2016). Pruning speeds
up neural networks by removing layers or filters to reduce the overall amount of computation neces-
sary to make predictions (Molchanov et al., 2016). Finally, Sparsification zeros out network weights
and enables faster computation via specialized primitives like block-sparse matrix multiply (Ren
et al., 2018). These techniques not only speed up neural networks but decrease energy consumption
by requiring fewer floating-point operations.

Quantization for Reinforcement Learning: Prior work in quantization focuses mostly on quan-
tizing image / supervised models. However, there are several key differences between these models
and reinforcement learning policies: an agent’s current input and decision affects its future state and

2

Under review as a conference paper at ICLR 2020

actions, there are many complex algorithms (e.g: DQN, PPO, A2C, DDPG) for training, and there
are many diverse tasks. To the best of our knowledge, this is the first work to apply and analyze the
performance of quantization across a broad of reinforcement learning tasks and training algorithms.

3 QUANTIZED REINFORCEMENT LEARNING (QUARL)

We develop QuaRL, an open-source software framework that allows us to systematically apply tradi-
tional quantization methods to a broad spectrum of deep reinforcement learning models. We use the
QuaRL framework to 1) evaluate how effective quantization is at compressing reinforcement learn-
ing policies, 2) analyze how quantization affects/is affected by the various environments and training
algorithms in reinforcement learning and 3) establish a standard on the performance of quantization
techniques across various training algorithms and environments.

Environments: We evaluate quantized models on three different types of environments: OpenAI
gym, Atari Arcade Learning, and PyBullet (which is an open-source implementation of the Mu-
JoCo). These environments consist of a variety of tasks, including CartPole, MountainCar, Lu-
narLandar, Atari Games, Humanoid, etc. The complete list of environments used in the QuaRL
framework is listed in Table 1. Evaluations across this spectrum of different tasks provide a robust
benchmark on the performance of quantization applied to different reinforcement learning tasks.

Training Algorithms: We study quantization on four popular reinforcement learning algorithms,
namely Advantage Actor-Critic (A2C) (Mnih et al., 2016), Deep Q-Network (DQN) (Mnih et al.,
2013), Deep Deterministic Policy Gradients (DDPG) (Lillicrap et al., 2015) and Proximal Policy
Optimization (PPO) (Schulman et al., 2017). Evaluating these standard reinforcement learning al-
gorithms that are well established in the community allows us to explore whether quantization is
similarly effective across different reinforcement learning algorithms.

Quantization Methods: We apply standard quantization techniques to deep reinforcement learning
models. Our main approaches are post-training quantization and quantization aware training. We
apply these methods to models trained in different environments by different reinforcement learning
algorithms to broadly understand their performance. We describe how these methods are applied in
the context of reinforcement learning below.

Algorithm OpenAI Gym Atari PyBullet

Cartpole MountainCar
(Continuous) BeamRider Breakout MsPacman Pong Qbert Seaquest SpaceInvader BipedalWalker HalfCheetah Walker2D

DQN PTQ n/a PTQ PTQ PTQ PTQ PTQ PTQ PTQ n/a n/a n/a

A2C
PTQ
QAT
BW

PTQ
QAT
BW

PTQ
QAT
BW

PTQ
QAT
BW

PTQ
QAT
BW

PTQ
QAT
BW

PTQ
QAT
BW

PTQ
QAT
BW

PPO
PTQ
QAT
BW

PTQ
QAT
BW

PTQ
QAT
BW

PTQ
QAT
BW

PTQ
QAT
BW

PTQ
QAT
BW

PTQ
QAT
BW

PTQ
QAT
BW

DDPG n/a PTQ n/a n/a n/a n/a n/a n/a n/a
PTQ
QAT
BW

PTQ
QAT
BW

PTQ
QAT
BW

Table 1: Summary of algorithms, environments, and quantization scheme in the QuaRL frame-
work. PTQ means post-training quantization, QAT refers to Quantization-Aware Training, BW
corresponds to evaluating the policy from 8-bits to 2-bits. n/a means we cannot evaluate the com-
bination due to algorithm-environment incompatibility. All put together, including the individual
bitwidth experiments, we conduct over 350 experiments to present a deep understanding of how
quantization affects deep reinforcement learning. This is the first such (comprehensive) study.

3.1 POST-TRAINING QUANTIZATION

Post-training quantization takes a trained full precision model (32-bit floating point) and quantizes
its weights to lower precision values. We quantize weights down to fp16 (16-bit floating point) and
int8 (8-bit integer) values. fp16 quantization is based on IEEE-754 floating point rounding and int8
quantization uses uniform affine quantization.

Fp16 Quantization: Fp16 quantization involves taking full precision (32-bit) values and mapping
them to the nearest representable 16-bit float. The IEEE-754 standard specifies 16-bit floats with the

3

Under review as a conference paper at ICLR 2020

format shown below. Bits are grouped to specify the value of the sign (S), fraction (F) and exponent
(E) which are then combined with the following formula to yield the effective value of the float:

Sign
Exponent

(5 bits)
Fraction
(10 bits)

Vfp16 = (−1)S × (1 +
F

210
)× 2E−15

In subsequent sections, we refer to float16 quantization using the following notation:

Qfp16(W) = roundfp16(W)

Uniform Affine Quantization: Uniform affine quantization (TensorFlow, 2018b) is a applied to a
full precision weight matrix and is performed by 1) calculating the minimum and maximum values
of the matrix and 2) dividing this range equally into 2n representable values (where n is the number
of bits being quantized to). As each representable value is equally spaced across this range, the
quantized value can be represented by an integer. More specifically, quantization from full precision
to n-bit integers is given by:

Qn(W) =

⌊
W

δ

⌋
+ z where δ =

|min(W, 0)|+ |max(W, 0)|
2n

, z =

⌊
−min(W, 0)

δ

⌋
Note that δ is the gap between representable numbers and z is an offset so that 0 is exactly repre-
sentable. Further note that we usemin(W, 0) andmax(W, 0) to ensure that 0 is always represented.
To dequantize we perform:

D(Wq, δ, z) = δ(Wq − z)

In the context of QuaRL, int8 and fp16 quantization are applied after training a full precision model
on an environment, as per Algorithm 1. In post training quantization, uniform quantization is applied
to each fully connected layer of the model (per-tensor quantization) and is applied to each channel
of convolution weights (per-axis quantization); activations are not quantized. We use post-training
quantization to quantize to fp16 and int8 values.

Algorithm 1: Post-Training
Quantization for Reinforce-
ment Learning
Input: T : task or

environment
Input: L : reinforcement

learning algorithm
Input: A : model architecture
Input: n : quantize bits (8 or

16)
Output: Reward

1 M = Train(T , L, A)

2 Q =

{
Qint8 n = 8

Qfp16 n = 16

3 return Eval(Q(M))

Algorithm 2: Quantization Aware Training for Reinforcement
Learning
Output: Reward
Input: T : task or environment
Input: L : reinforcement learning algorithm
Input: n : quantize bits
Input: A : model architecture
Input: Qd : quantization delay

1 Aq = InsertAfterWeightsAndActivations(Qtrain
n)

2 M , TensorMinMaxes =
TrainNoQuantMonitorWeightsActivationsRanges(T , L, Aq ,
Qd)

3 M = TrainWithQuantization(T , L, M , TensorMinMaxes,
Qtrain

n)
4 return Eval(M , Qtrain

n , TensorMinMaxes)

3.2 QUANTIZATION AWARE TRAINING

Quantization aware training involves retraining the reinforcement learning policies with weights
and activations uniformly quantized to n bit values. Importantly, weights are maintained in full fp32
precision except that they are passed through the uniform quantization function before being used

4

Under review as a conference paper at ICLR 2020

in the forward pass. Because of this, the technique is also known as “fake quantization” (Tensor-
Flow, 2018b). Additionally, to improve training there is an additional parameter, quantization delay
(TensorFlow, 2018a), which specifies the number of full precision training steps before enabling
quantization. When the number of steps is less than the quantization delay parameter, the minimum
and maximum values of weights and activations are actively monitored. Afterwards, the previously
captured minimum and maximum values are used to quantize the tensors (these values remain static
from then on). Specifically:

Qtrain
n (W,Vmin, Vmax) =

⌊
W

δ

⌋
+ z where δ =

|Vmin|+ |Vmax|
2n

, z =

⌊
−Vmin

δ

⌋
Where Vmin and Vmax are the monitored minimum and maximum values of the tensor (expanding
Vmin and Vmax to include 0 if necessary). Intuitively, the expectation is that the training pro-
cess eventually learns to account for the quantization error, yielding a higher performing quantized
model. Note that uniform quantization is applied to full connected weights in the model (per-tensor
quantization) and to each channel for convolution weights (per-axis quantization). n bit quantization
is applied to each layer’s weights and activations:

xk+1 = A(Qtrain
n (Wk, Vmin, Vmax)ak + b) where A is the activation function

ak+1 = Qtrain
n (xk+1, Vmin, Vmax)

During backward propagation, the gradient is passed through the quantization function unchanged
(also known as the straight-through estimator (Hinton, 2012)), and the full precision weight matrix
W is optimized as follows:

∆WQtrain
n (W,Vmin, Vmax) = I

In context of the QuaRL framework, the policy neural network is retrained from scratch after insert-
ing the quantization functions between weights and activations (all else being equal). At evaluation
full precision weights are passed through the uniform affine quantizer to simulate quantization error
during inference. Algorithm 2 describes how quantization aware training is applied in QuaRL.

4 RESULTS

We perform evaluations across the three principal axes of QuaRL: environments, training algorithms,
and quantization methods. Table 1 lists the space of the evaluations explored. We analyze the results
based on the following three cases:

Effectiveness of Quantization: To evaluate the overall effectiveness of quantization for deep rein-
forcement learning, we apply post-training quantization and quantization aware learning to a spec-
trum of tasks and record their performance. We present the reward results for post-training quanti-
zation in Table 2. We also compute the percentage error of the performance of the quantized policy
relative to that of their corresponding full precision baselines (Efp16 and Eint8). Additionally, we
report the mean of the errors across tasks for each of the training algorithms.

The absolute mean of 8-bit and 16-bit relative errors ranges between 2% and 5% (with the exception
of DQN), which indicates that models may be quantized to 8/16 bit precision without much loss in
quality. Interestingly, the overall performance difference between the 8-bit and 16-bit post-training
quantization is minimal (with the exception of the DQN algorithm, for reasons we explain in Sec-
tion 4). We believe this is because the policies weight distribution is narrow enough that 8 bits is able
to capture the distribution of weights without much error. In a few cases, post-training quantization
yields better scores than the full precision policy. We believe that quantization injected an amount
of noise that was small enough to maintain a good policy and large enough to regularize model be-
havior; this supports some of the results seen by Louizos et al. (2018a); Bishop (1995); Hirose et al.
(2018); see appendix for plots showing that there is a sweet spot for post-training quantization.

5

Under review as a conference paper at ICLR 2020

Algorithm→ A2C DQN PPO DDPG
Datatype→ fp32 fp16 int8 fp32 fp16 int8 fp32 fp16 int8 fp32 fp16 int8

Environment ↓ Rwd Rwd Efp16 (%) Rwd Eint8 (%) Rwd Rwd Efp16 (%) Rwd Eint8 (%) Rwd Rwd Efp16 (%) Rwd Eint8 (%) Rwd Rwd Efp16 (%) Rwd Eint8 (%)

Breakout 379 371 2.11 350 7.65 214 217 -1.40 78 63.55 400 400 0.00 368 8.00
SpaceInvaders 717 667 6.97 634 11.56 586 625 -6.66 509 13.14 698 662 5.16 684 2.01

BeamRider 3087 3060 0.87 2793 9.52 925 823 11.03 721 22.05 1655 1820 -9.97 1697 -2.54
MsPacman 1915 1915 0.00 2045 -6.79 1433 1429 0.28 2024 -41.24 1735 1735 0.00 1845 -6.34

Qbert 5002 5002 0.00 5611 -12.18 641 641 0.00 616 3.90 15010 15010 0.00 14425 3.90
Seaquest 782 756 3.32 753 3.71 1709 1885 -10.30 1582 7.43 1782 1784 -0.11 1795 -0.73
CartPole 500 500 0.00 500 0.00 500 500 0.00 500 0.00 500 500 0.00 500 0.00

Pong 20 20 0.00 19 5.00 21 21 0.00 21 0.00 20 20 0.00 20 0.00
Walker2D 1890 1929 -2.06 1866 1.27

HalfCheetah 2553 2551 0.08 2473 3.13
BipedalWalker 98 90 8.16 83 15.31
MountainCar 92 92 0.00 92 0.00

Mean 1.66 2.31 -0.88 8.60 -0.62 0.54 1.54 4.93

Table 2: Post training quantization error for DQN, DDPG, PPO, and A2C algorithm. The “Rwd”
column corresponds to the rewards. The negative error percentage means the quantized policy per-
formed better than fp32 policy. We summarize the error in rewards using arithmetic mean.

R
ew

ar
d

450

500

550

Fp PTQ8-bit7-bit6-bit5-bit4-bit3-bit2-bit

Cartpole

 Fp 8* 8 7 6 5 4 3 2

550
500
450

Cartpole

Re
w

ar
d

 A2C
 PPO

bit

R
ew

ar
d

0

200

400

Fp PTQ8-bit 7-bit 6-bit 5-bit 4-bit 3-bit 2-bit

BreakOutBreakOut

Re
w

ar
d

 A2C
 PPO

bit

400

200

0
 Fp 8* 8 7 6 5 4 3 2

R
ew

ar
d

0

1000

2000

Fp PTQ8-bit7-bit6-bit5-bit4-bit3-bit2-bit

SeaQuest
2000

1000

0

SHD4XHVW

Re
w

ar
d

bit

 A2C
 PPO

 Fp 8* 8 7 6 5 4 3 2

R
ew

ar
d

−20

0

20

Fp PTQ8-bit 7-bit 6-bit 5-bit 4-bit 3-bit 2-bit

Pong

20
0

-20

Pong

Re
w

ar
d

 A2C
 PPO

bit
 Fp 8* 8 7 6 5 4 3 2

R
ew

ar
d

0

1000

2000

Fp PTQ8-bit7-bit6-bit5-bit4-bit3-bit2-bit

MsPacman

2000
1000

0

MsPacman

Re
w

ar
d

 A2C
 PPO

bit
 Fp 8* 8 7 6 5 4 3 2

R
ew

ar
d

0
5,000
10,000
15,000

Fp PTQ8-bit7-bit6-bit5-bit4-bit3-bit2-bit

QBert
15000
10000
5000

0

QBert

Re
w

ar
d A2C

 PPO

bit
 Fp 8* 8 7 6 5 4 3 2

R
ew

ar
d

0
1000
2000
3000

Fp PTQ8-bit7-bit6-bit5-bit4-bit3-bit2-bit

BeamRiderBeamRider
Re

w
ar

d

 A2C
 PPO

bit

3000
2000
1000

0 Fp 8* 8 7 6 5 4 3 2

R
ew

ar
d

500

1000

Fp PTQ8-bit7-bit6-bit5-bit4-bit3-bit2-bit

SpaceInvader

1000
500

0

SpaceInvader

Re
w

ar
d

 A2C
 PPO

bit
 Fp 8* 8 7 6 5 4 3 2

R
ew

ar
d

−100

0

100

Fp PTQ 8-bit 7-bit 6-bit 5-bit 4-bit 3-bit 2-bit

MountainCarMountainCar

 Fp 8* 8 7 6 5 4 3 2

100
0

-100R
ew

ar
d

 Fp 8* 8 7 6 5 4 3 2

100
0

-100

MountainCar

Re
w

ar
d

 DDPG

bit

R
ew

ar
d

0

1000

2000

Fp PTQ 8-bit 7-bit 6-bit 5-bit 4-bit 3-bit 2-bit

Walker2DBulletEnv-0

Re
w

ar
d

 Fp 8* 8 7 6 5 4 3 2
bit

Walker2D
2000
1000

0
 Fp 8* 8 7 6 5 4 3 2

2000
1000

0

Walker2D

Re
wa

rd

 DDPG

bit

R
e
w
a
rd

0

2000

Fp PTQ8-bit 7-bit 6-bit 5-bit 4-bit 3-bit 2-bit

HalfCheetahBulletEnv-0

 Fp 8* 8 7 6 5 4 3 2

2000
0

R
ew

ar
d

bit

HalfCheetah

 Fp 8* 8 7 6 5 4 3 2

2000

0

HalfCheetah

Re
w

ar
d

 DDPG

bit

R
ew

ar
d

−100

0

100

Fp PTQ8-bit 7-bit 6-bit 5-bit 4-bit 3-bit 2-bit

BiPedalWalker-v2BiPedalWalker

bit

100
0

-100
 Fp 8* 8 7 6 5 4 3 2

Re
w

ar
d

 Fp 8* 8 7 6 5 4 3 2

100
0

-100

BiPedalWalker

Re
wa

rd

 DDPG

bit

Figure 1: Quantization aware training of PPO, A2C, and DDPG algorithms on OpenAI gym, Atari,
and PyBullet. FP is achieved by fp32 and 8* is achieved by 8-bit post-training quantization.

For quantization aware training, we train the policy with fake-quantization operations while main-
taining the same model and hyperparameters (see Appendix). Figure 1 shows the results of quantiza-
tion aware training on multiple environments and training algorithms to compress the policies down
from 8-bits to 2-bits. Generally, the performance relative to the full precision baseline is maintained
until 5/6-bit quantization, after which there is a drop in performance. Broadly, at 8-bits, we see no
degradation in performance. From the data, we see that quantization aware training achieves higher
rewards than post-training quantization and also sometimes outperforms the full precision baseline.

Effect of Environment on Quantization Quality: To analyze the task’s effect on quantization
quality we plot the distribution of weights of full precision models trained in three environments
(Breakout, Beamrider and Pong) and their error after applying 8-bit post-training quantization
on them. Each model uses the same network architecture, is trained using the same algorithm (DQN)
with the same hyperparameters (see Appendix).

Environment EInt8

Breakout 63.55%

BeamRider 22.05%

Pong 0%
 -3 -2 -1 0 1

106

105

104

103

102

101

Fr
eq

ue
nc

y

 Pong
 BeamRider
 BreakOut

Figure 2: Weight distribution and cor-
responding 8-bit quantized error for
models trained on the Breakout,
Beamrider and Pong environments
with DQN.

Figure 2 shows that the task with the highest error
(Breakout) has the widest weight distribution, the task
with the second-highest error (BeamRider) has a nar-
rower weight distribution, and the task with the lowest
error (Pong) has the narrowest distribution. With an
affine quantizer, quantizing a narrower distribution yields
less error because the distribution can be captured at a
fine granularity; conversely, a wider distribution requires
larger gaps between representable numbers and thus in-
creases quantization error. The trends indicate the envi-
ronment affects models’ weight distribution spread which
affects quantization performance: specifically, environ-

6

Under review as a conference paper at ICLR 2020

ments that yield a wider distribution of model weights are more difficult to apply quantization to.
This observation suggests that regularizing the training process may yield better quantization per-
formance.

Algorithm Environment fp32 Reward Eint8 Efp16

DQN Breakout 214 63.55% -1.40%
PPO Breakout 400 8.00% 0.00%
A2C Breakout 379 7.65% 2.11%

Table 3: Rewards for DQN, PPO, and A2C.

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0

weight

Fr
eq

ue
nc

y

105

103

101

Min Weight: -2.21
Max Weight: 1.31

Min Weight: -1.02
Max Weight: 0.58

Min Weight: -0.79
Max Weight: 0.72

 DQN

 PPO

 A2C

105

103

101

105

103

101

Fr
eq

ue
nc

y
Fr

eq
ue

nc
y

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0

Figure 3: Weight distributions for the policies trained using DQN, PPO and A2C. DQN policy
weights are more spread out and more difficult to cover effectively by 8-bit quantization (yellow
lines). This explains the higher quantization error for DQN in Table 3. A negative error indicates
that the quantized model outperformed the full precision baseline.

Effect of Training Algorithm on Quantization Quality: To determine the effects of the reinforce-
ment learning training algorithm on the performance of quantized models, we compare the perfor-
mance of post-training quantized models trained by various algorithms. Table 3 shows the error
of different reinforcement learning algorithms and their corresponding 8-bit post-training quantiza-
tion error for the Atari Breakout game. Results indicate that the A2C training algorithm is most
conducive to int8 post-training quantization, followed by PPO2 and DQN. Interestingly, we see a
sharp performance drop compared to the corresponding full precision baseline when applying 8-bit
post-training quantization to models trained by DQN. At 8 bits, models trained by PPO2 and A2C
have relative errors of 8% and 7.65%, whereas the model trained by DQN has an error of ∼64%. To
understand this phenomenon, we plot the distribution of model weights trained by each algorithm,
shown in Figure 4. The plot shows that the weight distribution of the model trained by DQN is
significantly wider than those trained by PPO2 and A2C. A wider distribution of weights indicates
a higher quantization error, which explains the large error of the 8-bit quantized DQN model. This
also explains why using more bits (fp16) is more effective for the model trained by DQN (which
reduces error relative to the full precision baseline from ∼64% down to ∼-1.4%).

5 CASE STUDIES

To show the real world applications of our results, we use quantization to optimize the training and
deployment of reinforcement learning policies. We 1) train a pong model 1.5× faster by using mixed
precision optimization and 2) deploy a quantized robot navigation model onto a resource constrained
embedded system (RasPi-3b), demonstrating 4× reduction in memory and an 18× speedup in infer-
ence. Faster training time means running more experiments for the same time. Achieving speedup
on resource-constrained devices enables deployment of the policies on real robots.

Mixed/Half-Precision Training: Motivated by that reinforcement learning training is robust to
quantization error, we train three policies of increasing model complexity (Policy A, Policy B,
and Policy C) using mixed precision training and compare its performance to that of full precision
training (see Appendix for details). In mixed precision training, the policy weights, activations, and
gradients are represented in fp16. A master copy of the weights are stored in full precision (fp32)
and updates are made to it during backward pass (Micikevicius et al., 2017). We measure the runtime
and convergence rate of both full precision and mixed precision training (see Appendix).

Algorithm Network
Parameter

fp32
Runtime

(min)

MP
Runtime

(min)
Speedup

DQN-Pong
Policy A 127 156 0.87×
Policy B 179 172 1.04×
Policy C 391 242 1.61×

Table 4: Mixed precision training for rein-
forcement learning.

 0 200k 400k 600k 800k 1M

20
fD
10
F
0

fD
-10
 fD
-20

Policy A Policy B Policy C

 Mixed Precision
 Fp32 Only

step

Re
w

ar
d

 20
fD
10
F
0

fD
-10
 fD
-20

20
fD
10
F
0

fD
-10
 fD
-20

 Mixed Precision
 Fp32 Only

 Mixed Precision
 Fp32 Only

 0 200k 400k 600k 800k 1M
step

 0 200k 400k 600k 800k 1M
step

Figure 4: Mixed precision v/s fp32 Training Rewards .

7

Under review as a conference paper at ICLR 2020

Figure 4 shows that all three policies converge under full precision and mixed precision training. In-
terestingly, for Policy B, training with mixed precision yields faster convergence; we believe that
some amount of quantization error speeds up the training process. Table 4 shows the computational
speedup to the training loop by using mixed precision training. While using mixed precision training
on smaller networks (Policy A) may slow down training iterations (as overhead of doing fp32 to
fp16 conversions outweigh the speedup of low precision ops), larger networks (Policy C) show
up to a 60% speedup. Generally, our results show that mixed precision may speed up the training
process by up to 1.6× without harming convergence.

Quantized Policy for Deployment: To show the benefits of quantization in deploying of reinforce-
ment learning policies, we train multiple point-to-point navigation models (Policy I, II, and III) for
aerial robots using Air Learning (Krishnan et al., 2019) and deploy them onto a RasPi-3b, a cost
effective, general-purpose embedded processor. RasPi-3b is used as proxy for the compute platform
for the aerial robot. Other platforms on aerial robots have similar characteristics. For each of these
policies, we report the accuracies and inference speedups attained by the int8 and fp32 policies.

Table 5 shows the accuracies and inference speedups attained for each corresponding quantized
policy. We see that quantizing smaller policies (Policy I) yield moderate inference speedups (1.18×
for Policy I), while quantizing larger models (Policies II, III) can speed up inference by up to 18×.
This speed up in policy III execution times results in speeding-up the generation of the hardware
actuation commands from 5 Hz (fp32) to 90 Hz (int8).

A deeper investigation shows that Policies II and III take more memory than the total RAM capacity
of the RasPi-3b, causing numerous accesses to swap memory (refer to Appendix) during inference
(which is extremely slow). Quantizing these policies allow them to fit into the RasPi’s RAM, elim-
inating accesses to swap and boosting performance by an order of magnitude. Figure 5 shows the
memory usage while executing the quantized and unquantized version of Policy III, and shows how
without quantization memory usage skyrockets above the total RAM capacity of the board.

Policy

Name

Network

Parameters

fp32

(ms)

fp32

success (%)

int8

(ms)

int8

success (%)
Speed up

Policy I 3L, MLP, 64 Nodes 0.147 60% 0.124 45% 1.18 ×

Policy II 3L, MLP, 256 Nodes 133.49 74% 9.53 60% 14 ×

Policy III 3L, MLP (4096, 512, 1024) 208.115 86% 11.036 75% 18.85 ×

System Memory
(RAM)

To
ta

l M
em

or
y

(M
B)

200

400

600

800

1000

1200

Time Step
0 5,000 10,000

FP-32
Policy-III

Int8
Policy-III

5000 100000
Time Step

Swap Memory

200
400
600
800
1000
1200

To
ta

l M
em

or
y

(M
B)

RAM

Figure 5: Table lists the inference speed in milliseconds (ms) on Ras-Pi3b+ and success rate (%) for
three policies. The figure shows the memory consumption for Policy III’s fp-32 and int8 policies.

In context of real-world deployment of an aerial (or any other type of) robot, a speedup in policy
execution potentially translates to faster actuation commands to the aerial robot – which in turn
implies faster and better responsiveness in a highly dynamic environment (Falanga et al., 2019).
Our case study demonstrates how quantization can facilitate the deployment of a accurate policies
trained using reinforcement learning onto a resource constrained platform.

6 CONCLUSION

We perform the first study of quantization effects on deep reinforcement learning using QuaRL, a
software framework to benchmark and analyze the effects of quantization on various reinforcement
learning tasks and algorithms. We analyze the performance in terms of rewards for post-training
quantization and quantization aware training as applied to multiple reinforcement learning tasks and
algorithms with the high level goal of reducing policies’ resource requirements for efficient training
and deployment. We broadly demonstrate that reinforcement learning models may be quantized
down to 8/16 bits without loss of performance. Additionally, we link quantization performance to
the distribution of models’ weights, demonstrating that some reinforcement learning algorithms and
tasks are more difficult to quantize due to their effect of widening the models’ weight distribution.
Finally, we apply our results to optimize the training and inference of reinforcement learning models,
demonstrating a 50% training speedup for Pong using mixed precision optimization and up to a 18x
inference speedup on a RasPi by quantizing a navigation policy. In summary, our findings indicate
that there is much potential for the future of quantization of deep reinforcement learning policies.

8

Under review as a conference paper at ICLR 2020

REFERENCES

Simon Alford, Ryan Robinett, Lauren Milechin, and Jeremy Kepner. Pruned and Structurally Sparse
Neural Networks. arXiv e-prints, art. arXiv:1810.00299, Sep 2018.

Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony Bharath. A Brief
Survey of Deep Reinforcement Learning. arXiv e-prints, art. arXiv:1708.05866, Aug 2017.

Guillaume Bellec, David Kappel, Wolfgang Maass, and Robert A. Legenstein. Deep rewiring: Train-
ing very sparse deep networks. International Conference on Learning Representations (ICLR),
2017.

C. M. Bishop. Training with noise is equivalent to tikhonov regularization. Neural Computation, 7
(1):108–116, Jan 1995. doi: 10.1162/neco.1995.7.1.108.

Guobin Chen, Choi Wongun, Xiang Yu, Tony Han, and Manmohan Chandraker. Learning efficient
object detection models with knowledge distillation. In Advances in Neural Information Process-
ing Systems, 2017.

Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized
Neural Networks: Training Deep Neural Networks with Weights and Activations Constrained to
+1 or -1. In Advances in Neural Information Processing Systems, Feb 2016.

Davide Falanga, Suseong Kim, and Davide Scaramuzza. How fast is too fast? the role of perception
latency in high-speed sense and avoid. IEEE Robotics and Automation Letters, 4(2):1884–1891,
2019.

S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J. Dally. Eie: Efficient inference
engine on compressed deep neural network. In 2016 ACM/IEEE 43rd Annual International Sym-
posium on Computer Architecture (ISCA), pp. 243–254, June 2016. doi: 10.1109/ISCA.2016.30.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015.

Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A Horowitz, and William J
Dally. Eie: efficient inference engine on compressed deep neural network. In 2016 ACM/IEEE
43rd Annual International Symposium on Computer Architecture (ISCA), pp. 243–254. IEEE,
2016.

Ashley Hill, Antonin Raffin, Maximilian Ernestus, Adam Gleave, Anssi Kanervisto, Rene Traore,
Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert, Alec Rad-
ford, John Schulman, Szymon Sidor, and Yuhuai Wu. Stable baselines. https://github.
com/hill-a/stable-baselines, 2018.

Geoffrey Hinton. Coursera lecture. https://www.youtube.com/watch?v=
LN0xtUuJsEI&list=PLoRl3Ht4JOcdU872GhiYWf6jwrk_SNhz9&index=41,
2012.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the Knowledge in a Neural Network. arXiv
e-prints, art. arXiv:1503.02531, Mar 2015.

Kazutoshi Hirose, Ryota Uematsu, Kota Ando, Kodai Ueyoshi, Masayuki Ikebe, Tetsuya Asai,
Masato Motomura, and Shinya Takamaeda-Yamazaki. Quantization error-based regularization
for hardware-aware neural network training. Nonlinear Theory and Its Applications, IEICE, 9(4):
453–465, 2018. doi: 10.1587/nolta.9.453.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard,
Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for
efficient integer-arithmetic-only inference. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 2704–2713, 2018.

Michał Kempka, Marek Wydmuch, Grzegorz Runc, Jakub Toczek, and Wojciech Jaśkowski. Viz-
doom: A doom-based ai research platform for visual reinforcement learning. In 2016 IEEE
Conference on Computational Intelligence and Games (CIG), pp. 1–8. IEEE, 2016.

9

https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines
https://www.youtube.com/watch?v=LN0xtUuJsEI&list=PLoRl3Ht4JOcdU872GhiYWf6jwrk_SNhz9&index=41
https://www.youtube.com/watch?v=LN0xtUuJsEI&list=PLoRl3Ht4JOcdU872GhiYWf6jwrk_SNhz9&index=41

Under review as a conference paper at ICLR 2020

Alex Kendall, Jeffrey Hawke, David Janz, Przemyslaw Mazur, Daniele Reda, John-Mark Allen,
Vinh-Dieu Lam, Alex Bewley, and Amar Shah. Learning to drive in a day. CoRR, abs/1807.00412,
2018. URL http://arxiv.org/abs/1807.00412.

Srivatsan Krishnan, Behzad Boroujerdian, William Fu, Aleksandra Faust, and Vijay Janapa Reddi.
Air learning: An AI research platform for algorithm-hardware benchmarking of autonomous
aerial robots. CoRR, abs/1906.00421, 2019. URL http://arxiv.org/abs/1906.00421.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. International Conference on Learning Representations (ICLR), 2016.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexand er Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. Interna-
tional Conference on Learning Representations (ICLR), Sep 2015.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Ji Lin, Chuang Gan, and Song Han. Defensive quantization: When efficiency meets robustness.
International Conference on Learning Representations (ICLR), 2019.

Christos Louizos, Matthias Reisser, Tijmen Blankevoort, Efstratios Gavves, and Max Welling. Re-
laxed quantization for discretized neural networks. International Conference on Learning Repre-
sentations (ICLR), 2018a.

Christos Louizos, Max Welling, and Diederik P. Kingma. Learning sparse neural networks through
l0 regularization. International Conference on Learning Representations (ICLR), 2018b.

Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory F. Diamos, Erich Elsen, David Garcı́a,
Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, and Hao Wu. Mixed
precision training. CoRR, abs/1710.03740, 2017. URL http://arxiv.org/abs/1710.
03740.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. CoRR, abs/1602.01783, 2016. URL http://arxiv.org/abs/1602.01783.

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning Convolutional
Neural Networks for Resource Efficient Inference. International Conference on Learning Repre-
sentations (ICLR), Nov 2016.

OpenAI. Openai five. https://blog.openai.com/openai-five/, 2018.

Jongsoo Park, Sheng R. Li, Wei Wen, Hai Li, Yiran Chen, and Pradeep Dubey. Holistic sparsecnn:
Forging the trident of accuracy, speed, and size. International Conference on Learning Represen-
tations (ICLR), 2016.

Antonio Polino, Razvan Pascanu, and Dan Alistarh. Model compression via distillation and quanti-
zation. International Conference on Learning Representations (ICLR), 2018.

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. XNOR-Net: ImageNet
Classification Using Binary Convolutional Neural Networks. In European Conference on Com-
puter Vision (ECCV), Mar 2016.

Mengye Ren, Andrei Pokrovsky, Bin Yang, and Raquel Urtasun. SBNet: Sparse Blocks Network
for Fast Inference. In Conference on Computer Vision and Pattern Recognition (CVPR, Jan 2018.

Charbel Sakr and Naresh R. Shanbhag. Per-tensor fixed-point quantization of the back-propagation
algorithm. International Conference on Learning Representations (ICLR), 2018.

10

http://arxiv.org/abs/1807.00412
http://arxiv.org/abs/1906.00421
http://arxiv.org/abs/1710.03740
http://arxiv.org/abs/1710.03740
http://arxiv.org/abs/1602.01783
https://blog.openai.com/openai-five/

Under review as a conference paper at ICLR 2020

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

David Silver, Aja Huang, Christopher J. Maddison, Arthur Guez, Laurent Sifre, George van den
Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot,
Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lilli-
crap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the
game of go with deep neural networks and tree search. Nature, 529:484–503, 2016. URL http:
//www.nature.com/nature/journal/v529/n7587/full/nature16961.html.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go
without human knowledge. Nature, 550(7676):354, 2017.

TensorFlow. Quantize create training graph. https://www.tensorflow.org/api_docs/
python/tf/contrib/quantize/create_training_graph, 2018a.

TensorFlow. Quantization-aware training. https://github.com/tensorflow/
tensorflow/tree/r1.13/tensorflow/contrib/quantize, 2018b.

Fangyi Zhang, Jürgen Leitner, Michael Milford, Ben Upcroft, and Peter Corke. Towards Vision-
Based Deep Reinforcement Learning for Robotic Motion Control. In Australasian Conference on
Robotics and Automation (ACRA), Nov 2015.

Shuchang Zhou, Zekun Ni, Xinyu Zhou, He Wen, Yuxin Wu, and Yuheng Zou. Dorefa-net: Training
low bitwidth convolutional neural networks with low bitwidth gradients. CoRR, abs/1606.06160,
2016. URL http://arxiv.org/abs/1606.06160.

Chenzhuo Zhu, Song Han, Huizi Mao, and William J Dally. Trained ternary quantization. arXiv
preprint arXiv:1612.01064, 2016.

11

http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html
http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html
https://www.tensorflow.org/api_docs/python/tf/contrib/quantize/create_training_graph
https://www.tensorflow.org/api_docs/python/tf/contrib/quantize/create_training_graph
https://github.com/tensorflow/tensorflow/tree/r1.13/tensorflow/contrib/quantize
https://github.com/tensorflow/tensorflow/tree/r1.13/tensorflow/contrib/quantize
http://arxiv.org/abs/1606.06160

Under review as a conference paper at ICLR 2020

APPENDIX

Here, we list several details that are committed from the first 8 pages due to the limited page count.
To the best of our ability, we provide sufficient details to reproduce our results and address common
clarification questions.

A POST TRAINING QUANTIZATION RESULTS

Here we tabulate the post training quantization results listed in Table 2 into four separate tables for
clarity. Each table corresponds to post training quantization results for a specific algorithm. Table 5
tabulates the post training quantization for A2C algorithm. Likewise, Table 6 tabulates the post
training quantization results for DQN. Table 7 and Table 8 lists the post training quantization results
for PPO and DDPG algorithms respectively.

Environment fp32 fp16 E fp16 int8 E int8
Breakout 379 371 2.11% 350 7.65%
SpaceInvaders 717 667 6.97% 634 11.58%
BeamRider 3087 3060 0.87% 2793 9.52%
MsPacman 1915 1915 0.00% 2045 -6.79%
Qbert 5002 5002 0.00% 5611 -12.18%
Seaquest 782 756 3.32% 753 3.71%
CartPole 500 500 0.00% 500 0.00%
Pong 20 20 0.00% 19 5.00%
Mean 1.66 % 2.31 %

Table 5: A2C rewards for fp32, fp16, and int8 policies.

Environment fp32 fp16 E fp16 int8 E int8
Breakout 214 217 -1.40% 78 63.55%
SpaceInvaders 586 625 -6.66% 509 13.14%
BeamRider 925 823 11.03% 721 22.05%
MsPacman 1433 1429 0.28% 2024 -41.24%
Qbert 641 641 0.00% 616 3.90%
Seaquest 1709 1885 -10.30% 1582 7.43%
CartPole 500 500 0.00% 500 0.00%
Pong 21 21 0.00% 21 0.00%
Mean -0.88% 8.60%

Table 6: DQN rewards for fp32, fp16, and int8 policies.

Environment fp32 fp16 E fp16 int8 E int8
Breakout 400 400 0.00% 368 8.00%
SpaceInvaders 698 662 5.16% 684 2.01%
BeamRider 1655 1820 -9.97% 1697 -2.54%
MsPacman 1735 1735 0.00% 1845 -6.34%
Qbert 15010 15010 0.00% 14425 3.90%
Seaquest 1782 1784 -0.11% 1795 -0.73%
CartPole 500 500 0.00% 500 0.00%
Pong 20 20 0.00% 20 0.00%
Mean 8.6% 0.54%

Table 7: PPO rewards for fp32, fp16, and int8 policies.

B DQN HYPERPARAMETERS FOR ATARI

For all Atari games in the results section we use a standard 3 Layer Conv (128) + 128 FC. Hyperpa-
rameters are listed in Table 9.
We use stable-baselines (Hill et al., 2018) for all the reinforcement learning experiments. We use
Tensorflow version 1.14 as the machine learning backend.

C MIXED PRECISION HYPERPARAMETERS

In mixed precision training, we used three policies namely Policy A, Policy B and Policy C respec-
tively. The policy architecture for these policies are tabulated in Table 10.
For measuring the runtimes for fp32 adn fp16 training, we use the time Linux command for each
run and add the usr and sys times to measure the runtimes for both mixed-precision training and
fp32 training. The hyperparameters used for training DQN-Pong agent is listed in Table 9.

12

Under review as a conference paper at ICLR 2020

Environment fp32 fp16 E fp16 int8 E int8
Walker2D 1890 1929 -2.06% 1866 1.27%
HalfCheetah 2553 2551 0.08% 2473 3.13%
BipedalWalker 98 90 8.16% 83 15.31%
MountainCarContinuous 92 92 0.00% 92 0.00%
Mean 1.54% 4.93%

Table 8: DDPG rewards for fp32, fp16, and int8 policies.

Hyperparameter Value
n timesteps 1 Million Steps
buffer size 10000

learning rate 0.0001
warm up 10000

quant delay 500000
target network update frequency 1000

exploration final eps 0.01
exploration fraction 0.1

prioritized replay alpha 0.6
prioritized replay True

Table 9: Hyper parameters used for mixed precision training for training DQN algorithm in all the
Atari environments.

D QUANTIZED POLICY DEPLOYMENT

Here we describe the methodology used to train a point to point navigation policy in Air Learning
and deploy it on an embedded compute platform such as Ras-Pi 3b+. Air Learning is an AI research
platform that provides infrastructure components and tools to train a fully functional reinforcement
learning policies for aerial robots. In simple environments like OpenAI gym, Atari the training
and inference happens in the same environment without any randomization. In contrast to these
environments, Air Learning allows us to randomize various environmental parameters such as such
as arena size, number of obstacles, goal position etc.

In this study, we fix the arena size to 25 m × 25 m × 20 m. The maximum number of obstacles
at anytime would be anywhere between one to five and is chosen randmonly on episode to episode
basis. The position of these obstacles and end point (goal) are also changed every episode. We
train the aerial robot to reach the end point using DQN algorithm. The input to the policy is sensor
mounted on the drone along with IMU measurements. The output of the policy is one among the
25 actions with different velocity and yaw rates. The reward function we use in this study is defined
based on the following equation:

r = 1000 ∗ α− 100 ∗ β −Dg −Dc ∗ δ − 1 (1)
Here, α is a binary variable whose value is ‘1’ if the agent reaches the goal else its value is ‘0’. β is
a binary variable which is set to ‘1’ if the aerial robot collides with any obstacle or runs out of the
maximum allocated steps for an episode.1 Otherwise, β is ’0’, effectively penalizing the agent for
hitting an obstacle or not reaching the end point in time. Dg is the distance to the end point from the
agent’s current location, motivating the agent to move closer to the goal.Dc is the distance correction
which is applied to penalize the agent if it chooses actions which speed up the agent away from the
goal. The distance correction term is defined as follows:

Dc = (Vmax − Vnow) ∗ tmax (2)

Vmax is the maximum velocity possible for the agent which for DQN is fixed at 2.5 m/s. Vnow is
the current velocity of the agent and tmax is the duration of the actuation.

We train three policies namely Policy I, Policy II, and Policy III. Each policy is learned through cur-
riculum learning where we make the end goal farther away as the training progresses. We terminate
the training once the agent has finished 1 Million steps. We evaluate the all the three policies in fp32
and quantized int8 data types for 100 evaluations in airlearning and report the success rate.

1We set the maximum allowed steps in an episode as 750. This is to make sure the agent finds the end-point
(goal) within some finite amount of steps.

13

Under review as a conference paper at ICLR 2020

Algorithm Policy Architecture
Policy A 3 Layer Conv (128 Filters) + FC (128)

Policy B 3 Layer Conv (512 Filters) + FC(512)

Policy C 3 Layer Conv (1024 Filters) + FC (2048)

Table 10: The policy architecture that was used in mixed precision training for training DQN algo-
rithm in Atari Pong environment.

We also take these policies and characterize the system performance on a Ras-pi 3b platform. Ras-Pi
3b is a proxy for the compute platform available on the aerial robot. The hardware specification for
Ras-Pi 3b is shown in Table 11.

Embedded System Ras-Pi 3b
CPU Cores 4 Cores (ARM A53)

CPU Frequency 1.2 GHz
GPU None

Power <1W
Cost $35

Table 11: Specification of Ras-Pi 3b embedded computing platform. Ras-Pi 3b is a proxy for the
on-board compute platform available in the aerial robot.

We allocate a region of storage space as swap memory. It is the region of memory allocated in disk
that is used when system memory is utilized fully by a process. In Ras-Pi 3b, the swap memory is
allocated in Flash storage.

E POST-TRAINING QUANTIZATION SWEET SPOT

Figures 6 shows that there is a sweet spot for post-training quantization. Sometimes, quantizing to
fewer bits outperforms higher precision quantization. Each plot was generated by applying post-
training quantization to the full precision baselines and evaluating over 10 runs.

5 10 15 20 25 30
Post-Train Quantize # Bits

500
1000
1500
2000
2500

Av
er

ag
e

Re
wa

rd

5 10 15 20 25 30
Post-Train Quantize # Bits

0

500

1000

1500

2000

Av
er

ag
e

Re
wa

rd

5 10 15 20 25 30
Post-Train Quantize # Bits

0
50

100
150
200
250

Av
er

ag
e

Re
wa

rd

Figure 6: Post training quantization sweet spot for DQN MsPacman, DQN SeaQuest, DQN Break-
out. We see that post-training quantization sweet spot depends on the specific task at hand. Note
that 16-bit in this plot is 16-bit affine quantization, not fp16.

14

	Introduction
	Related Work
	Quantized Reinforcement Learning (QuaRL)
	Post-training Quantization
	Quantization Aware Training

	Results
	Case Studies
	Conclusion
	Post Training Quantization Results
	DQN Hyperparameters for Atari
	Mixed Precision Hyperparameters
	Quantized Policy Deployment
	Post-Training Quantization Sweet Spot

